
ABORT_PAGE 1 NeoSoft, Inc.

ABORT_PAGE - Neowebscript

 Aborts execution immediately

Synopsis:

 abort_page

Description

Aborts NeoWebScript execution immediately. Does not emit any of the rest of the webpage to the
requester. Remaining code in the script being executed will still be executed, so abort_page is typically
immediately followed by return.

ACCESS_DATA_FILE 2 NeoSoft, Inc.

ACCESS_DATA_FILE - Neowebscript

 Opens the specified datafile for reading and writing, creating if not there

Synopsis:

 access_data_file datafile

Description

access_data_file opens the specified datafile for reading and writing, creating it if its not there. Datafile
name can consist of upper and lowercase letters and numbers only. No slashes, no periods, etc. The file
can then be operated on in the normal manner by gets, puts, seek, tell, flush, close, etc.

APPEND 3 NeoSoft, Inc.

APPEND - Safe TCL

 Append to variable

Synopsis:

append varName ? value value value ... ?

Description

Append all of the value arguments to the current value of variable varName. If varName doesn´t exist, it
is given a value equal to the concatenation of all the value arguments. This command provides an
efficient way to build up long variables incrementally. For example, "append a $b" is much more
efficient than "set a ab" if $a is long.

Keywords:

 append, variable

ARRAY 4 NeoSoft, Inc.

ARRAY - Safe TCL

 Manipulate array variables

Synopsis:

arrrayoption arrayName ?arg arg ...?

Description

This command performs one of several operations on the variable given by arrayName. Unless
otherwise specified for individual commands below, arrayName must be the name of an existing array
variable. The option argument determines what action is carried out by the command. The legal options
(which may be abbreviated) are:

array anymore arrayName searchId
Returns 1 if there are any more elements left to be processed in an array search, 0 if all elements have
already been returned. SearchId indicates which search on arrayName to check, and must have been the
return value from a previous invocation of array startsearch. This option is particularly useful if an
array has an element with an empty name, since the return value from array nextelement won´t indicate
whether the search has been completed.

array donesearch arrayName searchId
This command terminates an array search and destroys all the state associated with that search. SearchId
indicates which search on arrayName to destroy, and must have been the return value from a previous
invocation of array startsearch. Returns an empty string.

array exists arrayName

Returns 1 if arrayName is an array variable, 0 if there is no variable by that name or if it is a scalar
variable.

array get arrayName ?pattern?
Returns a list containing pairs of elements. The first element in each pair is the name of an element in
arrayName and the second element of each pair is the value of the array element. The order of the pairs
is undefined. If pattern is not specified, then all of the elements of the array are included in the result. If
pattern is specified, then only those elements whose names match pattern (using the glob-style
matching rules of string match) are included. If arrayName isn´t the name of an array variable, or if the
array contains no elements, then an empty list is returned.

array names arrayName ?pattern?
Returns a list containing the names of all of the elements in the array that match pattern (using the
glob-style matching rules of string match). If pattern is omitted then the command returns all of the
element names in the array. If there are no (matching) elements in the array, or if arrayName isn´t the
name of an array variable, then an empty string is returned.

array nextelement arrayName searchId
Returns the name of the next element in arrayName, or an empty string if all elements of arrayName
have already been returned in this search. The searchId argument identifies the search, and must have
been the return value of an array startsearch command. Warning: if elements are added to or deleted
from the array, then all searches are automatically terminated just as if array donesearch had been
invoked; this will cause array nextelement operations to fail for those searches.

array set arrayName list
Sets the values of one or more elements in arrayName. list must have a form like that returned by array
get, consisting of an even number of elements. Each odd-numbered element in list is treated as an
element name within arrayName, and the following element in list is used as a new value for that array
element.

array size arrayName
Returns a decimal string giving the number of elements in the array. If arrayName isn´t the name of an
array then 0 is returned.

array startsearch arrayName
This command initializes an element-by-element search through the array given by arrayName, such
that invocations of the array nextelement command will return the names of the individual elements in
the array. When the search has been completed, the array donesearch command should be invoked.
The return value is a search identifier that must be used in array nextelement and array donesearch
commands; it allows multiple searches to be underway simultaneously for the same array.

See Also:

bgerror

Keywords:

array, element names, search

BACKLINK 5 NeoSoft, Inc.

BACKLINK - Neowebscript

 Emit a hyperlink pointing to the referer URL

Synopsis:

 backlink [linktext] [nolinktext]

Description

Emit a hyperlink pointing to the referer URL, with linktext emitted as HTML text within the hyperlink.
Emits nolinktext if there was no referer.

See Also:

bgerror

Keywords:

array, element names, search

BREAK 6 NeoSoft, Inc.

BREAK - Safe TCL

 Abort looping command

Synopsis:

break

Description

This command is typically invoked inside the body of a looping command such as for or foreach or
while. It returns a TCL_BREAK code, which causes a break exception to occur. The exception causes
the current script to be aborted out to the innermost containing loop command, which then aborts its
execution and returns normally. Break exceptions are also handled in a few other situations, such as the
catch command, Tk event bindings, and the outermost scripts of procedure bodies.

See Also:

bgerror

Keywords:

abort, break, loop

BSEARCH 7 NeoSoft, Inc.

BSEARCH - Extended TCL

 Searches an sorted file for a match

Synopsis:

 bsearch fileId key ?retvar? ?compare_proc?

Description

Search an opened file fileId containing lines of text sorted into ascending order for a match. Key
contains the string to match. If retvar is specified, then the line from the file is returned in retvar, and the
command returns 1 if key was found, and 0 if it wasn´t. If retvar is not specified or is a null name, then
the command returns the line that was found, or an empty string if key wasn´t found.

By default, the key is matched against the first white-space separated field in each line. The field is
treated as an ASCII string. If compare_proc is specified, then it defines the name of a Tcl procedure to
evaluate against each line read from the sorted file during the execution of the bsearch command.
Compare_proc takes two arguments, the key and a line extracted from the file. The compare routine
should return a number less than zero if the key is less than the line, zero if the key matches the line, or
greater than zero if the key is greater than the line. The file must be sorted in ascending order according
to the same criteria compare_proc uses to compare the key with the line, or erroneous results will occur.

See Also:

bgerror

Keywords:

abort, break, loop

CASE 8 NeoSoft, Inc.

CASE - Safe TCL

 Evaluate one of several scripts, depending on a given value

Synopsis:

 case string ?in? patList body ? patList body
 ...?

 case string ?in? {patList body ? patList
body ...?}

Description

Note: the case command is obsolete and is supported only for backward compatibility. At some point in
the future it may be removed entirely. You should use the switch command instead.

The case command matches string against each of the patList arguments in order. Each patList
argument is a list of one or more patterns. If any of these patterns matches string then case evaluates the
following body argument by passing it recursively to the Tcl interpreter and returns the result of that
evaluation. Each patList argument consists of a single pattern or list of patterns. Each pattern may
contain any of the wild-cards described under string match. If a patList argument is default, the
corresponding body will be evaluated if no patList matches string. If no patList argument matches
string and no default is given, then the case command returns an empty string.

Two syntaxes are provided for the patList and body arguments. The first uses a separate argument for
each of the patterns and commands; this form is convenient if substitutions are desired on some of the
patterns or commands. The second form places all of the patterns and commands together into a single
argument; the argument must have proper list structure, with the elements of the list being the patterns
and commands. The second form makes it easy to construct multi-line case commands, since the braces
around the whole list make it unnecessary to include a backslash at the end of each line. Since the
patList arguments are in braces in the second form, no command or variable substitutions are performed
on them; this makes the behavior of the second form different than the first form in some cases.

See Also:

bgerror

Keywords:

case, match, regular expression

CATCH 9 NeoSoft, Inc.

CATCH - Safe TCL

 Evaluate script and trap exceptional returns

Synopsis:

catch script ?varName?

Description

The catch command may be used to prevent errors from aborting command interpretation. Catch calls
the Tcl interpreter recursively to execute script, and always returns a TCL_OK code, regardless of any
errors that might occur while executing script. The return value from catch is a decimal string giving the
code returned by the Tcl interpreter after executing script. This will be 0 (TCL_OK) if there were no
errors in script; otherwise it will have a non-zero value corresponding to one of the exceptional return
codes (see tcl.h for the definitions of code values). If the varName argument is given, then it gives the
name of a variable; catch will set the variable to the string returned from script (either a result or an
error message).

Note that catch catches all exceptions, including those generated by break and continue as well as
errors.

See Also:

bgerror

Keywords:

catch, error

CCOLLATE 10 NeoSoft, Inc.

CCOLLATE - Extended TCL

 Compares two strings

Synopsis:

 ccollate ?-local? string1 string2

Description

This command compares two strings. If returns -1 if string1 is less than string2, 0 if they are equal amd 1
if string1 is greater than string2.

If -local is specified, the strings are compared according to the collation environment of the cur- rent
locale.

See Also:

bgerror

Keywords:

catch, error

CEQUAL 11 NeoSoft, Inc.

CEQUAL - Extended TCL

 Compares two strings for equality

Synopsis:

 cequal string1 string2

Description

This command compares two strings for equality. It returns 1 if string1 and string2 are the identical and
0 if they are not. This command is a short-cut for string compare and avoids the problems with string
expressions being treated unintentionally as numbers.

See Also:

bgerror

Keywords:

catch, error

CINDEX 12 NeoSoft, Inc.

CINDEX - Extended TCL

 Returns character indexed by expression indexExpr

Synopsis:

 cindex string indexExpr

Description

Returns the character indexed by the expression indexExpr (zero based) from string.

If the expression indexExpr starts with the string end, then end is replaced with the index of the last
character in the string. If the expression starts with len, then len is replaced with the length of the string.

See Also:

bgerror

Keywords:

catch, error

CLENGTH 13 NeoSoft, Inc.

CLENGTH - Extended TCL

 Returns length of string (number of characters)

Synopsis:

 clength string

Description

Returns the length of string in characters. This command is a shortcut for:

string length string

See Also:

bgerror

Keywords:

catch, error

CLOCK 14 NeoSoft, Inc.

CLOCK - Safe TCL

 Obtain and manipulate time

Synopsis:

clock option?arg arg...?

Description

This command performs one of several operations that may obtain or manipulate strings or values that
represent some notion of time. The option argument determines what action is carried out by the
command. The legal options (which may be abbreviated) are:

clock clicks
Return a high-resolution time value as a systemdependent integer value. The unit of the value is
system-dependent but should be the highest resolution clock available on the system such as a CPU
cycle counter. This value should only be used for the relative measurement of elapsed time.

clock format clockValue ?-format string? ?-gmt boolean? Converts an integer time value, typically
returned by clock seconds, clock scan, or the atime, mtime, or ctime options of the file command, to
humanreadable form. If the -format argument is present the next argument is a string that describes how
the date and time are to be formatted. Field descriptors consist of a % followed by a field descriptor
character. All other characters are copied into the result. Valid field descriptors are:

%%
Insert a %.

%a
Abbreviated weekday name. (Mon, Tue, etc.)

%A
Full weekday name. (Monday, Tuesday, etc.)

%b
Abbreviated month name. (Jan, Feb, etc.)

%B
Full month name.

%d
Day of month (01 - 31).

%D
Date as %m/%d/%y.

%e
Day of month (1 - 31), no leading zeros.

%h

Abbreviated month name.

%H
Hour (00 - 23).

%I
Hour (00 - 12).

%j
Day number of year (001 - 366).

%m
Month number (01 - 12).

%M
Minute (00 - 59).

%n
Insert a newline.

%p
AM or PM.

%r
Time as %I:%M:%S %p.

%R
Time as %H:%M.

%S
Seconds (00 - 59).

%t
Insert a tab.

%T
Time as %H:%M:%S.

%U
Week number of year (01 - 52), Sunday is the first day of the week.

%w
Weekday number (Sunday = 0).

%W
Week number of year (01 - 52), Monday is the first day of the week.

%x

Local specific date format.

%X
Local specific time format.

%y
Year within century (00 - 99).

%Y
Year as ccyy (e.g. 1990)

%Z
Time zone name.

If the -format argument is not specified, the format string "%a %b %d %H:%M:%S %Z %Y" is
used. If the -gmt argument is present the next argument must be a boolean which if true specifies that
the time will be formated as Greenwich Mean Time. If false then the local timezone will be used as
defined by the operating environment.

clock scan dateString ?-base clockVal? ?-gmt boolean? Convert dateString to an integer clock value
(see clock seconds). This command can parse and convert virtually any standard date and/or time string,
which can include standard time zone mnemonics. If only a time is specified, the current date is
assumed. If the string does not contain a time zone mnemonic, the local time zone is assumed, unless the
-gmt argument is true, in which case the clock value is calculated assuming that the specified time is
relative to Greenwich Mean Time.

If the -base flag is specified, the next argument should contain an integer clock value. Only the date in
this value is used, not the time. This is useful for determining the time on a specific day or doing other
date-relative conversions.

The dateString consists of zero or more specifications of the following form:

time A time of day, which is of the form: hh?:mm?:ss?? ?meridian? ?zone? or hhmm ?meridian? ?zone?.
If no meridian is specified, hh is interpreted on a 24-hour clock.

date
A specific month and day with optional year. The acceptable formats are mm/dd?/yy?, monthname
dd ?, yy?, dd monthname ?yy? and day, dd monthname yy. The default year is the current year. If
the year is less then 100, then 1900 is added to it.

relative time
A specification relative to the current time. The format is number unit acceptable units are year,
fortnight, month, week, day, hour, minute (or min), and second (or sec). The unit can be specified as a
singular or plural, as in 3 weeks. These modifiers may also be specified: tomorrow, yesterday, today,
now, last, this, next, ago.

The actual date is calculated according to the following steps. First, any absolute date and/or time is
processed and converted. Using that time as the base, day-of-week specifications are added. Next,

relative specifications are used. If a date or day is specified, and no absolute or relative time is given,
midnight is used. Finally, a correction is applied so that the correct hour of the day is produced after
allowing for daylight savings time dif ferences.

clock seconds
Return the current date and time as a systemdependent integer value. The unit of the value is seconds,
allowing it to be used for relative time calculations. The value is usually defined as total elapsed time
from an "epoch". You shouldn´t assume the value of the epoch.

See Also:

bgerror

Keywords:

clock, date, time

CLOSE 15 NeoSoft, Inc.

CLOSE - Safe TCL

 Close an open channel

Synopsis:

close channelID

Description

Closes the channel given by channelId. ChannelId must be a channel identifier such as the return value
from a previous open or socket command. All buffered output is flushed to the channel´s output device,
any buffered input is discarded, the underlying file or device is closed, and channelId becomes
unavailable for use.

If the channel is blocking, the command does not return until all output is flushed. If the channel is
nonblocking and there is unflushed output, the channel remains open and the command returns
immediately; output will be flushed in the background and the channel will be closed when all the
flushing is complete.

If channelId is a blocking channel for a command pipeline then close waits for the child processes to
complete.

If the channel is shared between interpreters, then close makes channelId unavailable in the invoking
interpreter but has no other effect until all of the sharing interpreters have closed the channel. When the
last interpreter in which the channel is registered invokes close, the cleanup actions described above
occur. See the interp command for a description of channel sharing.

Channels are automatically closed when an interpreter is destroyed and when the process exits. Channels
are switched to blocking mode, to ensure that all output is correctly flushed before the process exits.

The command returns an empty string, and may generate an error if an error occurs while flushing
output.

See Also:

bgerror

Keywords:

blocking, channel, close, nonblocking

CMDTRACE 16 NeoSoft, Inc.

CMDTRACE - Neowebscript

Synopsis:

 cmdtrace args

Description

The Extended Tcl command cmdtrace will work if supervisor mode is enabled for the directory.

See Also:

bgerror

Keywords:

blocking, channel, close, nonblocking

CONCAT 17 NeoSoft, Inc.

CONCAT - Safe TCL

 Join lists together

Synopsis:

concat arg arg ...?

Description

This command treats each argument as a list and concatenates them into a single list. It also eliminates
leading and trailing spaces in the arg´s and adds a single separator space between arg´s. It permits any
number of arguments. For example, the command
concat a b {c d e} {f {g h}} will return
a b c d e f {g h}
as its result.

If no args are supplied, the result is an empty string.

See Also:

bgerror

Keywords:

concatenate, join, lists

CONTINUE 18 NeoSoft, Inc.

CONTINUE - Safe TCL

 Skip to the next iteration of a loop

Synopsis:

continue

Description

This command is typically invoked inside the body of a looping command such as for or foreach or
while. It returns a TCL_CONTINUE code, which causes a continue exception to occur. The exception
causes the current script to be aborted out to the the innermost containing loop command, which then
continues with the next iteration of the loop. Catch exceptions are also handled in a few other situations,
such as the catch command and the outermost scripts of procedure bodies.

See Also:

bgerror

Keywords:

continue, iteration, loop

CRANGE 19 NeoSoft, Inc.

CRANGE - Extended TCL

 Returns a range of characters from string

Synopsis:

 crange string firstExpr lastExpr

Description

Returns a range of characters from string starting at the character indexed by the expression first- Expr
(zero-based) until the character indexed by the expression lastExpr.

If the expression firstExpr or lastExpr starts with the string end, then end is replaced with the index of
the last character in the string. If the expression starts with len, then len is replaced with the length of the
string.

See Also:

bgerror

Keywords:

continue, iteration, loop

CSUBSTR 20 NeoSoft, Inc.

CSUBSTR - Extended TCL

 Returns a range of characters from string for lengthExpr characters

Synopsis:

 crange string firstExpr lengthExpr

Description

Returns a range of characters from string starting at the character indexed by the expression first- Expr
(zero-based) for lengthExpr characters.

If the expression firstExpr or lengthExpr starts with the string end, then end is replaced with the index of
the last character in the string. If the expression starts with len, then len is replaced with the length of the
string.

See Also:

bgerror

Keywords:

continue, iteration, loop

CTOKEN 21 NeoSoft, Inc.

CTOKEN - Extended TCL

 Parse a token out of a character string

Synopsis:

 ctoken strvar separators

Description

Parse a token out of a character string. The string to parse is contained in the variable named strvar. The
string separators contains all of the valid separator characters for tokens in the string. All leading
separators are skipped and the first token is returned. The variable strvar will be modified to contain the
remainder of the string following the token.

See Also:

bgerror

Keywords:

continue, iteration, loop

CTYPE 22 NeoSoft, Inc.

CTYPE - Extended TCL

 Determines if all characters in string are of the specified class

Synopsis:

 ctype ?-failindex var? class string

Description

ctype determines whether all characters in string are of the specified class. It returns 1 if they are all of
class, and 0 if they are not, or if the string is empty. This command also provides another method
(besides format and scan) of con- verting between an ASCII character and its numeric value. The
following ctype commands are available:

ctype ?-failindex var? alnum string Tests that all characters are alphabetic or numeric characters as
defined by the character set.

ctype ?-failindex var? alpha string Tests that all characters are alphabetic char- acters as defined by the
character set.

ctype ?-failindex var? ascii string Tests that all characters are an ASCII charac- ter (a non-negative
number less than 0200).

ctype char number Converts the numeric value, string, to an ASCII character. Number must be in the
range 0 through 255.

ctype ?-failindex var? cntrl string Tests that all characters are "control char- acters" as defined by the
character set.

ctype ?-failindex var? digit string Tests that all characters are valid decimal digits, i.e. 0 through 9.

ctype ?-failindex var? graph string Tests that all characters within are any char- acter for which ctype
print is true, except for space characters.

ctype ?-failindex var? lower string Tests that all characters are lowercase let- ters as defined by the
character set.

ctype ord character Convert a character into its decimal numeric value. The first character of the string is
converted.

ctype ?-failindex var? space string Tests that all characters are either a space, horizontal-tab, carriage
return, newline, ver- tical-tab, or form-feed.

ctype ?-failindex var? print string Tests that all characters are a space or any character for which ctype
alnum or ctype punct is true or other "printing character" as defined by the character set.

ctype ?-failindex var? punct string Tests that all characters are made up of any of the characters other

than the ones for which alnum, cntrl, or space is true.

ctype ?-failindex var? upper string Tests that all characters are uppercase let- ters as defined by the
character set.

ctype ?-failindex var? xdigit string Tests that all characters are valid hexadeci- mal digits, that is 0
through 9, a through f or A through F.

If -failindex is specified, then the index into string of the first character that did not match the class is
returned in var.

See Also:

bgerror

Keywords:

continue, iteration, loop

DBDELKEY 23 NeoSoft, Inc.

DBDELKEY - Neowebscript

 Delete in database entry corresponding to key

Synopsis:

 dbdelkey database key

Description

Delete in database database the entry corresponding to key. If the entry isn´t there or the datbase doesn´t
exist, returns 0, otherwise 1 (or an error).

See Also:

bgerror

Keywords:

continue, iteration, loop

DBEXISTS 24 NeoSoft, Inc.

DBEXISTS - Neowebscript

 Determines if database exists

Synopsis:

 dbexists database

Description

Returns 1 if database exists, 0 otherwise.

See Also:

bgerror

Keywords:

continue, iteration, loop

DBFETCH 25 NeoSoft, Inc.

DBFETCH - Neowebscript

 Fetch from database into the array specified

Synopsis:

 dbfetch database key arrayName -singleVar

Description

Fetch from database database into the array specified by arrayName the key-value pairs for the
specified key, previously stored by dbstore (This was formerly called props_to_array.)

If -singleVar is specified, then arrayName will be treated as the name of a variable to store the results of
the lookup. This should be used with dbstore, when -singleVar is used.

See Also:

bgerror

Keywords:

continue, iteration, loop

DBFILES 26 NeoSoft, Inc.

DBFILES - Neowebscript

 Returns a list of databases

Synopsis:

 dbfiles

Description

Returns a list of the databases in the webpage owner´s database directory.

See Also:

bgerror

Keywords:

continue, iteration, loop

DBKEYS 27 NeoSoft, Inc.

DBKEYS - Neowebscript

 Return a list of all of the keys in the specified database matching pattern

Synopsis:

 dbkeys database pattern

Description

Return a list of all of the keys in the database database matching pattern. Pattern is in the style of a Unix
wildcard. In other words, if you were looking for a key starting with horace, the pattern would be
horace*. To match horace anywhere in the string, *horace*.

See Also:

bgerror

Keywords:

continue, iteration, loop

DBSTORE 28 NeoSoft, Inc.

DBSTORE - Neowebscript

 Store the contents of the specified array into a database

Synopsis:

 dbstore database key arrayName ?-singleVar?

Description

Store the contents of the array specified by arrayName into the database database, indexed by key, as
key-value pairs. (This was formerly called array_to_props.)

If -singleVar is specified, then arrayName will be treated as a single value, and that value will be stored
under the key given.

See Also:

bgerror

Keywords:

continue, iteration, loop

DELETE_DATA_FILE 29 NeoSoft, Inc.

DELETE_DATA_FILE - Neowebscript

 Deletes a datafile

Synopsis:

 delete_data_file datafile

Description

delete_data_file deletes a datafile. It is not an error to delete a datafile that is not there.

See Also:

bgerror

Keywords:

continue, iteration, loop

DIRECTORY_LISTING 30 NeoSoft, Inc.

DIRECTORY_LISTING - Neowebscript

 Displays disk usage for the current directory

Synopsis:

 directory_listing

Description

Displays disk usage for the current directory. Also shows K-bytes used from the current directory on
down.

See Also:

bgerror

Keywords:

continue, iteration, loop

DUMP_ENVIRONMENT 31 NeoSoft, Inc.

DUMP_ENVIRONMENT - Neowebscript

 Write all of server´s environment vars and values

Synopsis:

 dump_environment

Description

Write all of the server´s environment vars and values into webpage.

See Also:

bgerror

Keywords:

continue, iteration, loop

EMIT_STANDARD_
MAGELLAN_SEARCH_LINK

32 NeoSoft, Inc.

EMIT_STANDARD_
MAGELLAN_SEARCH_LINK - NeoWebScript

 Emits a Magellan link.

Synopsis:

emit_standard_magellan_search_link

Description

Emit a Magellan link with at-link searching.

See Also:

bgerror

Keywords:

continue, iteration, loop

EMIT_STANDARD_
YAHOO_LINK

33 NeoSoft, Inc.

EMIT_STANDARD_
YAHOO_LINK - NeoWebScript

 Emits a standard Yahoo link.

Synopsis:

emit_standard_yahoo_link

Description

Emit a link back to Yahoo in the manner that they ask.

See Also:

bgerror

Keywords:

continue, iteration, loop

EOF 34 NeoSoft, Inc.

EOF - Safe TCL

 Check for end of file condition on channel

Synopsis:

eof channelID

Description

Returns 1 if an end of file condition occurred during the most recent input operation on channelId (such
as gets), 0 otherwise.

See Also:

bgerror

Keywords:

channel, end of file

ERROR 35 NeoSoft, Inc.

ERROR - Safe TCL

 Generate an error

Synopsis:

error message ?info? ?code?

Description

Returns a TCL_ERROR code, which causes command interpretation to be unwound. Message is a string
that is returned to the application to indicate what went wrong.

If the info argument is provided and is non-empty, it is used to initialize the global variable errorInfo.
errorInfo is used to accumulate a stack trace of what was in progress when an error occurred; as nested
commands unwind, the Tcl interpreter adds information to errorInfo. If the info argument is present, it
is used to initialize errorInfo and the first increment of unwind information will not be added by the Tcl
interpreter. In other words, the command containing the error command will not appear in errorInfo; in
its place will be info. This feature is most useful in conjunction with the catch command: if a caught
error cannot be handled successfully, info can be used to return a stack trace reflecting the original point
of occurrence of the error:
catch {...} errMsg
set savedInfo $errorInfo
...
error $errMsg $savedInfo

If the code argument is present, then its value is stored in the errorCode global variable. This variable is
intended to hold a machine-readable description of the error in cases where such information is
available; see the tclvars manual page for information on the proper format for the variable. If the code
argument is not present, then errorCode is automatically reset to "NONE" by the Tcl interpreter as part
of processing the error generated by the command.

See Also:

bgerror

Keywords:

error, errorCode, errorInfo

ESTIMATE_HITS_PER_HOUR 36 NeoSoft, Inc.

ESTIMATE_HITS_PER_HOUR - Neowebscript

 Return an estimate of the number of hits to be served on the next hour

Synopsis:

 estimate_hits_per_hour

Description

Return a numeric estimate of the number of hits that will be served in the next hour. Works by seeking
back approximately 1000 hits into the log file and sees how long ago it was, to extrapolate hits-per-hour.
If there are fewer than 1000 hits in the access log file, it will return 0.

See Also:

bgerror

Keywords:

error, errorCode, errorInfo

EVAL 37 NeoSoft, Inc.

EVAL - Safe TCL

 Evaluate a Tcl script

Synopsis:

eval arg ?arg ...?

Description

Eval takes one or more arguments, which together comprise a Tcl script containing one or more
commands. Eval concatenates all its arguments in the same fashion as the concat command, passes the
concatenated string to the Tcl interpreter recursively, and returns the result of that evaluation (or any
error generated by it).

See Also:

bgerror

Keywords:

concatenate, evaluate, script

EXPR 38 NeoSoft, Inc.

EXPR - Safe TCL

 Evaluate an expression

Synopsis:

expr arg ?arg arg ...?

Description

Concatenates arg´s (adding separator spaces between them), evaluates the result as a Tcl expression, and
returns the value. The operators permitted in Tcl expressions are a subset of the operators permitted in C
expressions, and they have the same meaning and precedence as the corresponding C operators.
Expressions almost always yield numeric results (integer or floating-point values). For example, the
expression
expr 8.2 + 6
evaluates to 14.2. Tcl expressions differ from C expressions in the way that operands are specified. Also,
Tcl expressions support non-numeric operands and string comparisons.

OPERANDS

A Tcl expression consists of a combination of operands, operators, and parentheses. White space may be
used between the operands and operators and parentheses; it is ignored by the expression processor.
Where possible, operands are interpreted as integer values. Integer values may be specified in decimal
(the normal case), in octal (if the first character of the operand is 0), or in hexadecimal (if the first two
characters of the operand are 0x). If an operand does not have one of the integer formats given above,
then it is treated as a floatingpoint number if that is possible. Floating-point numbers may be specified in
any of the ways accepted by an ANSIcompliant C compiler (except that the "f", "F", "l", and "L"
suffixes will not be permitted in most installations). For example, all of the following are valid
floating-point numbers: 2.1, 3., 6e4, 7.91e+16. If no numeric interpretation is possible, then an operand
is left as a string (and only a limited set of operators may be applied to it).

Operands may be specified in any of the following ways:

[1]
As an numeric value, either integer or floatingpoint.

[2]
As a Tcl variable, using standard $ notation. The variable´s value will be used as the operand.

[3]
As a string enclosed in double-quotes. The expression parser will perform backslash, variable, and
command substitutions on the information between the quotes, and use the resulting value as the
operand

[4]
As a string enclosed in braces. The characters between the open brace and matching close brace
will be used as the operand without any substitutions.

[5]
As a Tcl command enclosed in brackets. The command will be executed and its result will be used
as the operand.

[6]
As a mathematical function whose arguments have any of the above forms for operands, such as
"sin($x)". See below for a list of defined functions.

Where substitutions occur above (e.g. inside quoted strings), they are performed by the expression
processor. However, an additional layer of substitution may already have been performed by the
command parser before the expression processor was called. As discussed below, it is usually best to
enclose expressions in braces to prevent the command parser from performing substitutions on the
contents.

For some examples of simple expressions, suppose the variable a has the value 3 and the variable b has
the value 6. Then the command on the left side of each of the lines below will produce the value on the
right side of the line:

expr 3.1 + $a
6.1

expr 2 + "$a.$b"
5.6 expr 4*[llength "6 2"] 8 expr {{word one} < "word $a"}0

OPERATORS

The valid operators are listed below, grouped in decreasing order of precedence:

-
+ ~ ! Unary minus, unary plus, bit-wise NOT, logical NOT. None of these operands may be applied
to string operands, and bit-wise NOT may be applied only to integers.

* / % Multiply, divide, remainder. None of these operands may be applied to string operands, and
remainder may be applied only to integers. The remainder will always have the same sign as the divisor
and an absolute value smaller than the divisor.

+ - Add and subtract. Valid for any numeric operands.

<< >> Left and right shift. Valid for integer operands only. A right shift always propogates the sign bit.

< > <= >= Boolean less, greater, less than or equal, and greater than or equal. Each operator produces 1
if the condition is true, 0 otherwise. These operators may be applied to strings as well as numeric
operands, in which case string comparison is used.

== != Boolean equal and not equal. Each operator produces a zero/one result. Valid for all operand
types.

&
Bit-wise AND. Valid for integer operands only.

^

Bit-wise exclusive OR. Valid for integer operands only.

|
Bit-wise OR. Valid for integer operands only.

&&
Logical AND. Produces a 1 result if both operands are non-zero, 0 otherwise. Valid for numeric
operands only (integers or floating-point).

||
Logical OR. Produces a 0 result if both operands are zero, 1 otherwise. Valid for numeric operands
only (integers or floating-point).

x?y:z
If-then-else, as in C. If x evaluates to non-zero, then the result is the value of y. Otherwise the
result is the value of z. The x operand must have a numeric value.

See the C manual for more details on the results produced by each operator. All of the binary operators
group leftto-right within the same precedence level. For example, the command
expr 4*2 < 7
returns 0.

The &&, ||, and ?: operators have "lazy evaluation", just as in C, which means that operands are not
evaluated if they are not needed to determine the outcome. For example, in the command
expr {$v ? [a] : [b]}
only one of [a] or [b] will actually be evaluated, depending on the value of $v. Note, however, that this
is only true if the entire expression is enclosed in braces; otherwise the Tcl parser will evaluate both [a]
and [b] before invoking the expr command.

MATH FUNCTIONS

Tcl supports the following mathematical functions in expressions:

acos cos hypot sinh asin cosh log sqrt atan exp log10 tan atan2 floor pow tanh ceil fmod sin

Each of these functions invokes the math library function of the same name; see the manual entries for
the library functions for details on what they do. Tcl also implements the following functions for
conversion between integers and floating-point numbers:

abs(arg)
Returns the absolute value of arg. Arg may be either integer or floating-point, and the result is returned
in the same form.

double(arg)
If arg is a floating value, returns arg, otherwise converts arg to floating and returns the converted value.

int(arg)

If arg is an integer value, returns arg, otherwise converts arg to integer by truncation and returns the
converted value.

round(arg)
If arg is an integer value, returns arg, otherwise converts arg to integer by rounding and returns the
converted value.

In addition to these predefined functions, applications may define additional functions using
Tcl_CreateMathFunc().

TYPES, OVERFLOW, AND PRECISION

All internal computations involving integers are done with the C type long, and all internal computations
involving floating-point are done with the C type double. When converting a string to floating-point,
exponent overflow is detected and results in a Tcl error. For conversion to integer from string, detection
of overflow depends on the behavior of some routines in the local C library, so it should be regarded as
unreliable. In any case, integer overflow and underflow are generally not detected reliably for
intermediate results. Floating-point overflow and underflow are detected to the degree supported by the
hardware, which is generally pretty reliable.

Conversion among internal representations for integer, floating-point, and string operands is done
automatically as needed. For arithmetic computations, integers are used until some floating-point
number is introduced, after which floating-point is used. For example, expr 5 / 4
returns 1, while
expr 5 / 4.0
expr 5 / ([string length "abcd"] + 0.0) both return 1.25. Floating-point values are always returned
with a "." or an "e" so that they will not look like integer values. For example, expr 20.0/5.0
returns "4.0", not "4". The global variable tcl_precision determines the the number of significant digits
that are retained when floating values are converted to strings (except that trailing zeroes are omitted). If
tcl_precision is unset then 6 digits of precision are used. To retain all of the significant bits of an IEEE
floating-point number set tcl_precision to 17; if a value is converted to string with 17 digits of precision
and then converted back to binary for some later calculation, the resulting binary value is guaranteed to
be identical to the original one.

STRING OPERATIONS

String values may be used as operands of the comparison operators, although the expression evaluator
tries to do comparisons as integer or floating-point when it can. If one of the operands of a comparison is
a string and the other has a numeric value, the numeric operand is converted back to a string using the C
sprintf format specifier %d for integers and %g for floating-point values. For example, the commands
expr {"0x03" > "2"}
expr {"0y" < "0x12"}
both return 1. The first comparison is done using integer comparison, and the second is done using string
comparison after the second operand is converted to the string "18". Because of Tcl´s tendency to treat
values as numbers whenever possible, it isn´t generally a good idea to use operators like == when you
really want string comparison and the values of the operands could be arbi

trary;
it´s better in these cases to use the string compare command instead.

See Also:

bgerror

Keywords:

arithmetic, boolean, compare, expression

FCONFIGURE 39 NeoSoft, Inc.

FCONFIGURE - Safe TCL

 Set and get options on a channel

Synopsis:

fconfigure channelId

fconfigure channelId name

fconfigure channelId name value ?name value ...?

Description

The fconfigure command sets and retrieves options for channels. ChannelId identifies the channel for
which to set or query an option. If no name or value arguments are supplied, the command returns a list
containing alternating option names and values for the channel. If name is supplied but no value then the
command returns the current value of the given option. If one or more pairs of name and value are
supplied, the command sets each of the named options to the corresponding value; in this case the return
value is an empty string.

The options described below are supported for all channels. In addition, each channel type may add
options that only it supports.

-blocking boolean
The -blocking option determines whether I/O operations on the channel can cause the process to
block indefinitely. The value of the option must be a proper boolean value. Channels are normally
in blocking mode; if a channel is placed into nonblocking mode it will affect the operation of the
gets, read, puts, flush, and close commands; see the documentation for those commands for
details. Setting stdin, stdout, or stderr into nonblocking mode is disallowed because it could
interfere with the operation of the parent process. For nonblocking mode to work correctly, the
application must be using the Tcl event loop (e.g. by calling Tcl_DoOneEvent or invoking the

vwait command).

-buffering newValue
If newValue is full then the I/O system will buffer output until its internal buffer is full or until the
flush command is invoked. If newValue is line, then the I/O system will automatically flush output
for the channel whenever a newline character is output. If newValue is none, the I/O system will
flush automatically after every output operation. The default is for -buffering to be set to full
except for channels that connect to terminal-like devices; for these channels the initial setting is
line.

-buffersize newSize
Newvalue must be an integer; its value is used to set the size of buffers, in bytes, subsequently
allocated for this channel to store input or output. Newvalue must be between ten and one million,
allowing buffers of ten to one million bytes in size.

-translation mode
In Tcl scripts the end of a line is always represented using a single newline character (\n).
However, in actual files and devices the end of a line may be represented differently on different
platforms, or even for different devices on the same platform. For example, under UNIX newlines
are used in files, whereas carriage-return-linefeed sequences are normally used in network
connections. The Tcl I/O system automatically translates between the newlines used internally and
whatever end-ofline characters are appropriate for the underlying files and devices. The
-translation option selects the end-of-line character(s) to use on the file or device for a particular
channel. Note that if you want no translations at all applied to input and output on a specific
channel, you should set it to lf mode - see below. The following values are currently supported:

cr
The end of a line in the underlying file or device is represented by a single carriage return
character. During input commands such as read Tcl translates carriage returns to newline
characters, and during output commands such as puts Tcl translates newline characters to carriage
returns. This mode is typically used on Macintosh platforms.

crlf The end of a line in the underlying file or device is represented by a carriage return character
followed by a linefeed character. During input commands such as read Tcl

translates
carriage-return-linefeed sequences to newlines, and during output commands such as puts Tcl
translates newline characters to carriage-return-linefeed sequences. This mode is typically used on
Windows platforms and for network connections.

lf
The end of a line in the underlying file or device is represented by a single newline (linefeed)
character. In this mode no translations occur during either intput or output. This mode is typically
used on UNIX platforms.

binary This is a synonym for lf mode.

platform

nel according to the platform on which the application is executing; for sockets on all platforms Tcl
chooses crlf, for all Unix flavors, it chooses lf, for the Macintosh platform it chooses cr and for the
various flavors of Windows it chooses crlf.

auto In this mode Tcl sets the translation mode based on the first valid end-of-line sequence it sees
during input on the channel. If output is generated for the channel before an end-of-line sequence has
appeared on input, then Tcl uses platform mode for the channel. The default setting for -translation is
auto.

See Also:

close, flush, gets, puts, read

Keywords:

blocking, buffering, carriage return, end of line, flushing, linemode,
newline, nonblocking, platform, translation

FILEMV 40 NeoSoft, Inc.

FILEMV - Neowebscript

 Renames the file type

Synopsis:

 filemv type oldname newname

Description

Renames the file type type from oldname to newname. Valid types are db and data.

See Also:

close, flush, gets, puts, read

Keywords:

blocking, buffering, carriage return, end of line, flushing, linemode,
newline, nonblocking, platform, translation

FILERM 41 NeoSoft, Inc.

FILERM - Neowebscript

 Removes the data or db file of type

Synopsis:

 filerm type name

Description

Removes the data or db file of the given type. Valid types are db and data.

See Also:

close, flush, gets, puts, read

Keywords:

blocking, buffering, carriage return, end of line, flushing, linemode,
newline, nonblocking, platform, translation

FLOCK 42 NeoSoft, Inc.

FLOCK - Extended TCL

 Places a lock on all or part of fole specified by fileId

Synopsis:

 flock options fileId ?start? ?length? ?origin?

Description

This command places a lock on all or part of the file specified by fileId. The lock is either advi- sory or
mandatory, depending on the mode bits of the file. The lock is placed beginning at relative byte offset
start for length bytes. If start or length is omitted or empty, zero is assumed. If length is zero, then the
lock always extents to end of file, even if the file grows. If origin is "start", then the offset is relative to
the begin- ning of the file. If it is "current", it is rela- tive to the current access position in the file. If it is
"end", then it is relative to the end-of- file (a negative is before the EOF, positive is after). If origin is
omitted, start is assumed.

The following options are recognized:

-read - Place a read lock on the file. Multiple processes may be accessing the file with read- locks.

-write - Place a write lock on the file. Only one process may be accessing a file if there is a write lock.

-nowait - If specified, then the process will not block if the lock can not be obtained. With this option,
the command returns 1 if the lock is obtained and 0 if it is not.

See your system´s fcntl system call documentation for full details of the behavior of file locking. If
locking is being done on ranges of a file, it is best to use unbuffered file access (see the fcntl command).

See Also:

close, flush, gets, puts, read

Keywords:

blocking, buffering, carriage return, end of line, flushing, linemode,
newline, nonblocking, platform, translation

FLUSH 43 NeoSoft, Inc.

FLUSH - Safe TCL

 Flush buffered output for a channel

Synopsis:

flush channelId

Description

Flushes any output that has been buffered for channelId. ChannelId must be a channel identifier such as
returned by a previous open or socket command, and it must have been opened for writing. If the
channel is in blocking mode the command does not return until all the buffered output has been flushed
to the channel. If the channel is in nonblocking mode, the command may return before all buffered
output has been flushed; the remainder will be flushed in the background as fast as the underlying file or
device is able to absorb it.

See Also:

open, socket

Keywords:

blocking, buffer, channel, flush, nonblocking, output

FOR 44 NeoSoft, Inc.

FOR - Safe TCL

 For loop

Synopsis:

for start test next body

Description

For is a looping command, similar in structure to the C for statement. The start, next, and body
arguments must be Tcl command strings, and test is an expression string. The for command first invokes
the Tcl interpreter to execute start. Then it repeatedly evaluates test as an expression; if the result is
non-zero it invokes the Tcl interpreter on body, then invokes the Tcl interpreter on next, then repeats the
loop. The command terminates when test evaluates to 0. If a continue command is invoked within body
then any remaining commands in the current execution of body are skipped; processing continues by
invoking the Tcl interpreter on next, then evaluating test, and so on. If a break command is invoked
within body or next, then the for command will return immediately. The operation of break and
continue are similar to the corresponding statements in C. For returns an empty string.

See Also:

open, socket

Keywords:

for, iteration, looping

FOREACH 45 NeoSoft, Inc.

FOREACH - Safe TCL

 Iterate over all elements in one or more lists

Synopsis:

foreach varname list body

foreach varlist1 list1 varlist2 list2...? body

Description

The foreach command implements a loop where the loop variable(s) take on values from one or more
lists. In the simplest case there is one loop variable, varname, and one list, list, that is a list of values to

assign to varname. The body argument is a Tcl script. For each element of list (in order from first to
last), foreach assigns the contents of the element to varname as if the lindex command had been used to
extract the element, then calls the Tcl interpreter to execute body.

In the general case there can be more than one value list (e.g., list1 and list2), and each value list can be
associated with a list of loop variables (e.g., varlist1 and varlist2). During each iteration of the loop the
variables of each varlist are assigned consecutive values from the corresponding list. Values in each list
are used in order from first to last, and each value is used exactly once. The total number of loop
iterations is large enough to use up all the values from all the value lists. If a value list does not contain
enough elements for each of its loop variables in each iteration, empty values are used for the missing
elements.

The break and continue statements may be invoked inside body, with the same effect as in the for
command. Foreach returns an empty string.

EXAMPLES

The following loop uses i and j as loop variables to iterate over pairs of elements of a single list.

set x {}
foreach {i j} {a b c d e f} { lappend x $j $i
}
The value of x is "b a d c f e" # There are 3 iterations of the loop.

The next loop uses i and j to iterate over two lists in parallel.

set x {}
foreach i {a b c} j {d e f g} { lappend x $i $j
}
The value of x is "a d b e c f {} g" # There are 4 iterations of the loop.

The two forms are combined in the following example.

set x {}
foreach i {a b c} {j k} {d e f g} { lappend x $i $j $k
}
The value of x is "a d e b f g c {} {}" # There are 3 iterations of the loop.

See Also:

open, socket

Keywords:

foreach, iteration, list, looping

FORMAT 46 NeoSoft, Inc.

FORMAT - Safe TCL

 Format a string in the style of sprintf

Synopsis:

format formatString ?arg arg ...?

Description

This command generates a formatted string in the same way as the ANSI C sprintf procedure (it uses
sprintf in its implementation). FormatString indicates how to format the result, using % conversion
specifiers as in sprintf, and the additional arguments, if any, provide values to be substituted into the
result. The return value from format is the formatted string.

DETAILS ON FORMATTING

The command operates by scanning formatString from left to right. Each character from the format
string is appended to the result string unless it is a percent sign. If the character is a % then it is not
copied to the result string. Instead, the characters following the % character are treated as a conversion
specifier. The conversion specifier controls the conversion of the next successive arg to a particular
format and the result is appended to the result string in place of the conversion specifier. If there are
multiple conversion specifiers in the format string, then each one controls the conversion of one
additional arg. The format command must be given enough args to meet the needs of all of the
conversion specifiers in formatString.

Each conversion specifier may contain up to six different parts: an XPG3 position specifier, a set of
flags, a minimum field width, a precision, a length modifier, and a conversion character. Any of these
fields may be omitted except for the conversion character. The fields that are present must appear in the
order given above. The paragraphs below discuss each of these fields in turn.

If the % is followed by a decimal number and a $, as in "%2$d", then the value to convert is not taken
from the next sequential argument. Instead, it is taken from the argument indicated by the number,
where 1 corresponds to the first arg. If the conversion specifier requires multiple arguments because of *
characters in the specifier then successive arguments are used, starting with the argument given by the
number. This follows the XPG3 conventions for positional specifiers. If there are any positional
specifiers in formatString then all of the specifiers must be positional.

The second portion of a conversion specifier may contain any of the following flag characters, in any
order:

-
Specifies that the converted argument should be left-justified in its field (numbers are normally
right-justified with leading spaces if needed).

+
Specifies that a number should always be printed with a sign, even if positive.

space
Specifies that a space should be added to the beginning of the number if the first character isn´t a
sign.

0
Specifies that the number should be padded on the left with zeroes instead of spaces.

Requests an alternate output form. For o and O conversions it guarantees that the first digit is
always 0. For x or X conversions, 0x or 0X (respectively) will be added to the beginning of the
result unless it is zero. For all floatingpoint conversions (e, E, f, g, and G) it guarantees that the
result always has a decimal point. For g and G conversions it specifies that trailing zeroes should
not be removed.

The third portion of a conversion specifier is a number giving a minimum field width for this
conversion. It is typically used to make columns line up in tabular printouts. If the converted argument
contains fewer characters than the minimum field width then it will be padded so that it is as wide as the
minimum field width. Padding normally occurs by adding extra spaces on the left of the converted
argument, but the 0 and - flags may be used to specify padding with zeroes on the left or with spaces on
the right, respectively. If the minimum field width is specified as * rather than a number, then the next
argument to the format command determines the minimum field width; it must be a numeric string.

The fourth portion of a conversion specifier is a precision, which consists of a period followed by a
number. The number is used in different ways for different conversions. For e, E, and f conversions it
specifies the number of digits to appear to the right of the decimal point. For g and G conversions it
specifies the total number of digits to appear, including those on both sides of the decimal point
(however, trailing zeroes after the decimal point will still be omitted unless the # flag has been
specified). For integer conversions, it specifies a minimum number of digits to print (leading zeroes will
be added if necessary). For s conversions it specifies the maximum number of characters to be printed; if
the string is longer than this then the trailing characters will be dropped. If the precision is specified with
* rather than a number then the next argument to the format command determines the precision; it must
be a numeric string.

The fifth part of a conversion specifier is a length modifier, which must be h or l. If it is h it specifies
that the numeric value should be truncated to a 16-bit value before converting. This option is rarely
useful. The l modifier is ignored.

The last thing in a conversion specifier is an alphabetic character that determines what kind of
conversion to perform. The following conversion characters are currently supported:

d
Convert integer to signed decimal string.

u

Convert integer to unsigned decimal string.

i
Convert integer to signed decimal string; the integer may either be in decimal, in octal (with a
leading 0) or in hexadecimal (with a leading 0x).

o
Convert integer to unsigned octal string.

x or X
Convert integer to unsigned hexadecimal string, using digits "0123456789abcdef" for x and
"0123456789ABCDEF" for X).

c
Convert integer to the 8-bit character it represents.

s
No conversion; just insert string.

f
Convert floating-point number to signed decimal string of the form xx.yyy, where the number of
y´s is determined by the precision (default: 6). If the precision is 0 then no decimal point is output.

e or e
Convert floating-point number to scientific notation in the form x.yyye+-zz, where the number of
y´s is determined by the precision (default: 6). If the precision is 0 then no decimal point is output.
If the E form is used then E is printed instead of e.

g or G
If the exponent is less than -4 or greater than or equal to the precision, then convert floating-point
number as for %e or %E. Otherwise convert as for %f. Trailing zeroes and a trailing decimal
point are omitted.

%
No conversion: just insert %.

For the numerical conversions the argument being converted must be an integer or floating-point string;
format converts the argument to binary and then converts it back to a string according to the conversion
specifier.

DIFFERENCES FROM ANSI SPRINTF

The behavior of the format command is the same as the ANSI C sprintf procedure except for the
following differences:

[1]
%p and %n specifiers are not currently supported.

[2]
For %c conversions the argument must be a decimal string, which will then be converted to the
corresponding character value.

[3]
The l modifier is ignored; integer values are always converted as if there were no modifier present
and real values are always converted as if the l modifier were present (i.e. type double is used for
the internal representation). If the h modifier is specified then integer values are truncated to short
before conversion.

See Also:

open, socket

Keywords:

conversion specifier, format, sprintf, string, substitution

FSTAT 47 NeoSoft, Inc.

FSTAT - Extended TCL

 Obtains status info about an open file

Synopsis:

 fstat fileId ?item?| ?stat arrayvar?

Description

Obtain status information about an open file.

The following keys are used to identify data items:

atime - The time of last access.

ctime - The time of last file status change

dev - The device containing a directory for the file. This value uniquely identifies the file sys- tem
that contains the file.

gid - The group ID of the file´s group.

ino - The inode number. This field uniquely identifies the file in a given file system.

mode - The mode of the file (see the mknod system call).

mtime - Time when the data in the file was last modified.

nlink - The number of links to the file.

size - The file size in bytes.

tty - If the file is associated with a terminal, then 1 otherwise 0.

type - The type of the file in symbolic form, which is one of the following values: file, direc- tory,
characterSpecial, blockSpecial, fifo, link, or socket.

uid - The user ID of the file´s owner.

If one of these keys is specified as item, then that data item is returned.

If stat arrayvar is specified, then the information is returned in the array arrrayvar. Each of the above
keys indexes an element of the array contain- ing the data.

If only fileId is specified, the command returns the data as a keyed list.

The following values may be returned only if explicitly asked for, it will not be returned with the array
or keyed list forms:

remotehost - If fileId is a TCP/IP socket connection, then a list is returned with the first element
being the remote host IP address. If the remote host name can be found, it is returned as the second
element of the list. The remote host IP port number is returned as the this element.

localhost - If fileId is a TCP/IP socket connec- tion, then a list is returned with the first ele- ment
being the local host IP address. If the local host name can be found, it is returned as the sec- ond
element of the list. The local host IP port number is returned as the this element.

See Also:

open, socket

Keywords:

conversion specifier, format, sprintf, string, substitution

FUNLOCK 48 NeoSoft, Inc.

FUNLOCK - Extended TCL

 Remove a locked from a file that was placed with flock

Synopsis:

 flock fileId ?start? ?length? ?origin?

Description

Remove a locked from a file that was previously placed with the flock command. The arguments are the
same as for the flock command, see that command for more details.

See Also:

open, socket

Keywords:

conversion specifier, format, sprintf, string, substitution

GET_AVG_NC 49 NeoSoft, Inc.

GET_AVG_NC - NeoWebScript

 Returns an average daily count.

Synopsis:

get_avg_nc counter_name [browser]

Description

Returns the average daily counts assigned to the counter. The average is calculated by dividing the real
counts by the number of days since the counter was registered. (NOTE: initial counts are not used to
calculate the average.) By default the total value for all browsers is returned. Caller may request a
specific browser (all, mozilla, mosaic, lynx, mie, other).

See Also:

open, socket

Keywords:

conversion specifier, format, sprintf, string, substitution

GET_INIT_NC 50 NeoSoft, Inc.

GET_INIT_NC - NeoWebScript

 Returns the initial counter value.

Synopsis:

get_init_nc counter_name [browser]

Description

Returns the initial counts assigned to the counter when it was registered. By default the total value for all
browsers is returned. Caller may request a specific browser (all, mozilla, mosaic, lynx, mie, other).

See Also:

open, socket

Keywords:

conversion specifier, format, sprintf, string, substitution

GET_NC 51 NeoSoft, Inc.

GET_NC - NeoWebScript

 Returns the current counter value.

Synopsis:

get_nc counter_name [browser] [val_type]

Description

Returns the current counter value. By default the overall lifetime count is returned. Caller may request a
specific browser (all, mozilla, mosaic, lynx, mie, other). Caller may request lifetime of today´s count
only using val_type.

See Also:

open, socket

Keywords:

conversion specifier, format, sprintf, string, substitution

GET_REAL_NC 52 NeoSoft, Inc.

GET_REAL_NC - NeoWebScript

 Returns an actual daily count.

Synopsis:

get_real_nc counter_name [browser]

Description

Returns the actual counts assigned to the counter (i.e. count-init_count). By default the total value for all
browsers is returned. Caller may request a specific browser (all, mozilla, mosaic, lynx, mie, other).

See Also:

open, socket

Keywords:

conversion specifier, format, sprintf, string, substitution

GETS 53 NeoSoft, Inc.

GETS - Safe TCL

 Read a line from a channel

Synopsis:

gets channelID ? varName?

Description

This command reads the next line from channelId, returns everything in the line up to (but not
including) the endof-line character(s), and discards the end-of-line character(s). If varName is omitted
the line is returned as the result of the command. If varName is specified then the line is placed in the
variable by that name and the return value is a count of the number of characters returned.

If end of file occurs while scanning for an end of line, the command returns whatever input is available
up to the end of file. If channelId is in nonblocking mode and there is not a full line of input available,

the command returns an empty string and does not consume any input. If varName is specified and an
empty string is returned in varName because of end-of-file or because of insufficient data in
nonblocking mode, then the return count is -1. Note that if varName is not specified then the end-of-file
and no-full-line-available cases can produce the same results as if there were an input line consisting
only of the end-of-line character(s). The eof and fblocked commands can be used to distinguish these
three cases.

See Also:

eof, fblocked

Keywords:

blocking, channel, end of file, end of line, line, nonblocking, read

GLOBAL 54 NeoSoft, Inc.

GLOBAL - Safe TCL

 Access global variables

Synopsis:

global varname ?varname ...?

Description

This command is ignored unless a Tcl procedure is being interpreted. If so then it declares the given
varname´s to be global variables rather than local ones. For the duration of the current procedure (and
only while executing in the current procedure), any reference to any of the varnames will refer to the
global variable by the same name.

See Also:

eof, fblocked

Keywords:

global, procedure, variable

GM_TIMESTR_822 55 NeoSoft, Inc.

GM_TIMESTR_822 - NeoWebScript

 Returns standard unix time.

Synopsis:

gm_timestr_822 time

Description

Returns an RFC822 string representing of time which is in standard Unix time, ie. seconds from the start
of the epoch, ie. Jan 1, 1970. Currently used only to generate the Expires header for server-cached
images.

See Also:

eof, fblocked

Keywords:

global, procedure, variable

HISTORY 56 NeoSoft, Inc.

HISTORY - Safe TCL

 Manipulate the history list

Synopsis:

history ?option? ?arg arg ...?

Description

The history command performs one of several operations related to recently-executed commands
recorded in a history list. Each of these recorded commands is referred to as an "event". When
specifying an event to the history command, the following forms may be used:

[1]
A number: if positive, it refers to the event with that number (all events are numbered starting at
1). If the number is negative, it selects an event relative to the current event (-1 refers to the
previous event, -2 to the one before that, and so on).

[2]
A string: selects the most recent event that matches the string. An event is considered to match the
string either if the string is the same as the first characters of the event, or if the string matches the
event in the sense of the string match command.

The history command can take any of the following forms:

history
Same as history info, described below.

history add command ?exec?
Adds the command argument to the history list as a new event. If exec is specified (or abbreviated) then
the command is also executed and its result is returned. If exec isn´t specified then an empty string is
returned as result.

history change newValue ?event?
Replaces the value recorded for an event with newValue. Event specifies the event to replace, and
defaults to the current event (not event -1). This command is intended for use in commands that
implement new forms of history substitution and wish to replace the current event (which invokes the
substitution) with the command created through substitution. The return value is an empty string.

history event ?event?
Returns the value of the event given by event. Event defaults to -1. This command causes history
revision to occur: see below for details.

history info ?count?
Returns a formatted string (intended for humans to read) giving the event number and contents for each
of the events in the history list except the current event. If count is specified then only the most recent
count events are returned.

history keep count
This command may be used to change the size of the history list to count events. Initially, 20 events are
retained in the history list. This command returns an empty string.

history nextid
Returns the number of the next event to be recorded in the history list. It is useful for things like printing
the event number in command-line prompts.

history redo ?event?
Re-executes the command indicated by event and return its result. Event defaults to -1. This command
results in history revision: see below for details.

history substitute old new ?event?
Retrieves the command given by event (-1 by default), replace any occurrences of old by new in the
command (only simple character equality is supported; no wild cards), execute the resulting command,
and return the result of that execution. This command results in history revision: see below for details.

history words selector ?event?
Retrieves from the command given by event (-1 by default) the words given by selector, and return those
words in a string separated by spaces. The selector argument has three forms. If it is a single number
then it selects the word given by that number (0 for the command name, 1 for its first argument, and so
on). If it consists of two numbers separated by a dash, then it selects all the arguments between those

two. Otherwise selector is treated as a pattern; all words matching that pattern (in the sense of string
match) are returned. In the numeric forms $ may be used to select the last word of a command. For
example, suppose the most recent command in the history list is format {%s is %d years old} Alice
[expr $ageInMonths/12]

Below are some history commands and the results they would produce:

Command
Result

history words $ [expr $ageInMonths/12] history words 1-2{%s is %d years old} Alice history
words *a*o*{%s is %d years old} [expr $ageInMonths/12]

History words results in history revision: see below for details.

HISTORY REVISION

The history options event, redo, substitute, and words result in "history revision". When one of these
options is invoked then the current event is modified to eliminate the history command and replace it
with the result of the history command. For example, suppose that the most recent command in the
history list is set a [expr $b+2]
and suppose that the next command invoked is one of the ones on the left side of the table below. The
command actually recorded in the history event will be the corresponding one on the right side of the
table.

Command_Typed Command_Recorded

history redo
set a [expr $b+2]

history s a b
set b [expr $b+2] set c [history w 2]set c [expr $b+2]

History revision is needed because event specifiers like -1 are only valid at a particular time: once more
events have been added to the history list a different event specifier would be needed. History revision
occurs even when history is invoked indirectly from the current event (e.g. a user types a command that
invokes a Tcl procedure that invokes history): the top-level command whose execution eventually
resulted in a history command is replaced. If you wish to invoke commands like history words without
history revision, you can use history event to save the current history event and then use history change
to restore it later.

See Also:

eof, fblocked

Keywords:

event, history, record, revision

HTML 57 NeoSoft, Inc.

HTML - Neowebscript

 Write string into the webpage

Synopsis:

 html string [tag]

Description

write string into the webpage being sent to the user. If tag is specified, it is emitted in its on-state in
front, and its off state behind of, the string.

See Also:

eof, fblocked

Keywords:

event, history, record, revision

ID 58 NeoSoft, Inc.

ID - Extended TCL

 Provides a means of getting, setting, and converting user, group, and
process ids

Synopsis:

 id options

Description

This command provides a means of getting, setting and converting user, group and process ids. The id
command has the following options:

id user ?name?

id userid ?uid? Set the real and effective user ID to name or uid, if the name (or uid) is valid and permis-
sions allow it. If the name (or uid) is not specified, the current name (or uid) is returned.

id convert userid uid

id convert user name Convert a user ID number to a user name, or vice versa.

id group ?name?

id groupid ?gid? Set the real and effective group ID to name or gid, if the name (or gid) is valid and
permis- sions allow it. If the group name (or gid) is not specified, the current group name (or gid) is
returned.

id groups

id groupids Return the current group access list of the process. The option groups returns group names
and groupids returns id numbers.

id convert groupid gid

id convert group name Convert a group ID number to a group name, or vice versa.

id effective user

id effective userid Return the effective user name, or effective user ID number, respectively.

id effective group

id effective groupid Return the effective group name, or effective group ID number, respectively. id
effective groupids Return all of the groupids the user is a mem- ber of.

id host Return the hostname of the system the program is running on.

id process Return the process ID of the current process.

id process parent Return the process ID of the parent of the current process.

id process group Return the process group ID of the current process.

id process group set Set the process group ID of the current pro- cess to its process ID.

id host Returns the standard host name of the machine the process is executing on.

See Also:

eof, fblocked

Keywords:

event, history, record, revision

IF 59 NeoSoft, Inc.

IF - Safe TCL

 Execute scripts conditionally

Synopsis:

if expr1 ?then? body1 elseif
expr2 ?then? body2 elseif ... ?else?
?bodyN?

Description

The if command evaluates expr1 as an expression (in the same way that expr evaluates its argument).
The value of the expression must be a boolean (a numeric value, where 0 is false and anything is true, or
a string value such as true or yes for true and false or no for false); if it is true then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is true then
body2 is executed, and so on. If none of the expressions evaluates to true then bodyN is executed. The
then and else arguments are optional "noise words" to make the command easier to read. There may be
any number of elseif clauses, including zero. BodyN may also be omitted as long as else is omitted too.
The return value from the command is the result of the body script that was executed, or an empty string
if none of the expressions was non-zero and there was no bodyN.

See Also:

eof, fblocked

Keywords:

boolean, conditional, else, false, if, true

IMAGE_CREATE 60 NeoSoft, Inc.

IMAGE_CREATE - NeoWebScript

 Returns a file handle which writes to the cache for the given name

Synopsis:

 image_create name ?expire-seconds?

Description

NOTE: Image generation is experimental in the current release of NeoWebScript.

Returns a file handle which writes to the cache for the given name. Name must be a file name relative to
the current directory. The user should close the file when finished with it using the \"close\" command.
The old image, if any, is already destroyed when this call returns.

Expire-seconds defines the number of seconds the image may be delivered from the server cache before
it becomes invalid.

For further info, see the Gd command set

See Also:

eof, fblocked

Keywords:

boolean, conditional, else, false, if, true

IMAGE_EXPIRE 61 NeoSoft, Inc.

IMAGE_EXPIRE - NeoWebScript

 Allows server caching of current image

Synopsis:

 image_expire seconds

Description

NOTE: Image generation is experimental in the current release of NeoWebScript.

Turns on server-side caching for the current image being generated, and sets an expiration time on the
cache to seconds. (0 is a valid value for seconds, and will cause it to always be expired.) Cached files are
served out obeying the \"If-modified-since\" header, allowing for client-side caching as well.

For further info, see the Gd command set

See Also:

eof, fblocked

Keywords:

boolean, conditional, else, false, if, true

IMAGE_OPEN 62 NeoSoft, Inc.

IMAGE_OPEN - NeoWebScript

 Returns a file handle for image name

Synopsis:

 image_open name

Description

NOTE: Image generation is experimental in the current release of NeoWebScript.

Return a file handle for image name. Name refers to a file in the current directory, including the
extension (usually .gd). Makes it possible to access previously generated images. If name is empty, then
a handle to the previsouly cached image for the current URI is returned. The user should close the file
when finished with it using the \"close\" command. The implementation takes special care not to destroy
the old copy of the current image until the current image has been generated.

For further info, see the Gd command set

See Also:

eof, fblocked

Keywords:

boolean, conditional, else, false, if, true

IMPORT_KEYVALUE_PAIRS 63 NeoSoft, Inc.

IMPORT_KEYVALUE_PAIRS - NeoWebScript

 Loads key-value pairs from a string into an array.

Synopsis:

import_keyvalue_pairs arrayName string

Description

load the key-value pairs from string into array arrayName, as -element string.

Example: import_keyvalue_pairs foo "-action paint -customer fred"

Will set element action of array foo to paint and element customer to fred.

The normal usage would be to get optional key-value pairs as arguments to a proc, as in:

proc sell_item {customer item args} {
import_keyvalue_pairs options $args
.
.
}

This will pull an arbitrary number of optional key-value pairs, read into the args list when the proc
began execution (because of the special meaning Tcl attaches to this keyword in argument lists), and
store the key-value pairs into the options array.

See Also:

eof, fblocked

Keywords:

boolean, conditional, else, false, if, true

INCLUDE_FILE 64 NeoSoft, Inc.

INCLUDE_FILE - NeoWebScript

 Copies the contents of a local file onto the page.

Synopsis:

include_file fileName

Description

Copy the contents of the specified file into the webpage being generated. File must be in the same
directory or somewhere beneath the current directory. If the filename matches the MIME type for a
server side include, the server side include is still performed. If it also contains embedded
NeoWebScript, the NeoWebScript is executed. If the owner of the current page and the page being
included are the same, the code is executed within the same safe interpreter that´s handling the current
page. If the file is owned by someone else, it gets its own interpreter for its neoscript.

See Also:

eof, fblocked

Keywords:

boolean, conditional, else, false, if, true

INCLUDE_VIRTUAL 65 NeoSoft, Inc.

INCLUDE_VIRTUAL - NeoWebScript

 Copies contents of virtual files.

Synopsis:

include_virtual virtualPath

Description

Copy the contents of the file named by the specified virtual path (rooted from the htdocs directory) into
the webpage currently being generated.

Matching MIME types and processing embedded requests proceeds as for include_file above.

See Also:

eof, fblocked

Keywords:

boolean, conditional, else, false, if, true

INCR 66 NeoSoft, Inc.

INCR - Safe TCL

 Increment the value of the variable

Synopsis:

incr varName ?increment?

Description

Increments the value stored in the variable whose name is varName. The value of the variable must be
an integer. If increment is supplied then its value (which must be an

integer) is added to the value of variable varName;
otherwise 1 is added to varName. The new value is stored as a decimal string in variable varName
and also returned as result.

See Also:

eof, fblocked

Keywords:

add, increment, variable, value

INCR_NC 67 NeoSoft, Inc.

INCR_NC - NeoWebScript

 Increments a neo-web counter.

Synopsis:

incr_nc counter_name [show] [browser] [val_type]

Description

Increment the indicated named counter. This increments the overall lifetime total, the browser´s lifetime
total and the daily browser total. Any value other than "show" in the show argument causes no value to
be returned. If "show" is specified, the indicated value is returned by the incr_nc call. The default return
value is the overall lifetime total. The caller may request only a specific browser (all, mozilla, mosaic,
lynx, mie, other) in the browser argument. The caller may request only today´s count value by
specifying the val_type argument (lifetime, today).

On the first incr_nc call of a new day, a new daily-count record is created automatically.

See Also:

eof, fblocked

Keywords:

add, increment, variable, value

INCR_PAGE_COUNTER 68 NeoSoft, Inc.

INCR_PAGE_COUNTER - Neowebscript

 Increment a counter for this webpage and return count

Synopsis:

 incr_page_counter

Description

Increment a counter for this webpage and return the new count. (Automatically creates and zeros the
counter if it doesn´t already exist.)

See Also:

eof, fblocked

Keywords:

add, increment, variable, value

INFO 69 NeoSoft, Inc.

INFO - Safe TCL

 Return information about the state of the Tcl interpreter

Synopsis:

info option ?arg arg ...?

Description

This command provides information about various internals of the Tcl interpreter. The legal option´s
(which may be abbreviated) are:

info args procname
Returns a list containing the names of the arguments to procedure procname, in order. Procname must
be the name of a Tcl command procedure.

info body procname
Returns the body of procedure procname. Procname must be the name of a Tcl command procedure.

info cmdcount
Returns a count of the total number of commands that have been invoked in this interpreter.

info commands ?pattern?
If pattern isn´t specified, returns a list of names of all the Tcl commands, including both the builtin
commands written in C and the command procedures defined using the proc command. If pattern is
specified, only those names matching pattern are returned. Matching is determined using the same rules
as for string match.

info complete command
Returns 1 if command is a complete Tcl command in the sense of having no unclosed quotes, braces,
brackets or array element names, If the command doesn´t appear to be complete then 0 is returned. This
command is typically used in line-oriented input environments to allow users to type in commands that
span multiple lines; if the command isn´t complete, the script can delay evaluating it until additional
lines have been typed to complete the command.

info default procname arg varname
Procname must be the name of a Tcl command procedure and arg must be the name of an argument to
that procedure. If arg doesn´t have a default value then the command returns 0. Otherwise it returns 1
and places the default value of arg into variable varname.

info exists varName
Returns 1 if the variable named varName exists in the current context (either as a global or local
variable), returns 0 otherwise.

info globals ?pattern?
If pattern isn´t specified, returns a list of all the names of currently-defined global variables. If pattern is
specified, only those names matching pattern are returned. Matching is determined using the same rules
as for string match.

info hostname
Returns the name of the computer on which this invocation is being executed.

info level ?number?
If number is not specified, this command returns a number giving the stack level of the invoking
procedure, or 0 if the command is invoked at toplevel. If number is specified, then the result is a list
consisting of the name and arguments for the procedure call at level number on the stack. If number is
positive then it selects a particular stack level (1 refers to the top-most active procedure, 2 to the
procedure it called, and so on); otherwise it gives a level relative to the current level (0 refers to the
current procedure, -1 to its caller, and so on). See the uplevel command for more information on what
stack levels mean.

info library
Returns the name of the library directory in which standard Tcl scripts are stored. This is actually the
value of the tcl_library variable and may be changed by setting tcl_library. See the tclvars manual

entry for more information.

info loaded
?interp?
Returns a list describing all of the packages that have been loaded into interp with the load command.
Each list element is a sub-list with two elements consisting of the name of the file from which the
package was loaded and the name of the package. For statically-loaded packages the file name will be an
empty string. Interp defaults to the current interpreter.

info locals ?pattern?
If pattern isn´t specified, returns a list of all the names of currently-defined local variables, including
arguments to the current procedure, if any. Variables defined with the global and upvar commands will
not be returned. If pattern is specified, only those names matching pattern are returned. Matching is
determined using the same rules as for string match.

info
nameofexecutable
Returns the full path name of the binary file from which the application was invoked. If Tcl was unable
to identify the file, then an empty string is returned.

info
patchlevel
Returns the value of the global variable tcl_patchLevel; see the tclvars manual entry for more
information.

info procs ?pattern?
If pattern isn´t specified, returns a list of all the names of Tcl command procedures. If pattern is
specified, only those names matching pattern are returned. Matching is determined using the same rules
as for string match.

info script
If a Tcl script file is currently being evaluated (i.e. there is a call to Tcl_EvalFile active or there is an
active invocation of the source command), then this command returns the name of the innermost file
being processed. Otherwise the command returns an empty string.

info
sharedlibextension
Returns the extension used on this platform for the names of files containing shared libraries (for
example, .so under Solaris). If shared libraries aren´t supported on this platform then an empty string is
returned.

info
tclversion
Returns the value of the global variable tcl_version; see the tclvars manual entry for more information.

info vars ?pattern?
If pattern isn´t specified, returns a list of all the names of currently-visible variables, including both

locals and currently-visible globals. If pattern is specified, only those names matching pattern are
returned. Matching is determined using the same rules as for string match.

See Also:

eof, fblocked

Keywords:

command, information, interpreter, level, procedure, variable

INFOX 70 NeoSoft, Inc.

INFOX - Extended TCL

 Return info about Extended Tcl or the current application

Synopsis:

 infox option

Description

Return information about Extended Tcl, or the cur- rent application. The following infox command
options are available:

version Return the version number of Extended Tcl. The version number for Extended Tcl is gener- ated
by combining the base version of the standard Tcl code with a letter indicating the version of Extended
Tcl being used. This is the documentation for version 7.4a.

patchlevel Return the patchlevel for Extended Tcl.

have_fchown Return 1 if the fchown system call is avail- able. This supports the -fileid option on the
chown and chgrp commands.

have_fchmod Return 1 if the fchmod system call is avail- able. This supports the -fileid option on the
chmod command.

have_flock Return 1 if the flock command defined, 0 if it is not available.

have_fsync Return 1 if the fsync system call is available and the sync command will sync individual
files. 0 if it is not available and the sync command will always sync all file buffers.

have_ftruncate Return 1 if the ftruncate or chsize system call is available. If it is, the ftruncate command
-fileid option maybe used.

have_msgcats Return 1 if XPG message catalogs are avail- able, 0 if they are not. The catgets is
designed to continue to function without mes- sage catalogs, always returning the default string.

have_posix_signals Return 1 if Posix signals are available (block and unblock options available for the
signal command). 0 is returned if Posix signals are not available. have_truncate Return 1 if the truncate
system call is avail- able. If it is, the ftruncate command may truncate by file path.

have_waitpid Return 1 if the waitpid system call is avail- able and the wait command has full functional-
ity. 0 if the wait command has limited func- tionality.

appname Return the symbolic application name of the current application linked with the Extended Tcl
library. The C variable tclAppName must be set by the application to return an appli- cation specific
value for this variable.

applongname Return a natural language name for the current application. The C variable
tclLongAppName must be set by the application to return an application specific value for this variable.

appversion Return the version number for the current application. The C variable tclAppVersion must be
set by the application to return an application-specific value for this variable.

apppatchlevel Return the patchlevel for the current applica- tion. The C variable tclAppPatchlevel must
be set by the application to return an applica- tion-specific value for this variable.

See Also:

eof, fblocked

Keywords:

command, information, interpreter, level, procedure, variable

INTERP 71 NeoSoft, Inc.

INTERP - Safe TCL

 Create and manipulate Tcl interpreters

Synopsis:

interp option ?arg arg ...?

Description

This command makes it possible to create one or more new Tcl interpreters that co-exist with the
creating interpreter in the same application. The creating interpreter is called the master and the new

interpreter is called a slave. A master can create any number of slaves, and each slave can itself create
additional slaves for which it is master, resulting in a hierarchy of interpreters.

Each interpreter is independent from the others: it has its own name space for commands, procedures,
and global variables. A master interpreter may create connections between its slaves and itself using a
mechanism called an alias. An alias is a command in a slave interpreter which, when invoked, causes a
command to be invoked in its master interpreter or in another slave interpreter. The only other
connections between interpreters are through environment variables (the env variable), which are
normally shared among all interpreters in the application. Note that the name space for files (such as the
names returned by the open command) is no longer shared between interpreters. Explicit commands are
provided to share files and to transfer references to open files from one interpreter to another.

The interp command also provides support for safe interpreters. A safe interpreter is a slave whose
functions have been greatly restricted, so that it is safe to execute untrusted scripts without fear of them
damaging other interpreters or the application´s environment. For example, all IO channel creation
commands and subprocess creation commands are removed from safe interpreters. See SAFE
INTERPRETERS below for more information on what features are present in a safe interpreter. The
alias mechanism can be used for protected communication (analogous to a kernel call) between a slave
interpreter and its master.

A qualified interpreter name is a proper Tcl lists containing a subset of its ancestors in the interpreter
hierarchy, terminated by the string naming the interpreter in its immediate master. Interpreter names are
relative to the interpreter in which they are used. For example, if a is a slave of the current interpreter
and it has a slave a1, which in turn has a slave a11, the qualified name of a11 in a is the list {a1 a11}.

The interp command, described below, accepts qualified interpreter names as arguments; the interpreter
in which the command is being evaluated can always be referred to as {} (the empty list or string). Note
that it is impossible to refer to a master (ancestor) interpreter by name in a slave interpreter except
through aliases. Also, there is no global name by which one can refer to the first interpreter created in an
application. Both restrictions are motivated by safety concerns.

The interp command is used to create, delete, and manipulate slave interpreters. It can have any of
several forms, depending on the option argument:

interp alias srcPath srcCmd
Returns a Tcl list whose elements are the targetCmd and args associated with the alias named srcCmd
(all of these are the values specified when the alias was created; it is possible that the actual source
command in the slave is different from srcCmd if it was renamed).

interp alias srcPath srcCmd {}
Deletes the alias for srcCmd in the slave interpreter identified by srcPath. srcCmd refers to the name
under which the alias was created; if the source command has been renamed, the renamed command will
be deleted.

interp alias srcPath srcCmd targetPath targetCmd ?arg arg ...?
This command creates an alias between one slave and another (see the alias slave command below for
creating aliases between a slave and its master). In this command, either of the slave interpreters may be
anywhere in the hierarchy of interpreters under the interpreter invoking the command. SrcPath and

srcCmd identify the source of the alias. SrcPath is a Tcl list whose elements select a particular
interpreter. For example, "a b" identifies an interpreter b, which is a slave of interpreter a, which is a
slave of the invoking interpreter. An empty list specifies the interpreter invoking the command. srcCmd
gives the name of a new command, which will be created in the source interpreter. TargetPath and
targetCmd specify a target interpreter and command, and the arg arguments, if any, specify additional
arguments to targetCmd which are prepended to any arguments specified in the invocation of srcCmd.
TargetCmd may be undefined at the time of this call, or it may already exist; it is not created by this
command. The alias arranges for the given target command to be invoked in the target interpreter
whenever the given source command is invoked in the source interpreter. See ALIAS INVOCATION
below for more details.

interp aliases ?path?
This command returns a Tcl list of the names of all the source commands for aliases defined in the
interpreter identified by path.

interp create ?-safe? ?--? ?path?
Creates a slave interpreter identified by path and a new command, called a slave command. The name of
the slave command is the last component of path. The new slave interpreter and the slave command are
created in the interpreter identified by the path obtained by removing the last component from path. For
example, if path is "a b c" then a new slave interpreter and slave command named "c" are created in the
interpreter identified by the path "a b". The slave command may be used to manipulate the new
interpreter as described below. If path is omitted, Tcl creates a unique name of the form interpx, where
x is an integer, and uses it for the interpreter and the slave command. If the -safe switch is specified (or
if the master interpreter is a safe interpreter), the new slave interpreter will be created as a safe
interpreter with limited functionality; otherwise the slave will include the full set of Tcl built-in
commands and variables. The -- switch can be used to mark the end of switches; it may be needed if
path is an unusual value such as -safe. The result of the command is the name of the new interpreter.
The name of a slave interpreter must be unique among all the slaves for its master; an error occurs if a
slave interpreter by the given name already exists in this master.

interp delete ?path ...?
Deletes zero or more interpreters given by the optional path arguments, and for each interpreter, it also
deletes its slaves. The command also deletes the slave command for each interpreter deleted. For each
path argument, if no interpreter by that name exists, the command raises an error.

interp eval path arg ?arg ...?
This command concatenates all of the arg arguments in the same fashion as the concat command, then
evaluates the resulting string as a Tcl script in the slave interpreter identified by path. The result of this
evaluation (including error information such as the errorInfo and errorCode variables, if an error
occurs) is returned to the invoking interpreter.

interp exists path

Returns
1 if a slave interpreter by the specified path exists in this master, 0 otherwise. If path is omitted,
the invoking interpreter is used.

interp issafe ?path?

Returns 1 if the interpreter identified by the specified path is safe, 0 otherwise.

interp share srcPath channelId destPath Causes the IO channel identified by channelId to become
shared between the interpreter identified by srcPath and the interpreter identified by destPath. Both
interpreters have the same permissions on the IO channel. Both interpreters must close it to close the
underlying IO channel; IO channels accessible in an interpreter are automatically closed when an
interpreter is destroyed.

interp slaves ?path?
Returns a Tcl list of the names of all the slave interpreters associated with the interpreter identified by
path. If path is omitted, the invoking interpreter is used.

interp target path alias
Returns a Tcl list describing the target interpreter for an alias. The alias is specified with an interpreter
path and source command name, just as in interp alias above. The name of the target interpreter is
returned as an interpreter path, relative to the invoking interpreter. If the target interpreter for the alias is
the invoking interpreter then an empty list is returned. If the target interpreter for the alias is not the
invoking interpreter or one of its descendants then an error is generated. The target command does not
have to be defined at the time of this invocation.

interp transfer srcPath channelId destPath Causes the IO channel identified by channelId to become
available in the interpreter identified by destPath and unavailable in the interpreter identified by srcPath.

SLAVE COMMAND

For each slave interpreter created with the interp command, a new Tcl command is created in the master
interpreter with the same name as the new interpreter. This command may be used to invoke various
operations on the interpreter. It has the following general form: slave command ?arg arg ...?
Slave is the name of the interpreter, and command and the args determine the exact behavior of the
command. The valid forms of this command are:

slave aliases
Returns a Tcl list whose elements are the names of all the aliases in slave. The names returned are the
srcCmd values used when the aliases were created (which may not be the same as the current names of
the commands, if they have been renamed).

slave alias srcCmd
Returns a Tcl list whose elements are the targetCmd and args associated with the alias named srcCmd
(all of these are the values specified when the alias was created; it is possible that the actual source
command in the slave is different from srcCmd if it was renamed).

slave alias srcCmd {}
Deletes the alias for srcCmd in the slave interpreter. srcCmd refers to the name under which the alias
was created; if the source command has been renamed, the renamed command will be deleted.

slave alias srcCmd targetCmd ?arg ..?
Creates an alias such that whenever srcCmd is invoked in slave, targetCmd is invoked in the master. The

arg arguments will be passed to targetCmd as additional arguments, prepended before any arguments
passed in the invocation of srcCmd. See ALIAS INVOCATION below for details.

slave eval arg ?arg ..?
This command concatenates all of the arg arguments in the same fashion as the concat command, then
evaluates the resulting string as a Tcl script in slave. The result of this evaluation (including error
information such as the errorInfo and errorCode variables, if an error occurs) is returned to the
invoking interpreter.

slave issafe
Returns 1 if the slave interpreter is safe, 0 otherwise.

ALIAS INVOCATION

The alias mechanism has been carefully designed so that it can be used safely when an untrusted script is
executing in a safe slave and the target of the alias is a trusted master. The most important thing in
guaranteeing safety is to ensure that information passed from the slave to the master is never evaluated
or substituted in the master; if this were to occur, it would enable an evil script in the slave to invoke
arbitrary functions in the master, which would compromise security.

When the source for an alias is invoked in the slave interpreter, the usual Tcl substitutions are performed
when parsing that command. These substitutions are carried out in the source interpreter just as they
would be for any other command invoked in that interpreter. The command procedure for the source
command takes its arguments and merges them with the targetCmd and args for the alias to create a new
array of arguments. If the words of srcCmd were "srcCmd arg1 arg2 ... argN", the new set of words will
be "targetCmd arg arg ... arg arg1 arg2 ... argN", where targetCmd and args are the values supplied
when the alias was created. TargetCmd is then used to locate a command procedure in the target
interpreter, and that command procedure is invoked with the new set of arguments. An error occurs if
there is no command named targetCmd in the target interpreter. No additional substitutions are
performed on the words: the target command procedure is invoked directly, without going through the
normal Tcl evaluation mechanism. Substitutions are thus performed on each word exactly once:
targetCmd and args were substituted when parsing the command that created the alias, and arg1 - argN
are substituted when the alias´s source command is parsed in the source interpreter.

When writing the targetCmds for aliases in safe interpreters, it is very important that the arguments to
that command never be evaluated or substituted, since this would provide an escape mechanism
whereby the slave interpreter could execute arbitrary code in the master. This in turn would compromise
the security of the system.

SAFE INTERPRETERS

A safe interpreter is one with restricted functionality, so that is safe to execute an arbitrary script from
your worst enemy without fear of that script damaging the enclosing application or the rest of your
computing environment. In order to make an interpreter safe, certain commands and variables are
removed from the interpreter. For example, commands to create files on disk are removed, and the exec
command is removed, since it could be used to cause damage through subprocesses. Limited access to
these facilities can be provided, by creating aliases to the master interpreter which check their arguments

carefully and provide restricted access to a safe subset of facilities. For example, file creation might be
allowed in a particular subdirectory and subprocess invocation might be allowed for a carefully selected
and fixed set of programs.

A safe interpreter is created by specifying the -safe switch to the interp create command. Furthermore,
any slave created by a safe interpreter will also be safe.

A safe interpreter is created with exactly the following set of built-in commands:

append array break case catch clock close concat continue eof error eval

expr
fblocked flush for foreach format gets global history if incr info interp join lappend lindex

list
llength lrange lreplace pid proc puts read regexp regsub rename return scan set seek split
string switch tell trace

All commands not on this list are removed from the interpreter by the interp create command. Of
course, the missing commands can be recreated later as Tcl procedures or aliases.

In addition, the env variable is not present in a safe interpreter, so it cannot share environment variables
with other interpreters. The env variable poses a security risk, because users can store sensitive
information in an environment variable. For example, the PGP manual recommends storing the PGP
private key protection password in the environment variable PGPPASS. Making this variable available
to untrusted code executing in a safe interpreter would incur a security risk.

If extensions are loaded into a safe interpreter, they may also restrict their own functionality to eliminate
unsafe commands. The management of extensions for safety will be explained in the manual entries for
the package and load Tcl commands.

See Also:

load, package, Tcl_CreateSlave

Keywords:

alias, master interpreter, safe interpreter, slave interpreter

JOIN 72 NeoSoft, Inc.

JOIN - Safe TCL

 Create a string by joining together list elements

Synopsis:

join list ?joinString?

Description

The list argument must be a valid Tcl list. This command returns the string formed by joining all of the
elements of list together with joinString separating each adjacent pair of elements. The joinString
argument defaults to a space character.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, join, list, separator

KEYLDEL 73 NeoSoft, Inc.

KEYLDEL - Extended TCL

 Delete field specified by key from the keyed list in listvar

Synopsis:

 keyldel listvar key

Description

Delete the field specified by key from the keyed list in the variable listvar. This removes both the key
and the value from the keyed list.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, join, list, separator

KEYLGET 74 NeoSoft, Inc.

KEYLGET - Extended TCL

 Return value associated with key from the keyed list in listvar

Synopsis:

 keylget listvar ?key? ?retvar | {}?

Description

Return the value associated with key from the keyed list in the variable listvar. If retvar is not specified,
then the value will be returned as the result of the command. In this case, if key is not found in the list,
an error will result.

If retvar is specified and key is in the list, then the value is returned in the variable retvar and the
command returns 1 if the key was present within the list. If key isn´t in the list, the command will return
0, and retvar will be left unchanged. If {} is specified for retvar, the value is not returned, allowing the
Tcl programmer to determine if a key is present in a keyed list without setting a variable as a side-effect.

If key is omitted, then a list of all the keys in the keyed list is returned.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, join, list, separator

KEYLKEYS 75 NeoSoft, Inc.

KEYLKEYS - Extended TCL

 Return the list of the keys in the keyed list in listvar

Synopsis:

 keylkeys listvar ?key?

Description

Return the a list of the keyes in the keyed list in the variable listvar. If keys is specified, then it is the
name of a key field who´s subfield keys are to be retrieve.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, join, list, separator

KEYLSET 76 NeoSoft, Inc.

KEYLSET - Extended TCL

 Set the value associated with key in the keyed list contained in the
variable listvar

Synopsis:

 keylset listvar key value ?key2 value2...?

Description

Set the value associated with key, in the keyed list contained in the variable listvar, to value. If listvar
does not exists, it is created. If key is not currently in the list, it will be added. If it already exists, value
replaces the existing value. Multiple keywords and values may be speci- fied, if desired.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, join, list, separator

LAPPEND 77 NeoSoft, Inc.

LAPPEND - Safe TCL

 Append list elements onto a variable

Synopsis:

lappend varName ?value value value ...?

Description

This command treats the variable given by varName as a list and appends each of the value arguments to
that list as a separate element, with spaces between elements. If varName doesn´t exist, it is created as a
list with elements given by the value arguments. Lappend is similar to append except that the values
are appended as list elements rather than raw text. This command provides a relatively efficient way to
build up large lists. For example, "lappend a $b" is much more efficient than "set a [concat $a [list
$b]]" when $a is long.

See Also:

load, package, Tcl_CreateSlave

Keywords:

append, element, list, variable

LASSIGN 78 NeoSoft, Inc.

LASSIGN - Extended TCL

 Assign successive elements of a list to specified variables

Synopsis:

 lassign list var ?var...?

Description

Assign successive elements of a list to specified variables. If there are more variable names than fields,
the remaining variables are set to the empty string. If there are more elements than variables, a list of the
unassigned elements is returned.

For example,

lassign {dave 100 200 {Dave Foo}} name uid gid longName

Assigns name to "dave", uid to "100", gid to "200", and longName to "Dave Foo".

See Also:

load, package, Tcl_CreateSlave

Keywords:

append, element, list, variable

LEMPTY 79 NeoSoft, Inc.

LEMPTY - Extended TCL

 Determines whether a list is empty or not.

Synopsis:

lempty list

Description

Determine if the specified list is empty. If empty, 1 is returned, otherwise, 0 is returned. This command
is an alternative to comparing a list to an empty string.

See Also:

load, package, Tcl_CreateSlave

Keywords:

append, element, list, variable

LINDEX 80 NeoSoft, Inc.

LINDEX - Safe TCL

 Retrieve an element from a list

Synopsis:

lindex list index

Description

This command treats list as a Tcl list and returns the index´th element from it (0 refers to the first
element of the list). In extracting the element, lindex observes the same rules concerning braces and
quotes and backslashes as the Tcl command interpreter; however, variable substitution and command
substitution do not occur. If index is negative or greater than or equal to the number of elements in value,
then an empty string is returned. If index has the value end, it refers to the last element in the list.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, index, list

LINSERT 81 NeoSoft, Inc.

LINSERT - Safe TCL

 Insert elements into a list

Synopsis:

linsert list index element by inserting all of the
element arguments just before the indexth element of

list. Each element argument will become a separate element of
the new list. If index is less than or equal to zero, then the new
elements are inserted at the beginning of the list. If index has the
value end, or if it is greater than or equal to the number of
elements in the list, then the new elements are appended to the list.

Description

This command produces a new list from list by inserting all of the element arguments just before the
indexth element of list. Each element argument will become a separate element of the new list. If index
is less than or equal to zero, then the new elements are inserted at the beginning of the list. If index has
the value end, or if it is greater than or equal to the number of elements in the list, then the new elements
are appended to the list.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, insert, list

LIST 82 NeoSoft, Inc.

LIST - Safe TCL

 Create a list

Synopsis:

list ?arg arg ...?

Description

This command returns a list comprised of all the args, or an empty string if no args are specified. Braces
and backslashes get added as necessary, so that the index command may be used on the result to
re-extract the original arguments, and also so that eval may be used to execute the resulting list, with
arg1 comprising the command´s name and the other args comprising its arguments. List produces
slightly different results than concat: concat removes one level of grouping before forming the list,
while list works directly from the original arguments. For example, the command
list a b {c d e} {f {g h}}
will return
a b {c d e} {f {g h}}
while concat with the same arguments will return a b c d e f {g h}

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list

LIST_DATA_FILES 83 NeoSoft, Inc.

LIST_DATA_FILES - Neowebscript

 Lists datafiles

Synopsis:

 list_data_files

Description

Returns a list of all of the user´s datafiles.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list

LLENGTH 84 NeoSoft, Inc.

LLENGTH - Safe TCL

 Count the number of elements in a list

Synopsis:

llength list

Description

Treats list as a list and returns a decimal string giving the number of elements in it.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LMATCH 85 NeoSoft, Inc.

LMATCH - Extended TCL

 Searches a list for matching patterns.

Synopsis:

lmatch ?mode? list pattern

Description

Search the elements of list, returning a list of all elements matching pattern. If none match, an empty list
is returned.

The mode argument indicates how the elements of the list are to be matched against pattern and it must
have one of the following values:

-exact The list element must contain exactly the same string as pattern.

-glob Pattern is a glob-style pattern which is matched against each list element using the same rules as
the string match command.

-regexp Pattern is treated as a regular expression and matched against each list element using the same
rules as the regexp command.

If mode is omitted then it defaults to -glob.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LOAD_COOKIES 86 NeoSoft, Inc.

LOAD_COOKIES - Neowebscript

 Loads the cookie into global array

Synopsis:

 load_cookies [cookieArrayName]

Description

Load the HTTP persistent data cookies into the global array cookies or the array named by
cookieArrayName.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LOAD_FILE 87 NeoSoft, Inc.

LOAD_FILE - NeoWebScript

 Loads and evaluates code.

Synopsis:

load_file fileName

Description

Load and evaluate the NeoWebScript code contained in fileName. This is to support libraries of procs
and shared code.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LOAD_MIME_RESPONSE 88 NeoSoft, Inc.

LOAD_MIME_RESPONSE - Neowebscript

 In multipart/form-data response, master interpreter creates a temporary
directory to receive MIME data

Synopsis:

 load_mime_response [responseVarName] [uploadedDataVar]

Description

In the event of a multipart/form-data response, the master interpreter creates a temporary directory to
receive and decode the MIME data. The posted-to file must use load_mime_response to access the
MIME data. responseVarName defaults to "response", and uploadedDataVar defaults to
"filesUploaded". responseVarName is as in load_response.

uploadedDataVar is the name of an array, indexed by field name, in which to place information about
the files uploaded. The information stored in the array is a list as follows:

the temporary name of the file on disk

the name of the requested file (in the browser) (OS dependent, and may or may not be the full
pathname).
content-length
content-type

The return value of load_mime_response is a list of field names (or else an empty string) which may be
used as arguments to open_mime_file.

Note that an additional program, webunpack must be compiled to support file uploads. Webunpack is
derived munpack, (C) Copyright 1993,1994 by Carnegie Mellon University, All Rights Reserved,
ftp.andrew.cmu.edu:pub/mpack/

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LOAD_RESPONSE 89 NeoSoft, Inc.

LOAD_RESPONSE - Neowebscript

 Load the CGI response into the global array

Synopsis:

 load_response [responseArrayName] [multiList]

Description

Load the CGI response into the global array response or the array named by responseArrayName

If the same name is repeated in the post or query, response(__name) is set, and response(name) is
converted to a list. Use [info exists response(__name)] to check if the array member is a straight
value or a list.

If multiple response is expected (as in <select multiple>), use multiList to force the array members of
the response array to always be a list.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LOAD_VIRTUAL 90 NeoSoft, Inc.

LOAD_VIRTUAL - NeoWebScript

 Loads and evaluates virtual code.

Synopsis:

load_virtual virtualPath

Description

Load and evaluate the NeoWebScript code specified by the virtual path virtualPath. This also supports
libraries of procs and shared code.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LOG_MESSAGE 91 NeoSoft, Inc.

LOG_MESSAGE - NeoWebScript

 Logs a message to a database.

Synopsis:

log_message loggingDatabase message

Description

The Neoscript programmer can log messages to a number of self-defined logging databases. When
log_message is executed, the message is logged along with the server time (in integer-seconds format)
and the remote hostname (or IP number, if hostname either was unavailable due to DNS problems or if
Apache was compiled with MINIMAL_DNS selected) fetching the page.

If you need something fancier you can always roll your own with access_data_file.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LOOP 92 NeoSoft, Inc.

LOOP - Extended TCL

 A superior looping procedure.

Synopsis:

loop var first limit ?increment? body

Description

Loop is a looping command, similar in behavior to the Tcl for statement, except that the loop state- ment
achieves substantially higher performance and is easier to code when the beginning and ending values of
a loop are known, and the loop variable is to be incremented by a known, fixed amount every time
through the loop.

The var argument is the name of a Tcl variable that will contain the loop index. The loop index is set to
the value specified by first. The Tcl interpreter is invoked upon body zero or more times, where var is
incremented by increment every time through the loop, or by one if increment is not specified.
Increment can be negative in which case the loop will count downwards.

When var reaches limit, the loop terminates without a subsequent execution of body. For instance, if the
original loop parameters would cause loop to terminate, say first was one, limit was zero and increment
was not specified or was non-negative, body is not executed at all and loop returns.

The first, limit and increment are integer expres- sions. They are only evaulated once at the begin- ning
of the loop.

If a continue command is invoked within body then any remaining commands in the current execution
of body are skipped, as in the for command. If a break command is invoked within body then the loop
command will return immediately. Loop returns an empty string.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, length

LRANGE 93 NeoSoft, Inc.

LRANGE - Safe TCL

 Return one or more adjacent elements from a list

Synopsis:

lrange list first last

Description

List must be a valid Tcl list. This command will return a new list consisting of elements first through
last, inclusive. First or last may be end (or any abbreviation of it) to refer to the last element of the list.
If first is less than zero, it is treated as if it were zero. If last is greater than or equal to the number of
elements in the list, then it is treated as if it were end. If first is greater than last then an empty string is
returned. Note: "lrange list first first" does not always produce the same result as "lindex list first"
(although it often does for simple fields that aren´t enclosed in braces); it does, however, produce
exactly the same results as "list [lindex list first]"

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, range, sublist

LREPLACE 94 NeoSoft, Inc.

LREPLACE - Safe TCL

 Replace elements in a list with new elements

Synopsis:

lreplace list first last ?element element ...?

Description

Lreplace returns a new list formed by replacing one or more elements of list with the element
arguments. First gives the index in list of the first element to be replaced (0 refers to the first element).
If first is less than zero then it refers to the first element of list; the element indicated by first must exist
in the list. Last gives the index in list of the last element to be replaced. If last is less than first then no
elements are deleted; the new elements are simply inserted before first. First or last may be end (or any
abbreviation of it) to refer to the last element of the list. The element arguments specify zero or more
new arguments to be added to the list in place of those that were deleted. Each element argument will
become a separate element of the list. If no element arguments are specified, then the elements between
first and last are simply deleted.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, replace

LSEARCH 95 NeoSoft, Inc.

LSEARCH - Safe TCL

 See if a list contains a particular element

Synopsis:

lsearch ?mode? list pattern

Description

This command searches the elements of list to see if one of them matches pattern. If so, the command
returns the index of the first matching element. If not, the command returns -1. The mode argument
indicates how the elements of the list are to be matched against pattern and it must have one of the
following values:

-exact
The list element must contain exactly the same string as pattern.

-glob
Pattern is a glob-style pattern which is matched against each list element using the same rules as
the string match command.

-regexp
Pattern is treated as a regular expression and matched against each list element using the same
rules as the regexp command.

If mode is omitted then it defaults to -glob.

See Also:

load, package, Tcl_CreateSlave

Keywords:

list, match, pattern, regular expression, search, string

LSORT 96 NeoSoft, Inc.

LSORT - Safe TCL

 Sort the elements of a list

Synopsis:

lsort ?switches? list

Description

This command sorts the elements of list, returning a new list in sorted order. By default ASCII sorting is
used with the result returned in increasing order. However, any of the following switches may be
specified before list to control the sorting process (unique abbreviations are accepted):

-ascii
Use string comparison with ASCII collation order. This is the default.

-integer
Convert list elements to integers and use integer comparison.

-real
Convert list elements to floatingpoint values and use floating comparison.

-command command
Use command as a comparison command. To compare two elements, evaluate a Tcl script
consisting of command with the two elements appended as additional arguments. The script should
return an integer less than, equal to, or greater than zero if the first element is to be considered less
than, equal to, or greater than the second, respectively.

-increasing
Sort the list in increasing order ("smallest" items first). This is the default.

-decreasing
Sort the list in decreasing order ("largest" items first).

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

LVARCAT 97 NeoSoft, Inc.

LVARCAT - Extended TCL

 Treats each string argument as a list
and concatenates them into a single list.

Synopsis:

lvarcat var string ?string...?

Description

This command treats each string argument as a list and concatenates them to the end of the contents of
var, forming a single list. The list is stored back into var and also returned as the result. If var does not
exist, it is created.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

LVARPOP 98 NeoSoft, Inc.

LVARPOP - Extended TCL

 Deletes an expression from a list.

Synopsis:

lvarpop var ?indexExpr? ?string?

Description

The lvarpop command pops (deletes) the element indexed by the expression indexExpr from the list
contained in the variable var. If index is omit- ted, then 0 is assumed. If string, is specified, then the
deleted element is replaced by string. The replaced or deleted element is returned. Thus "lvarpop argv 0"
returns the first element of argv, setting argv to contain the remainder of the string.

If the expression indexExpr starts with the string end, then end is replaced with the index of the last
element in the list. If the expression starts with len, then len is replaced with the length of the list.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

LVARPUSH 99 NeoSoft, Inc.

LVARPUSH - Extended TCL

 Inserts a string into a list.

Synopsis:

lvarpush var string ?indexExpr?

Description

The lvarpush command pushes (inserts) string as an element in the list contained in the variable var. The
element is inserted before position indexExpr in the list. If index is omitted, then 0 is assumed. If var
does not exists, it is created.

If the expression indexExpr starts with the string end, then end is replaced with the index of the last
element in the list. If the expression starts with len, then len is replaced with the length of the list. Note
the a value of end means insert the string before the last element.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

MAKE_NC_REGISTRY 100 NeoSoft, Inc.

MAKE_NC_REGISTRY - NeoWebScript

 Increments a neo-web counter.

Synopsis:

make_nc_registry [max_counters] [comments]

Description

Executed one time only, to create the page owner´s Named Counter Registry file (NCRegistry). Defaults
to 20 counters in the registry. Maximum of 200 counters allowed.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

MAX 101 NeoSoft, Inc.

MAX - Extended TCL

 Returns the higher value argument.

Synopsis:

max num1 ?..numN?

expr max(num1,num2)

Description

Returns the argument that has the highest numeric value. Each argument may be any integer or floating
point value.

This functionality is also available as a math function max in the Tcl expr command.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

MD5 102 NeoSoft, Inc.

MD5 - NeoWebScript

 Returns an md5 digest of string.

Synopsis:

md5 string

Description

Returns an md5 digest of string.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

MIN 103 NeoSoft, Inc.

MIN - Extended TCL

 Returns the lesser of two values.

Synopsis:

min num1 ?..numN?

expr min(num1, num2)

Description

Returns the argument that has the lowest numeric value. Each argument may be any integer or float- ing
point value.

This functionality is also available as a math function min in the Tcl expr command.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

NEO_CLOCK_TO_RFC850_GMT 104 NeoSoft, Inc.

NEO_CLOCK_TO_RFC850_GMT - NeoWebScript

 Returns the RFC-850 time in GMT.

Synopsis:

neo_clock_to_rfc850_gmt clock

Description

Returns the passed integer-since-1970 time formatted according to RFC-850, with the additional proviso
that it be specified in GMT timezone only. (Because that´s the way Netscape wanted it.)

For example, neo_clock_to_rfc850_gmt 84236782 should produce "Fri, 01-Sep-72 18:06:22 GMT".

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

NEO_MAKE_COOKIE 105 NeoSoft, Inc.

NEO_MAKE_COOKIE - Neowebscript

 Return HTML to create a cookie

Synopsis:

 neo_make_cookie cookieName cookieValue [-days expireInDays]
[-hours expireInHours] [-minutes expireInMinures] [-path
urlPathCookieAppliesTo] [-domainCookieAppliesTo] [-secure 1|0]

Description

Return HTML to create a cookie which, if emitted to a browser that is cookie-capable, will cause the
cookie to be included subject to defined restrictions.

Example: neo_make_cookie email karl@neosoft.com -days 30 -path /myApp

Create a cookie named email containing karl@neosoft.com that will be included in all HTTP requests
from the browser we´re responding to, for a period of 30 days, when the requests are
underneath/myApp on this server, and the browser is cookie-enabled.

For more information, see Persistent Client State HTTP Cookies at Netscape, and also Which Browsers
Support Cookies at Digital.

This only works with Netscape if it´s emitted before any other HTML. It uses <meta http-equiv> to set
the cookie, and won´t work with browsers that don´t support this.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

NEOTRACK 106 NeoSoft, Inc.

NEOTRACK - NeoWebScript

 Records a visitor´s path through a site.

Synopsis:

 neotrack [timeout] [filename]

Description

neotrack records information that may be used to determine a visitor´s path through a site. NeoTrack
uses IP number to distinguish between users. timeout is an optional specification of the number of
minutes that the visitor can remain on the current page before we will assume that he has left the site.
Default is 30 minutes. A dash, "-", may be used in this position if you wish to supply a filename
argument but still wish to use the default timeout. filename - is an optional specification of the name of
the file in which the visitor´s path information is to be recorded. Default is NeoTrack (.db is implied and
should not be specified). The neotrack command returns 1 if the page is served to a new visitor.
Otherwise, 0 is returned.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

NEOTRACK_REPORT 107 NeoSoft, Inc.

NEOTRACK_REPORT - NeoWebScript

 Reports a visitor´s path through a site.

Synopsis:

 neotrack_report key[filename]

Description

neotrack_report produces a report table that details a visitors path. For each page in the path, this
command reports 1) the Refering address (if available), the current pages URI, 3) the time the current
page was entered, 4) the time that the visitor spent on the page (not available for the last page in a path)
and 5) the timeout assigned to the current page. You may write your orw proc to produce this or a
similar report. This built in proc is provided only for convenience. You must suply the key required to
access the visitor that you want reported. The key is formed as time_IP where time is the time (in
seconds) that the visitor entered your site and IP is the visitor´s IP number. The filename argument is an
optional identification of the tracking data file from which the report is to be produced.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

OPEN_OUTBOUND_MAIL 108 NeoSoft, Inc.

OPEN_OUTBOUND_MAIL - NeoWebScript

 Opens an email message.

Synopsis:

open_outbound_mail subject [to]

Description

This opens an email message and returns the filehandle for use with puts, etc, for the contents of the
message body. The message always comes from the user name of the owner of the webpage file that´s
being interpreted, and the name of the server that did the serving. If to is not specified, the recipient is
also set to be the user name of the owner of the webpage file.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

OPEN_POST_NEWS 109 NeoSoft, Inc.

OPEN_POST_NEWS - NeoWebScript

 Starts a news posting.

Synopsis:

open_post_news -subject subject -newsgroups
grouplist -distribution distribution

Description

This starts a news posting and returns the filehandle for use with puts, etc, for the contents of the
message body. The message always comes "from" the user name of the owner of the webpage file that´s
being interpreted, and the name of the server that did the serving.

When done writing the body of the news article, write a single line to the filehandle consisting only of a
single period, then close the file.

Note that for this to work you must have a news server within your domain named or aliased as news.
For example, within neosoft.com, open_post_news will try to contact the news server at
news.neosoft.com.

This is an experimental capability that obviously needs work.

See Also:

load, package, Tcl_CreateSlave

Keywords:

element, list, order, sort

PACKAGE 110 NeoSoft, Inc.

PACKAGE - Safe TCL

 Facilites for pachage loading and version control

Synopsis:

package forget package

package ifneeded package version
?script? package names

package provide package ?version?

package require ?-exact? package
?version? package unknown ?command?

package vcompare version1 version2

package versions package

package vsatisfies version1 version2

Description

This command keeps a simple database of the packages available for use by the current interpreter and
how to load them into the interpreter. It supports multiple versions of each package and arranges for the

correct version of a package to be loaded based on what is needed by the application. This command
also detects and reports version clashes. Typically, only the package require and package provide
commands are invoked in normal Tcl scripts; the other commands are used primarily by system scripts
that maintain the package database.

The behavior of the package command is determined by its first argument. The following forms are
permitted:

package forget package
Removes all information about package from this interpreter, including information provided by both
package ifneeded and package provide.

package ifneeded package version ?script? This command typically appears only in system
configuration scripts to set up the package database. It indicates that a particular version of a particular
package is available if needed, and that the package can be added to the interpreter by executing script.
The script is saved in a database for

use by subsequent package require commands;
typically, script sets up auto-loading for the commands in the package (or calls load and/or source
directly), then invokes package provide to indicate that the package is present. There may be
information in the database for several different versions of a single package. If the database
already contains information for package and version, the new script replaces the existing one. If
the script argument is omitted, the current script for version version of package package is
returned, or an empty string if no package ifneeded command has been invoked for this package
and version.

package names
Returns a list of the names of all packages in the interpreter for which a version has been provided (via
package provide) or for which a package ifneeded script is available. The order of elements in the list
is arbitrary.

package provide package ?version?
This command is invoked to indicate that version version of package package is now present in the
interpreter. It is typically invoked once as part of an ifneeded script, and again by the package itself
when it is finally loaded. An error occurs if a different version of package has been provided by a
previous package provide command. If the version argument is omitted, then the command returns the
version number that is currently provided, or an empty string if no package provide command has been
invoked for package in this interpreter.

package require ?-exact? package ?version? This command is typically invoked by Tcl code that
wishes to use a particular version of a particular package. The arguments indicate which package is
wanted, and the command ensures that a suitable version of the package is loaded into the interpreter. If
the command succeeds, it returns the version number that is loaded; otherwise it generates an error. If
both the -exact switch and the version argument are specified then only the given version is acceptable.
If -exact is omitted but version is specified, then versions later than version are also acceptable as long
as they have the same major version number as version. If both -exact and version are omitted then any
version whatsoever is acceptable. If a version of package has already been provided (by invoking the

package provide command), then its version number must satisfy the criteria given by -exact and
version and the command returns immediately. Otherwise, the command searches the database of
information provided by previous package ifneeded commands to see if an acceptable version of the
package is available. If so, the script for the highest acceptable version number is invoked; it must do
whatever is necessary to load the package, including calling package provide for the package. If the
package ifneeded database does not contain an acceptable version of the package and a package
unknown command has been specified for the interpreter then that command is invoked; when it
completes, Tcl checks again to see if the package is now provided or if there is a package ifneeded
script for it. If all of these steps fail to provide an acceptable version of the package, then the command
returns an error.

package unknown ?command?
This command supplies a "last resort" command to invoke during package require if no suitable
version of a package can be found in the package ifneeded database. If the command argument is
supplied, it contains the first part of a command; when the command is invoked during a package
require command, Tcl appends two additional arguments giving the desired package name and version.
For example, if command is foo bar and later the command package require test 2.4 is invoked, then
Tcl will execute the command foo bar test 2.4 to load the package. If no version number is supplied to
the package require command, then the version argument for the invoked command will be an empty
string. If the package unknown command is invoked without a command argument, then the current
package unknown script is returned, or an empty string if there is none. If command is specified as an
empty string, then the current package unknown script is removed, if there is one.

package vcompare version1 version2
Compares the two version numbers given by version1 and version2. Returns -1 if version1 is an earlier
version than version2, 0 if they are equal, and 1 if version1 is later than version2.

package versions package
Returns a list of all the version numbers of package for which information has been provided by
package ifneeded commands.

package vsatisfies version1 version2
Returns 1 if scripts written for version2 will work unchanged with version1 (i.e. version1 is equal to or
greater than version2 and they both have the same major version number), 0 otherwise.

VERSION NUMBERS

Version numbers consist of one or more decimal numbers separated by dots, such as 2 or 1.162 or
3.1.13.1. The first number is called the major version number. Larger numbers correspond to later
versions of a package, with leftmost numbers having greater significance. For example, version 2.1 is
later than 1.3 and version 3.4.6 is later than 3.3.5. Missing fields are equivalent to zeroes: version 1.3 is
the same as version 1.3.0 and 1.3.0.0, so it is earlier than 1.3.1 or 1.3.0.2. A later version number is
assumed to be upwards compatible with an earlier version number as long as both versions have the
same major version number. For example, Tcl scripts written for version 2.3 of a package should work
unchanged under versions 2.3.2, 2.4, and 2.5.1. Changes in the major version number signify
incompatible changes: if code is written to use version 2.1 of a package, it is not guaranteed to work
unmodified with either version 1.7.3 or version 3.1.

PACKAGE INDICES

The recommended way to use packages in Tcl is to invoke package require and package provide
commands in scripts, and use the procedure pkg_mkIndex to create package index files. Once you´ve
done this, packages will be loaded automatically in response to package require commands. See the
documentation for pkg_mkIndex for details.

See Also:

load, package, Tcl_CreateSlave

Keywords:

package, version

PARRAY 111 NeoSoft, Inc.

PARRAY - Neowebscript

 Dump global array keys and values into page

Synopsis:

 parray arrayName

Description

Dump the specified global arrays keys and values into webpage.

See Also:

load, package, Tcl_CreateSlave

Keywords:

package, version

PID 112 NeoSoft, Inc.

PID - Safe TCL

 Retrieve process id(s)

Synopsis:

pid fileId?

Description

If the fileId argument is given then it should normally refer to a process pipeline created with the open
command. In this case the pid command will return a list whose elements are the process identifiers of
all the processes in the pipeline, in order. The list will be empty if fileId refers to an open file that isn´t a
process pipeline. If no fileId argument is given then pid returns the process identifier of the current
process. All process identifiers are returned as decimal strings.

See Also:

load, package, Tcl_CreateSlave

Keywords:

file, pipeline, process identifier

PROC 113 NeoSoft, Inc.

PROC - Safe TCL

 Create a Tcl procedure

Synopsis:

proc name args body

Description

The proc command creates a new Tcl procedure named name, replacing any existing command or
procedure there may have been by that name. Whenever the new command is invoked, the contents of
body will be executed by the Tcl interpreter. Args specifies the formal arguments to the procedure. It
consists of a list, possibly empty, each of whose elements specifies one argument. Each argument
specifier is also a list with either one or two fields. If there is only a single field in the specifier then it is
the name of the argument; if there are two fields, then the first is the argument name and the second is its
default value.

When name is invoked a local variable will be created for each of the formal arguments to the
procedure; its value will be the value of corresponding argument in the invoking command or the
argument´s default value. Arguments with default values need not be specified in a procedure

invocation. However, there must be enough actual arguments for all the formal arguments that don´t
have defaults, and there must not be any extra actual arguments. There is one special case to permit
procedures with variable numbers of arguments. If the last formal argument has the name args, then a
call to the procedure may contain more actual arguments than the procedure has formals. In this case, all
of the actual arguments starting at the one that would be assigned to args are combined into a list (as if
the list command had been used); this combined value is assigned to the local variable args.

When body is being executed, variable names normally refer to local variables, which are created
automatically when referenced and deleted when the procedure returns. One local variable is
automatically created for each of the procedure´s arguments. Global variables can only be accessed by
invoking the global command or the upvar command.

The proc command returns an empty string. When a procedure is invoked, the procedure´s return value
is the value specified in a return command. If the procedure doesn´t execute an explicit return, then its
return value is the value of the last command executed in the procedure´s body. If an error occurs while
executing the procedure body, then the procedure-as-a-whole will return that same error.

See Also:

load, package, Tcl_CreateSlave

Keywords:

argument, procedure

PROFILE 114 NeoSoft, Inc.

PROFILE - Extended TCL

 Collects information on the performance of a Tcl script.

Synopsis:

profile ?-commands? On

profile off arrayVar

Description

This command is used to collect a performance pro- file of a Tcl script. It collects data at the Tcl
procedure level. The number of calls to a proce- dure, and the amount of real and CPU time is col-
lected. Time is also collected for the global con- text. The procedure data is collected by bucketing it
based on the procedure call stack, this allows determination of how much time is spent in a par- ticular
procedure in each of it´s calling contexts.

The on option enables profile data collection. If the -commands option is specifed, data on all com-

mands within a procedure is collected as well a procedures. Multiple occurrences of a command within a
procedure are not distinguished, but this data may still be useful for analysis.

The off option turns off profiling and moves the data collected to the array arrayVar. The array is
address by a list containing the procedure call stack. Element zero is the top of the stack, the procedure
that the data is for. The data in each entry is a list consisting of the procedure call count and the real time
and CPU time in millisec- onds spent in the procedure (and all procedures it called). The list is in the
form {count real cpu}. A Tcl procedure profrep is supplied for reducing the data and producing a report

See Also:

load, package, Tcl_CreateSlave

Keywords:

argument, procedure

PUTS 115 NeoSoft, Inc.

PUTS - Safe TCL

 Write a channel

Synopsis:

puts ?-nonewline? ?channelId? string

Description

Writes the characters given by string to the channel given by channelId. ChannelId must be a channel
identifier such as returned from a previous invocation of open or socket. It must have been opened for
output. If no channelId is specified then it defaults to stdout. Puts normally outputs a newline character
after string, but this feature may be suppressed by specifying the -nonewline switch.

Newline characters in the output are translated by puts to platform-specific end-of-line sequences
according to the current value of the -translation option for the channel (for example, on PCs newlines
are normally replaced with carriage-return-linefeed sequences; on Macintoshes newlines are normally
replaced with carriage-returns). See the fconfigure manual entry for a discussion of end-ofline
translations.

Tcl buffers output internally, so characters written with puts may not appear immediately on the output
file or device; Tcl will normally delay output until the buffer is full or the channel is closed. You can
force output to appear immediately with the flush command.

When the output buffer fills up, the puts command will normally block until all the buffered data has

been accepted for output by the operating system. If channelId is in nonblocking mode then the puts
command will not block even if the operating system cannot accept the data. Instead, Tcl continues to
buffer the data and writes it in the background as fast as the underlying file or device can accept it. The
application must use the Tcl event loop for nonblocking output to work; otherwise Tcl never finds out
that the file or device is ready for more output data. It is possible for an arbitrarily large amount of data
to be buffered for a channel in nonblocking mode, which could consume a large amount of memory. To
avoid wasting memory, nonblocking I/O should normally be used in an event-driven fashion with the
fileevent command (don´t invoke puts unless you have recently been notified via a file event that the
channel is ready for more output data).

See Also:

fileevent

Keywords:

channel, newline, output, write

REPLICATE 116 NeoSoft, Inc.

REPLICATE - Extended TCL

 Creates a random integer.

Synopsis:

random limit | seed ?seedval?

Description

Generate a pseudorandom integer number greater than or equal to zero and less than limit. If seed is
specified, then the command resets the random num- ber generator to a starting point derived from the
seedval. This allows one to reproduce pseudorandom number sequences for testing purposes. If seedval
is omitted, then the seed is set to a value based on current system state and the current time, pro- viding
a reasonably interesting and ever-changing seed.

See Also:

fileevent

Keywords:

channel, newline, output, write

RANDOM_PICK_HTML 117 NeoSoft, Inc.

