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Abstract  

This paper describes the FPGA-based hardware implementation of an algorithm for an automatic 

traffic surveillance sensor network. The aim of the algorithm is to extract moving vehicles from 

real-time camera images for the evaluation of traffic parameters, such as the number of vehicles, 

their direction of movement and their approximate speed, using low power hardware of a sensor 

network node. A single, stationary, monochrome camera is used, mounted at a location high above 

the road. Occlusions are not detected, however simple shadow and highlight elimination is 

performed. The algorithm is designed for frame-rate efficiency and is specially suited for pipelined 

hardware implementation. The authors, apart from the careful selection of particular steps of the 

algorithm and the modifications towards parallel implementation, also proposed novel 

improvements such as backgrounds' binary mask combination or non-linear functions in highlight 

detection, resulting in increasing the robustness and efficiency of hardware realization. The 

algorithm has been implemented in FPGA and tested on real-time video streams from an outdoor 

camera. 

Index Terms: algorithms implemented in hardware, image-processing hardware, 

video analysis, sensor networks. 



2 

1. Introduction 

Complex traffic surveillance systems are often used for controlling traffic and 

detecting unusual situations, such as traffic congestion or accidents. Most such 

systems are built using high resolution cameras connected via a high-bandwidth 

link to the processing center. The need for automated processing of video data is 

obvious and many solutions of systems for traffic analysis can be found in the 

literature [1]-[10]. This paper describes an approach which uses a single, 

stationary, constant zoom, monochrome camera to detect moving and recently 

stopped vehicles. The result of the algorithm is a binary mask image of blobs 

representing the detected objects and a table with the parameters of the objects. A 

low resolution camera can be used, since the detected objects (vehicles) are large 

enough and their details are not important for this application. The camera is 

mounted at a location high above the road, e.g. on a street-lamp pole, to reduce 

occlusions of vehicles and provide a large field of view. The camera observes 

dynamic events in a scene with a fixed or slowly changing background, locally 

occluded by moving vehicles. It is assumed that no a priori knowledge about the 

scene is needed; possible camera vibrations have to be reduced by a separate 

block. The proposed algorithm supports day and night operation, where the scene 

might be illuminated by an additional light source (e.g. street lamps) or an infra-

red camera could be used. The algorithm runs at video-rate performance and 

enables low power realization in a sensor network node, which can be powered 

from a solar cell. Most of the design decisions have been made taking into the 

account the possibility of the implementation in the sensor network node with 

limited hardware and power resources. The low power operation is achieved due 

to the low resolution of the processed image, which enables to use a low 

frequency clock. This algorithm has been developed for and tested in an 

autonomous low-cost sensor network node for the car traffic flow evaluation. The 

set of such nodes enabled to estimate traffic in a large area of a city. Some early 

results of the authors' work have been presented in [6], in this paper the final 

algorithm has been described in details, the Hough transform block has been 

added, the final processing block has been revised and improved and the edge 

detection blocks have been introduced. 

The layout of this paper is as follows: the overview of the most important 

developments in the image segmentation area is presented in section 2. In section 
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3 the authors present a low-level image-processing algorithm for the detection of 

moving objects. Section 4 describes the transformation of the blobs obtained from 

the image-processing algorithm into a table containing the coordinates of the 

detected moving objects with their basic shape parameters. The results of 

hardware implementation and conclusions are presented in sections 5 and 6, 

respectively. 

2. Related work 

Moving object detection and segmentation techniques have been investigated for 

many years. Two main approaches to the problem of recognizing the vehicles on 

the video image can be distinguished:  

1) A model-based approach using feature-extraction methods, where recognition 

is achieved by matching 2-D features extracted from the image with the 

features of a 3-D model [11]-[15], [1], [2]  

2) A non-model-based approach, where the following three major methods of 

moving object segmentation, can be distinguished: optical flow [16]-[18], 

frame differencing and background subtraction [19], [20], [4], [21], [22].  

Background subtraction is probably most often used for moving object 

segmentation. The idea of the background subtraction can be described with the 

following inequality: 

| | �<tt BI −  (1) 

where It is the matrix of the pixel intensities of the current frame, Bt denotes the 

actual background image for time t and θ is a constant threshold. 

The main effort in the background subtraction method is concentrated on 

maintaining the correct background image. The running average [3] enables the 

quick calculation of an approximated value of the background (2): 

( ) 11 BIB −− ⋅−⋅ ttt �+�= 1  (2) 

where α is a learning ratio. 

For image processing, a median operation usually gives better results than the 

average, thus the running median has been introduced in [27] and [4], where the 

running estimate of the median is incremented by one if the input pixel's intensity 

is larger than the estimate and decreased by one if it is smaller. The estimate 
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converges to the median value, since half of the input pixels are larger than and 

half are smaller than the estimated value. Calculating the median estimate in this 

way can also be very efficiently realized in hardware. 

Methods using Gaussian distribution or a running Gaussian average [28], [29], 

[30] provide a solution to the threshold selection problem. Each pixel is modeled 

as an independent statistical process of Gauss distribution and non-background 

pixels are found using the following inequality: 

| | ttt k< ��I ⋅−  (3) 

where µµµµt and σσσσt are mean and standard deviation matrices of Gaussian distribution 

for image pixel intensities and the constant k typically has a value between 2 and 

3.  

Updating the background image with running Gaussian is calculated as shown in 

the following equations: 

( ) ( ) ( ) ( )yx,��+yx,I�=yx,�
ttt 11 1 −− ⋅−⋅  (4) 

( ) ( ) ( )[ ] ( ) ( )yx,��+yx,�yx,I�=yx,�
tttt
2

1
2

11
2 1 −−− ⋅−−  (5) 

In further considerations, the pixel's coordinates (x, y) will be omitted to aid the 

readability of this paper, unless necessary.  

Simplification of the Gaussian models can be found in [31], where the absolute 

maximum, minimum and the largest consecutive difference values for every pixel 

are used. Adding color information can improve the sensitivity of the moving 

object detection. For this purpose, several color models can be used, such as RGB 

or HSV [29], [32].  

Modeling each pixel as an independent statistical process with Gaussian 

distribution does not enable the overcoming of the problem of non-stationary 

background (waving trees or water waves), where the background pixels might 

have several distributions. This problem can be solved by using the Mixture of 

Gaussians (MOG) [33]-[35], [5], [36], [37], where each pixel is modeled by a few 

distributions which are constantly updated. In [38] the authors, apart from MOG, 

use a statistical model of gradients with a hierarchical approach of image analysis 

with pixel-level, region-level and frame-level processing. An interesting FPGA 

implementation (using off-chip RAM) of the modified MOG algorithm is 

presented in [39], where also the blob labeling is implemented in hardware. 
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There are also other methods found in the literature, such as kernel density 

estimators based on a simple adaptive filter introduced in [40], a method using 

Kalman filter [34], a linear prediction (Wiener filter) with autoregressive process 

of order 30 [41], mean-shift based estimation [42] or eigenbackgrounds. 

Background subtraction enables the detection of moving and stopped objects. 

Depending on the background model update technique, the stopped objects can be 

detected for a certain amount of time, until they become a part of the background. 

The disadvantage of this approach is the effect of detecting the places where the 

stopped object, which was a part of the background, started to move. Such a 

relocation of the background object is called a ghost. The empty place where the 

object was before it started to move is detected until it becomes a part of the 

background. The other issue is how to update the background. Simple approaches 

use a non-selective background update – information from every pixel of the 

current image is included in the background model, despite the result of the 

segmentation. In this way, the pixels belonging to the moving objects are also 

included in the background, decreasing the selectivity of the segmentation. In [3], 

a selective background update has been introduced, where only pixels that are not 

recognized as moving objects are allowed to be included in the background 

model. Selectivity improves the quality of the background model, but it also 

creates a risk of the occurrence of the dead-lock phenomenon, which appears 

when some part of the background changes and the pixels that are falsely detected 

as being part of the moving object will never be included in the background and 

are always indicated in the segmented picture. To reduce this problem, two 

backgrounds can be used [7], [40], [43], [44], as a combination of both selective 

and non-selective approach. 

Owing to the algorithm imperfections, some pixels of the original image being a 

part of the moving vehicle are not indicated in the binary mask. Such pixels are 

called false negatives (FN). When the pixels of the original image that are part of 

the stationary background are recognized as part of the moving objects, they are 

called false positives (FP). TP denotes the number of true positive pixels, i.e. 

pixels that are a part of the moving object and are correctly identified. The 

following detection quality measures can be defined, i.e. the fill ratio FIL and the 

precision ratio PR, similarly as in [46]: 
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100%⋅
FN+TP

TP
=FIL  (6) 

100%⋅
FP+TP

TP
=PR  (7) 

One of the reasons for errors in image segmentation is the existence of shadows of 

various types: shadows cast by objects onto the background, shadows cast by 

objects onto themselves and shadows cast by other objects. The most important 

are the shadows which are cast by objects onto the background and which move 

along with them. In the night, highlights can be observed, such as the reflections 

of car lights from background surfaces. Even a snow can cause additional 

problems [47]. Some authors divide the image into squares and manipulate the 

mean values of the pixels' intensities to eliminate shadow and to preserve the 

texture [48], or use color, spatial and temporal information with an a posteriori 

probabilistic estimator to determine shadows [49]. In [50], a set of 17 image 

region types is used and heuristic rules to classify pixels as shadow are applied. 

Many solutions characterize shadow by the same color but lower hue or 

brightness [53], [8], [26], [8]. The detailed review of shadow elimination 

techniques can be found in [8]. Elimination of shadows and highlights is very 

important in a non-model-based approach, since they could cause object merging 

or shape distortions.  

The binary mask image obtained from the segmentation algorithm should be post-

processed to delete single erroneously classified pixels with morphological 

operations or other methods using additional information obtained from object-

level and frame-level processing [41]. 

The hardware implementation of image processing algorithms is becoming more 

popular with the constant development of more sophisticated FPGAs. Examples 

of implementation of image processing algorithms can be found in [51] and [52]. 

3. Image segmentation algorithm  

In this paper, a non-model-based approach is presented, which transforms the 

camera image into a binary mask containing moving blobs. The aim of the authors 

is to develop a pipelined, iteration-less algorithm which can be implemented in 

hardware, performing simple segmentation of traffic objects with a monochrome 
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camera mounted above the road. The use of a monochrome camera decreases the 

segmentation sensitivity and it also excludes the use of color information for 

shadow and highlight detection, but it reduces the complexity of the hardware. 

The authors developed the algorithm that can be implemented in pipelined fashion 

in the hardware, without iterations. The contribution of this paper is also a novel 

method of binary mask combination from two background subtraction results and 

the use of the non-linear functions for the detection of the highlights. 

The general diagram depicting the idea of the algorithm is presented in Fig. 1, 

where the block structure of the system and the data-flow are shown. Each block 

will be described in detail in the next sections. Since the background subtraction 

technique is used, the image stabilization circuit at the input might be needed, 

which is outside the scope of this paper. 

3.1. Models for Selective and Non-selective Background 

The presented algorithm is based on the background subtraction technique and 

uses two background models: long-term with non-selective update and short-term 

with selective background update [6], [7], [40], [43]. The models for both 

selective and non-selective backgrounds are similar; the difference is only in 

updating the background with data from the current image. For the simplicity of 

the realization in hardware, the models assume single Gaussian distribution of 

pixels' intensities. The pixel is classified as foreground using (3) and the results 

are stored as mS and mN masks for selective and non-selective background, 

respectively.  
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Fig. 1 General diagram depicting the idea of the algorithm for the FPGA implementation 

 

Depending on the auto exposure system implemented in the camera, sudden 

changes in the illumination of the scene can cause the background subtraction-

based algorithms to detect all the regions where the brightness has changed. Such 

a situation can be observed at night, for example near periodically flashing city 

neon lights. In this situation an additional average brightness control block 

adjusting the average brightness of the background models and the previous frame 

to the current image might be needed, which is outside the scope of this paper. 

3.2. Non-selective Background Update Block 

The non-selective background update block, along with the selective background 

update block, performs the main task of detecting the moving and recently 

stopped objects. To enable easy implementation in hardware, the running mode 

[7] as a background update function was chosen: 









−

−

−−

−−

otherwise),(

),(),(if),(

),(),(if),(
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1

11
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yx� yx�>yxI
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+yx�
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tN,

tN,tN1tN,

tN,tN1tN,

tN,  (8) 

where: 

It(x, y) – the brightness of a pixel situated at coordinates (x, y) of input 

monochrome image at the time t;  
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µN,t(x, y) – the brightness of a pixel situated at coordinates (x, y) of background 

image, updated non-selectively; 

 δN1 = 2-5 = 0.03125 is a small constant evaluated experimentally. It is assumed 

that the brightness of the input image is in the range: It(x, y)∈〈0,255〉.  

As can be seen from (8), the calculation of the background requires only a few 

simple operations. The running mode is also used for updating standard deviation 

σt. Experimental results show that this approach works correctly and also enables 

fast and easy implementation in hardware. The updating of σΝ, t, which is σt from 

(3) for non-selective model, is presented in (9): 

| |
| |









−−
−

−

−−−

−−−

otherwise

if

if

1

111
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tN,

tN,tN,tN2tN,

tN,tN,tN2tN,

tN, � �
<�I

�� �
>�I

�
+

�
=

�
 (9) 

where δN2 is also a small constant of experimentally evaluated value of 

0.00390625 (i.e. 2-8).  

3.3. Selective Background Update Block 

The selective update block works similarly to the non-selective, but uses 

information from the final steps of the algorithm, as can be seen in (10) and (11): 


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

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−
=
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−−−−

−−−−
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0),(and),(),(    if),(

),(

1

1111

1111

yx� =yxmyx�<yxI
�

yx� yxmyx�>yxI
�

+yx�
=yx�

tS,

tVTS,tS,tS1TS,

tVTS,tS,tS1tS,

tS,
 (10) 

| |
| |
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otherwise),(

0),(and),(),(),(if),(
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 (11) 

where: 

),(),(),(),(, yxmyxmyxmyxm tES,tET,tV,tVTS ∨∨=  

µS,t(x, y) – the brightness of a pixel at coordinates (x, y) of background image 

updated using selectivity; 

mV(x, y) – the element of the detected vehicle mask image of value equal to 0 or 1, 

where 1 denotes the detected moving objects;  

mET(x, y) and mES(x, y) – the elements of value {0, 1}, obtained from temporal and 

spatial edge detection block, respectively.  
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The values of constants δS1 and δS2 were established experimentally: δS1 = 0.25, 

δS2 = 0.03125 for ( ) 0,2551 ∈− yx,I t . The input image It-1 is used instead of It to 

provide the coherence with the masks mV,t-1, mES,t-1 and mET,t-1. The sizes of 

matrices µµµµS, µµµµN, mV, mET and mES are equal to the size of It. 

The use of two background update blocks has a very important advantage - the 

fast adapting selective background update block gives a better sensitivity, while 

the non-selective background helps to avoid the dead-lock phenomenon. An 

example of the frame, where the additional pixels are detected by the selective 

background is presented in Fig. 2.  

 

Fig. 2 An example illustrating a better sensitivity of the non-selective background model, (a) – 

input image It, (b) – mask mN from non-selective background, (c) – mask mS from selective 

background, (d) – pixels detected in the mask mS and not detected in the mask mN 

 

The recently stopped objects can be detected for some time which is often 

required in car detection (i.e. detecting a traffic jam). The non-selective 

background model has longer adaptation times than the selective one, i.e. δN1 < δS1 

and δN2 < δS2, so the recently stopped moving objects are not added to the quickly 

adapting selective model, because the update is blocked by the mask mV ∨ mES ∨ 

mET. After some time, the stopped objects become a part of the non-selective 

background and then they are quickly included in the selective background, since 

the mask mV ∨ mES ∨ mET stops blocking of the update. This process is illustrated 

in Fig. 3. Using constant adaptation times (δN1, δS1, δN2, δS2) benefits in a simpler 

hardware, but rapid changes of the scene caused by sudden weather changes cause 

temporary problems in the detection. It has been observed, that typically after a 

few seconds, the backgrounds adapt to the new light conditions. This situation can 

be detected at the final stage of object segmentation, as the total area of the 

detected objects is comparable to the area of the whole image. 
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Fig. 3 Detection of the recently stopped object by selective and non-selective background update 

blocks: (a) – the input image It with added mask mV (darker areas indicated by the white 

rectangles), the recently stopped car in the center of the image is being detected by the algorithm, 

(b) – the non-selective background µµµµN , the new car has not been yet added to the non-selective 

background, (c) – the selective background µµµµS, the new car has not yet been included into the 

selective background, (d) – the car is still being detected, (e) – the car is slowly being added into 

the non-selective background, (f) – the car is not included into the selective background, because it 

has been blocked by the mask mV, (g) – the car is not detected any more, (h) – the new car is fully 

included into the non-selective background, (i) – the selective background is quickly updating, 

because mask mV is not blocking the update of the car 

3.4. Binary Mask Combination Block 

Detection results from both models have to be combined into a single binary mask 

mB. With a simple and operation, all the pixels that were not detected 

simultaneously by both models would be lost. Owing to this, a special 

combination of and and or operations can be used to improve the detection. In this 

paper, the authors refined the idea described in [43]. When in the proximity of the 
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inspected pixel there is at least one pixel detected by both models, the or 

operation is used, otherwise the and operation is used, as shown in (12).  

( )

( ) ( ) ( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )

( ) ( )












∧
−∧−
∨−∧−

∨−−∧−−
∨−∧−∨

otherwise

11,11,

11

11,11,

1,1,if

yx,myx,m

y+xmy+xm

yx,myx,m

yxmyxm

yxmyxmyx,myx,m

=yx,m

NS

NS

NS

NS

NSNS

B

 (12) 

The operation of the Binary Mask Combination Block is presented in Table 1, 

where single FN and FP pixels are considered. In those situations the results are 

better than simple binary operations (AND, OR). As can be seen in Fig. 4, the 

noise observed in the mask mS (Fig. 4b) does not appear in the resulting image 

mask mB (Fig. 4d). It must be noted that for the simplicity of the hardware, apart 

from the current pixel, only the four previously analyzed neighboring pixels are 

used in (12). 

Table 1. Binary Mask Combination improving the final mB mask quality 

 Input masks Result 
Situation mS mN Simple 

AND 
Simple 

OR 
Binary Mask 
Combination 

mB 
Missing 
single 
pixel (FN) 
in mS 

     

FP single 
pixel 
(noise) in 
mS 

     

 

 

Fig. 4 An example of Mask Combination Block operation: (a) - input picture, (b) - mask mS from 

selective background, (c) - mask mN from non-selective background, (d) - mask mB. The 

differences in FP pixels between (b) and (c) are caused by the differences in the background 
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models (different update rates of selective and non-selective background, specified by the 

constants: δN1, δN2, δS1 and δS2)
 

The proposed background subtraction has been compared with the Stauffer's and 

Grimsons's MOG method [35] with K=3 distributions. For the comparison, the 

test sequences have been used: publicly available dataset PETS2001 [45] and the 

sequence taken from the bridge above the highway. As can be seen in Fig. 5, the 

obtained results are comparable or even better than the standard background 

subtraction method using the MOG.  

(a) (b) (c) (d)

(e) (f) (g) (h)  

Fig. 5 Comparison of the proposed background subtraction algorithm with the standard algorithm 

[35]: (a) – input image (frame #949) from PETS2001 Camera 1 sequence [45] resized to 128x128 

pixels, (b) – manually marked ground truth, (c) – unfiltered result from MOG algorithm [35] with 

K=3 distributions, (d) – result from the proposed background subtraction algorithm, (e) – input 

image (frame #1314) from obw2_d3 sequence, (f) – manually marked ground truth, (g) – 

unfiltered result from MOG algorithm [35] with K=3 distributions, (h) – result from the proposed 

background subtraction algorithm 

3.5. Temporal and Spatial Edge Detection Blocks 

A pure background subtraction does not detect many TP pixels, especially in dark 

scenes. In the worst case, the major part of the moving vehicle may not be 

detected in the night, except for the car lights. To overcome such a problem, an 

additional detection scheme has been introduced using the edge detection. The 

edge detection improves the segmentation quality by increasing the number of TP 

pixels. Two edge detection blocks have been used: temporal edge and spatial edge 
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detection blocks. The temporal edge detection block detects the edges in the 

image obtained as the difference between the current and the previous frame:  

∆∆∆∆IT=|It-It-1|  (13) 

The spatial edge detection block uses the difference between the current image 

and the background:  

∆∆∆∆IS=|It – µµµµN,t|  (14) 

To avoid locking up the background update by continuously detected edges, the 

non-selective background is used in (14). Temporal edge mask image mET is 

described with (15): 
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A similar equation as (15) can be written for mES: 
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∨−−

otherwise0
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Iyx,

�
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where θET and θES are constant thresholds evaluated experimentally. The example 

of the edge detection is shown in Fig. 6. The background detection (mask mB) has 

problems in finding a dark car in the night, but the edge detections add more 

pixels improving the overall result. Some new FP pixels are also introduced (the 

lower part of Fig. 6c), but they can be easily filtered out during one of the next 

processing steps. 

 

 

Fig. 6 Additional pixels found by the edge detection in the dark scene, the moving car is marked 

with the circle: (a) - original picture (highway in the night), (b) - result of background detection 
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mB, (c) - result of spatial edge detection mES for θθθθES = 20, (d) - result of temporal edge detection 

mET for θθθθET = 20 

3.6. Shadow and Highlight Detection Blocks 

The basic detection of shadows in monochrome images can be done simply by 

comparing the decrease in brightness [26]: 

( )
( )
( )






 ≤≤

otherwise0

if1
,

�
yx,� yx,I�

=yx,m tN

t

SH  (17) 

where α and β are constant coefficients: α=0.55, β=0.95, both evaluated 

experimentally.  

During the night, the illumination of the scene changes drastically. The light 

reflections from car lights are imposing the detection of many FP pixels. 

Detection of the highlights working similarly to that in shadow detection would 

cause many errors during the day. To solve this problem, the authors propose non-

linear brightness transformations f, providing different behavior of the highlight 

detection block in the day and night. The idea of this method is presented in 

Fig. 7. 
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Fig. 7 Flow diagram of highlight detection block 

 

The input image and the background image are first transformed with a non-linear 

function, which transforms dark pixels into bright ones and vice versa. For 

example, a hyperbolic function from (18) can be used: 
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( )( ) ( ) 1

2047

+yx,I
=yx,If  (18) 

where I(x, y) represents the brightness of the pixel at (x,y), ( ) 0,255∈yx,I . 

 

Fig. 8 Simulation results of the shadow detection: (a) - original picture, (b) - result of the 

background detection mB, (c) - the detected shadow mask mSH 

 

 

Fig. 9 Simulation results of the detection of the highlights: (a) - original picture, (b) - result of the 

background detection mB, (c) - the detected highlights in mask mHI, (d) - mask mX 

 

In the night, when the background pixels are mainly dark and are very sensitive to 

any highlights, after the transformation the difference between the highlight 

(small value after transformation) and the background (large value after 

transformation) is large and the highlights can easily be detected and stored as 

mask mHI. During the day, the difference between the transformed background 

(low value) and a bright object (also low value after transformation) is smaller 

than the constant threshold τH1. An additional threshold τH2 was introduced to 

exclude very bright pixels from being classified as highlights during the day. 

Further improvement in the number of TP pixels can be achieved by detecting 

very dark pixels on a bright background, also using non-linear transformations 

(mask mX calculated according to Fig.7). The values of τH1, τH2, τX1, τX2 have to 

be determined experimentally, the authors used the following values: τH1 = -8, τH2 

= 120, τX1 = 25, τX2 = 70. The results of shadow and highlight detection are shown 
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in Fig. 8 and Fig. 9. As can be seen in Fig. 8, the use of the simple shadow 

detection technique is not perfect, but it detects the major part of the shadow and 

seems to be sufficient for this application. More reliable shadow detection 

techniques, thus more complex, are widely present in the literature, e.g. [8]. The 

detected highlights from the car lights are shown in Fig. 9c as the mask mHI. 

Finally, the mask mX (Fig. 9d) identifies few more pixels of the moving object. 

The shadow and highlight detections work constantly during the day and night, 

resulting in adding some noise at night, which is canceled at morphological 

operation at the final processing stage. The highlight detection depends on the 

brightness of the pixels, thus its operation is limited during the day, when the 

pixels are brighter. 

3.7. Final Processing 

The masks obtained in the previous steps of the algorithm are combined into a 

single mask mBEHSX in accordance with (19) and (20): 

( )( ) ( )( )( )SHHIXESETHS ¬erodil= mmmmmm ∨∧∨∧  (19) 

( ) ( )( )( )( )XESETHSBBEHSX ¬dilero= mmmmmm ∨∧∨∧  (20) 

where dil() and ero() denote 2x2 morphological dilation and erosion operation, 

respectively. 

The blobs representing moving objects in the mask mBEHSX usually contain holes 

(FN pixels) and many FP pixels (Fig. 10b). To improve the shape of the blobs, the 

authors propose to apply a generalized Hough transform with a rectangular 

structuring element. The size of the structuring element should correspond to the 

size of the objects to be detected; in our case, a square of size 4x4 pixels was 

appropriate. For every bright pixel, the structuring element is positioned in all the 

positions overlapping with the pixel and the element of the voting matrix is 

calculated. The voting matrix is finally compared with the constant threshold, as 

shown in (21): 

( ) [ ]( )




otherwise0

 if1 4x4 Hyx,BEHSX
V

�
>Hough

=yx,m
m

 (21) 
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Fig. 10 Simulation results showing the effect of the Hough transform: (a) - original picture, (b) - 

mask mBEHSX (c) - final mask mV for ΘH =180 

 

It must be noted that the Hough transform has a tendency to connect the blobs 

which are very close together. However, this transformation significantly 

improves many others aspects of the final mask; the transformed blobs usually 

have a more convenient shape for labeling and speed estimation described in the 

next section, so the use of this transformation is very important to the overall 

efficiency of the algorithm. 

4. Blob Analysis and Speed Estimation 

The blobs obtained from the previously described blocks have to be analyzed to 

detect and to measure the speed of the moving vehicles. Since the camera usually 

observes the scene at some angle, additional transformations of the image are 

needed.  

For speed estimation, knowledge regarding the relationship between the blobs' 

dimensions found on the image and the real world coordinates is necessary. Here, 

the authors assume a model like in [55], where the camera is located above the 

ground and is pointed towards the road. The ground level is assumed to be planar. 

Such a model is presented in Fig. 11. If we additionally assume that the observed 

objects are also planar, so their heights are Z=0, then the X, Y coordinates on the 

road can be transformed into the xCAM, yCAM coordinates of the image on the 

camera sensor as [55]: 

( ) ( )�h+�Y

X
f=xCAM sin/cos

 (22) 

( )
( ) ( )�h�Y

�Y
f=yCAM sin/cos

sin

+
 (23) 
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where: ϕ – tilt angle [rad], h – height of the camera above the road [m] and f – 

focal length of the camera [m].  

x
CAMv

CAM

h

X

Y

Z

φ

Road
ground plane

Camera

 

Fig. 11 Geometrical model of camera and road [55] 

 

Thus, knowing the parameters f, h and ϕ, one can calculate the real world 

coordinates X, Y from the xCAM, yCAM coordinates. The input image is transformed 

into the image which provides the linear correspondence between pixels xlin, ylin 

on the transformed image and real-world coordinates X, Y, where xmap, ymap are the 

indexes of pixels on the camera converter. An example of transformation is 

presented in Fig. 12. For a better view, the original image is presented instead of 

blobs. 

The detected blobs are labeled and the following parameters are estimated: 

object's boundaries, centre of the object, area in pixels, fill factor (as the 

percentage of pixels with respect to the bounding rectangle area). The parameters 

are calculated using simple operations during pixel by pixel revision of the image. 

After this stage, a table with the column number equal to the number of indexed 

objects is created. Rows describe found parameters.  

The objects which are small and have a small fill factor are discarded. The blobs 

which are overlapping on two subsequent frames are detected and marked. Such 

blobs are treated as the same object in movement. Estimation of the speed and 

direction of the objects is calculated by finding the distance between the centers of 

the objects marked in the previous stage.  
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Fig. 12 Example of original image (a) and result of transformation (b) for ϕ= 43°, h = 15m, 

f = 2.8mm using the reverse of (22) and (23) 

5. Implementation Results 

The algorithm described in the section 3 has been tested with various video 

streams. The ground truth reference has been prepared for a set of video streams 

by manually extracting frame-by-frame all the pixels of each moving vehicle. The 

simulation results show that 57-94% of the pixels (depending on the stream) 

belonging to the moving vehicles in ground truth image are correctly identified by 

the algorithm (fill ratio FIL as defined in (6)). Moreover, the precision ratio PR 

defined in (7), indicating how many among the detected pixels belong to the 

moving objects, is about 56-88%. Simulation results for several frames of the 

selected video streams are shown in Fig. 13. As can be seen from Fig. 13, the 

algorithm is able to properly detect the moving vehicles at various scene 

conditions. A worse detection usually occurs in: dark scenes, for gray colored 

vehicles or in strong sun light causing intensive shadows. Such problematic 

situations with detection errors are collected in Fig. 14, the arrows indicate the 

erroneous detection results. The shapes of the resulting blobs in many situations 

are different from the shapes of the real moving objects, but for the purpose of 

simplified tracking and traffic measurement, the detailed shape is not very 

important.  
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input result

input result

input result

input result

input result

(a)

(b)

(c)

(d)

(e)
 

Fig. 13 Simulation results of the algorithm (a) - frame #638 from "obwodnica_1" movie, (b) - 

frame #85 from "obwodnica_2" movie, (c) - frame #1879 from "wrzeszcz" movie, (d) - frame #176 

from "obwodnica_noc" movie, (e) - frame #718 from "obwodnica_6" movie. Frames "result" on 

the right contain the input image with the added mask of the detected blobs. Rectangles indicating 

the detected blobs were introduced during simulation for improved visibility 
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input result

input result

input result

(a)

(b)

(c)
 

Fig. 14 Simulation results of the algorithm, white arrows show the problematic situations for the 

detection algorithm (a) – a gray vehicle with minority of pixels detected, frame #1778 from 

"obwodnica_4" movie, (b) – the shadow detected as moving object in a sunny day, frame #42 from 

"obwodnica_6" movie, (c) – the highlight detected as moving object at night, frame #309 from 

"obwodnica_noc" movie. Frames "result" on the right contain the input image with the added mask 

of the detected blobs. Rectangles indicating the detected blobs were introduced during simulation 

for improved visibility 

 

The algorithm has been implemented in real hardware using Xilinx Virtex-4 SX 

FPGA on prototype board Virtex-4 Evaluation Kit from Avnet, utilizing approx. 

1700 LUTs, 1200 flip-flops and 2.3Mbits of the built-in RAM. The design has 

been written in VHDL and it has been synthesized and implemented using 

Xilinx's ISE 9.1.03i. The analog signal from the camera was being captured by 

Philips's SAA7113H video input processor. On-chip implementation included: 

selective background, non-selective background, background masks combination, 

temporal and spatial edge detection, highlight, shadow and extra pixel detection, 

Hough transform, geometrical transformation with indexing (i.e. blob labeling and 

blob parameter evaluation), as shown in Fig. 15. The interface to the external 

processor was used to collect the table with the detected objects' parameters. 
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Fig. 15 A simplified structure of the realized algorithm in FPGA 

The details of the implementation of the non-selective background update and 

subtraction is shown in Fig. 16. The values of µµµµN and σσσσN are stored in the dual 

port RAMs and are updated with every new pixel data. The selective background 

block is realized in a similar way, with the selectivity information added. 

 

Fig. 16 Simplified schematic diagram of non-selective background block implementation 

The implementation of the binary mask combination (Fig. 17) contains a shift 

register of a length w+1, where w is the length of a single video line. The 

previously analyzed pixels, stored in the shift register, are used to calculate the 

mask mB. The similar shift registers have also been used for calculating the 

erosion and the dilation in masks mHS and mBEHSX, the edges in the edge detection 

block and the indexes in the blob indexing block. 
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Fig. 17 Simplified schematic diagram of the implementation of the binary mask combination 

Due to the properties of the algorithm, all the remaining blocks from Fig. 1, 

except for the Hough block, are implemented in a similar way as the blocks 

shown in Fig. 16 and Fig. 17, requiring only a few cycles of the main 1.79MHz 

clock to calculate the result and providing the possibility to obtain the pipelined 

implementation. 

The Hough block requires, that for each pixel, a rectangular structuring element of 

a size of 4x4 is moved around the pixel and added to the voting matrix. Instead of 

moving the 4x4 structuring element, a 7x7 rectangular matrix of 5-bit values has 

been used. In this way, the pixel-centered matrix is stationary for every pixel and 

it is stored in the Hough matrix memory, as shown in Fig. 18.  

 

Fig. 18 Simplified schematic diagram of the implemented Hough block 
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The Hough block requires 49 clock cycles to calculate all the elements of the 

matrix, so the clock of the frequency of 28.5MHz has been used for this block to 

provide coherent operation with the other blocks. The indexing block also works 

with the faster clock, as it also requires many internal iterations.  

The image transformation block uses two memories for transforming the 

coordinates of each pixel of the input image. At the start of the system, the 

mapping memories should be programmed with the values calculated by the 

external processor. At normal operation, the transformation of single pixel takes 

only 3 cycles of the main clock for that block. 

The system has been tested without image stabilization block, which is only 

needed in extreme situations, i.e. at a strong wind. The relative distribution of 

hardware resources among the blocks is shown in Table 2. The algorithm makes 

possible to use only integer values in all the calculations. All the constants 

required by the algorithm are read from the on-chip memory and are stored in the 

control registers. Table 2 also contains a typical number of clock cycles required 

to process a single pixel. 

Table 2. Relative usage of hardware resources and relative power consumption 

Block 

Look-
Up 

Tables 
(LUT) 
[%] 

Flip-
Flops 
(FFs) 
[%] 

Memory 
bits 
[%] 

Clock 
cycles 

per 
pixel* 
(typ.) 

Main 
clock 

frequency 
[MHz] 

Relative 
Power 
[%] 

Data Input Controller 11,2 7,5 6,3 10 25 5 
Non-selective Background 
Update and Background 
Subtraction 

6,9 7,1 23 
2 1.79 

16 

Selective Background Update 
and Background Subtraction 

7,6 6,4 18,3 
2 1.79 

12,8 

Edge Detection (Temporal and 
Spatial) 

11,1 5,5 4,1 
2 1.79 

4,3 

Shadow Detection 3 1,1 0 2 1.79 0,3 
Highlight and Extra-pixel 
Detection and Non-linear 
Brightness Transformation 

2 1,2 0 
2 1.79 

0.3 

Binary Mask Combination 0,2 0,8 0 2 1.79 0,1 
Shadow and Highlight 
Processing 

0,4 0,9 0 
2 1.79 

0,2 

Final Processing 0,5 1,6 0 2 1.79 0,2 
Hough Transform 5,3 9,4 7,9 49 28.5 8,7 
Image Transformation 2,6 2,2 12,7 3 1.79 17,3 
Indexing 23,7 18 15,1 12 28.5 18 
Splice Table Generation 11,9 9,6 12,6 3 1.79 15,7 
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Control registers and glue logic 13,6 28,7 0 1 1.79 1,1 
* - Typical number of clock cycles per pixel is given, but some additional clock cycles at the 
moments between the picture frames can be used to finish the pending operations for some blocks. 
Data Input Controller works with the image of bigger resolution from the video source, so it has a 
larger number of clock cycles per pixel. 
 

All the simulation results presented in this paper have been done using 8-bit 

image representation. As already shown in Fig. 16, in the implemented system 

only the 4 most significant bits have been used, which was forced by the limited 

resources of the FPGA. To show the influence of this reduction, the simulation 

has been made using artificial test scene of linearly changing background of µA = 

0…255, with rectangular objects casting simulated shadows of intensity γkµA, 

moving from left to right, as shown in Fig. 19. The parameters of the artificial 

moving objects are shown in Table 3.  

Table 3. Parameters of the objects in the artificial test scene 

object's id k= 1 2 3 4 5 

object's intensity  0 64 128 192 255 

shadow coefficient γk 0.55 0.65 0.75 0.85 0.95 

 

(a) (b) (c) (d)

(e) (f) (g)

1
2

3

4

5

 

Fig. 19 Simulation results of algorithm operation for artificial scene for 8- and 4-bit versions; (a) – 

input image with added objects' indices and arrows indicating direction of movement, (b) – ground 

truth for objects, (c) – object detection results (mask mV) for 8-bit version of the algorithm, (d) – 

object detection results (mask mV) for 4-bit version of the algorithm, (e) – ground truth for 

shadows, (f) – shadow detection results (mask mSH) for 8-bit version of the algorithm, (g) – 

shadow detection results (mask mSH) for 4-bit version of the algorithm. 
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To better illustrate the influence of data reduction, the FIL and PR ratios have 

been calculated and presented in Fig. 20. As can be seen from the simulations, 

data reduction resulted in a lower sensitivity of the algorithm in detecting the 

objects and shadows. However, the relative precision of the 4-bit version of the 

algorithm (PR ratios) slightly has increased. The reduction of data width saved a 

lot of FPGA resources and power, at the expense of the decreased sensitivity. 

Nevertheless, the algorithm results still seem to be sufficient for this application. 

  
(a) (b) 

  
(c) (d) 

Fig. 20 Calculated values of FIL and PR ratios for object and shadow detection in the artificial 

scene from Fig. 19; (a) – FIL and PR ratios for objects using 8-bit data representation, (b) – FIL 

and PR ratios for shadows using 8-bit data representation, (c) – FIL and PR ratios for objects using 

4-bit data representation, (d) – FIL and PR ratios for shadows using 4-bit data representation. 

 

The photographs showing the results of the algorithm are presented in Fig. 21. 

More results are available on-line at http://www.ue.eti.pg.gda.pl/sn. The hardware 

was designed to work with the main 1.79MHz clock and the additional 28.5MHz 

clock for the Hough and indexing blocks to process 25 frames per second of a low 

resolution 128 x 128 pixels monochrome image. The main clock frequency has 

been set as low as possible to enable the processing of pixel data by each block. 

The estimated dynamic power consumption was about 600mW with 600mW of 

quiescent power. The core elements realizing the algorithm were estimated to 

consume 400mW, this power is distributed among the blocks as shown in the last 

column of Table 2. Since the FPGAs are known to have a large power demand, 
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implementing the algorithm in ASIC would further decrease the power 

consumption. The obtained maximum clock frequency was about 135MHz, which 

would permit the processing of up to 117 fps – this indicates the great potential of 

increasing the processing speed of the algorithm, for example higher resolutions 

of input video stream can easily be used. As can be seen from Table 2, the 

limiting stages for the algorithm are the Hough block and the indexing block. The 

authors decided to use the generalized Hough transform due to its property to 

detect the rectangular objects, but for simpler implementations, the morphological 

operations could also be used. The state machine in the indexing block requires 

many clock cycles per pixel to communicate with its memories and to index the 

blobs.  

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
 

Fig. 21 Photo of implementation results of the algorithm (a) - input image It, (b) – non-selective 

background mask mN, (c) – selective background mask mS, (d) – combined background mask mB, 

(e) – temporal edge mask mET, (f) – spatial edge mask mES, (g) – shadow and highlight mask mHS, 

(h) – mask mV after final processing, (i) – mask after geometrical transformation for ϕ=29.8º, 

h=7m, f=2.8mm 
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To demonstrate the efficiency of the FPGA realization, the software 

implementation in C of the same algorithm has been developed. The software 

version permitted the processing of about 160 fps using Intel's dual core processor 

with 2.13GHz clock and maximum power dissipation of 65W with Linux 

operating system - the speed is similar, but the FPGA implementation uses much 

less power.  

Table 4. The comparison of the selected design parameters of the algorithm with the 

implementation presented in [39] 

The implementation presented in this paper 

Parameter 

The 
implementation 

presented in 
[39] 

Full version 
Speed optimized 

version 

Image resolution 
[pixels] 

640x480 128x128 128x128 

Clock frequency 
[MHz] 

65 Max. 135  Max. 150  

Frame processing 
speed [fps] 

35 Max. 117 Max. 2528 

processing speed 
[Mpixels/s] 

10.7 1.9 41.4 

FFs used 1316 (4.3%** ) 1200 (3.9%** ) 891 (2.9%** ) 
LUTs used 1232 (4.0%** ) 1700 (5.5%** ) 1683 (5.4%** ) 
Block RAMs 
[Mbits] 

0.34 (9.9%** ) 2,3 (66.7%** ) 1.6 (46.4%** ) 

External RAM  
[Mbits] 

20 - - 

Implemented 
features 

background 
subtraction, 
MOG, 
connected 
component 
labeling 

selective 
background 
subtraction, non 
selective 
background 
subtraction, spatial 
edge detection, 
temporal edge 
detection, shadow 
detection, highlight 
detection,  Hough 
transform, 
geometrical image 
transform, 
connected 
component labeling 

selective background 
subtraction, non 
selective background 
subtraction, spatial 
edge detection, 
temporal edge 
detection, shadow 
detection, highlight 
detection,  geometrical 
image transform, 
connected component 
labeling (1st phase 
only with label 
equivalence table 
generation) 

** - Relative to XilinxVirtex-4 XC4VSX35 FPGA 

The comparison of some parameters of the proposed implementation with the 

solution presented in [39] is shown in Table 4. The implementation described in 

[39] uses monochrome images of VGA resolution and the segmentation algorithm 
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is based on MOG method, which should work better for non-stationary 

backgrounds. The implementation presented in this paper works with lower 

resolution images, but additionally contains the geometrical image transformation 

block, moreover, the highlight and shadow detection blocks together with the 

edge detection blocks should provide a better detection sensitivity. To show the 

potential speed of the presented algorithm, the speed-optimized version of 

reduced functionality has also been included in the comparison in Table 4. In the 

speed optimized version, the Hough block is removed and the indexing block is 

reduced to the 1st phase of the connected component algorithm with the label 

equivalence table generation. No power information is given in [39], so it has not 

been compared. 

6. Conclusions 

In this paper, the combined algorithm for extracting moving objects from a real-

time video stream is proposed. The processing steps were carefully selected and 

adopted to provide simple and straightforward realization in specialized hardware, 

such as FPGA or ASIC. A few novel ideas to enhance the algorithm are also 

developed, increasing the robustness and maintaining its simplicity for hardware 

implementation. The proposed method of background calculation, using running 

mode is very fast and requires only basic operations. The novel combination of 

masks from selective and non-selective backgrounds improves the detection 

quality. The non-linear brightness transformations enable correct detection of 

shadows and highlights in various light conditions. The further improvement 

could include the automatic recognition of day and night with switching between 

shadow and highlight detection. The application of generalized Hough 

transformation significantly improves the final blob mask. However, to simplify 

the hardware, the Hough block could be replaced with a set of morphological 

operations. The proposed algorithm has been implemented in FPGA and tested in 

the real environment. The test results proved the usability of the presented idea for 

recognizing the moving vehicles at low power consumption - the system properly 

found almost all of the moving vehicles during the day and night.  
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Figure legends 

Fig. 1 General diagram depicting the idea of the algorithm for the FPGA implementation 

Fig. 2 An example illustrating a better sensitivity of the non-selective background model, (a) – 

input image It, (b) – mask mN from non-selective background, (c) – mask mS from selective 

background, (d) – pixels detected in the mask mS and not detected in the mask mN 

Fig. 3 Detection of the recently stopped object by selective and non-selective background update 

blocks: (a) – the input image It with added mask mV (darker areas indicated by the white 

rectangles), the recently stopped car in the center of the image is being detected by the algorithm, 

(b) – the non-selective background µµµµN , the new car has not been yet added to the non-selective 

background, (c) – the selective background µµµµS, the new car has not yet been included into the 

selective background, (d) – the car is still being detected, (e) – the car is slowly being added into 

the non-selective background, (f) – the car is not included into the selective background, because it 

has been blocked by the mask mV, (g) – the car is not detected any more, (h) – the new car is fully 

included into the non-selective background, (i) – the selective background is quickly updating, 

because mask mV is not blocking the update of the car 

Fig. 4 An example of Mask Combination Block operation: (a) - input picture, (b) - mask mS from 

selective background, (c) - mask mN from non-selective background, (d) - mask mB. The 

differences in FP pixels between (b) and (c) are caused by the differences in the background 

models (different update rates of selective and non-selective background, specified by the 

constants: δN1, δN2, δS1 and δS2) 

Fig. 5 Comparison of the proposed background subtraction algorithm with the standard algorithm 

[35]: (a) – input image (frame #949) from PETS2001 Camera 1 sequence [45] resized to 128x128 

pixels, (b) – manually marked ground truth, (c) – unfiltered result from MOG algorithm [35] with 

K=3 distributions, (d) – result from the proposed background subtraction algorithm, (e) – input 

image (frame #1314) from obw2_d3 sequence, (f) – manually marked ground truth, (g) – 

unfiltered result from MOG algorithm [35] with K=3 distributions, (h) – result from the proposed 

background subtraction algorithm 

Fig. 6 Additional pixels found by the edge detection in the dark scene, the moving car is marked 

with the circle: (a) - original picture (highway in the night), (b) - result of background detection 

mB, (c) - result of spatial edge detection mES for θθθθES = 20, (d) - result of temporal edge detection 

mET for θθθθET = 20 

Fig. 7 Flow diagram of highlight detection block 

Fig. 8 Simulation results of the shadow detection: (a) - original picture, (b) - result of the 

background detection mB, (c) - the detected shadow mask mSH 

Fig. 9 Simulation results of the detection of the highlights: (a) - original picture, (b) - result of the 

background detection mB, (c) - the detected highlights in mask mHI, (d) - mask mX 
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Fig. 10 Simulation results showing the effect of the Hough transform: (a) - original picture, (b) - 

mask mBEHSX (c) - final mask mV for ΘH =180 

Fig. 11 Geometrical model of camera and road [55] 

Fig. 12 Example of original image (a) and result of transformation (b) for ϕ= 43°, h = 15m, 

f = 2.8mm using the reverse of (22) and (23) 

Fig. 13 Simulation results of the algorithm (a) - frame #638 from "obwodnica_1" movie, (b) - 

frame #85 from "obwodnica_2" movie, (c) - frame #1879 from "wrzeszcz" movie, (d) - frame #176 

from "obwodnica_noc" movie, (e) - frame #718 from "obwodnica_6" movie. Frames "result" on 

the right contain the input image with the added mask of the detected blobs. Rectangles indicating 

the detected blobs were introduced during simulation for improved visibility 

Fig. 14 Simulation results of the algorithm, white arrows show the problematic situations for the 

detection algorithm (a) – a gray vehicle with minority of pixels detected, frame #1778 from 

"obwodnica_4" movie, (b) – the shadow detected as moving object in a sunny day, frame #42 from 

"obwodnica_6" movie, (c) – the highlight detected as moving object at night, frame #309 from 

"obwodnica_noc" movie. Frames "result" on the right contain the input image with the added mask 

of the detected blobs. Rectangles indicating the detected blobs were introduced during simulation 

for improved visibility 

Fig. 15 A simplified structure of the realized algorithm in FPGA 

Fig. 16 Simplified schematic diagram of non-selective background block implementation 

Fig. 17 Simplified schematic diagram of the implementation of the binary mask combination 

Fig. 18 Simplified schematic diagram of the implemented Hough block 

Fig. 19 Simulation results of algorithm operation for artificial scene for 8- and 4-bit versions; (a) – 

input image with added objects' indices and arrows indicating direction of movement, (b) – ground 

truth for objects, (c) – object detection results (mask mV) for 8-bit version of the algorithm, (d) – 

object detection results (mask mV) for 4-bit version of the algorithm, (e) – ground truth for 

shadows, (f) – shadow detection results (mask mSH) for 8-bit version of the algorithm, (g) – 

shadow detection results (mask mSH) for 4-bit version of the algorithm. 

Fig. 20 Calculated values of FIL and PR ratios for object and shadow detection in the artificial 

scene from Fig. 19; (a) – FIL and PR rations for objects using 8-bit data representation, (b) – FIL 

and PR rations for shadows using 8-bit data representation, (c) – FIL and PR rations for objects 

using 4-bit data representation, (d) – FIL and PR rations for shadows using 4-bit data 

representation. 

Fig. 21 Photo of implementation results of the algorithm (a) - input image It, (b) – non-selective 

background mask mN, (c) – selective background mask mS, (d) – combined background mask mB, 

(e) – temporal edge mask mET, (f) – spatial edge mask mES, (g) – shadow and highlight mask mHS, 

(h) – mask mV after final processing, (i) – mask after geometrical transformation for ϕ=29.8º, 

h=7m, f=2.8mm 
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Table legends 

Table 1. Binary Mask Combination improving the final mB mask quality. 

Table 2. Relative usage of hardware resources and relative power consumption   

Table 3. Parameters of the objects in the artificial test scene 

Table 4. The comparison of the selected design parameters of the algorithm with the 

implementation presented in [39]. 

 

 


