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1. Introduction 
This lab allows you to explore the basic characteristics of the 
resonant amplifier. In this lab you will measure three resonant 
amplifiers: with a single, double and triple parallel (current) 
resonance circuit. Prior to the lab, you need to have some 
theoretical background (basic information has been 
presented in the text below). Teacher is obliged to check 
your preparation for this lab. 

2. Measurements  
Remark: all the amplifiers are tuned at the mid-band 
frequency f0 = 465 kHz. 

2.1 Measuring the frequency response of the amplifier 
with a single parallel resonance circuit 
The measurements should be performed for the following 
circuits: 
a) the circuit without resistive load: the output at the 

transistor collector (WY1, P1-open, P2-open); 
b) the circuit with the load resistor R0 = 18 kHz connected via 

a coupling capacitance to the transistor collector: the 
output at the transistor collector (WY1, P1-shorted, P2-
open); 

c) the circuit without resistive load: the output from the 
capacitance divider (WY2, P1-open, P2-open); 

d) the circuit with the load resistor R0 = 4,3 kHz connected 
via a coupling capacitor to the capacitance divider: the 
output from the capacitance divider (WY2, P1-open, P2- 
shorted); 

Measurements are made by hand, setting up the frequency 
and reading out the output voltage. Set the input voltage 
Vwe = 20 mVrms on the voltage generator. The frequency of the 
generator to be varied in such a way that the following quantity 
could be read out precisely: the resonant frequency (f0), the 
gain (amplification) at the resonance frequency A0 = Ku(f0) as 
well as the 3-dB low (fL3dB) and 3-dB high (fH3dB) frequencies 
and the 3-dB bandwidth, where Ku = Vwy / Vwe. The frequency 
characteristics should be measured for the following 
frequencies: 

fwe 

[kHz] 
fL10dB fL6dB fL3dB f0 fH3dB fH6dB fH10dB 

Ku 

[V/V] 
0.316A0 0.5A0 0.707A0 A0 0.707A0 0.5A0 0.316A0 

Millivoltmeter used to measure the output voltage of the 
amplifier should have a large input resistance and low input 
capacitance. Therefore, it is equipped with a probe (note: the 
probe introduces the constant signal attenuation 1:1700, which 
should be included in the measurements). 

2.2 Measuring the frequency response of the amplifiers 
with double and triple parallel resonance circuits 
2.2.1. Observe characteristics of the amplifier with a double 
resonant circuit for the following values of coupling 
capacitances: 
a)  C12a=68pF (position 1 of the selector switch P1); 
b)  C12b=47pF (position 2 of the selector switch P1); 
c)  C12c=33pF (position 3 of the selector switch P1); 
d)  C12d=18pF (position 4 of the selector switch P1). 
Carry out the measurements for C12a = 68pF and C12c = 33pF. 
The measurements are made semi-automatically. Select 
SWEEP mode on the generator, and switch the oscilloscope 
to the mode X-Y (Fig.1). After pressing the SWP, an auxiliary 

saw-tooth low-frequency generator turns on, whereas signal of 
the generator controls the frequency of the main generator. In 
this way, the frequency of the main generator is swept to the 
extent determined by the main handwheel of the generator. 
Connect the control signal (sweeps) to the input X of the 
oscilloscope and then make a joint between the output of the 
test circuit and input Y of the oscilloscope. Observe on the 
oscilloscope a picture of the frequency response of the 
amplifier (reflected symmetrically with respect to the axis X). 
To read the coordinates of specific points on the displayed 
characteristic, turn off momentarily sweep (SWP), find the 
specific point and read the frequency on the frequency meter 
and then the amplitude of the output voltage on the voltmeter. 
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Fig.1. Amplifier with a single parallel resonance circuit 

- measurement arrangement. 

Set the input voltage Vwe = 100 mVrms on the voltage 
generator. 
Redraw the results out of the oscilloscope; write down the 
coordinates of the most important points of the characteristic 
in the table. 
2.2.2. Observe characteristics of the amplifier with a triple 
resonant circuit for the following pairs of coupling 
capacitances: 
a)  C12a=C23a=300pF (position 1 of the selector switch P2); 
b)  C12B=C23b=270pF (position 2 of the selector switch P2); 
c)  C12C=C23c=250pF (position 3 of the selector switch P2); 
Carry out measurements for C12a = 300pF. The 
measurements are made semi-automatically (see section 
2.2.1). Set the input voltage Vwe = 100 mVrms on the voltage 
generator. Redraw the results out of the oscilloscope; write 
down the coordinates of the most important points of the 
characteristic in the table. 

3. Elaboration of the results 
3.1 Based on the formulas given in the measurement protocol 
and measurements of f0, calculate the voltage gain A0 = Ku(f0) 
and 3dB-bandwidth f3dB for the measurements from the point 
2.1. The value of inductance L is determined on the basis of 
the measurements of f0 and values of capacitances in the 
resonant circuit. Place the results of auxiliary calculations in 
the measurement protocol table. Assume the following 
parameter values in the calculations: 

gm = 50 mS (the value read out from the characteristics 
of the transistor BF215 for IC = 1.5 mA) 

QL = 50;  r0 = 250 k;  C00. 
The results of the calculations and measurements put in a 
common table in the protocol, so they can be easily 
compared. 
3.2 Using the results from the point 2.1 a, b, c, d, plot the 
frequency responses 20log|Ku|=f (f ) for each amplifier together 
on a single chart. Use the following settings for the axes: X = 
logarithmic, Y = linear. 
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3.3 For the other circuits, draw the measured frequency 
characteristics 20log|Ku|=f (f ). 
3.4 Draw your own conclusions. Compare the circuits between 
themselves and comment on the agreement between the 
theoretical calculations with the measurements. 

4. Theory 
Resonant LC amplifiers, named so because of the use of 
resonant LC circuits as a load of the transistor, are narrow-
pass-band amplifiers. The magnitude of their gain 
characteristics are similar to the characteristics of the active 
RC pass-band filters, however, they are applied for larger 
frequencies than active RC filters. 
Resonant LC amplifiers are mainly used in radio 
communication devices as: 

 high-frequency amplifiers having a relatively wide 
bands, for example as a antenna amplifiers; 

 intermediate frequency amplifiers, for example, in 
receivers with a double-conversion - in this case the 
amplifiers determine the selectivity of the receiver and 
they are characterized by a narrow bandwidth and 
steep slopes of the frequency characteristics. 

Resonant LC amplifiers are used wherever it is necessary 
filtering and amplification of signals, and it is impossible for 
technical or economic use of other solutions. 
 
4.1 Amplifier with bipolar transistor and a single resonant 
LC circuit. 
The simplest resonant amplifier consists of a transistor 
connected with a parallel resonant circuit (Fig. 2). 
 

Obwód rezonansowy

Fig.2. Amplifier with a single parallel resonance circuit. 
 

Small-signal equivalent circuit of the amplifier of Fig. 2 is 
shown in Fig. 3. 
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 Fig.3. Small-signal equivalent circuit of the amplifier of Fig. 2 
 
where  
L – inductance of the coil, 
Rs – winding resistance, 
C – capacitance of the resonant circuit  
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p1 – transformation ratio resulting from the use of the split 
capacitance (the split capacitance has properties of a split 
inductance only for high values of the resistive load, which is 

true for the circuit used in the exercise). p
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the load is connected to the split capacitance, and p1 = 1 if the 
load is connected directly to the collector of the transistor (the 
transformation is used to reduce the impact of the load 
resistance on the resonant circuit). 

R0, C0 – resistance and capacitance of the load. 
The small-signal equivalent circuit does not include the 
internal capacitance of the transistor. In this case, they do not 
have a significant effect on the amplifier in the vicinity of the 
resonant frequency. The coupling capacitance CS1, CS2 and 
CS3 are short-circuited, due to their large numerical values. 
The equivalent circuit of Fig. 3 can be further simplified by 
introducing the dynamic resistance of the coil instead of the 
winding resistance, as shown in Fig. 4. 
 

 
Fig.4. Equivalence between the winding resistance and the 

dynamic resistance of the coil. 

Comparing admittances of the two circuits, we have 
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where  
RS – winding resistance of the coil, 
RD – dynamic resistance of the coil, 

QL – quality factor of the coil, Q
L

R
L

S



. 

In practice QL»1, thus it can be simplified as follows: 

R R Q L LD S L 2  ,     ' . (3) 

The applied feedback (the resistance Re connected to the 
emitter of the transistor) results in the following features of the 
circuit, as compared to the circuit with the grounded emitter: 
- the resistance r0 seen by the resonant circuit is F-fold 
greater, where 

 F = 1 + gm Re (4) 
- transconductance is reduced to gm*, where: 

g
g

g R
m

m

m e

* 
1

. (4) 

As a result, the frequency parameters of the amplifier and its 
gain depend essentially only on the parameters of the 
resonant circuit. 
Small-signal equivalent circuit of the amplifier in which the 
above conclusions are taken into account is presented in 
Fig. 5. In Fig. 5, the load is transformed into the resonant 
circuit. 
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Fig. 5. Equivalent circuit of the amplifier with a single resonant 
circuit, taking into account certain parameters of the transistor, 

 the dynamic resistance of the coil, and the load. 
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After some mathematical manipulations, one can obtain the 
following formula for the voltage gain of the circuit: 
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where: 
  Kvr – gain at the resonant frequency; 
  o – resonant angular frequency; 
  ß3dB – 3-dB bandwidth; 
  Q - quality factor of the amplifier. 
The parameter Q can be given in the following form: 

Q C R R
C

L
o   


  (13) 

One can see that the form of equation (14) is analogous to the 
transmittance of the active second-order pass-band RC filter. 
Now, let us consider the distribution of poles of the function 
describing the impedance of the circuit that loads the 
transistor: 
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The function Z(s) has one zero at point s0 = 0 and two 
complex conjugate poles: 
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Therefore, the poles can be represented as: 

s s
Q

j
Q

o
o

o
1 1

2

2 2
, *    















 (16) 

If the quality factor Q of the circuit is large enough, then 
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and the result is: 
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Distribution of zeros and poles is shown in Fig.6. 

 
Fig. 6. Distribution of zeros and poles of the impedance Z(s). 

 

Real part of the poles s1 i s1* , denoted by 0, is 
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The parameter 0 is called the damping factor, whereas the 
imaginary part of (17) is called the tuned angular frequency. 
The function Z(s) can be also expressed as: 
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However, in the present case s0 = 0. 
Factors (s - s0), (s - s1), (s - s1*) can be treated as vectors. 
These vectors for arbitrarily chosen value of s = j  is shown in 
Fig. 7. 

 
Fig. 7. Location of the vectors: |s - s0|, |s - s1|, |s - s1*| as a 

function of s = j  for the impedance Z(s). 
 

For the case of relatively narrow band («o), we are 
interested only in the values of s that are placed in the 
neighborhood of s1. Then, the ratio 

s s
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This is seen in Fig. 7. Equation (22) can written as 
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The simplification (22) leads to the so-called narrowband 
approximation. As a consequence of the simplification, we 
take into account only the positive part of the imaginary axis. 
In addition, the damping factor is always negative, that is, we 
are interested in only one quadrant of the coordinate system 
(, ). Because it is primarily important for us variation of the 
function Z(s) along the imaginary axis, it is convenient to rotate 
the coordinate system of 90 in a clockwise direction as shown 
in Fig. 8. 

 
Fig. 8. Rotated coordinate system. 

 
Vector | s-s1 | is a vector whose amplitude (length) varies as a 
function of frequency. Measuring the length of this vector, one 
can determine variation of Z(s). The maximum value of |Z (s)| 
occurs when |s - s1| = r1 reaches the minimum value, that is at 
the resonance (0) - or Z(j0). We can calculate a relative 
change of |Z(s)| with respect to the maximum value of |Z(j0)|. 
Let us define the relative change of |Z(s)| at s=j1. 
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Dividing equation (24) by (25), we get: 
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Let us find 1 for which the vector |s - s1| forms an angle of 
45 with a line which is perpendicular to the frequency axis 
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and passes through the pole s1, see Fig. 9). 

 
Fig. 9. Determination of the 3-dB amplifier bandwidth. 

 
From the fig. 9, we define 
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One can observe that at 2 (see Fig. 9), the function A(j 
takes the same value as in (27). In this way, we can calculate 
the 3-dB bandwidth as follows: 
  3 2 1dB    (27) 

In the case of parallel resonance circuit, the pole s1 is on the 
top of a semi-circle with a diameter of 3dB and the center at 
o. It can also be seen from Fig. 9 that the diameter of the 
semi-circle is equal to twice the value of the damping factor, 
leading to the relationship: 
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Besides, there is a relationship between 1 and 2: 
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The impedance of the circuit at resonance is: 
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Following as before, we can obtain the resonance curve as 
shown in Fig. 10. 
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Fig. 10. Geometrical determination of the resonance curve of the 
amplifier with a single resonant circuit. 

 
4.2 Amplifier with a pair of resonant circuits coupled 
capacitively 
Fig. 11 shows an amplifier with a pair of LC resonant circuits. 
 

Obwód rezonansowy I
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Fig. 11. Amplifier with a pair of LC resonant circuits  

 
Analysis of this amplifier is more complicated than the 
previous one and is beyond the scope of this laboratory. The 
result of such an analysis (carried out by the graphical 

method) is the characteristic shown in Fig. 12. The Coupling 

coefficient  is determined by the formula: 
C

C C

12

11 22

, 

where  C11=C1+C12,  C22=C2+C12. 
 

 
Fig. 12. Geometrical determination of the frequency response of 

an amplifier with a pair of resonant circuits coupled capacitively. 
 
Fig. 12 shows the frequency response for the specific values 
of the elements. Depending on relations between 
capacitances, these type characteristics take different shapes. 
In Fig. 13, an exemplary family of universal curves is shown. 
 

 
 
Fig. 13. Family of universal curves for an amplifier with a pair of 

resonant circuits coupled capacitively. 
 
These curves summarize the properties of the circuit 
incorporated in the case where the quality factors of the 
individual circuits are equal Q1 = Q2 = Q. In the figure, the 
abscissa is scaled in units of f0 / 2Q, and the ordinate - in the 
relative amplitudes. Analyzing the shape of these curves, it 
can be concluded that an increase in the degree of the 
coupling causes an increase in the distance between the 
vertices of the curves, however the gain corresponding to the 
vertices remains constant. 
 
4.3 Amplifier with a triple resonant circuit coupled 
capacitively 
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Fig. 14. Amplifier with a triple resonant circuit coupled 
capacitively 

 
Fig. 14 shows an amplifier with a triple resonant circuit 
coupled capacitively. As in the case of an amplifier with a pair 
of LC resonant circuits, there will be no analysis performed 
here. The frequency response of the amplifier is even more 
complicated, see Fig. 15. A universal characteristic is shown 
in Fig. 16. 
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Fig. 15. Geometrical determination of the frequency response of 
an amplifier with a triple resonant circuit coupled capacitively. 

 

 
Fig. 16. Family of universal curves for an amplifier with a triple 

resonant circuit coupled capacitively. 
 

The Coupling coefficient  is determined by the formula: 

   


 












 










C

C C
C

C

C

C C
C

C

12

1 12
2

12

23

3 23
2

23
2 2

. 

If the coupling capacitances satisfy the condition C12 = C23, 
then: 
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,  

where C11=C1+C12, C22=C2+C12+C23, C33=C3+C23. 
One can see from Fig. 16 that an increase in the product Q 
causes a significant bandwidth extension without improve 
significantly the pits. The analysis of the circuit is made on the 
assumption that the quality factor of the central resonant 
circuit Q2 = . The results obtained are already in accordance 
with the theory when Q2 = 10Q1 = 10Q3 = 10Q. In this case, 
however, an 'attenuation' of the lateral vertices of the 
characteristic in Fig.17 occurs. 
 

 
 

Fig. 17. The shape of the frequency response of the amplifier for 
Q2 < . 

5. Schemes studied circuits 
5.1 Amplifier with a single resonant circuit 
In the circuit, it can be measured the output signal either 
directly from the collector of the transistor (not switching the 
load on - P1 open or switching the load 18k on - P1 closed) 
or from the capacitive divider (not switching the load on - P2 
open, or switching the load 4.3k on - P2 closed). 

15

 
Fig.18. Amplifier with a single parallel resonance circuit. 

 
5.2 Amplifier with a pair of resonant circuits coupled 
capacitively 
In the circuit shown in Fig. 19, you can change the coupling 
coefficient  by changing the capacitance coupling (rotary 
switch P1). Quality factors of the circuits I and II are equal, i.e. 
Q1=Q2=Q. 

 
Fig.19. Amplifier with a pair of resonant circuits. 

 
5.3 Amplifier with a triple resonant circuit coupled 
capacitively 
In the circuit of Fig. 20, it is possible to change the coupling 
coefficient  by simultaneous change of the two coupling 
capacitances (rotary switch P2). Quality factors of the circuits I 
and II are equal, i.e. Q1 = Q3 = Q. In order to satisfy the 
condition: Q2=10Q=10Q1=10Q3, the load resistive should be of 
2.2k. 
 

 
Fig.20. Amplifier with a triple resonant circuit. 
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