LABORATORY OF ELECTRONIC CIRCUITS								
Laboratory exercise Consecutive protocol Name and surname:								
no.:	number:		1.					
3			2.					
			3.					
Title: Resonant amplifier			Dean's group:		Laboratory group:			
Date of the measurements	Date of delive	rv of the report:		Grade:				

2.1. The measurement of the frequency response of the amplifier with a single resonant circuit. Set up $V_{we} = 20\,mV_{RMS}$, $f_0 \cong 465\,kHz$. Calculate $K_u = V_{wy}/V_{we}$, and $A_0 = K_u\left(f_0\right)$. Note! The probe introduces the constant signal attenuation 1:1700, which should be included in measurements: we de facto read out of the voltmeter $V_{wv}/1700$.

<u>Hint!</u> For each of the circuits a, b, c, and d, first we find experimentally frequency f_0 (approx. 465 kHz) for which the output voltage reaches the maximum value $V_{wy,max}$.

	Circuit a: WY1, P1- op	en, P2- close	d	Circuit b: WY1, P1- closed, P2- open					
$f_{\it we}$	$V_{wy}/1700$	V_{wy}	K_u	f_{we}	$V_{wy}/1700$	V_{wy}	K_u		
[kHz]	[mV]	[V]	[V/V]	[kHz]	[mV]	[V]	[V/V]		
f_{L10dB}	$0,316 \cdot V_{wy,max}$			f_{L10dB}	$0,316 \cdot V_{wy,max}$				
f_{L6dB}	$0.5 \cdot V_{wy,max}$			f_{L6dB}	$0.5 \cdot V_{wy,max}$				
f_{L3dB}	$0,707 \cdot V_{wy,max}$			f_{L3dB}	$0,707 \cdot V_{wy,max}$				
f_0	$V_{wy,max}$			f_0	$V_{wy,max}$				
f_{H3dB}	$0,707 \cdot V_{wy,max}$			f_{H3dB}	$0,707 \cdot V_{wy,max}$				
f_{H6dB}	$0.5 \cdot V_{wy,max}$			f_{H6dB}	$0.5 \cdot V_{wy,max}$				
f_{H10dB}	$0.316 \cdot V_{wy,max}$			f_{H10dB}	$0,316 \cdot V_{wy,max}$				

	Circuit c: WY2, P1- open	d	Circuit d: WY2, P1- open, P2- closed					
f_{we}	$V_{wy}/1700$	V_{wy}	K_u	f_{we}	$V_{wy}/1700$	V_{wy}	K_u	
[kHz]	[mV]	[mV] [V] [V/V] [kHz]		[mV]	[V]	[V/V]		
f_{L10dB}	$0.316 \cdot V_{wy,max}$			f_{L10dB}	$0.316 \cdot V_{wy,max}$			
f_{L6dB}	$0,5 \cdot V_{wy,max}$			f_{L6dB}	$0.5 \cdot V_{wy,max}$			
f_{L3dB}	$0,707 \cdot V_{wy,max}$			f_{L3dB}	$0,707 \cdot V_{wy,max}$			
f_0	$V_{wy,max}$			f_0	$V_{wy,max}$			
f_{H3dB}	$0,707 \cdot V_{wy,max}$			f_{H3dB}	$0,707 \cdot V_{wy,max}$			
f_{H6dB}	$0,5 \cdot V_{wy,max}$			f_{H6dB}	$0.5 \cdot V_{wy,max}$			
f_{H10dB}	$0,316 \cdot V_{wy,max}$			f_{H10dB}	$0,316 \cdot V_{wy,max}$			

1) Calculate the voltage gain $A_0 = K_u \left(f_0 \right)$ and 3-dB bandwidth Δf_{3dB} .

Ci	rcuit	$\frac{L=}{\left(2\pi f_0\right)^2\cdot C_{\Sigma}}$	$R_{D} = 2\pi f_{0} \cdot L \cdot Q_{L}$	$R_{\Sigma} = \left(\frac{1}{F \cdot r_o} + \frac{1}{R_D} + \frac{1}{p_1^2 \cdot R_0}\right)^{-1}$	$A_{0\;pom}$	$A_0 = g_m^* \frac{R_{\Sigma}}{p_1}$	$\Delta \! f_{3dB\;pom}$	$\Delta f_{3dB} = \frac{1}{2\pi \cdot R_{\Sigma} C_{\Sigma}}$
a: $p_1 = 1$	$R_0 = \infty$							
b : $p_1 = 1$	$R_0 = 18 k\Omega$							
c : $p_1 = 2$	$R_0 = \infty$							
d : $p_1 = 2$	$R_0 = 4.3 k\Omega$							

Assume in the calculations: $g_{\scriptscriptstyle m}=50\,{\rm mS}$, $Q_{\scriptscriptstyle L}=50$, $r_{\scriptscriptstyle 0}=250\,{\rm k}\Omega$, $C_{\scriptscriptstyle o}\approx 0$, $R_{\scriptscriptstyle e}=47\,\Omega$, $C_{\scriptscriptstyle 1}=3.2\,{\rm nF}$.

Results of auxiliary calculations (L , R_D , R_{Σ_1} , R_{Σ_2}) should be included in the above table. In addition, calculate:

$$g_m^* = \frac{g_m}{1 + g_m \cdot R_e} = \dots, F = 1 + g_m \cdot R_e = \dots, C_{\Sigma} = \frac{C_1}{2} = \dots$$

- 2) Plot the measured frequency characteristics K_u as a function of frequency (vertical axis: linear, horizontal axis: linear)
- 3) Compare the theoretically calculated and measured data: the gain A_0 and 3-dB bandwidth $\Delta f_{_{3dB}}$.

2.2. Measuring the frequency response of the amplifier with a double resonant circuit (ask the teacher to set up the measuring system)

You should observe the frequency response of the amplifiers with a double and a triple resonant circuits for all values of the coupling capacitances.

Find characteristic frequencies f_1 , f_2 , and f_3 for the amplifier with a double resonant circuit, where:

- f_1 frequency of the first maximum on the characteristic;
- f_2 frequency of the minimum on the characteristic;
- f_3 frequency of the second maximum on the characteristic.

Amplifier with a double resonant circuit										
$V_{we} = 30 mV_{RMS}$										
a. $C_{12a} =$	a. $C_{12a} = 68 \ pF$ (rotary switch in position 1) b. $C_{12c} = 33 \ pF$ (rotary switch in position 3)									
f_{w}	f_{we} $\left \begin{array}{c c} V_{wy} \\ \hline 1700 \end{array} \right V_{wy}$ K_u f_{we} $\left \begin{array}{c c} V_{wy} \\ \hline 1700 \end{array} \right V_{wy}$ K_u								K_u	
[kH	z]	[mV]	[V]	[V/V]	[kF	[kHz]		[V]	[V/V]	
f_1					f_1					
f_2					f_2					
f_3			•		f_3					

Draw the measured frequency characteristics for the amplifiers described in the above table, i.e. $K_u(f)$. The ordinate axis: linear, abscissa axis: linear.

For all the measurement results, include your conclusions and observations. Compare the circuits with each other and write your own comments on the results.