
1

FPGA-Based Real-Time Implementation of

Detection Algorithm for Automatic Traffic

Surveillance Sensor Network

Marek Wójcikowski

Gda
�
sk University of Technology, Gdansk, Poland

phone: +48583471974

 fax: +48583472378

e-mail: wujek@ue.eti.pg.gda.pl,

Robert �aglewski

Intel Shannon Ltd, Shanon, Ireland

e-mail: robert.c.zaglewski@intel.com)

Bogdan Pankiewicz

Gda
�
sk University of Technology, Gdansk, Poland

e-mail: bpa@ue.eti.pg.gda.pl).

Abstract

This paper describes the FPGA-based hardware implementation of an algorithm for an automatic

traffic surveillance sensor network. The aim of the algorithm is to extract moving vehicles from

real-time camera images for the evaluation of traffic parameters, such as the number of vehicles,

their direction of movement and their approximate speed, using low power hardware of a sensor

network node. A single, stationary, monochrome camera is used, mounted at a location high above

the road. Occlusions are not detected, however simple shadow and highlight elimination is

performed. The algorithm is designed for frame-rate efficiency and is specially suited for pipelined

hardware implementation. The authors, apart from the careful selection of particular steps of the

algorithm and the modifications towards parallel implementation, also proposed novel

improvements such as backgrounds' binary mask combination or non-linear functions in highlight

detection, resulting in increasing the robustness and efficiency of hardware realization. The

algorithm has been implemented in FPGA and tested on real-time video streams from an outdoor

camera.

Index Terms: algorithms implemented in hardware, image-processing hardware,

video analysis, sensor networks.

2

1. Introduction

Complex traffic surveillance systems are often used for controlling traffic and

detecting unusual situations, such as traffic congestion or accidents. Most such

systems are built using high resolution cameras connected via a high-bandwidth

link to the processing center. The need for automated processing of video data is

obvious and many solutions of systems for traffic analysis can be found in the

literature [1]-[10]. This paper describes an approach which uses a single,

stationary, constant zoom, monochrome camera to detect moving and recently

stopped vehicles. The result of the algorithm is a binary mask image of blobs

representing the detected objects and a table with the parameters of the objects. A

low resolution camera can be used, since the detected objects (vehicles) are large

enough and their details are not important for this application. The camera is

mounted at a location high above the road, e.g. on a street-lamp pole, to reduce

occlusions of vehicles and provide a large field of view. The camera observes

dynamic events in a scene with a fixed or slowly changing background, locally

occluded by moving vehicles. It is assumed that no a priori knowledge about the

scene is needed; possible camera vibrations have to be reduced by a separate

block. The proposed algorithm supports day and night operation, where the scene

might be illuminated by an additional light source (e.g. street lamps) or an infra-

red camera could be used. The algorithm runs at video-rate performance and

enables low power realization in a sensor network node, which can be powered

from a solar cell. Most of the design decisions have been made taking into the

account the possibility of the implementation in the sensor network node with

limited hardware and power resources. The low power operation is achieved due

to the low resolution of the processed image, which enables to use a low

frequency clock. This algorithm has been developed for and tested in an

autonomous low-cost sensor network node for the car traffic flow evaluation. The

set of such nodes enabled to estimate traffic in a large area of a city. Some early

results of the authors' work have been presented in [6], in this paper the final

algorithm has been described in details, the Hough transform block has been

added, the final processing block has been revised and improved and the edge

detection blocks have been introduced.

The layout of this paper is as follows: the overview of the most important

developments in the image segmentation area is presented in section 2. In section

3

3 the authors present a low-level image-processing algorithm for the detection of

moving objects. Section 4 describes the transformation of the blobs obtained from

the image-processing algorithm into a table containing the coordinates of the

detected moving objects with their basic shape parameters. The results of

hardware implementation and conclusions are presented in sections 5 and 6,

respectively.

2. Related work

Moving object detection and segmentation techniques have been investigated for

many years. Two main approaches to the problem of recognizing the vehicles on

the video image can be distinguished:

1) A model-based approach using feature-extraction methods, where recognition

is achieved by matching 2-D features extracted from the image with the

features of a 3-D model [11]-[15], [1], [2]

2) A non-model-based approach, where the following three major methods of

moving object segmentation, can be distinguished: optical flow [16]-[18],

frame differencing and background subtraction [19], [20], [4], [21], [22].

Background subtraction is probably most often used for moving object

segmentation. The idea of the background subtraction can be described with the

following inequality:

| | �<tt BI − (1)

where It is the matrix of the pixel intensities of the current frame, Bt denotes the

actual background image for time t and θ is a constant threshold.

The main effort in the background subtraction method is concentrated on

maintaining the correct background image. The running average [3] enables the

quick calculation of an approximated value of the background (2):

() 11 BIB −− ⋅−⋅ ttt �+�= 1 (2)

where α is a learning ratio.

For image processing, a median operation usually gives better results than the

average, thus the running median has been introduced in [27] and [4], where the

running estimate of the median is incremented by one if the input pixel's intensity

is larger than the estimate and decreased by one if it is smaller. The estimate

4

converges to the median value, since half of the input pixels are larger than and

half are smaller than the estimated value. Calculating the median estimate in this

way can also be very efficiently realized in hardware.

Methods using Gaussian distribution or a running Gaussian average [28], [29],

[30] provide a solution to the threshold selection problem. Each pixel is modeled

as an independent statistical process of Gauss distribution and non-background

pixels are found using the following inequality:

| | ttt k< ��I ⋅− (3)

where µµµµt and σσσσt are mean and standard deviation matrices of Gaussian distribution

for image pixel intensities and the constant k typically has a value between 2 and

3.

Updating the background image with running Gaussian is calculated as shown in

the following equations:

() () () ()yx,��+yx,I�=yx,�
ttt 11 1 −− ⋅−⋅ (4)

() () ()[] () ()yx,��+yx,�yx,I�=yx,�
tttt
2

1
2

11
2 1 −−− ⋅−− (5)

In further considerations, the pixel's coordinates (x, y) will be omitted to aid the

readability of this paper, unless necessary.

Simplification of the Gaussian models can be found in [31], where the absolute

maximum, minimum and the largest consecutive difference values for every pixel

are used. Adding color information can improve the sensitivity of the moving

object detection. For this purpose, several color models can be used, such as RGB

or HSV [29], [32].

Modeling each pixel as an independent statistical process with Gaussian

distribution does not enable the overcoming of the problem of non-stationary

background (waving trees or water waves), where the background pixels might

have several distributions. This problem can be solved by using the Mixture of

Gaussians (MOG) [33]-[35], [5], [36], [37], where each pixel is modeled by a few

distributions which are constantly updated. In [38] the authors, apart from MOG,

use a statistical model of gradients with a hierarchical approach of image analysis

with pixel-level, region-level and frame-level processing. An interesting FPGA

implementation (using off-chip RAM) of the modified MOG algorithm is

presented in [39], where also the blob labeling is implemented in hardware.

5

There are also other methods found in the literature, such as kernel density

estimators based on a simple adaptive filter introduced in [40], a method using

Kalman filter [34], a linear prediction (Wiener filter) with autoregressive process

of order 30 [41], mean-shift based estimation [42] or eigenbackgrounds.

Background subtraction enables the detection of moving and stopped objects.

Depending on the background model update technique, the stopped objects can be

detected for a certain amount of time, until they become a part of the background.

The disadvantage of this approach is the effect of detecting the places where the

stopped object, which was a part of the background, started to move. Such a

relocation of the background object is called a ghost. The empty place where the

object was before it started to move is detected until it becomes a part of the

background. The other issue is how to update the background. Simple approaches

use a non-selective background update – information from every pixel of the

current image is included in the background model, despite the result of the

segmentation. In this way, the pixels belonging to the moving objects are also

included in the background, decreasing the selectivity of the segmentation. In [3],

a selective background update has been introduced, where only pixels that are not

recognized as moving objects are allowed to be included in the background

model. Selectivity improves the quality of the background model, but it also

creates a risk of the occurrence of the dead-lock phenomenon, which appears

when some part of the background changes and the pixels that are falsely detected

as being part of the moving object will never be included in the background and

are always indicated in the segmented picture. To reduce this problem, two

backgrounds can be used [7], [40], [43], [44], as a combination of both selective

and non-selective approach.

Owing to the algorithm imperfections, some pixels of the original image being a

part of the moving vehicle are not indicated in the binary mask. Such pixels are

called false negatives (FN). When the pixels of the original image that are part of

the stationary background are recognized as part of the moving objects, they are

called false positives (FP). TP denotes the number of true positive pixels, i.e.

pixels that are a part of the moving object and are correctly identified. The

following detection quality measures can be defined, i.e. the fill ratio FIL and the

precision ratio PR, similarly as in [46]:

6

100%⋅
FN+TP

TP
=FIL (6)

100%⋅
FP+TP

TP
=PR (7)

One of the reasons for errors in image segmentation is the existence of shadows of

various types: shadows cast by objects onto the background, shadows cast by

objects onto themselves and shadows cast by other objects. The most important

are the shadows which are cast by objects onto the background and which move

along with them. In the night, highlights can be observed, such as the reflections

of car lights from background surfaces. Even a snow can cause additional

problems [47]. Some authors divide the image into squares and manipulate the

mean values of the pixels' intensities to eliminate shadow and to preserve the

texture [48], or use color, spatial and temporal information with an a posteriori

probabilistic estimator to determine shadows [49]. In [50], a set of 17 image

region types is used and heuristic rules to classify pixels as shadow are applied.

Many solutions characterize shadow by the same color but lower hue or

brightness [53], [8], [26], [8]. The detailed review of shadow elimination

techniques can be found in [8]. Elimination of shadows and highlights is very

important in a non-model-based approach, since they could cause object merging

or shape distortions.

The binary mask image obtained from the segmentation algorithm should be post-

processed to delete single erroneously classified pixels with morphological

operations or other methods using additional information obtained from object-

level and frame-level processing [41].

The hardware implementation of image processing algorithms is becoming more

popular with the constant development of more sophisticated FPGAs. Examples

of implementation of image processing algorithms can be found in [51] and [52].

3. Image segmentation algorithm

In this paper, a non-model-based approach is presented, which transforms the

camera image into a binary mask containing moving blobs. The aim of the authors

is to develop a pipelined, iteration-less algorithm which can be implemented in

hardware, performing simple segmentation of traffic objects with a monochrome

7

camera mounted above the road. The use of a monochrome camera decreases the

segmentation sensitivity and it also excludes the use of color information for

shadow and highlight detection, but it reduces the complexity of the hardware.

The authors developed the algorithm that can be implemented in pipelined fashion

in the hardware, without iterations. The contribution of this paper is also a novel

method of binary mask combination from two background subtraction results and

the use of the non-linear functions for the detection of the highlights.

The general diagram depicting the idea of the algorithm is presented in Fig. 1,

where the block structure of the system and the data-flow are shown. Each block

will be described in detail in the next sections. Since the background subtraction

technique is used, the image stabilization circuit at the input might be needed,

which is outside the scope of this paper.

3.1. Models for Selective and Non-selective Background

The presented algorithm is based on the background subtraction technique and

uses two background models: long-term with non-selective update and short-term

with selective background update [6], [7], [40], [43]. The models for both

selective and non-selective backgrounds are similar; the difference is only in

updating the background with data from the current image. For the simplicity of

the realization in hardware, the models assume single Gaussian distribution of

pixels' intensities. The pixel is classified as foreground using (3) and the results

are stored as mS and mN masks for selective and non-selective background,

respectively.

8

Non-selective
Background

Update

Selective
Background

Update

Temporal
Edge

Detection

Spatial
Edge

Detection

Background
Subtraction

Background
Subtraction

Binary
Mask

Combination

Non-linear
Brightness

Transformation

Shadow
Detection

Highlight
and

Extra-pixel
Detection

Shadow and
Highlight

Processing

Final
Processing

m
N

m
S

m
B

m
ET

m
ES

m
HSm

SH

m
HI

m
X

I
t-1

m
BEHSX

I
t

single
frame
delay

Hough
Transform m

V

µµµµ
N

µµµµ
S

Background generation blocks (Sections 3.1-3.4)

Edge detection blocks

Shadow and Highlight detection blocks (Section 3.6)

Final Processing blocks (Section 3.7)

(Section 3.5)

Fig. 1 General diagram depicting the idea of the algorithm for the FPGA implementation

Depending on the auto exposure system implemented in the camera, sudden

changes in the illumination of the scene can cause the background subtraction-

based algorithms to detect all the regions where the brightness has changed. Such

a situation can be observed at night, for example near periodically flashing city

neon lights. In this situation an additional average brightness control block

adjusting the average brightness of the background models and the previous frame

to the current image might be needed, which is outside the scope of this paper.

3.2. Non-selective Background Update Block

The non-selective background update block, along with the selective background

update block, performs the main task of detecting the moving and recently

stopped objects. To enable easy implementation in hardware, the running mode

[7] as a background update function was chosen:









−

−

−−

−−

otherwise),(

),(),(if),(

),(),(if),(

),(

1

11

11

yx� yx�<yxI
�

yx� yx�>yxI
�

+yx�
=yx�

tN,

tN,tN1tN,

tN,tN1tN,

tN, (8)

where:

It(x, y) – the brightness of a pixel situated at coordinates (x, y) of input

monochrome image at the time t;

9

µN,t(x, y) – the brightness of a pixel situated at coordinates (x, y) of background

image, updated non-selectively;

 δN1 = 2-5 = 0.03125 is a small constant evaluated experimentally. It is assumed

that the brightness of the input image is in the range: It(x, y)∈〈0,255〉.

As can be seen from (8), the calculation of the background requires only a few

simple operations. The running mode is also used for updating standard deviation

σt. Experimental results show that this approach works correctly and also enables

fast and easy implementation in hardware. The updating of σΝ, t, which is σt from

(3) for non-selective model, is presented in (9):

| |
| |









−−
−

−

−−−

−−−

otherwise

if

if

1

111

111

tN,

tN,tN,tN2tN,

tN,tN,tN2tN,

tN, � �
<�I

�� �
>�I

�
+

�
=

�
 (9)

where δN2 is also a small constant of experimentally evaluated value of

0.00390625 (i.e. 2-8).

3.3. Selective Background Update Block

The selective update block works similarly to the non-selective, but uses

information from the final steps of the algorithm, as can be seen in (10) and (11):









−
=

−

−−−−

−−−−

otherwise),(

0),(and),(),(if),(

0),(and),(),(if),(

),(

1

1111

1111

yx� =yxmyx�<yxI
�

yx� yxmyx�>yxI
�

+yx�
=yx�

tS,

tVTS,tS,tS1TS,

tVTS,tS,tS1tS,

tS,
 (10)

| |
| |









−−
−

−

−−−−−

−−−−−

otherwise),(

0),(and),(),(),(if),(

0),(and),(),(),(if),(

),(

1

11111

11111

yx� =yxmyx�<yx�yxI
�

yx� =yxmyx�>yx�yxI
�

+yx�
=yx�

tS,

tVTS,tS,tS,tS2tS,

tVTS,tS,tS,tS2tS,

tS,

 (11)

where:

),(),(),(),(, yxmyxmyxmyxm tES,tET,tV,tVTS ∨∨=

µS,t(x, y) – the brightness of a pixel at coordinates (x, y) of background image

updated using selectivity;

mV(x, y) – the element of the detected vehicle mask image of value equal to 0 or 1,

where 1 denotes the detected moving objects;

mET(x, y) and mES(x, y) – the elements of value {0, 1}, obtained from temporal and

spatial edge detection block, respectively.

10

The values of constants δS1 and δS2 were established experimentally: δS1 = 0.25,

δS2 = 0.03125 for () 0,2551 ∈− yx,I t . The input image It-1 is used instead of It to

provide the coherence with the masks mV,t-1, mES,t-1 and mET,t-1. The sizes of

matrices µµµµS, µµµµN, mV, mET and mES are equal to the size of It.

The use of two background update blocks has a very important advantage - the

fast adapting selective background update block gives a better sensitivity, while

the non-selective background helps to avoid the dead-lock phenomenon. An

example of the frame, where the additional pixels are detected by the selective

background is presented in Fig. 2.

Fig. 2 An example illustrating a better sensitivity of the non-selective background model, (a) –

input image It, (b) – mask mN from non-selective background, (c) – mask mS from selective

background, (d) – pixels detected in the mask mS and not detected in the mask mN

The recently stopped objects can be detected for some time which is often

required in car detection (i.e. detecting a traffic jam). The non-selective

background model has longer adaptation times than the selective one, i.e. δN1 < δS1

and δN2 < δS2, so the recently stopped moving objects are not added to the quickly

adapting selective model, because the update is blocked by the mask mV ∨ mES ∨

mET. After some time, the stopped objects become a part of the non-selective

background and then they are quickly included in the selective background, since

the mask mV ∨ mES ∨ mET stops blocking of the update. This process is illustrated

in Fig. 3. Using constant adaptation times (δN1, δS1, δN2, δS2) benefits in a simpler

hardware, but rapid changes of the scene caused by sudden weather changes cause

temporary problems in the detection. It has been observed, that typically after a

few seconds, the backgrounds adapt to the new light conditions. This situation can

be detected at the final stage of object segmentation, as the total area of the

detected objects is comparable to the area of the whole image.

11

Fig. 3 Detection of the recently stopped object by selective and non-selective background update

blocks: (a) – the input image It with added mask mV (darker areas indicated by the white

rectangles), the recently stopped car in the center of the image is being detected by the algorithm,

(b) – the non-selective background µµµµN , the new car has not been yet added to the non-selective

background, (c) – the selective background µµµµS, the new car has not yet been included into the

selective background, (d) – the car is still being detected, (e) – the car is slowly being added into

the non-selective background, (f) – the car is not included into the selective background, because it

has been blocked by the mask mV, (g) – the car is not detected any more, (h) – the new car is fully

included into the non-selective background, (i) – the selective background is quickly updating,

because mask mV is not blocking the update of the car

3.4. Binary Mask Combination Block

Detection results from both models have to be combined into a single binary mask

mB. With a simple and operation, all the pixels that were not detected

simultaneously by both models would be lost. Owing to this, a special

combination of and and or operations can be used to improve the detection. In this

paper, the authors refined the idea described in [43]. When in the proximity of the

12

inspected pixel there is at least one pixel detected by both models, the or

operation is used, otherwise the and operation is used, as shown in (12).

()

() () () ()()
() ()()

() ()()
() ()

() ()












∧
−∧−
∨−∧−

∨−−∧−−
∨−∧−∨

otherwise

11,11,

11

11,11,

1,1,if

yx,myx,m

y+xmy+xm

yx,myx,m

yxmyxm

yxmyxmyx,myx,m

=yx,m

NS

NS

NS

NS

NSNS

B

 (12)

The operation of the Binary Mask Combination Block is presented in Table 1,

where single FN and FP pixels are considered. In those situations the results are

better than simple binary operations (AND, OR). As can be seen in Fig. 4, the

noise observed in the mask mS (Fig. 4b) does not appear in the resulting image

mask mB (Fig. 4d). It must be noted that for the simplicity of the hardware, apart

from the current pixel, only the four previously analyzed neighboring pixels are

used in (12).

Table 1. Binary Mask Combination improving the final mB mask quality

 Input masks Result
Situation mS mN Simple

AND
Simple

OR
Binary Mask
Combination

mB
Missing
single
pixel (FN)
in mS

FP single
pixel
(noise) in
mS

Fig. 4 An example of Mask Combination Block operation: (a) - input picture, (b) - mask mS from

selective background, (c) - mask mN from non-selective background, (d) - mask mB. The

differences in FP pixels between (b) and (c) are caused by the differences in the background

13

models (different update rates of selective and non-selective background, specified by the

constants: δN1, δN2, δS1 and δS2)

The proposed background subtraction has been compared with the Stauffer's and

Grimsons's MOG method [35] with K=3 distributions. For the comparison, the

test sequences have been used: publicly available dataset PETS2001 [45] and the

sequence taken from the bridge above the highway. As can be seen in Fig. 5, the

obtained results are comparable or even better than the standard background

subtraction method using the MOG.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5 Comparison of the proposed background subtraction algorithm with the standard algorithm

[35]: (a) – input image (frame #949) from PETS2001 Camera 1 sequence [45] resized to 128x128

pixels, (b) – manually marked ground truth, (c) – unfiltered result from MOG algorithm [35] with

K=3 distributions, (d) – result from the proposed background subtraction algorithm, (e) – input

image (frame #1314) from obw2_d3 sequence, (f) – manually marked ground truth, (g) –

unfiltered result from MOG algorithm [35] with K=3 distributions, (h) – result from the proposed

background subtraction algorithm

3.5. Temporal and Spatial Edge Detection Blocks

A pure background subtraction does not detect many TP pixels, especially in dark

scenes. In the worst case, the major part of the moving vehicle may not be

detected in the night, except for the car lights. To overcome such a problem, an

additional detection scheme has been introduced using the edge detection. The

edge detection improves the segmentation quality by increasing the number of TP

pixels. Two edge detection blocks have been used: temporal edge and spatial edge

14

detection blocks. The temporal edge detection block detects the edges in the

image obtained as the difference between the current and the previous frame:

∆∆∆∆IT=|It-It-1| (13)

The spatial edge detection block uses the difference between the current image

and the background:

∆∆∆∆IS=|It – µµµµN,t| (14)

To avoid locking up the background update by continuously detected edges, the

non-selective background is used in (14). Temporal edge mask image mET is

described with (15):

()
() ()| |
() ()| |









−−
∨−−

otherwise0

1

1,if1

ETTT

ETTT

ET

�
>yx,

�
Iyx,

�
I

�
>yx

�
Iyx,

�
I

=yx,m (15)

A similar equation as (15) can be written for mES:

()
() ()| |
() ()| |









−−
∨−−

otherwise0

1

1,if1

ESSS

ESSS

ES

�
>yx,

�
Iyx,

�
I

�
>yx

�
Iyx,

�
I

=yx,m (16)

where θET and θES are constant thresholds evaluated experimentally. The example

of the edge detection is shown in Fig. 6. The background detection (mask mB) has

problems in finding a dark car in the night, but the edge detections add more

pixels improving the overall result. Some new FP pixels are also introduced (the

lower part of Fig. 6c), but they can be easily filtered out during one of the next

processing steps.

Fig. 6 Additional pixels found by the edge detection in the dark scene, the moving car is marked

with the circle: (a) - original picture (highway in the night), (b) - result of background detection

15

mB, (c) - result of spatial edge detection mES for θθθθES = 20, (d) - result of temporal edge detection

mET for θθθθET = 20

3.6. Shadow and Highlight Detection Blocks

The basic detection of shadows in monochrome images can be done simply by

comparing the decrease in brightness [26]:

()
()
()






 ≤≤

otherwise0

if1
,

�
yx,� yx,I�

=yx,m tN

t

SH (17)

where α and β are constant coefficients: α=0.55, β=0.95, both evaluated

experimentally.

During the night, the illumination of the scene changes drastically. The light

reflections from car lights are imposing the detection of many FP pixels.

Detection of the highlights working similarly to that in shadow detection would

cause many errors during the day. To solve this problem, the authors propose non-

linear brightness transformations f, providing different behavior of the highlight

detection block in the day and night. The idea of this method is presented in

Fig. 7.

Non-linear
Transformation f

Non-linear
Transformation f

+ <τ
H 1

?

I
t

µ
N,t

<τ
H 2

?

and m
HI+

- ≥τ
X1

?

<τ
X2

?

and m
X

Fig. 7 Flow diagram of highlight detection block

The input image and the background image are first transformed with a non-linear

function, which transforms dark pixels into bright ones and vice versa. For

example, a hyperbolic function from (18) can be used:

16

()() () 1

2047

+yx,I
=yx,If (18)

where I(x, y) represents the brightness of the pixel at (x,y), () 0,255∈yx,I .

Fig. 8 Simulation results of the shadow detection: (a) - original picture, (b) - result of the

background detection mB, (c) - the detected shadow mask mSH

Fig. 9 Simulation results of the detection of the highlights: (a) - original picture, (b) - result of the

background detection mB, (c) - the detected highlights in mask mHI, (d) - mask mX

In the night, when the background pixels are mainly dark and are very sensitive to

any highlights, after the transformation the difference between the highlight

(small value after transformation) and the background (large value after

transformation) is large and the highlights can easily be detected and stored as

mask mHI. During the day, the difference between the transformed background

(low value) and a bright object (also low value after transformation) is smaller

than the constant threshold τH1. An additional threshold τH2 was introduced to

exclude very bright pixels from being classified as highlights during the day.

Further improvement in the number of TP pixels can be achieved by detecting

very dark pixels on a bright background, also using non-linear transformations

(mask mX calculated according to Fig.7). The values of τH1, τH2, τX1, τX2 have to

be determined experimentally, the authors used the following values: τH1 = -8, τH2

= 120, τX1 = 25, τX2 = 70. The results of shadow and highlight detection are shown

17

in Fig. 8 and Fig. 9. As can be seen in Fig. 8, the use of the simple shadow

detection technique is not perfect, but it detects the major part of the shadow and

seems to be sufficient for this application. More reliable shadow detection

techniques, thus more complex, are widely present in the literature, e.g. [8]. The

detected highlights from the car lights are shown in Fig. 9c as the mask mHI.

Finally, the mask mX (Fig. 9d) identifies few more pixels of the moving object.

The shadow and highlight detections work constantly during the day and night,

resulting in adding some noise at night, which is canceled at morphological

operation at the final processing stage. The highlight detection depends on the

brightness of the pixels, thus its operation is limited during the day, when the

pixels are brighter.

3.7. Final Processing

The masks obtained in the previous steps of the algorithm are combined into a

single mask mBEHSX in accordance with (19) and (20):

()() ()()()SHHIXESETHS ¬erodil= mmmmmm ∨∧∨∧ (19)

() ()()()()XESETHSBBEHSX ¬dilero= mmmmmm ∨∧∨∧ (20)

where dil() and ero() denote 2x2 morphological dilation and erosion operation,

respectively.

The blobs representing moving objects in the mask mBEHSX usually contain holes

(FN pixels) and many FP pixels (Fig. 10b). To improve the shape of the blobs, the

authors propose to apply a generalized Hough transform with a rectangular

structuring element. The size of the structuring element should correspond to the

size of the objects to be detected; in our case, a square of size 4x4 pixels was

appropriate. For every bright pixel, the structuring element is positioned in all the

positions overlapping with the pixel and the element of the voting matrix is

calculated. The voting matrix is finally compared with the constant threshold, as

shown in (21):

() []()




otherwise0

 if1 4x4 Hyx,BEHSX
V

�
>Hough

=yx,m
m

 (21)

18

Fig. 10 Simulation results showing the effect of the Hough transform: (a) - original picture, (b) -

mask mBEHSX (c) - final mask mV for ΘH =180

It must be noted that the Hough transform has a tendency to connect the blobs

which are very close together. However, this transformation significantly

improves many others aspects of the final mask; the transformed blobs usually

have a more convenient shape for labeling and speed estimation described in the

next section, so the use of this transformation is very important to the overall

efficiency of the algorithm.

4. Blob Analysis and Speed Estimation

The blobs obtained from the previously described blocks have to be analyzed to

detect and to measure the speed of the moving vehicles. Since the camera usually

observes the scene at some angle, additional transformations of the image are

needed.

For speed estimation, knowledge regarding the relationship between the blobs'

dimensions found on the image and the real world coordinates is necessary. Here,

the authors assume a model like in [55], where the camera is located above the

ground and is pointed towards the road. The ground level is assumed to be planar.

Such a model is presented in Fig. 11. If we additionally assume that the observed

objects are also planar, so their heights are Z=0, then the X, Y coordinates on the

road can be transformed into the xCAM, yCAM coordinates of the image on the

camera sensor as [55]:

() ()�h+�Y

X
f=xCAM sin/cos

 (22)

()
() ()�h�Y

�Y
f=yCAM sin/cos

sin

+
 (23)

19

where: ϕ – tilt angle [rad], h – height of the camera above the road [m] and f –

focal length of the camera [m].

x
CAMv

CAM

h

X

Y

Z

φ

Road
ground plane

Camera

Fig. 11 Geometrical model of camera and road [55]

Thus, knowing the parameters f, h and ϕ, one can calculate the real world

coordinates X, Y from the xCAM, yCAM coordinates. The input image is transformed

into the image which provides the linear correspondence between pixels xlin, ylin

on the transformed image and real-world coordinates X, Y, where xmap, ymap are the

indexes of pixels on the camera converter. An example of transformation is

presented in Fig. 12. For a better view, the original image is presented instead of

blobs.

The detected blobs are labeled and the following parameters are estimated:

object's boundaries, centre of the object, area in pixels, fill factor (as the

percentage of pixels with respect to the bounding rectangle area). The parameters

are calculated using simple operations during pixel by pixel revision of the image.

After this stage, a table with the column number equal to the number of indexed

objects is created. Rows describe found parameters.

The objects which are small and have a small fill factor are discarded. The blobs

which are overlapping on two subsequent frames are detected and marked. Such

blobs are treated as the same object in movement. Estimation of the speed and

direction of the objects is calculated by finding the distance between the centers of

the objects marked in the previous stage.

20

Fig. 12 Example of original image (a) and result of transformation (b) for ϕ= 43°, h = 15m,

f = 2.8mm using the reverse of (22) and (23)

5. Implementation Results

The algorithm described in the section 3 has been tested with various video

streams. The ground truth reference has been prepared for a set of video streams

by manually extracting frame-by-frame all the pixels of each moving vehicle. The

simulation results show that 57-94% of the pixels (depending on the stream)

belonging to the moving vehicles in ground truth image are correctly identified by

the algorithm (fill ratio FIL as defined in (6)). Moreover, the precision ratio PR

defined in (7), indicating how many among the detected pixels belong to the

moving objects, is about 56-88%. Simulation results for several frames of the

selected video streams are shown in Fig. 13. As can be seen from Fig. 13, the

algorithm is able to properly detect the moving vehicles at various scene

conditions. A worse detection usually occurs in: dark scenes, for gray colored

vehicles or in strong sun light causing intensive shadows. Such problematic

situations with detection errors are collected in Fig. 14, the arrows indicate the

erroneous detection results. The shapes of the resulting blobs in many situations

are different from the shapes of the real moving objects, but for the purpose of

simplified tracking and traffic measurement, the detailed shape is not very

important.

21

input result

input result

input result

input result

input result

(a)

(b)

(c)

(d)

(e)

Fig. 13 Simulation results of the algorithm (a) - frame #638 from "obwodnica_1" movie, (b) -

frame #85 from "obwodnica_2" movie, (c) - frame #1879 from "wrzeszcz" movie, (d) - frame #176

from "obwodnica_noc" movie, (e) - frame #718 from "obwodnica_6" movie. Frames "result" on

the right contain the input image with the added mask of the detected blobs. Rectangles indicating

the detected blobs were introduced during simulation for improved visibility

22

input result

input result

input result

(a)

(b)

(c)

Fig. 14 Simulation results of the algorithm, white arrows show the problematic situations for the

detection algorithm (a) – a gray vehicle with minority of pixels detected, frame #1778 from

"obwodnica_4" movie, (b) – the shadow detected as moving object in a sunny day, frame #42 from

"obwodnica_6" movie, (c) – the highlight detected as moving object at night, frame #309 from

"obwodnica_noc" movie. Frames "result" on the right contain the input image with the added mask

of the detected blobs. Rectangles indicating the detected blobs were introduced during simulation

for improved visibility

The algorithm has been implemented in real hardware using Xilinx Virtex-4 SX

FPGA on prototype board Virtex-4 Evaluation Kit from Avnet, utilizing approx.

1700 LUTs, 1200 flip-flops and 2.3Mbits of the built-in RAM. The design has

been written in VHDL and it has been synthesized and implemented using

Xilinx's ISE 9.1.03i. The analog signal from the camera was being captured by

Philips's SAA7113H video input processor. On-chip implementation included:

selective background, non-selective background, background masks combination,

temporal and spatial edge detection, highlight, shadow and extra pixel detection,

Hough transform, geometrical transformation with indexing (i.e. blob labeling and

blob parameter evaluation), as shown in Fig. 15. The interface to the external

processor was used to collect the table with the detected objects' parameters.

23

Fig. 15 A simplified structure of the realized algorithm in FPGA

The details of the implementation of the non-selective background update and

subtraction is shown in Fig. 16. The values of µµµµN and σσσσN are stored in the dual

port RAMs and are updated with every new pixel data. The selective background

block is realized in a similar way, with the selectivity information added.

Fig. 16 Simplified schematic diagram of non-selective background block implementation

The implementation of the binary mask combination (Fig. 17) contains a shift

register of a length w+1, where w is the length of a single video line. The

previously analyzed pixels, stored in the shift register, are used to calculate the

mask mB. The similar shift registers have also been used for calculating the

erosion and the dilation in masks mHS and mBEHSX, the edges in the edge detection

block and the indexes in the blob indexing block.

24

Fig. 17 Simplified schematic diagram of the implementation of the binary mask combination

Due to the properties of the algorithm, all the remaining blocks from Fig. 1,

except for the Hough block, are implemented in a similar way as the blocks

shown in Fig. 16 and Fig. 17, requiring only a few cycles of the main 1.79MHz

clock to calculate the result and providing the possibility to obtain the pipelined

implementation.

The Hough block requires, that for each pixel, a rectangular structuring element of

a size of 4x4 is moved around the pixel and added to the voting matrix. Instead of

moving the 4x4 structuring element, a 7x7 rectangular matrix of 5-bit values has

been used. In this way, the pixel-centered matrix is stationary for every pixel and

it is stored in the Hough matrix memory, as shown in Fig. 18.

Fig. 18 Simplified schematic diagram of the implemented Hough block

25

The Hough block requires 49 clock cycles to calculate all the elements of the

matrix, so the clock of the frequency of 28.5MHz has been used for this block to

provide coherent operation with the other blocks. The indexing block also works

with the faster clock, as it also requires many internal iterations.

The image transformation block uses two memories for transforming the

coordinates of each pixel of the input image. At the start of the system, the

mapping memories should be programmed with the values calculated by the

external processor. At normal operation, the transformation of single pixel takes

only 3 cycles of the main clock for that block.

The system has been tested without image stabilization block, which is only

needed in extreme situations, i.e. at a strong wind. The relative distribution of

hardware resources among the blocks is shown in Table 2. The algorithm makes

possible to use only integer values in all the calculations. All the constants

required by the algorithm are read from the on-chip memory and are stored in the

control registers. Table 2 also contains a typical number of clock cycles required

to process a single pixel.

Table 2. Relative usage of hardware resources and relative power consumption

Block

Look-
Up

Tables
(LUT)
[%]

Flip-
Flops
(FFs)
[%]

Memory
bits
[%]

Clock
cycles

per
pixel*
(typ.)

Main
clock

frequency
[MHz]

Relative
Power
[%]

Data Input Controller 11,2 7,5 6,3 10 25 5
Non-selective Background
Update and Background
Subtraction

6,9 7,1 23
2 1.79

16

Selective Background Update
and Background Subtraction

7,6 6,4 18,3
2 1.79

12,8

Edge Detection (Temporal and
Spatial)

11,1 5,5 4,1
2 1.79

4,3

Shadow Detection 3 1,1 0 2 1.79 0,3
Highlight and Extra-pixel
Detection and Non-linear
Brightness Transformation

2 1,2 0
2 1.79

0.3

Binary Mask Combination 0,2 0,8 0 2 1.79 0,1
Shadow and Highlight
Processing

0,4 0,9 0
2 1.79

0,2

Final Processing 0,5 1,6 0 2 1.79 0,2
Hough Transform 5,3 9,4 7,9 49 28.5 8,7
Image Transformation 2,6 2,2 12,7 3 1.79 17,3
Indexing 23,7 18 15,1 12 28.5 18
Splice Table Generation 11,9 9,6 12,6 3 1.79 15,7

26

Control registers and glue logic 13,6 28,7 0 1 1.79 1,1
* - Typical number of clock cycles per pixel is given, but some additional clock cycles at the
moments between the picture frames can be used to finish the pending operations for some blocks.
Data Input Controller works with the image of bigger resolution from the video source, so it has a
larger number of clock cycles per pixel.

All the simulation results presented in this paper have been done using 8-bit

image representation. As already shown in Fig. 16, in the implemented system

only the 4 most significant bits have been used, which was forced by the limited

resources of the FPGA. To show the influence of this reduction, the simulation

has been made using artificial test scene of linearly changing background of µA =

0…255, with rectangular objects casting simulated shadows of intensity γkµA,

moving from left to right, as shown in Fig. 19. The parameters of the artificial

moving objects are shown in Table 3.

Table 3. Parameters of the objects in the artificial test scene

object's id k= 1 2 3 4 5

object's intensity 0 64 128 192 255

shadow coefficient γk 0.55 0.65 0.75 0.85 0.95

(a) (b) (c) (d)

(e) (f) (g)

1
2

3

4

5

Fig. 19 Simulation results of algorithm operation for artificial scene for 8- and 4-bit versions; (a) –

input image with added objects' indices and arrows indicating direction of movement, (b) – ground

truth for objects, (c) – object detection results (mask mV) for 8-bit version of the algorithm, (d) –

object detection results (mask mV) for 4-bit version of the algorithm, (e) – ground truth for

shadows, (f) – shadow detection results (mask mSH) for 8-bit version of the algorithm, (g) –

shadow detection results (mask mSH) for 4-bit version of the algorithm.

27

To better illustrate the influence of data reduction, the FIL and PR ratios have

been calculated and presented in Fig. 20. As can be seen from the simulations,

data reduction resulted in a lower sensitivity of the algorithm in detecting the

objects and shadows. However, the relative precision of the 4-bit version of the

algorithm (PR ratios) slightly has increased. The reduction of data width saved a

lot of FPGA resources and power, at the expense of the decreased sensitivity.

Nevertheless, the algorithm results still seem to be sufficient for this application.

(a) (b)

(c) (d)

Fig. 20 Calculated values of FIL and PR ratios for object and shadow detection in the artificial

scene from Fig. 19; (a) – FIL and PR ratios for objects using 8-bit data representation, (b) – FIL

and PR ratios for shadows using 8-bit data representation, (c) – FIL and PR ratios for objects using

4-bit data representation, (d) – FIL and PR ratios for shadows using 4-bit data representation.

The photographs showing the results of the algorithm are presented in Fig. 21.

More results are available on-line at http://www.ue.eti.pg.gda.pl/sn. The hardware

was designed to work with the main 1.79MHz clock and the additional 28.5MHz

clock for the Hough and indexing blocks to process 25 frames per second of a low

resolution 128 x 128 pixels monochrome image. The main clock frequency has

been set as low as possible to enable the processing of pixel data by each block.

The estimated dynamic power consumption was about 600mW with 600mW of

quiescent power. The core elements realizing the algorithm were estimated to

consume 400mW, this power is distributed among the blocks as shown in the last

column of Table 2. Since the FPGAs are known to have a large power demand,

28

implementing the algorithm in ASIC would further decrease the power

consumption. The obtained maximum clock frequency was about 135MHz, which

would permit the processing of up to 117 fps – this indicates the great potential of

increasing the processing speed of the algorithm, for example higher resolutions

of input video stream can easily be used. As can be seen from Table 2, the

limiting stages for the algorithm are the Hough block and the indexing block. The

authors decided to use the generalized Hough transform due to its property to

detect the rectangular objects, but for simpler implementations, the morphological

operations could also be used. The state machine in the indexing block requires

many clock cycles per pixel to communicate with its memories and to index the

blobs.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 21 Photo of implementation results of the algorithm (a) - input image It, (b) – non-selective

background mask mN, (c) – selective background mask mS, (d) – combined background mask mB,

(e) – temporal edge mask mET, (f) – spatial edge mask mES, (g) – shadow and highlight mask mHS,

(h) – mask mV after final processing, (i) – mask after geometrical transformation for ϕ=29.8º,

h=7m, f=2.8mm

29

To demonstrate the efficiency of the FPGA realization, the software

implementation in C of the same algorithm has been developed. The software

version permitted the processing of about 160 fps using Intel's dual core processor

with 2.13GHz clock and maximum power dissipation of 65W with Linux

operating system - the speed is similar, but the FPGA implementation uses much

less power.

Table 4. The comparison of the selected design parameters of the algorithm with the

implementation presented in [39]

The implementation presented in this paper

Parameter

The
implementation

presented in
[39]

Full version
Speed optimized

version

Image resolution
[pixels]

640x480 128x128 128x128

Clock frequency
[MHz]

65 Max. 135 Max. 150

Frame processing
speed [fps]

35 Max. 117 Max. 2528

processing speed
[Mpixels/s]

10.7 1.9 41.4

FFs used 1316 (4.3%**) 1200 (3.9%**) 891 (2.9%**)
LUTs used 1232 (4.0%**) 1700 (5.5%**) 1683 (5.4%**)
Block RAMs
[Mbits]

0.34 (9.9%**) 2,3 (66.7%**) 1.6 (46.4%**)

External RAM
[Mbits]

20 - -

Implemented
features

background
subtraction,
MOG,
connected
component
labeling

selective
background
subtraction, non
selective
background
subtraction, spatial
edge detection,
temporal edge
detection, shadow
detection, highlight
detection, Hough
transform,
geometrical image
transform,
connected
component labeling

selective background
subtraction, non
selective background
subtraction, spatial
edge detection,
temporal edge
detection, shadow
detection, highlight
detection, geometrical
image transform,
connected component
labeling (1st phase
only with label
equivalence table
generation)

** - Relative to XilinxVirtex-4 XC4VSX35 FPGA

The comparison of some parameters of the proposed implementation with the

solution presented in [39] is shown in Table 4. The implementation described in

[39] uses monochrome images of VGA resolution and the segmentation algorithm

30

is based on MOG method, which should work better for non-stationary

backgrounds. The implementation presented in this paper works with lower

resolution images, but additionally contains the geometrical image transformation

block, moreover, the highlight and shadow detection blocks together with the

edge detection blocks should provide a better detection sensitivity. To show the

potential speed of the presented algorithm, the speed-optimized version of

reduced functionality has also been included in the comparison in Table 4. In the

speed optimized version, the Hough block is removed and the indexing block is

reduced to the 1st phase of the connected component algorithm with the label

equivalence table generation. No power information is given in [39], so it has not

been compared.

6. Conclusions

In this paper, the combined algorithm for extracting moving objects from a real-

time video stream is proposed. The processing steps were carefully selected and

adopted to provide simple and straightforward realization in specialized hardware,

such as FPGA or ASIC. A few novel ideas to enhance the algorithm are also

developed, increasing the robustness and maintaining its simplicity for hardware

implementation. The proposed method of background calculation, using running

mode is very fast and requires only basic operations. The novel combination of

masks from selective and non-selective backgrounds improves the detection

quality. The non-linear brightness transformations enable correct detection of

shadows and highlights in various light conditions. The further improvement

could include the automatic recognition of day and night with switching between

shadow and highlight detection. The application of generalized Hough

transformation significantly improves the final blob mask. However, to simplify

the hardware, the Hough block could be replaced with a set of morphological

operations. The proposed algorithm has been implemented in FPGA and tested in

the real environment. The test results proved the usability of the presented idea for

recognizing the moving vehicles at low power consumption - the system properly

found almost all of the moving vehicles during the day and night.

31

Acknowledgments

This work was supported in part by the Polish Ministry of Science and Higher Education under

R&D grant no. R02 014 01.

References

[1] T. N. Tan, K. D. Baker, "Efficient Image Gradient Based Vehicle Localization", IEEE

Trans. Image Processing, vol. 9, no. 8, Aug. 2000, pp. 1343-1356.

[2] A.N. Rajagopalan, R. Chellappa, "Vehicle detection and tracking in video", in Proc. Int.

Conf. Image Process., Vancouver, BC, Canada, 2000, vol.1, pp. 351-354.

[3] D. Koller, J. Weber, J. Malik, "Robust multiple car tracking with occlusion reasoning", in

Proc. European Conf. On Computer Vision, Stockholm, Sweden, 1994, pp. 189-196.

[4] S.C. Cheung, C. Kamath, "Robust techniques for background subtraction in urban traffic

video" in Proc. SPIE Video Communications and Image Processing, 2004, pp. 881-892.

[5] P. KaewTraKulPong, R. Bowden, " A real time adaptive visual surveillance system for

tracking low-resolution colour targets in dynamically changing scenes", Image and Vision

Computing, vol. 21, issue 10, pp. 913-929, Sep. 2003.

[6] M. Wojcikowski, R. Zaglewski, B. Pankiewicz, "An intelligent image processing sensor -

the algorithm and the hardware implementation", in Proc. Int. Conf. Information Technology,

Gdansk, Poland, 2008.

[7] R. Cucchiara, C. Grana, M. Piccardi, A. Prati, "Statistic and knowledge-based moving

object detection in traffic scenes", in IEEE Proc. Intelligent Transportation Systems, Dearborn,

MI, 2000, pp. 27-32.

[8] R. Cucchiara, C. Granna. M.Piccardi, A. Prati, "Detecting Moving Objects, Ghosts and

Shadows in Video Streams", IEEE Trans. Pattern Anal. Machine Intell., vol. 25, no. 10, pp. 1337-

1342, Oct. 2003.

[9] M. Gorgon, P. Pawlik, M. Jablonski, J. Przybylo, "FPGA-based road traffic

videodetector", in Proc. 12th Euromicro Conf. on Digital System Design, Architectures, Methods

and Tools (DSD '09), Lubeck, Gernamy, Aug. 2007.

[10] W. Pamula, "Vehicle Detection Algorithm for FPGA Based Implementation", Computer

Recognition Systems 3, Springer Berlin / Heidelberg, 2009, vol. 57/2009, pp. 585-592.

[11] T. M. Silberberg, D. A. Harwood, and L. S. Davis, "Object recognition using oriented

model points", Computer Vision Graphics and Image Processing, vol. 35, issue 1, pp. 47-71, Jul.

1986.

[12] R. Horaud, "New methods for matching 3D objects with single perpective view", IEEE

Trans. Pattern Anal. Mach. Intell., vol. 9, issue 3, pp. 401-412, May 1987.

[13] D. G. Lowe, "Three-dimensional object recognition from single two-dimensional

images", Artif. Intell., vol. 31, issue 3, pp. 355-395, Mar. 1987.

[14] D. Koller, K. Daniilidis, H.-H. Nagel, "Model-based object tracking in monocular image

sequences of road traffic scenes", Int. J. Comput. Vis., vol. 10, pp. 257-281, Jun. 1993.

32

[15] W. E. L. Grimson, "The combinatorics of object recognition in cluttered environments

using constrained search", Artif. Intell., vol. 44, issue 1-2, pp. 121-165, Jul. 1990.

[16] B. K. P. Horn, B. G. Schunk, "Determining optical flow", Artif. Intell., vol. 17, pp. 185-

203, 1981.

[17] J. L. Barron, D.J. Fleet, S. Beauchemin, "Performance of optical flow techniques". Int. J.

Comput. Vision, vol. 12, issue 1, pp. 43-77, Feb. 1994.

[18] A. Bainbridge-Smith, R. G. Lane, "Determining optical flow using a differential method",

Image and Vision Computing, vol. 15, issue 1, pp. 11-22, Jan. 1997.

[19] A. M. McIvor. "Background subtraction techniques", in Proc. of Image and Vision

Computing, Auckland, New Zealand, 2000.

[20] M. Piccardi, "Background subtraction techniques: a review", in Proc. IEEE Conf. Syst.,

Man Cybern., Hague, The Netherlands, 2004, pp. 3099-3104.

[21] A. Bayona, J. C. SanMiguel, J. M. Martínez, "Comparative evaluation of stationary

foreground object detection algorithms based on background subtraction techniques", Advanced

Video and Signal Based Surveillance, 2009, AVSS '09, Sixth IEEE International Conference on,

pp.25-30, Sept. 2009, doi: 10.1109/AVSS.2009.35.

[22] Y. Benezeth, P. M. Jodoin, B. Emile, H. Laurent, C. Rosenberger, "Review and

Evaluation of Commonly-Implemented Background Subtraction Algorithms", in Proc. 19th Int.

Conf. Pattern Recognition, ICPR, 2008, pp. 1-4.

[23] T. D. Grove, K. D. Baker, T. N. Tan, "Colour Based Object Tracking", in Proc. 14th Int.

Conf. Pattern Recognition, Brisbane, Qld., Australia, 1998, pp. 1442-1444.

[24] J. Rittscher, J. Kato, S. Joga, A. Blake, "A probabilistic Background Model for Tracking",

in Proc. European Conf. Comput. Vision, 2000, pp. 336-350.

[25] Y. H. Yang, M. D. Levine, "The background primal sketch: An approach for tracking

moving objects", Machine Vis. Appl., vol. 5, issue 1, pp. 17-34, Dec. 1992.

[26] R. Cucchiara, C. Granna. M. Piccardi, A. Prati, S. Sirotti, "Improving Shadow

Suppression in Moving Object Detection with HSV Color Information", in Proc. IEEE Intell.

Transp. Syst. Conf., Oakland, CA, 2001, pp. 334-339.

[27] N. McFarlane, C. Schofield, "Segmentation and tracking of piglets in images", Mach. Vis.

Appl., vol. 8, no. 3, pp.187-193, 1995.

[28] C. Wren, A. Azarbayejani, T. Darrell, A. Pentland, "Pfinder: Real-Time Tracking of the

Human Body", IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, no. 7, pp. 780-785, Jul. 1997.

[29] A. Franois, G. Medioni, "Adaptive Color Background Modeling for Real-Time

Segmentation of Video Streams", in Proc. of Int. Conf. Imaging Science, Systems and Technology,

Las Vegas, NV, 1999, pp. 227-232.

[30] S. J. McKenna, S. Jabri, Z. Duric, A. Rosenfeld, "Tracking groups of people," Computer

Vision and Image Understanding, vol. 80, no. 1, pp. 42-56, Oct. 2000.

[31] I. Haritaoglu, D. Harwood, L. S. Davis, "W4: Real-Time Surveillance of People and Their

Activities", IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 809-830, Aug. 2000.

33

[32] R. Zhang, S. Zhang, S. Yu, "Moving Objects Detection Method Based on Brightness

Distortion and Chromaticity Distortion", IEEE Trans. Consumer Electron., vol. 53, no. 3, pp.

1177-1185, Aug. 2007.

[33] W. E. L. Grimson, C. Stauffer, R. Romano, L. Lee, "Using adaptive tracking to classify

and monitor activities in a site", in Proc. IEEE Conf. Comp. Vision and Pattern Recognition, Santa

Barbara, CA, 1998, pp. 22-29.

[34] C. Stauffer, W. E. L. Grimson, "Adaptive Background Mixture Models for Real-time

Tracking", in Conf. Computer Vision and Pattern Recognition CVPR'99, vol. II, pp. 246-252.

[35] C. Stauffer, W. E. L. Grimson, "Learning Patterns of Activity Using Real-Time Tracking",

IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, issue 8, pp. 747-757, Aug. 2000.

[36] P. KaewTraKulPong, R. Bowden, "An Improved Adaptive Background Mixture Model

for Real-time Tracking with Shadow Detection", in Proc. 2nd European Workshop on Advanced

Video-based Surveillance Systems, Kingston upon Thames. Sept. 2001.

[37] Y. Ren, C. Chua, Y. Ho, "Motion detection with non-stationary background", Mach. Vis.

Appl., vol. 13, issue 5-6, pp. 332-343, Mar. 2003.

[38] O. Javed, K. Shafique, M. Shah, "A Hierarchical Approach to Robust Background

Subtraction using Color and Gradient Information", in IEEE Workshop Motion Video Computing.,

IEEE Comput. Soc., Orlando, FL, 2002, pp. 22-27.

[39] K. Appiah, A. Hunter, P. Dickinson, H. Meng, "Accelerated hardware video object

segmentation: From foreground detection to connected components labeling", Comput. Vis. Image

Understand.(2010), doi:10.1016/j.cviu.2010.03.021.

[40] A. Elgammal, D. Harwood, L. S. Davis, "Non-parametric model for background

subtraction" in European Conf. Computer Vision, Dublin, Ireland, 2000, vol. II, pp. 751- 767.

[41] K. Toyama, J. Krumm, B. Brumitt, B. Meyers, "Wallflower: Principles and Practice of

Background Maintenance", in Proc. ICCV99, Corfu, Greece, 1999, pp. 255-261.

[42] D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space

analysis", IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, issue 5, pp. 603-619, May 2002.

[43] D. Duque, H. Santos, P. Cortez, "Moving Object Detection Unaffected by Cast Shadows.

Highlights and Ghosts", in Proc. IEEE Int. Conf. Image Processing, 2005, pp. 413-416.

[44] F. Porikli, Y. Ivanov, T. Haga, "Robust abandoned object detection using dual

foregrounds", EURASIP J. Adv. Signal Process, Jan. 2008, DOI=

http://dx.doi.org/10.1155/2008/197875

[45] PETS'2001, Second IEEE International Workshop on Performance Evaluation of

Tracking and Surveillance, December 9, 2001.

[46] M. Karaman, L. Goldmann, D. Yu, T. Sikora, "Comparison of Static Background

Segmentation Methods", in Proc. of SPIE, 2005, vol. 5960, pp 2140-2151.

[47] J. Cai, M. Shehata, W. Badawy, "A Robust Video-Based Algorithm for Detecting Snow

Movement in Traffic Scenes", Journal of Signal Processing Systems, Springer New York, vol.

56, no. 2-3, Sep. 2009, pp. 307-326.

34

[48] J. M. Scanlan, D. M. Chabries, R. W. Christiansen, "A Shadow Detection And Removal

Algorithm For 2-D Images", in Proc. Int. Conf. Acoustic Speech Signal Process., IEEE,

Albuquerque, NM, 1990, pp. 2057-2060.

[49] I. Mikic, P. C. Cosman, G. T. Kogut, M. M. Trivedi, "Moving Shadow and Object

Detection in Traffic Scenes", in Proc. 15th Int. Conf. Pattern Recog., Barcelona, Spain, 2000, vol.

1, pp. 321-324.

[50] J. Stauder, R. Mech, J. Ostermann, "Detection of Moving Cast Shadows for Object

Segmentation", IEEE Trans. Multimedia, vol. 1, no. 1, pp. 65-76, Mar. 1999.

[51] C. T. Johnston, K. T. Gribbon, D. G. Bailey, "Implementing image processing algorithms

on FPGAs", in: Proceedings of the Eleventh Electronics New Zealand Conference (ENZCON’04),

PalmerstonNorth, November2004.

[52] B. Levine, B. Colonna, T. Oblak, E. Hughes, M. Hoffelder, H. Schmit, "Implementation

of a target recognition application using pipelined reconfigurable hardware", in: International

Conference on Military and Aerospace Applications of Programmable Devices and Technologies,

2003.

[53] T. Horprasert, D. Harwood, L. Davis. "A statistical approach for real-time robust

background subtraction and shadow detection", in IEEE Frame-Rate Applicat. Workshop,

Kerkyra, Greece, 1999.

[54] A. Prati, I. Mikić, M. Trivedi, R. Cucchiara, "Detecting Moving Shadows: Algorithms

and Evaluation", IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 7, pp. 918-923, Jul. 2003.

[55] T. N. Schoepflin, D. J. Dailey, "Dynamic Camera Calibration of Roadside Traffic

Management Cameras for Vehicle Speed Estimation", IEEE Trans. Intell. Transp. Syst., vol. 4, no.

2, pp. 90-98, Jun. 2003.

35

Figure legends

Fig. 1 General diagram depicting the idea of the algorithm for the FPGA implementation

Fig. 2 An example illustrating a better sensitivity of the non-selective background model, (a) –

input image It, (b) – mask mN from non-selective background, (c) – mask mS from selective

background, (d) – pixels detected in the mask mS and not detected in the mask mN

Fig. 3 Detection of the recently stopped object by selective and non-selective background update

blocks: (a) – the input image It with added mask mV (darker areas indicated by the white

rectangles), the recently stopped car in the center of the image is being detected by the algorithm,

(b) – the non-selective background µµµµN , the new car has not been yet added to the non-selective

background, (c) – the selective background µµµµS, the new car has not yet been included into the

selective background, (d) – the car is still being detected, (e) – the car is slowly being added into

the non-selective background, (f) – the car is not included into the selective background, because it

has been blocked by the mask mV, (g) – the car is not detected any more, (h) – the new car is fully

included into the non-selective background, (i) – the selective background is quickly updating,

because mask mV is not blocking the update of the car

Fig. 4 An example of Mask Combination Block operation: (a) - input picture, (b) - mask mS from

selective background, (c) - mask mN from non-selective background, (d) - mask mB. The

differences in FP pixels between (b) and (c) are caused by the differences in the background

models (different update rates of selective and non-selective background, specified by the

constants: δN1, δN2, δS1 and δS2)

Fig. 5 Comparison of the proposed background subtraction algorithm with the standard algorithm

[35]: (a) – input image (frame #949) from PETS2001 Camera 1 sequence [45] resized to 128x128

pixels, (b) – manually marked ground truth, (c) – unfiltered result from MOG algorithm [35] with

K=3 distributions, (d) – result from the proposed background subtraction algorithm, (e) – input

image (frame #1314) from obw2_d3 sequence, (f) – manually marked ground truth, (g) –

unfiltered result from MOG algorithm [35] with K=3 distributions, (h) – result from the proposed

background subtraction algorithm

Fig. 6 Additional pixels found by the edge detection in the dark scene, the moving car is marked

with the circle: (a) - original picture (highway in the night), (b) - result of background detection

mB, (c) - result of spatial edge detection mES for θθθθES = 20, (d) - result of temporal edge detection

mET for θθθθET = 20

Fig. 7 Flow diagram of highlight detection block

Fig. 8 Simulation results of the shadow detection: (a) - original picture, (b) - result of the

background detection mB, (c) - the detected shadow mask mSH

Fig. 9 Simulation results of the detection of the highlights: (a) - original picture, (b) - result of the

background detection mB, (c) - the detected highlights in mask mHI, (d) - mask mX

36

Fig. 10 Simulation results showing the effect of the Hough transform: (a) - original picture, (b) -

mask mBEHSX (c) - final mask mV for ΘH =180

Fig. 11 Geometrical model of camera and road [55]

Fig. 12 Example of original image (a) and result of transformation (b) for ϕ= 43°, h = 15m,

f = 2.8mm using the reverse of (22) and (23)

Fig. 13 Simulation results of the algorithm (a) - frame #638 from "obwodnica_1" movie, (b) -

frame #85 from "obwodnica_2" movie, (c) - frame #1879 from "wrzeszcz" movie, (d) - frame #176

from "obwodnica_noc" movie, (e) - frame #718 from "obwodnica_6" movie. Frames "result" on

the right contain the input image with the added mask of the detected blobs. Rectangles indicating

the detected blobs were introduced during simulation for improved visibility

Fig. 14 Simulation results of the algorithm, white arrows show the problematic situations for the

detection algorithm (a) – a gray vehicle with minority of pixels detected, frame #1778 from

"obwodnica_4" movie, (b) – the shadow detected as moving object in a sunny day, frame #42 from

"obwodnica_6" movie, (c) – the highlight detected as moving object at night, frame #309 from

"obwodnica_noc" movie. Frames "result" on the right contain the input image with the added mask

of the detected blobs. Rectangles indicating the detected blobs were introduced during simulation

for improved visibility

Fig. 15 A simplified structure of the realized algorithm in FPGA

Fig. 16 Simplified schematic diagram of non-selective background block implementation

Fig. 17 Simplified schematic diagram of the implementation of the binary mask combination

Fig. 18 Simplified schematic diagram of the implemented Hough block

Fig. 19 Simulation results of algorithm operation for artificial scene for 8- and 4-bit versions; (a) –

input image with added objects' indices and arrows indicating direction of movement, (b) – ground

truth for objects, (c) – object detection results (mask mV) for 8-bit version of the algorithm, (d) –

object detection results (mask mV) for 4-bit version of the algorithm, (e) – ground truth for

shadows, (f) – shadow detection results (mask mSH) for 8-bit version of the algorithm, (g) –

shadow detection results (mask mSH) for 4-bit version of the algorithm.

Fig. 20 Calculated values of FIL and PR ratios for object and shadow detection in the artificial

scene from Fig. 19; (a) – FIL and PR rations for objects using 8-bit data representation, (b) – FIL

and PR rations for shadows using 8-bit data representation, (c) – FIL and PR rations for objects

using 4-bit data representation, (d) – FIL and PR rations for shadows using 4-bit data

representation.

Fig. 21 Photo of implementation results of the algorithm (a) - input image It, (b) – non-selective

background mask mN, (c) – selective background mask mS, (d) – combined background mask mB,

(e) – temporal edge mask mET, (f) – spatial edge mask mES, (g) – shadow and highlight mask mHS,

(h) – mask mV after final processing, (i) – mask after geometrical transformation for ϕ=29.8º,

h=7m, f=2.8mm

37

Table legends

Table 1. Binary Mask Combination improving the final mB mask quality.

Table 2. Relative usage of hardware resources and relative power consumption

Table 3. Parameters of the objects in the artificial test scene

Table 4. The comparison of the selected design parameters of the algorithm with the

implementation presented in [39].

