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Abstract

This paper describes the FPGA-based hardware ingpietion of an algorithm for an automatic
traffic surveillance sensor network. The aim of #igorithm is to extract moving vehicles from
real-time camera images for the evaluation of izgfirameters, such as the number of vehicles,
their direction of movement and their approximgteexi, using low power hardware of a sensor
network node. A single, stationary, monochrome canseused, mounted at a location high above
the road. Occlusions are not detected, however Isimpadow and highlight elimination is
performed. The algorithm is designed for frame-edfieiency and is specially suited for pipelined
hardware implementation. The authors, apart froenddweful selection of particular steps of the
algorithm and the modifications towards parallel piementation, also proposed novel
improvements such as backgrounds' binary mask ew@tibn or non-linear functions in highlight
detection, resulting in increasing the robustnesd efficiency of hardware realization. The
algorithm has been implemented in FPGA and testeckal-time video streams from an outdoor

camera.

Index Terms: algorithms implemented in hardware, image-progagfhardware,

video analysis, sensor networks.



1. Introduction

Complex traffic surveillance systems are often ufedcontrolling traffic and
detecting unusual situations, such as traffic cetige or accidents. Most such
systems are built using high resolution cameranheced via a high-bandwidth
link to the processing center. The need for autetharocessing of video data is
obvious and many solutions of systems for traffi@algsis can be found in the
literature [1]-[10]. This paper describes an apphoavhich uses a single,
stationary, constant zoom, monochrome camera tecdetoving and recently
stopped vehicles. The result of the algorithm isirsary mask image of blobs
representing the detected objects and a tablethatiparameters of the objects. A
low resolution camera can be used, since the @etextijects (vehicles) are large
enough and their details are not important for ggiplication. The camera is
mounted at a location high above the road, e.ga street-lamp pole, to reduce
occlusions of vehicles and provide a large fieldvigfw. The camera observes
dynamic events in a scene with a fixed or slowlarafing background, locally
occluded by moving vehicles. It is assumed thaamiori knowledge about the
scene is needed; possible camera vibrations have teeduced by a separate
block. The proposed algorithm supports day andtrogleration, where the scene
might be illuminated by an additional light soueeg. street lamps) or an infra-
red camera could be used. The algorithm runs aovrdte performance and
enables low power realization in a sensor netwartten which can be powered
from a solar cell. Most of the design decisionsendeen made taking into the
account the possibility of the implementation ire thensor network node with
limited hardware and power resources. The low pawparation is achieved due
to the low resolution of the processed image, whéctables to use a low
frequency clock. This algorithm has been developed and tested in an
autonomous low-cost sensor network node for theraéic flow evaluation. The
set of such nodes enabled to estimate traffic large area of a city. Some early
results of the authors' work have been presentd@]jnin this paper the final
algorithm has been described in details, the Houghsform block has been
added, the final processing block has been revasedimproved and the edge
detection blocks have been introduced.

The layout of this paper is as follows: the ovewief the most important

developments in the image segmentation area iemes$ in section 2. In section
2



3 the authors present a low-level image-procesaiggrithm for the detection of
moving objects. Section 4 describes the transfoamatf the blobs obtained from
the image-processing algorithm into a table coimgirthe coordinates of the
detected moving objects with their basic shape maters. The results of
hardware implementation and conclusions are predemt sections 5 and 6,
respectively.

2. Related work

Moving object detection and segmentation techniduss been investigated for
many years. Two main approaches to the probleneadgnizing the vehicles on
the video image can be distinguished:

1) A model-based approach using feature-extractiethods, where recognition
is achieved by matching 2-D features extracted fithh image with the
features of a 3-D model [11]-[15], [1], [2]

2) A non-model-based approach, where the followtimge major methods of
moving object segmentation, can be distinguisheutical flow [16]-[18],
frame differencing and background subtraction [120], [4], [21], [22].

Background subtraction is probably most often uded moving object

segmentation. The idea of the background subtraci#m be described with the

following inequality:
|It _Bt|< 6 (1)

wherel; is the matrix of the pixel intensities of the ant frame B; denotes the

actual background image for timand@is a constant threshold.

The main effort in the background subtraction mdthe concentrated on
maintaining the correct background image. The mgraverage [3] enables the
quick calculation of an approximated value of thekground (2):

Bi=al+ (1_0‘)|:Bt—1 (2)

wherea is a learning ratio.

For image processing, a median operation usuallgsgbetter results than the
average, thus the running median has been intrdduci7] and [4], where the
running estimate of the median is incremented kg ibthe input pixel's intensity

is larger than the estimate and decreased by oiteisfsmaller. The estimate
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converges to the median value, since half of tipaitipixels are larger than and
half are smaller than the estimated value. Calngate median estimate in this
way can also be very efficiently realized in hardsva

Methods using Gaussian distribution or a runningi€san average [28], [29],
[30] provide a solution to the threshold selectovoblem. Each pixel is modeled
as an independent statistical process of Gaussbdisdn and non-background

pixels are found using the following inequality:
||t—ut|<k9ft 3

wherep; ando; are mean and standard deviation matrices of Gausisstribution
for image pixel intensities and the constianypically has a value between 2 and
3.

Updating the background image with running Gaus&atalculated as shown in

the following equations:

1 (xy)= a0 (xy)+ (-a) Gy (xy) (4

ol (ny)z 0‘[' t—1(xyy)_ﬂt—1(X7Y)]2 + (1_0‘) m7t2—1(x’y) (5)

In further considerations, the pixel's coordingtesy) will be omitted to aid the
readability of this paper, unless necessary.

Simplification of the Gaussian models can be foum{31], where the absolute
maximum, minimum and the largest consecutive difiee values for every pixel
are used. Adding color information can improve Hamsitivity of the moving
object detection. For this purpose, several colodes can be used, such as RGB
or HSV [29], [32].

Modeling each pixel as an independent statisticalcgss with Gaussian
distribution does not enable the overcoming of pineblem of non-stationary
background (waving trees or water waves), wherebtiekground pixels might
have several distributions. This problem can beexbby using the Mixture of
Gaussians (MOG) [33]-[35], [5], [36], [37], wheraah pixel is modeled by a few
distributions which are constantly updated. In [88& authors, apart from MOG,
use a statistical model of gradients with a hidrimad approach of image analysis
with pixel-level, region-level and frame-level pessing. An interesting FPGA
implementation (using off-chip RAM) of the modifieMOG algorithm is
presented in [39], where also the blob labelingnglemented in hardware.



There are also other methods found in the liteeatsuch as kernel density
estimators based on a simple adaptive filter intced in [40], a method using
Kalman filter [34], a linear prediction (Wienertél) with autoregressive process
of order 30 [41], mean-shift based estimation [@2¢igenbackgrounds.
Background subtraction enables the detection ofimgoand stopped objects.
Depending on the background model update technthaestopped objects can be
detected for a certain amount of time, until thegdime a part of the background.
The disadvantage of this approach is the effectetécting the places where the
stopped object, which was a part of the backgrowtakted to move. Such a
relocation of the background object is called asghdhe empty place where the
object was before it started to move is detectetil iinbecomes a part of the
background. The other issue is how to update tkdraund. Simple approaches
use a non-selective background update — informditiom every pixel of the
current image is included in the background modelkpite the result of the
segmentation. In this way, the pixels belonginghe moving objects are also
included in the background, decreasing the seigctf the segmentation. In [3],
a selective background update has been introdwdsete only pixels that are not
recognized as moving objects are allowed to beuded in the background
model. Selectivity improves the quality of the bgwdund model, but it also
creates a risk of the occurrence of the dead-ldeknpmenon, which appears
when some part of the background changes and xkeésphat are falsely detected
as being part of the moving object will never beluded in the background and
are always indicated in the segmented picture. daduce this problem, two
backgrounds can be used [7], [40], [43], [44], aDmbination of both selective
and non-selective approach.

Owing to the algorithm imperfections, some pixeidhe original image being a
part of the moving vehicle are not indicated in tiweary mask. Such pixels are
called false negatives (FNyVhen the pixels of the original image that are péar
the stationary background are recognized as patieomoving objects, they are
called false positives (FPTP denotes the number of true positive pixels, i.e.
pixels that are a part of the moving object and evgectly identified. The
following detection quality measures can be defingd the fill ratioFIL and the

precision ratidPR, similarly as in [46]:



TP

FIL= ———[100% (6)
TP+ FN

PR= ™ [100% (7)
TP+ FP

One of the reasons for errors in image segmentéitite existence of shadows of
various types: shadows cast by objects onto th&goaond, shadows cast by
objects onto themselves and shadows cast by otfjects. The most important
are the shadows which are cast by objects ontdabkground and which move
along with them. In the night, highlights can besetved, such as the reflections
of car lights from background surfaces. Even a sream cause additional
problems [47]. Some authors divide the image iljoases and manipulate the
mean values of the pixels' intensities to elimingb@dow and to preserve the
texture [48], or use color, spatial and tempor#&brimation with an a posteriori
probabilistic estimator to determine shadows [48].[50], a set of 17 image
region types is used and heuristic rules to clpgsifels as shadow are applied.
Many solutions characterize shadow by the samercbld lower hue or
brightness [53], [8], [26], [8]. The detailed rewieof shadow elimination
techniques can be found in [8]. Elimination of shad and highlights is very
important in a non-model-based approach, since tbeld cause object merging
or shape distortions.

The binary mask image obtained from the segmemtatigorithm should be post-
processed to delete single erroneously classifie@l with morphological
operations or other methods using additional infdram obtained from object-
level and frame-level processing [41].

The hardware implementation of image processingrahlgns is becoming more
popular with the constant development of more siated FPGAs. Examples
of implementation of image processing algorithms fga found in [51] and [52].

3. Image segmentation algorithm

In this paper, a non-model-based approach is pedewhich transforms the
camera image into a binary mask containing moviog$ The aim of the authors
is to develop a pipelined, iteration-less algoritiuhich can be implemented in

hardware, performing simple segmentation of tradfigects with a monochrome



camera mounted above the road. The use of a mamoehtamera decreases the
segmentation sensitivity and it also excludes teke af color information for
shadow and highlight detection, but it reduces dbmplexity of the hardware.
The authors developed the algorithm that can béeim@nted in pipelined fashion
in the hardware, without iterations. The contribatof this paper is also a novel
method of binary mask combination from two backgbsubtraction results and
the use of the non-linear functions for the detectf the highlights.

The general diagram depicting the idea of the #lyoris presented in Fig. 1,
where the block structure of the system and tha-fletv are shown. Each block
will be described in detail in the next sectionsc8 the background subtraction
technique is used, the image stabilization cirediithe input might be needed,

which is outside the scope of this paper.

3.1. Models for Selective and Non-selective Background

The presented algorithm is based on the backgreubtiaction technique and
uses two background models: long-term with nonesele update and short-term
with selective background update [6], [7], [40],3]4 The models for both
selective and non-selective backgrounds are similer difference is only in
updating the background with data from the curierage. For the simplicity of
the realization in hardware, the models assumelesi@gussian distribution of
pixels' intensities. The pixel is classified asefgnound using (3) and the results
are stored asns and my masks for selective and non-selective background,

respectively.
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Fig. 1 General diagram depicting the idea of tige@ihm for the FPGA implementation

Depending on the auto exposure system implememtethe camera, sudden
changes in the illumination of the scene can cahsebackground subtraction-
based algorithms to detect all the regions whegebtightness has changed. Such
a situation can be observed at night, for exampkr periodically flashing city
neon lights. In this situation an additional averagrightness control block
adjusting the average brightness of the backgronodels and the previous frame

to the current image might be needed, which isideitthe scope of this paper.

3.2. Non-selective Background Update Block

The non-selective background update block, alorth thie selective background
update block, performs the main task of detecting moving and recently
stopped objects. To enable easy implementatiorardware, the running mode

[7] as a background update function was chosen:

pnga (V) +0ng 0 T (X Y) > g4 (X Y)
png (6 Y) = g1 (X Y) =0ng T T (X Y) < g (XY) (8)
Hng-1 (X, Y) otherwise

where:
l(x, y) — the brightness of a pixel situated at coordisag, y) of input

monochrome image at the tirhe



(X y) — the brightness of a pixel situated at coordisdt, y) of background
image, updated non-selectively;

i = 2°=0.03125 is a small constant evaluated experirigntais assumed
that the brightness of the input image is in thregeal(X, y)[10,255.

As can be seen from (8), the calculation of thekgemund requires only a few
simple operations. The running mode is also usedgdating standard deviation
o.. Experimental results show that this approach wadkrectly and also enables
fast and easy implementation in hardware. The upglatf oy ;, which is g from

(3) for non-selective model, is presented in (9):

Ong1 T 0N |It _ﬂN1—1|> ONg-1
ONg = 10Ng-1 ~Ong |It _ﬂN1—1|< ONg-1 9)
O Nt otherwise

where dy, is also a small constant of experimentally evadawalue of
0.00390625 (i.e.d.

3.3. Selective Background Update Block

The selective update block works similarly to thensselective, but uses
information from the final steps of the algorithas, can be seen in (10) and (11):
Usia (X Y)+ sy 0 1 (X Y)> ug4(Xy) and mqg4(Xy) =0

Ust (% Y) = st (X Y) =0sy IF L4(XY) < pugg(Xy) and myg4(Xy)=0 (10)
U2 (X, Y) otherwise

osa(x N+ 1 a(xy) ~ e a (V)| o5a(x%y) and myg (% y)=0
o5 (X Y)=10ga(XY) —dg, If || (X Y) = g (X, Y)|< og4(X%y) and mgg4(Xy)=0
T5p-1(%Y) otherwise
(11)

where:

Myrse (X Y) =My (X, y) OMer (X y) OMeg (X, Y)

Us (X, y) — the brightness of a pixel at coordinatesyf of background image
updated using selectivity;

mv(X, y) — the element of the detected vehicle mask inohgalue equal to O or 1,

where 1 denotes the detected moving objects;

mer(X, y) andmedX, y) — the elements of value {0, 1}, obtained from paral and
spatial edge detection block, respectively.



The values of constani®; and &, were established experimentalljg; = 0.25,
&2 = 0.03125 forl ., (x,y)0(0,255. The input image., is used instead df to

provide the coherence with the maskg i, Mesr.1 and mer1. The sizes of

matricesus, tn, My, Mer andmes are equal to the size bf

The use of two background update blocks has a wepprtant advantage - the
fast adapting selective background update blockgyar better sensitivity, while
the non-selective background helps to avoid theddieek phenomenon. An

example of the frame, where the additional pixeks detected by the selective

background is presented in Fig. 2.

(a)

Fig. 2 An example illustrating a better sensitivify the non-selective background model, (a) —

input imagel;, (b) — maskmy from non-selective background, (c) — mask from selective
background, (d) — pixels detected in the maskand not detected in the mask

The recently stopped objects can be detected foresbme which is often
required in car detection (i.e. detecting a traffam). The non-selective
background model has longer adaptation times thasélective one, i.@\; < 51
and dvz < dsy S0 the recently stopped moving objects are ndéado the quickly
adapting selective model, because the update ckéxdioby the maskny, [J mgs [
mer. After some time, the stopped objects become a qfathe non-selective
background and then they are quickly included anghlective background, since
the maskmy 0 mgs O mer stops blocking of the update. This process istitated
in Fig. 3. Using constant adaptation timeés:{ &1, 2, Os7) benefits in a simpler
hardware, but rapid changes of the scene caussddaen weather changes cause
temporary problems in the detection. It has beesended, that typically after a
few seconds, the backgrounds adapt to the newdmnditions. This situation can
be detected at the final stage of object segmentafis the total area of the
detected objects is comparable to the area of Hwenmage.

10



frame
#6399

frame
#7683

frame
#8694

(1)

Fig. 3 Detection of the recently stopped objectbiective and non-selective background update
blocks: (a) — the input imagk with added maskm, (darker areas indicated by the white
rectangles), the recently stopped car in the cerfttre image is being detected by the algorithm,
(b) — the non-selective backgroupd , the new car has not been yet added to the rlentise
background, (c) — the selective backgroyrd the new car has not yet been included into the
selective background, (d) — the car is still beilegected, (e) — the car is slowly being added into
the non-selective background, (f) — the car isinciuded into the selective background, because it
has been blocked by the mask, (g) — the car is not detected any more, (h) -nthe car is fully
included into the non-selective background, (ihe selective background is quickly updating,

because masky, is not blocking the update of the car

3.4. Binary Mask Combination Block

Detection results from both models have to be caetinto a single binary mask
mg. With a simple and operation, all the pixels that were not detected
simultaneously by both models would be lost. Owitgy this, a special
combination ofandandor operations can be used to improve the detectiottign
paper, the authors refined the idea described3h When in the proximity of the

11



inspected pixel there is at least one pixel detedig both models, ther
operation is used, otherwise ttwed operation is used, as shown in (12).

ms (x,y) Omy (x,y) if (ms(x-1,y)Omy (x-1,y))0
(ms(x=1,y-1)Omy (x-1,y-1))0
mg (x,y)= (ms(x,y 1) Omy (x,y-1))0
mg(x+1,y-1) Omy (x+1,y-1)
ms(x,y) Omy (x,y) otherwise
(12)

The operation of the Binary Mask Combination Blaskpresented in Table 1,
where single FN and FP pixels are considered. dsdlsituations the results are
better than simple binary operations (AND, OR). & be seen in Fig. 4, the
noise observed in the masks (Fig. 4b) does not appear in the resulting image
maskmg (Fig. 4d). It must be noted that for the simplicif the hardware, apart
from the current pixel, only the four previouslyalyzed neighboring pixels are
used in (12).

Table 1. Binary Mask Combination improving the fings mask quality

Input masks Result

Situation | ms | my |Simple| Simple|Binary Mask

AND | OR |Combination
Mg

Missing

single EII HER EII EII EII

: H  EEE ] ] ]

pixel (FN) HmE | HEE [ [ N N

in ms

FP single

(norse) i L

(noise) in

Ms

@  ® T © @

Fig. 4 An example of Mask Combination Block operati(a) - input picture, (b) - mashks from
selective background, (c) - masky from non-selective background, (d) - masik. The

differences in FP pixels between (b) and (c) anesed by the differences in the background

12



models (different update rates of selective and-s@lactive background, specified by the

constantsdys, Ao, ds1anddsy)
The proposed background subtraction has been ceohpdth the Stauffer's and

Grimsons's MOG method [35] wit=3 distributions. For the comparison, the
test sequences have been used: publicly availabéeset PETS2001 [45] and the
sequence taken from the bridge above the highwayah be seen in Fig. 5, the
obtained results are comparable or even better thanstandard background

subtraction method using the MOG.

© 0 )

Fig. 5 Comparison of the proposed background sciitra algorithm with the standard algorithm
[35]: (a) — input image (frame #949) from PETS2@xAmera 1 sequence [45] resized to 128x128
pixels, (b) — manually marked ground truth, (c)rfiltered result from MOG algorithm [35] with
K=3 distributions, (d) — result from the proposedKizgound subtraction algorithm, (e) — input
image (frame #1314) fronobw2_d3 sequence, () — manually marked ground truth, {g)
unfiltered result from MOG algorithm [35] witk=3 distributions, (h) — result from the proposed

background subtraction algorithm

3.5. Temporal and Spatial Edge Detection Blocks

A pure background subtraction does not detect nid&hpixels, especially in dark
scenes. In the worst case, the major part of theinmgovehicle may not be
detected in the night, except for the car lights.overcome such a problem, an
additional detection scheme has been introducemnusie edge detection. The
edge detection improves the segmentation qualitneneasing the number of TP

pixels. Two edge detection blocks have been usedporal edge and spatial edge
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detection blocks. The temporal edge detection bldetects the edges in the
image obtained as the difference between the duarehthe previous frame:

Al T:|I t'lt-ll (13)

The spatial edge detection block uses the differdretween the current image

and the background:

Als=[li —pngd (14)

To avoid locking up the background update by camtusly detected edges, the
non-selective background is used in (14). Tempedde mask imageer is
described with (15):

1 il (xy)- 417 (x=1,y)> 0 O

Mgt (ny): |A|T(X7Y)_A|T(ny_1)|> Oet (15)
0 otherwise

A similar equation as (15) can be written fogs

1 ifjalg(xy)-alg(x-1,y)> Oes O

mES(X!Y): IAIS(x,y)—AIS(x,y—1)|> Oes (16)
0 otherwise

where &+ and &s are constant thresholds evaluated experimentHtig.example
of the edge detection is shown in Fig. 6. The bemkgd detection (maskig) has
problems in finding a dark car in the night, bué tbdge detections add more
pixels improving the overall result. Some new FRefs are also introduced (the
lower part of Fig. 6¢), but they can be easilyefidd out during one of the next

processing steps.

(@) (© (@

(b)

Fig. 6 Additional pixels found by the edge detettio the dark scene, the moving car is marked

with the circle: (a) - original picture (highway the night), (b) - result of background detection

14



mg, (C) - result of spatial edge detectiopgfor &s= 20, (d) - result of temporal edge detection
Mgt for aET: 20

3.6. Shadow and Highlight Detection Blocks

The basic detection of shadows in monochrome imagasbe done simply by
comparing the decrease in brightness [26]:

1 if Q<M<

< <p
Ut (X1Y) 17)
0 otherwise

Mgy (X,y)=

where a and S are constant coefficientsa=0.55, £=0.95, both evaluated
experimentally.

During the night, the illumination of the scene mhes drastically. The light

reflections from car lights are imposing the detectof many FP pixels.

Detection of the highlights working similarly toahin shadow detection would
cause many errors during the day. To solve thiblpm, the authors propose non-
linear brightness transformatiofisproviding different behavior of the highlight
detection block in the day and night. The ideato$ tmethod is presented in
Fig. 7.

| Non-linear
t Transformatiorf

Non-linear
Transformatiorf

M\l,t — >

Fig. 7 Flow diagram of highlight detection block
The input image and the background image aretfassformed with a non-linear

function, which transforms dark pixels into brigbhes and vice versa. For
example, a hyperbolic function from (18) can beduse

15



£(1(xy))= I(io—y‘;zl (18)

wherel(x, y) represents the brightness of the pixekad( I (x,y)J(0,255.

(@ () ©

Fig. 8 Simulation results of the shadow detectia). - original picture, (b) - result of the

background detectiongn(c) - the detected shadow masim

@) () (©) (@

Fig. 9 Simulation results of the detection of thghlights: (a) - original picture, (b) - result tife
background detectiongn(c) - the detected highlights in mask;n{d) - mask m

In the night, when the background pixels are madlagk and are very sensitive to
any highlights, after the transformation the d#éfece between the highlight
(small value after transformation) and the backgdularge value after
transformation) is large and the highlights canilgdse detected and stored as
maskmy,. During the day, the difference between the tamséd background
(low value) and a bright object (also low valueeaftransformation) is smaller
than the constant threshold:. An additional thresholdy, was introduced to
exclude very bright pixels from being classified l@ghlights during the day.
Further improvement in the number of TP pixels banachieved by detecting
very dark pixels on a bright background, also usiog-linear transformations
(maskmy calculated according to Fig.7). The valuesngf 742, 7x1, Tx2 have to
be determined experimentally, the authors usedollmving values:zy; = -8, 142

=120, 1x1 = 25, 1x2 = 70. The results of shadow and highlight detectice shown

16



in Fig. 8 and Fig. 9. As can be seen in Fig. 8, uke of the simple shadow
detection technique is not perfect, but it detéoesmajor part of the shadow and
seems to be sufficient for this application. Momdiable shadow detection
techniques, thus more complex, are widely preserihe literature, e.g. [8]. The
detected highlights from the car lights are showrFig. 9c as the masky,.
Finally, the maskny (Fig. 9d) identifies few more pixels of the moviolgject.

The shadow and highlight detections work constadtlying the day and night,
resulting in adding some noise at night, which @aaeled at morphological
operation at the final processing stage. The rgghldetection depends on the
brightness of the pixels, thus its operation isitieh during the day, when the

pixels are brighter.

3.7. Final Processing

The masks obtained in the previous steps of therittign are combined into a

single maskmggnsx in accordance with (19) and (20):

My = dilerol-((mer Omeg)Omy )O(my, Omgy))  (19)

Mgepsx = erodil(mg C-mys) C((Mer Cmes)Cmy ) (20)

wheredil() and ero() denote 2x2 morphological dilation and erosion opena
respectively.

The blobs representing moving objects in the nmagk.sx usually contain holes
(FN pixels) and many FP pixels (Fig. 10b). To imgrahe shape of the blobs, the
authors propose to apply a generalized Hough twamsfwith a rectangular
structuring element. The size of the structurirgrednt should correspond to the
size of the objects to be detected; in our cassjuare of size 4x4 pixels was
appropriate. For every bright pixel, the structgreglement is positioned in all the
positions overlapping with the pixel and the elemeh the voting matrix is
calculated. The voting matrix is finally comparedhathe constant threshold, as

shown in (21):

m, (x,y)= {1 if Hough,,[m BEst](x,y) > Oy 21)

0 otherwise
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(a) (b) (©

Fig. 10 Simulation results showing the effect ad though transform: (a) - original picture, (b) -

mask meysx(c) - final mask rmpfor & =180

It must be noted that the Hough transform has deiecy to connect the blobs
which are very close together. However, this tramsftion significantly

improves many others aspects of the final mask;tridwesformed blobs usually
have a more convenient shape for labeling and sesttiation described in the
next section, so the use of this transformationes/ important to the overall

efficiency of the algorithm.

4. Blob Analysis and Speed Estimation

The blobs obtained from the previously describextkd have to be analyzed to
detect and to measure the speed of the movingleshi8ince the camera usually
observes the scene at some angle, additional trangfions of the image are
needed.

For speed estimation, knowledge regarding theioelstiip between the blobs'
dimensions found on the image and the real wortiddinates is necessary. Here,
the authors assume a model like in [55], wherectireera is located above the
ground and is pointed towards the road. The grdewel is assumed to be planar.
Such a model is presented in Fig. 11. If we additily assume that the observed
objects are also planar, so their heightsZa®@, then theX, Y coordinates on the

road can be transformed into theaw, Ycam coordinates of the image on the

camera sensor as [55]:

_ X

Xeam = Ycodp)+ h/sin(p) (22)
_ Ysin(p)

Yeam = Ycogp) + h/sin(p) (23)
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where: ¢ — tilt angle [rad],h — height of the camera above the road [m] aird

focal length of the camera [m].

Camera

v XCAM

CAM !
-

Road
ground plane

Fig. 11 Geometrical model of camera and road [55]

Thus, knowing the parametefs h and ¢, one can calculate the real world
coordinatesX, Y from thexcaw, Ycam coordinates. The input image is transformed
into the image which provides the linear corresgone between pixelsin, Vin

on the transformed image and real-world coordin&tes,wherexmap Ymap are the
indexes of pixels on the camera converter. An exangb transformation is
presented in Fig. 12. For a better view, the odabimage is presented instead of
blobs.

The detected blobs are labeled and the followingarpaters are estimated:
object's boundaries, centre of the object, aregixels, fill factor (as the
percentage of pixels with respect to the boundeagangle area). The parameters
are calculated using simple operations during diygbixel revision of the image.
After this stage, a table with the column numbesa¢do the number of indexed
objects is created. Rows describe found parameters.

The objects which are small and have a smalldittdr are discarded. The blobs
which are overlapping on two subsequent framedatected and marked. Such
blobs are treated as the same object in movemstim&tion of the speed and
direction of the objects is calculated by findihg distance between the centers of

the objects marked in the previous stage.
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Fig. 12 Example of original image (a) and resultt@nsformation (b) forg= 43°, h= 15m,
f = 2.8mm using the reverse of (22) and (23)

5. Implementation Results

The algorithm described in the section 3 has bested with various video
streams. The ground truth reference has been gepar a set of video streams
by manually extracting frame-by-frame all the psxef each moving vehicle. The
simulation results show that 57-94% of the pixelepending on the stream)
belonging to the moving vehicles in ground truttage are correctly identified by
the algorithm (fill ratioFIL as defined in (6)). Moreover, the precision r&iR

defined in (7), indicating how many among the d&tecpixels belong to the
moving objects, is about 56-88%. Simulation restdis several frames of the
selected video streams are shown in Fig. 13. Asbeageen from Fig. 13, the
algorithm is able to properly detect the moving iglds at various scene
conditions. A worse detection usually occurs intkdscenes, for gray colored
vehicles or in strong sun light causing intensivexdows. Such problematic
situations with detection errors are collected ig. B4, the arrows indicate the
erroneous detection results. The shapes of thédtirgsblobs in many situations
are different from the shapes of the real movingea, but for the purpose of
simplified tracking and traffic measurement, thetaded shape is not very

important.
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Fig. 13 Simulation results of the algorithm (a)rarhe #638 from dbwodnica_1 movie, (b) -
frame #85 from 6bwodnica_2 movie, (c) - frame #1879 fromwtzeszczmovie, (d) - frame #176
from "obwodnica_notmovie, (e) - frame #718 fromobwodnica_& movie. Frames "result" on
the right contain the input image with the addedknaf the detected blobs. Rectangles indicating

the detected blobs were introduced during simutafito improved visibility
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Fig. 14 Simulation results of the algorithm, whiteows show the problematic situations for the
detection algorithm (a) — a gray vehicle with mihorof pixels detected, frame #1778 from
"obwodnica_4 movie, (b) — the shadow detected as moving oljeatsunny day, frame #42 from
"obwodnica_6& movie, (c) — the highlight detected as movingeabjat night, frame #309 from
"obwodnica_notmovie. Frames "result" on the right contain thptt image with the added mask
of the detected blobs. Rectangles indicating theatied blobs were introduced during simulation
for improved visibility

The algorithm has been implemented in real hardwaneg Xilinx Virtex-4 SX
FPGA on prototype board Virtex-4 Evaluation KitrmoAvnet, utilizing approx.
1700 LUTs, 1200 flip-flops and 2.3Mbits of the il RAM. The design has
been written in VHDL and it has been synthesized anplemented using
Xilinx's ISE 9.1.03i. The analog signal from thereaa was being captured by
Philips's SAA7113H video input processor. On-chigpiementation included:
selective background, non-selective backgroundkdracind masks combination,
temporal and spatial edge detection, highlightdslaand extra pixel detection,
Hough transform, geometrical transformation wittlering (i.e. blob labeling and
blob parameter evaluation), as shown in Fig. 1% Trtierface to the external
processor was used to collect the table with theatled objects' parameters.
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I Segmentation Control | o |
Video || | IData ¢ Algorithm Registers
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1 Image ) External
Transformation Indeaing * | Processor
m
v
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Fig. 15 A simplified structure of the realized aligiom in FPGA
The details of the implementation of the non-sélecbackground update and

subtraction is shown in Fig. 16. The valuesugfandoy are stored in the dual
port RAMs and are updated with every new pixel datee selective background
block is realized in a similar way, with the seieity information added.

4 reg.
[ 4
/ -‘® 5 - | Absolute / | Comparator m.
-\ - Value ——— e > [t
Port Port B ((\EI 543) o
e ——— ] din | 1y a1 [din ¢ 5 - # Comparator
; <[_J> = 1 dout | Port |dout o - < >, =
e e o RAM o
AMSB) Y addr addr [
—_— = ¥ <m ,u 1/: 15
14 & -y Nt 1 .
@ Zp 14 Port A Port B Q\;r
™ + »| di ;
1 din Dual din [
A 4 dout | Port |dout gy |
read 14 RAM write
e | addr addr |- +
#,\. e address A 14  address
clk !

Fig. 16 Simplified schematic diagram of non-seleztiackground block implementation

The implementation of the binary mask combinatiéig.(17) contains a shift
register of a lengthw+1, wherew is the length of a single video line. The
previously analyzed pixels, stored in the shiftistay, are used to calculate the
mask mg. The similar shift registers have also been usedcalculating the
erosion and the dilation in masks;s andmgepsx the edges in the edge detection

block and the indexes in the blob indexing block.
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Fig. 17 Simplified schematic diagram of the impletagion of the binary mask combination

Due to the properties of the algorithm, all the aamng blocks from Fig. 1,

except for the Hough block, are implemented in railar way as the blocks
shown in Fig. 16 and Fig. 17, requiring only a feyeles of the main 1.79MHz
clock to calculate the result and providing thegiasty to obtain the pipelined

implementation.

The Hough block requires, that for each pixel,d@amegular structuring element of
a size of 4x4 is moved around the pixel and adddte voting matrix. Instead of
moving the 4x4 structuring element, a 7x7 rectaaguolatrix of 5-bit values has
been used. In this way, the pixel-centered masristationary for every pixel and

it is stored in the Hough matrix memory, as showfig. 18.

new voire \‘(I!Mé’ " C
S Hough vote memory omparator . -
m ] Port A Port B > itid | —p P
i Dual din - Hough ™
P We Port | ¢ 1 9 constant
o 4 dout RAM dout p—r threshold
& P~ addr addr
14 [ \(Jf’d
vote
State 9 o —— value
- z
Machine +
enable
Hough matrix memory
6
, > ROM | .

_/13_/ addr dout —#
clk ‘

Fig. 18 Simplified schematic diagram of the implenteel Hough block
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The Hough block requires 49 clock cycles to caleulall the elements of the
matrix, so the clock of the frequency of 28.5MHz teeen used for this block to
provide coherent operation with the other blockse Thdexing block also works
with the faster clock, as it also requires mangrin&l iterations.

The image transformation block uses two memories tfansforming the
coordinates of each pixel of the input image. A¢ #tart of the system, the
mapping memories should be programmed with theegalcalculated by the
external processor. At normal operation, the tramsétion of single pixel takes
only 3 cycles of the main clock for that block.

The system has been tested without image stalwlizdilock, which is only
needed in extreme situations, i.e. at a strong wirek relative distribution of
hardware resources among the blocks is shown ileTabrhe algorithm makes
possible to use only integer values in all the wakons. All the constants
required by the algorithm are read from the on-chgmory and are stored in the

control registers. Table 2 also contains a typmahber of clock cycles required

to process a single pixel.

Table 2. Relative usage of hardware resourceselative power consumption

Look- Clock
Up Flip- cycles| Main
Block Tables | Flops| Memory| per clock | Relative
(LUT) | (FFs)| bits | pixel |frequency| Power

[%] | [%] | [%] | (typ.) | [MHZ] [%]
Data Input Controller 11,2 7,5 6,3 10 25 5
Non-selective Background 2 1.79
Update and Background 6,9 7,1 23 16
Subtraction
Selective Background Update 2 1.79
and Background Subtraction 7.6 6.4 18,3 12,8
Edgg Detection (Temporal and 111 55 41 2 1.79 43
Spatial)
Shadow Detection 3 1,1 0 2 1.79 0,3
Highlight and Extra-pixel 2 1.79
Detection and Non-linear 2 1,2 0 0.3
Brightness Transformation
Binary Mask Combination 0,2 0,8 0 2 1.79 0,1
Shadow. and Highlight 0.4 0.9 0 2 1.79 0.2
Processing
Final Processing 0,5 1,6 0 2 1.79 0,2
Hough Transform 5,3 9,4 7,9 49 28.5 8,7
Image Transformation 2,6 2,2 12,7 3 1.79 17
Indexing 23,7 18 15,1 12 28.5 18
Splice Table Generation 11,9 9,6 12,6 3 1.79 15
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| Control registers and glue lodic 13,6 | 28,7] 0 | 1 | 179 | 1,1 |
* - Typical number of clock cycles per pixel is giv, but some additional clock cycles at the
moments between the picture frames can be usédisb the pending operations for some blocks.
Data Input Controller works with the image of biggesolution from the video source, so it has a
larger number of clock cycles per pixel.

All the simulation results presented in this papave been done using 8-bit
image representation. As already shown in Fig.ii@he implemented system
only the 4 most significant bits have been usedg¢chvivas forced by the limited
resources of the FPGA. To show the influence of tkeduction, the simulation
has been made using artificial test scene of lipedranging background gis =
0...255, with rectangular objects casting simulateddews of intensityy i,
moving from left to right, as shown in Fig. 19. Tharameters of the artificial
moving objects are shown in Table 3.

Table 3. Parameters of the objects in the artifieist scene
object's idk= 1 2 3 4 5
object's intensity 0| 64 128192|255
shadow coefficienyy | 0.55/0.65|0.75|0.85| 0.95

(b) © (@)

(€) () (@)

ARAA/

Fig. 19 Simulation results of algorithm operation &rtificial scene for 8- and 4-bit versions; {a)
input image with added objects' indices and arrioiating direction of movement, (b) — ground
truth for objects, (c) — object detection resuttagékm,,) for 8-bit version of the algorithm, (d) —
object detection results (mashy) for 4-bit version of the algorithm, (e) — groumdith for
shadows, (f) — shadow detection results (mamss) for 8-bit version of the algorithm, (g) —

shadow detection results (masil) for 4-bit version of the algorithm.
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To better illustrate the influence of data reductithe FIL and PR ratios have
been calculated and presented in Fig. 20. As caseba from the simulations,
data reduction resulted in a lower sensitivity & talgorithm in detecting the
objects and shadows. However, the relative preatisiothe 4-bit version of the
algorithm (PR ratios) slightly has increased. Téauction of data width saved a
lot of FPGA resources and power, at the expenstefdecreased sensitivity.

Nevertheless, the algorithm results still seemetaificient for this application.

100
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T
F
i

80 [

60 [

40 40

FIL and PR ratio [%]
FIL and PR ratio [%]

20 [ 20

frame #

100

100

80 [ 80

60 [

60

40 a0

FIL and PR ratio [%]
FIL and PR ratio [%]

400 420 440 460 480 500 520 540 560 400 420 440 460 480 500 520 540 560
frame # frame #

(©) (d)
Fig. 20 Calculated values of FIL and PR ratios dbject and shadow detection in the artificial
scene from Fig. 19; (a) — FIL and PR ratios foregl§ using 8-bit data representation, (b) — FIL
and PR ratios for shadows using 8-bit data reptatien, (c) — FIL and PR ratios for objects using
4-bit data representation, (d) — FIL and PR rdioshadows using 4-bit data representation.

The photographs showing the results of the algoriive presented in Fig. 21.
More results are available on-line at httpuiiv.ue.eti.pg.gda.pl/siThe hardware
was designed to work with the main 1.79MHz clock #me additional 28.5MHz

clock for the Hough and indexing blocks to proc2sgrames per second of a low
resolution 128 x 128 pixels monochrome image. Tlennclock frequency has
been set as low as possible to enable the progeskipixel data by each block.
The estimated dynamic power consumption was aboQin8v with 600mwW of
quiescent power. The core elements realizing tgeridhm were estimated to
consume 400mW, this power is distributed amongotbeks as shown in the last
column of Table 2. Since the FPGAs are known toehavarge power demand,
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implementing the algorithm in ASIC would further cdease the power
consumption. The obtained maximum clock frequenag @bout 135MHz, which
would permit the processing of up to 117 fps — thiScates the great potential of
increasing the processing speed of the algoritlomekample higher resolutions
of input video stream can easily be used. As carsden from Table 2, the
limiting stages for the algorithm are the Houghclland the indexing block. The
authors decided to use the generalized Hough transtiue to its property to
detect the rectangular objects, but for simplerl@mgntations, the morphological
operations could also be used. The state machitigeimndexing block requires
many clock cycles per pixel to communicate withntemories and to index the
blobs.

@)

Fig. 21 Photo of implementation results of the athm (a) - input image,| (b) — non-selective
background mask g (c) — selective background mask, rfd) — combined background maslk,m
(e) — temporal edge mask=m(f) — spatial edge maskgd (g) — shadow and highlight mask;gn
(h) — mask m after final processing, (i) — mask after geometrizansformation forg=29.8°,
h=7m,f=2.8mm
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To demonstrate the efficiency of the FPGA realmati the software
implementation in C of the same algorithm has bdeweloped. The software
version permitted the processing of about 160 fisguintel's dual core processor
with 2.13GHz clock and maximum power dissipation &@W with Linux

operating system - the speed is similar, but th@Akmplementation uses much

less power.

Table 4. The comparison of the selected design npateas of the algorithm with the

implementation presented in [39]

The

The implementation presented in this pa

implementation

er

Parameter presented in Full version Speed opt|m|zed
[39] version
Image resolution 640x480 128x128 128x128
[pixels]
Clock frequency 65 Max. 135 Max. 150
[MHZz]
Frame processing35 Max. 117 Max. 2528
speed [fps]
processing speedl0.7 1.9 41.4
[Mpixels/s]
FFs used 1316 (4.3% | 1200 (3.9%) 891 (2.9%)
LUTs used 1232 (4.0% | 1700 (5.5%) 1683 (5.4%)
Block RAMs|0.34(9.9%) |2,3(66.7%) 1.6 (46.4%)
[Mbits]
External RAM 20 - -
[Mbits]
Implemented background selective selective background
features subtraction, background subtraction, non
MOG, subtraction, non selective background
connected selective subtraction, spatig!
component background edge detection,
labeling subtraction, spatigltemporal edge
edge detection, detection, shadow
temporal edge detection,  highlight
detection, shadowdetection, geometrical

detection, highlight

image transform,

detection, Hough connected component
transform, labeling (1st phase
geometrical imageéonly  with label
transform, equivalence table
connected generation)

component labeling

)

** - Relative to XilinxVirtex-4 XC4VSX35 FPGA

The comparison of some parameters of the propasgiementation with the

solution presented in [39] is shown in Table 4. Tiplementation described in

[39] uses monochrome images of VGA resolution dedsegmentation algorithm
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is based on MOG method, which should work better fon-stationary
backgrounds. The implementation presented in tlapep works with lower
resolution images, but additionally contains thergetrical image transformation
block, moreover, the highlight and shadow detectidocks together with the
edge detection blocks should provide a better tletesensitivity. To show the
potential speed of the presented algorithm, theedso@timized version of
reduced functionality has also been included incivaparison in Table 4. In the
speed optimized version, the Hough block is remcaed the indexing block is
reduced to the 1st phase of the connected compabgotithm with the label
equivalence table generation. No power informatsogiven in [39], so it has not

been compared.

6. Conclusions

In this paper, the combined algorithm for extragtmoving objects from a real-
time video stream is proposed. The processing steps carefully selected and
adopted to provide simple and straightforward eedion in specialized hardware,
such as FPGA or ASIC. A few novel ideas to enhathesalgorithm are also
developed, increasing the robustness and maingpitsnsimplicity for hardware

implementation. The proposed method of backgrowidutation, using running

mode is very fast and requires only basic operatidime novel combination of
masks from selective and non-selective backgroungzoves the detection
qguality. The non-linear brightness transformatia@mable correct detection of
shadows and highlights in various light conditiofifie further improvement
could include the automatic recognition of day aight with switching between

shadow and highlight detection. The application g@é&neralized Hough

transformation significantly improves the final blonask. However, to simplify
the hardware, the Hough block could be replacedh aitset of morphological
operations. The proposed algorithm has been impieaden FPGA and tested in
the real environment. The test results proved sadbility of the presented idea for
recognizing the moving vehicles at low power congtiom - the system properly
found almost all of the moving vehicles during ttay and night.
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Figure legends
Fig. 1 General diagram depicting the idea of tige@ihm for the FPGA implementation

Fig. 2 An example illustrating a better sensitivitf the non-selective background model, (a) —
input imagel;, (b) — maskmy from non-selective background, (c) — mask from selective

background, (d) — pixels detected in the maskand not detected in the mask

Fig. 3 Detection of the recently stopped objecsbiective and non-selective background update
blocks: (a) — the input imagh with added maskm, (darker areas indicated by the white
rectangles), the recently stopped car in the cefttie image is being detected by the algorithm,
(b) — the non-selective backgroupg , the new car has not been yet added to the rlentise
background, (c) — the selective backgroyrd the new car has not yet been included into the
selective background, (d) — the car is still beilegected, (e) — the car is slowly being added into
the non-selective background, (f) — the car isinduded into the selective background, because it
has been blocked by the mask, (g) — the car is not detected any more, (h) -nthe car is fully
included into the non-selective background, (ihe telective background is quickly updating,

because masky, is not blocking the update of the car

Fig. 4 An example of Mask Combination Block opeyati(a) - input picture, (b) - mashks from
selective background, (c) - masky from non-selective background, (d) - masig. The
differences in FP pixels between (b) and (c) angsed by the differences in the background

models (different update rates of selective and-s@active background, specified by the
constantsdyy, Az, ds1anddsy)

Fig. 5 Comparison of the proposed background satitra algorithm with the standard algorithm
[35]: (a) — input image (frame #949) from PETS2@xdmera 1 sequence [45] resized to 128x128
pixels, (b) — manually marked ground truth, (c)rfiltered result from MOG algorithm [35] with
K=3 distributions, (d) — result from the proposedaHlzgound subtraction algorithm, (e) — input
image (frame #1314) fronobw2_d3 sequence, (f) — manually marked ground truth, Q)
unfiltered result from MOG algorithm [35] witk=3 distributions, (h) — result from the proposed

background subtraction algorithm

Fig. 6 Additional pixels found by the edge detettio the dark scene, the moving car is marked
with the circle: (a) - original picture (highway the night), (b) - result of background detection
mg, (C) - result of spatial edge detectiopgfor &s= 20, (d) - result of temporal edge detection
mer for @r= 20

Fig. 7 Flow diagram of highlight detection block

Fig. 8 Simulation results of the shadow detectia). - original picture, (b) - result of the

background detectiongn(c) - the detected shadow masim

Fig. 9 Simulation results of the detection of thghlights: (a) - original picture, (b) - result tife
background detectiongn(c) - the detected highlights in mask;n{d) - mask m
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Fig. 10 Simulation results showing the effect af though transform: (a) - original picture, (b) -

mask menysx(c) - final mask mfor & =180
Fig. 11 Geometrical model of camera and road [55]

Fig. 12 Example of original image (a) and resultt@nsformation (b) forg= 43°, h= 15m,
f = 2.8mm using the reverse of (22) and (23)

Fig. 13 Simulation results of the algorithm (a)rarhe #638 from dbwodnica_1 movie, (b) -
frame #85 from 6bwodnica_2 movie, (c) - frame #1879 fromwtzeszczmovie, (d) - frame #176
from "obwodnica_notmovie, (e) - frame #718 fromobwodnica_6 movie. Frames "result" on
the right contain the input image with the addedknaf the detected blobs. Rectangles indicating

the detected blobs were introduced during simutafito improved visibility

Fig. 14 Simulation results of the algorithm, whiteows show the problematic situations for the
detection algorithm (a) — a gray vehicle with mihorof pixels detected, frame #1778 from
"obwodnica_4 movie, (b) — the shadow detected as moving olijeatsunny day, frame #42 from
"obwodnica_& movie, (c) — the highlight detected as movingeabjat night, frame #309 from
"obwodnica_notmovie. Frames "result" on the right contain thput image with the added mask
of the detected blobs. Rectangles indicating theatied blobs were introduced during simulation

for improved visibility

Fig. 15 A simplified structure of the realized aligiom in FPGA

Fig. 16 Simplified schematic diagram of non-selezthackground block implementation
Fig. 17 Simplified schematic diagram of the implenagion of the binary mask combination
Fig. 18 Simplified schematic diagram of the impleresl Hough block

Fig. 19 Simulation results of algorithm operation artificial scene for 8- and 4-bit versions; {a)
input image with added objects' indices and arrioigating direction of movement, (b) — ground
truth for objects, (c) — object detection resuttagékm,,) for 8-bit version of the algorithm, (d) —
object detection results (mashy,) for 4-bit version of the algorithm, (e) — groumdith for
shadows, (f) — shadow detection results (mamsl) for 8-bit version of the algorithm, (g) —

shadow detection results (masl) for 4-bit version of the algorithm.

Fig. 20 Calculated values of FIL and PR ratios dbject and shadow detection in the artificial
scene from Fig. 19; (a) — FIL and PR rations fojeots using 8-bit data representation, (b) — FIL
and PR rations for shadows using 8-bit data reptaten, (c) — FIL and PR rations for objects
using 4-bit data representation, (d) — FIL and RRons for shadows using 4-bit data

representation.

Fig. 21 Photo of implementation results of the athom (a) - input image,,| (b) — non-selective
background mask g (c) — selective background mask, rfd) — combined background maslk,m
(e) — temporal edge maskm(f) — spatial edge maskgd (g) — shadow and highlight mask;gn
(h) — mask m after final processing, (i) — mask after geomatrizansformation forg=29.8°,
h=7m,f=2.8mm
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Table legends

Table 1. Binary Mask Combination improving the fing mask quality.
Table 2. Relative usage of hardware resourceselative power consumption
Table 3. Parameters of the objects in the artifieist scene

Table 4. The comparison of the selected design npetexs of the algorithm with the

implementation presented in [39].
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