Operational amplifier (dynamic characteristics)

Exercise prepared by Bogdan Pankiewicz (English version by Miron Kłosowski)

1. Introduction

The purpose of this exercise is to familiarize yourself with the basic properties of a differential pair and a simple operational amplifier. The exercise is performed as follows:
a) measurements of the gain and input resistance of a differential pair of bipolar transistors operating in a differential and common input driving modes,
b) measurements of the harmonic distortion of a differential pair,
c) measurements of the gain, bandwidth and output resistance of a simple operational amplifier working in a non-inverting configuration.

Tested operational amplifier has a built-in frequency compensation, which reduces bandwidth.

Before starting the exercise, the student should be familiar with the course (basic information is presented in this paper). Teacher is obliged to check the preparation for the exercise.

2. Measurements

2.1 Measurements of differential pairs (circuit A)

2.1.1 Differential input mode measurements

- Use the rotary switch to select the differential pair A, then set the DIFF/CM button to the released position, the $K_{R E}$ button should be also set to the released position. Measure the harmonic distortion h as a function of the input voltage $\mathrm{V}_{\text {we }}$ for the signal frequency equal to 1 kHz .
- Select the value of the input voltage $\mathrm{V}_{\mathrm{we}}=10 \mathrm{mV}$, for which $\mathrm{h}<5 \% \quad(\mathrm{f}=1 \mathrm{kHz})$ and measure the differential gain $\mathrm{K}_{\mathrm{r}}=\mathrm{V}_{\text {wy }} / \mathrm{V}_{\text {we }}$.
- Select the value of the input voltage $\mathrm{V}_{\mathrm{we}}=10 \mathrm{mV}$ and measure the input resistance $R_{\text {INDIFF. }}$. Input resistance is measured using additional resistor $R_{\text {SZER }}$ connected in series with the internal resistance of the generator $R_{G E N}$. Press the $R_{\text {INDIFF }}$ button and record the output voltage.
The exact description of the $R_{\text {INDIFF }}$ measurement is located in the theoretical part of this paper.

2.1.2 Common input mode measurements

- Set the input voltage equal to 1 V , frequency equal to 1 kHz , set the DIFF/CM button to the pressed position and measure the gain in the common mode $\mathrm{K}_{\mathrm{s}}=\mathrm{V}_{\text {wy }} / \mathrm{V}_{\text {we }}$.
- Set the input voltage equal to 1 V , frequency equal to 1 kHz and measure the input resistance $R_{/ N C M}$. Input resistance is measured using additional resistor $R_{\text {SZER }}$ connected in series with the internal resistance of the generator $R_{G E N}$. Press the $R_{I N C M}$ button and record the output voltage. The exact description of the $R_{I N C M}$ measurement is located in the theoretical part of this paper.

2.2 Operational amplifier measurements

- Use the rotary switch to select the circuit B, then for resistor feedbacks $10 \mathrm{k} / 10 \mathrm{k}, 1 \mathrm{k} / 10 \mathrm{k}$ and $100 / 10 \mathrm{k}$ set the value of the input voltage according to the data specified in the measurement protocol, set the frequency equal to 100 Hz and use the oscilloscope to measure the frequency characteristics, the 3dB cutoff frequencies and the unity-gain frequencies f_{T}.

3. Elaboration of the results

1) Plot a graph of nonlinear distortion h as the function of the input voltage $V_{w e}$ for the circuit A (differential input mode).
2) For a differential pair calculate analytically:

- operating points of transistors,
- input resistance in differential mode,
- input resistance in common mode,
- gain in differential mode,
- gain in common mode,
- CMRR coefficient.

Compare the results of calculations with the results of measurements in the table in the measurement protocol.
3) Plot the measured characteristics of the amplifier (20 $\log \left|K_{u}\right|$) for feedback resistors $10 \mathrm{k} / 10 \mathrm{k}, 1 \mathrm{k} / 10 \mathrm{k}$ and $100 / 10 \mathrm{k}$ on separate graphs (linear vertical axis, logarithmic horizontal axis). Mark the 3 dB cutoff frequencies and the unity-gain frequency f_{T}.

Write your own conclusions and observations. Compare circuits and write comments on differences between calculations and measurements.

4. Theory

All circuits measured in the lab have built-in input and output buffers with parameters shown in the following table:

Parameter	Unit	Value
Gain	V / V	$1,-1$
Input resistance $R_{B U F}$	$\mathrm{M} \Omega$	1
Output resistance $R_{G E N}$	Ω	50
Input capacitance $C_{B U F}$	pF	3
Cutoff frequency	MHz	$\mathbf{4}$

The П-type and T-type bipolar transistor models shown on Fig. 1 and 2 respectively are used in the theoretical part of the paper.

Fig. 1Π-type bipolar transistor model.

Fig. 2 T-type bipolar transistor model.

The small-signal model parameters:

$$
\begin{equation*}
g m=\frac{I_{C}}{V_{T}}, r_{\pi}=\frac{\beta}{g m}, \alpha=\frac{\beta}{\beta+1}, r_{e}=\frac{V_{T}}{I_{E}} \tag{1}
\end{equation*}
$$

4.1 Bipolar differential pair (circuit A)

 measured in the exercise.

4.1.1 Operating point

The input buffers provide a constant voltage at the output equal to 0 V . Because the $R_{G E N}$ resistances are low it can be assumed that the DC voltages on the gates are also equal to zero. Thus, the current flowing through the resistor $R_{E E}$ is equal to:
$I_{E E}=\frac{-V_{E E}-V_{B E}}{R_{E E}+\frac{R_{E}}{2}}$
while the emitter currents of transistors Q_{1} and Q_{2} are equal to half of the resistor's $R_{E E}$ current. Voltages on the individual electrodes of elements Q_{1} and Q_{2} can be determined according to the formula:
$V_{B}=0, V_{E}=-V_{B E} \approx 0.7 \mathrm{~V}, V_{C}=V_{C C}-R_{C} I_{C}$,
where $I_{C}=\alpha I_{E}, \alpha=\frac{\beta}{\beta+1}$.
The small-signal model parameters of transistors can be calculated using the following formulas:
$g m=I_{C} / V_{T}, r_{\pi}=\beta / g m$
for Π-type model and
$r_{e}=V_{T} / I_{E}$
for T-type model, where $V_{T}=k T / q$ is a thermal voltage (approximately 25.8 mV at room temperature), k - Boltzmann's constant, T - absolute temperature, q - elementary charge.

4.1.2 Small-signal operation of the differential pair

Fig. 4 Small-signal equivalent circuit of the differential pair from Fig. 3 for differential mode input. Output resistance of the transistors have been neglected.

The differential gain and input resistance can be determined by using the schematic diagram of the Fig. 4 to obtain the equations:

$$
\begin{align*}
& \frac{v_{\text {odiff }}}{v_{\text {in }}}=2 \frac{v_{\text {odiff }}}{v_{\text {indiff }}}=\frac{R_{\text {INDIFF }}}{R_{\text {INDIFF }}+2 R_{G E N}} \alpha \frac{R_{C} \| R_{B U F}}{R_{E}+r_{e}} \tag{7}\\
& R_{\text {INDIFF }}=2(\beta+1)\left(R_{E}+r_{e}\right) \text { where } r_{e 1}=r_{e 2}=r_{e} \tag{8}
\end{align*}
$$

because of the equality of currents biasing pair of differential transistors.

Fig. 5 Small-signal equivalent circuit of the differential pair from Fig. 3 for common mode input.
(I.e. using only the upper buffer and short-circuit between the two bases of bipolar transistors). Output resistance of the transistors have been neglected.

Based on Fig. 5 gain and input resistance in common mode are respectively equal to:
$\frac{v_{o c m}}{v_{\text {incm }}}=-\frac{R_{I N C M}}{R_{I N C M}+R_{G E N}} \alpha \frac{R_{C} \| R_{B U F}}{2 R_{E E}+R_{E}+r_{e}}$
$R_{I N C M}=\frac{1}{2}(\beta+1)\left(2 R_{E E}+R_{E}+r_{e}\right)$ where $r_{e 1}=r_{e 2}=r_{e}$
For differential amplifiers a parameter called the Common Mode Rejection Ratio is defined, which is indicated by an acronym CMRR and calculated by the formula (11).
$C M R R=20 \log \left(\frac{\frac{v_{\text {odiff }}}{v_{\text {indiff }}}}{\frac{v_{\text {ocm }}}{v_{\text {incm }}}}\right)$
Short-circuit between emitters of transistors Q_{1} and $Q_{2}\left(K_{R E}\right.$ switch in the pressed position) does not change the operating point but affects the small-signal properties of the differential pair for differential input mode (i.e. for the calculation assume $R_{E}=100 \Omega$ in formulas: (2), (9) and (10) while $R_{E}=0 \Omega$ in formulas: (7) and (8)).

4.2 Operational amplifier (circuit B)

Fig. 6 Schematic diagram of the operational amplifier measured in the exercise.

The transistors $Q_{1}-Q_{5}$ of the amplifier of Fig. 6 are identical and come from the UL1111 integrated circuit. Elements Q_{1} and Q_{2} form a differential input pair, Q_{6} is an amplifier stage in CE configuration, while the transistor Q_{7} is an output buffer stage in the CC configuration. Other transistors form a bias circuits. The capacitor C_{F} is introduced for the frequency compensation.

4.2.1 Operating point

The operating point of the amplifier of Fig. 6 is calculated with the assumption that it is working in a negative feedback loop
(it is not shown in Fig. 6, whereas it is shown in Fig. 9). Because of the high loop gain, constant output voltage of the amplifier at zero input voltage will be approximately zero. Neglecting the base currents of transistors $Q_{3}-Q_{5}$ we get the following formula:
$I_{C 3}=I_{C 5}=\frac{-V_{C C}-V_{B E}}{R_{7}+R_{3}}$
The current of the transistor Q_{4} (due to the unequal resistance of the elements R_{2} and R_{3}) must be calculated iteratively [1, p . 41] using the following equation:
$I_{C 4}^{(n+1)}=\frac{V_{T}}{R_{2}} \ln \left(\frac{I_{C 5}}{I_{C 4}^{(n)}}\right)+\frac{R_{3}}{R_{2}} I_{C 5}$
where $I_{C 4}^{(n+1)}$ is calculated using the previous value $I_{C 4}^{(n)}$ until the difference between $I_{C 4}^{(n+1)}$ and $I_{C 4}^{(n)}$ becomes negligible. The collector current of the transistor Q_{6} is equal to the sum of the collector current of Q_{4} and the base current of Q_{7}. Assuming that a DC component of the output voltage is equal to zero (due to a feedback) we get the following formula:
$I_{E 7}=-V_{E E} / R_{6}$
hence,
$I_{C 6}=I_{C 4}+I_{E 7} /\left(\beta_{7}+1\right)$
The emitter currents of differential pair transistors are equal to half of the Q_{3} collector current.

4.2.2 Simplified small-signal analysis

Fig. 7 Small-signal equivalent circuit of the amplifier from Fig. 6 for differential mode input. It is assumed that the amplifier is loaded with resistance $R_{o b c}$.
Fig. 7 shows a simplified equivalent circuit of the amplifier of Fig. 6. The resistances of current sources formed by transistors $Q_{3}-Q_{5}$ have been neglected. However, due to the resistors in the emitters of the circuits of $Q_{3}-Q_{5}$ elements, a small error is introduced. Another simplification is to neglect all the parasitic capacitances of the transistors and the assumption that the bandwidth of the amplifier is limited primarily by the compensating capacitor C_{F} (in the case of operational amplifier it is often used to assure the stability of the closed-loop [2], [3]). The resultant amplifier consists of three stages: two with CE configurations and output with the CC configuration. On the basis of Fig. 7 mid-band gain, input and output resistances can be calculated using the following formulas, respectively:
$A=\frac{v_{\text {out }}}{v_{\text {ind }}}=\frac{1}{2} g m_{2} r_{02}\left\|R_{5}\right\| R_{8} \| r_{\pi 6} *$
$\left.g m_{6}\left[r_{06} \|\left(\beta_{7}+1\right)\left(r_{e 7}+R_{6} \| R_{O B C}\right)\right]\right] \frac{R_{6} \| R_{O B C}}{R_{6} \| R_{O B C}+r_{e 7}}$
$R_{I N D}=2 r_{\pi 2}$
$R_{\text {OUT }}=R_{6} \|\left(r_{e 7}+\frac{r_{06}}{\beta_{7}+1}\right)$
Due to Miller's theorem the capacitance C_{F} can be converted to an equivalent capacitances: $C_{M 1}$ and $C_{M 2}$ and connected to earth and respectively to the base and collector nodes of Q_{6} transistor [1]. The values of these capacities can be calculated using the following formulas:
$C_{M 1}=C_{F}(1-K)$
$C_{M 2}=C_{F}(1-1 / K)$
where $\quad K=-g m_{6} r_{06} \|\left(\left(\beta_{7}+1\right)\left(r_{e 7}+R_{6} \| R_{O B C}\right)\right) \quad$ is the gain of
the Q_{6} transistor stage. The poles of the transmittance created by the existence of capacitances: $C_{M 1}$ and $C_{M 2}$ can be determined from the following equations:

$$
\begin{align*}
& \omega_{p 1}=\frac{1}{C_{M 1}\left(r_{\pi 6}\left\|r_{02}\right\| R_{5} \| R_{8}\right)} \tag{21}\\
& \omega_{p 2}=\frac{1}{C_{M 2}\left[r_{06} \|\left(\left(\beta_{7}+1\right)\left(r_{e 7}+R_{6} \| R_{O B C}\right)\right)\right]} \tag{22}
\end{align*}
$$

Given the fact that the value of the gain K reaches high values and analyzing the relations (19) - (22) $\omega_{p 1}$ turns out to be the dominant pole $\left(\omega_{p 1}\right.$ is 2-3 orders of magnitude lower than $\omega_{p 2}$). Thus, the amplifier of Fig. 6 can be substituted with good accuracy by the equivalent voltage controlled voltage source with transmittance:
$T(s)=\frac{V_{\text {OUT }}(s)}{V_{\text {IND }}(s)} \approx A \frac{\omega_{p 1}}{s+\omega_{p 1}}$
and the input and output resistances defined by (17) and (18) respectively.

Fig. 8 Gain magnitude of the operational amplifier plotted using formula (23).

The magnitude of the open-loop amplifier transmittance, plotted on the basis of the formula (23) is shown in Fig. 8. For operational amplifiers a parameter called unity-gain angular frequency ω_{T} is defined. It is a frequency for which the magnitude of the voltage gain decreases to a value of $1 \mathrm{~V} / \mathrm{V}$ (or 0 dB in a logarithmic scale). Converting formula (23) we get:
$\omega_{T}=\left.\omega_{p 1} \sqrt{A^{2}-1}\right|_{A \gg 1} \approx A \omega_{p 1}$

4.2.3 Closed-loop amplifier operation

Fig. 9 The amplifier of Fig. 6 in the non-inverting configuration.

In this exercise the amplifier in the non-inverting configuration shown in Fig. 9 is measured. For the calculations we use a method based on the decomposition of the amplifier to two two-port networks: A - the operational amplifier and B - the feedback. The feedback block comprises two resistors: $R_{S 1}$ and $R_{S 2}$ which may be selected from the three available sets. This is the voltage-series feedback. Fig. 10 shows the separated two-port networks: modified amplifier A' in Fig. 10 (a) and the feedback B in Fig. 10 (b).

(a)

(b)

Fig. 10 Modified amplifier $A^{\prime}(a)$ and feedback twoport network B (b) of Fig. 9 circuit.

Transmittances of the modified circuit A' and the two-port network B can be calculated from the following formulas:
$A^{\prime}(s)=\frac{V_{\text {OUT }}^{\prime}(s)}{V_{I N}^{\prime}(s)}=A \frac{\omega_{p 1}}{s+\omega_{p 1}} \frac{R_{I N D}}{R_{I N D}+R_{G E N}+R_{S 1} \| R_{S 2}}$
$B=\frac{v_{f}^{\prime}}{v^{\prime}{ }_{o}} \frac{R_{S 1}}{R_{S 1}+R_{S 2}}$
where A is expressed by (16) assuming that
$R_{O B C}=R_{B U F}\left\|R_{L}\right\|\left(R_{S 1}+R_{S 2}\right)$
while the input and output resistances of the A^{\prime} can be determined from the following equations, respectively:
$R_{I}=R_{I N D}+R_{G E N}+\left(R_{S 1} \| R_{S 2}\right)$
$R_{O}=R_{\text {OUT }}\left\|R_{L}\right\|\left(R_{S 1}+R_{S 2}\right) \| R_{B U F}$
The transmittance of the closed-loop circuit can be expressed by the following formula:
$A_{F}(s)=\frac{A^{\prime}(s)}{1+A^{\prime}(s) B}=$
$=\frac{\frac{R_{I N D}}{R_{I N D}+R_{G E N}+R_{S 1} \| R_{S 2}} A \omega_{p 1}}{s+\omega_{p 1}\left(1+\frac{R_{I N D}}{R_{I N D}+R_{G E N}+R_{S 1} \| R_{S 2}} A B\right)}$
which gives a low-pass function with the gain for low frequency:
$A_{O}=\frac{\frac{R_{I N D}}{R_{I N D}+R_{G E N}+R_{S 1} \| R_{S 2}} A}{1+\frac{R_{I N D}}{R_{I N D}+R_{G E N}+R_{S 1} \| R_{S 2}} A B}$
and the 3 dB cutoff frequency:
$\omega_{3 d B}=\omega_{p 1}\left(1+\frac{R_{I N D}}{R_{I N D}+R_{G E N}+R_{S 1} \| R_{S 2}} A B\right)$
The input and output resistances of the closed-loop circuit in the pass-band can be calculated from the following formulas, respectively:
$R_{I N F}=R_{I F}-R_{G E N}$
$R_{\text {OUTF }}=\frac{R_{\text {OF }} R_{L}}{R_{L}-R_{\text {OF }}}$
where $R_{I F}=R_{I}\left(1+\frac{R_{I N D}}{R_{I N D}+R_{G E N}+R_{S 1} \| R_{S 2}} A B\right)$ and
$R_{O F}=\frac{R_{O}}{1+\frac{R_{I N D}}{R_{I N D}+R_{G E N}+R_{S 1} \| R_{S 2}} A B}$
In the case the conditions: $R_{I N D} \gg R_{G E N}+R_{S 1} \| R_{S 2}$ and $R_{\text {OUT }} \ll R_{\text {obc }}$ are met (for example for $\mu \mathrm{A} 741$ amplifier: $R_{I N D} \approx 2 M \Omega$ and $R_{\text {OUT }} \approx 200 \Omega$) the expressions for the gain and bandwidth of the amplifier in the non-inverting configuration can be simplified to the following form:
$A_{o}=\frac{A}{1+A B}=\left.\frac{A}{1+A \frac{R_{S 1}}{R_{S 1}+R_{S 2}}}\right|_{A \gg \frac{R_{s 1}+R_{s 2}}{R_{s 1}}}=1+\frac{R_{S 2}}{R_{S 1}}$
$\omega_{3 d B}=\omega_{p 1}(1+A B)=\omega_{p 1}\left(1+A \frac{R_{S 1}}{R_{S 1}+R_{S 2}}\right)$ where
$A=\frac{1}{2} g m_{2} r_{02}\left\|R_{5}\right\| R_{7} \| r_{\pi 6} *$
$g m_{6} r_{06} \|\left(\left(\beta_{7}+1\right)\left(r_{e 7}+R_{6} \| R_{L}\right)\right) \frac{R_{6}}{R_{6}+r_{e 7}}$ and
$\omega_{p 1}=\frac{1}{C_{F}\left(1+g m_{6} r_{06} \|\left((\beta+1)\left(r_{e 7}+R_{6}\right)\right)\right)\left(r_{\pi 6}\left\|r_{01}\right\| R_{5} \| R_{7}\right)}$

4.3 Measurement of the input resistance of the amplifiers

The input resistance is measured using an additional resistor $R_{\text {SZER }}$ connected in series with the internal resistance of the generator. During normal operation it is bridged by a switch located on the front panel. After pressing the button marked $R_{\text {INDIFF }}$ (or $R_{\text {INCM }}$) the resistor $R_{\text {SZER }}$ is no longer bridged (which leads to a reduction of gain).

Fig. 11 Measurement method of the input resistance of the amplifier. The image shows the half of the input stage of the differential amplifier.

Marking the output voltages with bridged and present $R_{\text {SZER }}$ resistor as v_{0} and v_{0}^{\prime} respectively, we get:
$v_{o}=K \cdot \frac{0,5 R_{\text {INDIFF }}}{0,5 R_{\text {INDIFF }}+R_{G E N}} \cdot v_{\text {in }}$
$v_{o}^{\prime}=K \cdot \frac{0,5 R_{\text {INDIFF }}}{0,5 R_{\text {INDIFF }}+R_{G E N}+R_{\text {SZER }}} \cdot v_{\text {in }}$
$\frac{v_{o}}{v_{o}^{\prime}}=\frac{0,5 R_{\text {INDIFF }}+R_{G E N}+R_{\text {SZER }}}{0,5 R_{\text {INDIFF }}+R_{G E N}}$
$R_{\text {INDIFF }}=2 \frac{v_{o}^{\prime}}{v_{o}-v_{o}^{\prime}} \cdot R_{\text {SZER }}-R_{G E N}$
In the case of the measurement of the common mode input resistance formula (41) is converted to the following form:
$R_{\text {INCM }}=\frac{v_{o}^{\prime}}{v_{o}-v_{o}^{\prime}} \cdot R_{\text {SZER }}-R_{G E N}$

4.4 Measurement of the output resistance of the amplifiers

The output resistance is measured using additional resistor $R_{R O ́ W}$ connected in parallel with the load resistance of the amplifier R_{L}. During normal operation the resistor $R_{R O ́ W}$ is disconnected. During the resistance measurement this resistor
is connected by the switch located on the front panel and marked $R_{\text {OUTF }}$.

Fig. 12 Measurement method of the output resistance of the amplifier.

Marking the output voltage with disconnected and connected $R_{R O ́ W}$ resistor as v_{0} and v_{0} respectively, we get:
$v_{o}=K \cdot \frac{R_{L}}{R_{L}+R_{\text {OUTF }}} \cdot v_{\text {in }}$
$v_{o}^{\prime}=K \cdot \frac{R_{L} \| R_{R O ́ W}}{R_{L} \| R_{R O ́ W}+R_{\text {OUTF }}} \cdot v_{\text {in }}$
$\frac{v_{o}}{v_{o}^{\prime}}=\frac{R_{L} \| R_{R O ́ W}+R_{\text {OUTF }}}{R_{L} \| R_{\text {RÓW }}} \frac{R_{L}}{R_{L}+R_{\text {OUTF }}}$
$R_{\text {OUTF }}=\frac{R_{L}\left(1-\frac{v_{0}}{v_{0}^{\prime}}\right)}{\frac{v_{0}}{v_{0}^{\prime}}-\frac{R_{L}}{R_{L} \| R_{R O} W}}$
4.5 Parameters of the elements and transistors in different circuit configurations

Circuit A (differential pair):

Element/parameter	Unit	Value
Q1-Q2 β	A / A	120
R_{EE}	Ω	10 k
R_{E}	Ω	100
R_{C}	Ω	5.1 k
$\mathrm{R}_{\text {SZER }}$ differential mode	Ω	5.1 k
$\mathrm{R}_{\text {SZER }}$ common mode	Ω	1.5 M
V_{CC}	V	12
$\mathrm{~V}_{\mathrm{EE}}$	V	-12

Circuit B (operational amplifier):

Element/parameter	Unit	Value
$\mathrm{Q}_{1}-\mathrm{Q}_{5} \beta$	$\mathrm{~A} / \mathrm{A}$	120
$\mathrm{Q}_{1}-\mathrm{Q}_{5} V_{A}$	V	150
$\mathrm{Q}_{6} \quad \beta$	$\mathrm{~A} / \mathrm{A}$	370
$\mathrm{Q}_{6} \quad V_{A}$	V	150
$\mathrm{Q}_{7} \quad \beta$	$\mathrm{~A} / \mathrm{A}$	220
$\mathrm{Q}_{7} \quad V_{A}$	V	150
R_{1}	Ω	33 k
R_{2}	Ω	1 k
R_{3}	Ω	33 k
R_{4}	Ω	51 k
R_{5}	Ω	51 k
R_{6}	Ω	1 k
R_{7}	Ω	510 k
R_{8}	Ω	2.2 M
R_{L}	Ω	1 k
$\mathrm{R}_{\mathrm{Rów}}$	Ω	100
$\mathrm{R}_{\mathrm{S} 1}$	RF	10 k
$\mathrm{R}_{\mathrm{S} 2}$	V	100
C_{F}	V	12
$\mathrm{~V}_{\mathrm{CC}}$		-12
$\mathrm{~V}_{\mathrm{EE}}$		

Bibliography:

[1] Z. J. Staszak, J. Glinianowicz, D. Czarnecki, „Materiały pomocnicze do przedmiotu Układy elektroniczne liniowe".
[2] A. Guziński, „Liniowe elektroniczne układy analogowe", WNT, Warszawa 1992.
[3] A. Filipkowski, „Układy elektroniczne analogowe i cyfrowe", WNT, Warszawa 1978.

PARA RÓ̇̇NCOWA I WZUACNIACZOPERACYNY

