Laboratory of analog linear circuits		
No exercise in the script: 4A	Members 1. 2. 3.	
Subject: Basic configurations of bipolar transistor		
Date of doing exercises (day of week and time)		Date of dispatch of the report to the following address: (valid PDF format).

2.1. Measurement of the lower and upper cut-off frequencies $f_{L z d B}$ and $f_{H 3 a B}$ and the input and output resistances $R_{\text {in }}$ i $R_{\text {out }}$; for circuit CE set such $V_{\text {in }}$ that $V_{\text {out }}=\mathbf{8 0 0} \mathbf{m V}$, for circuits CE-RE and CB, $V_{\text {out }}=\mathbf{3 0 0} \mathbf{~ m V}$; and for CC- $V_{\text {in }}=\mathbf{3 0 0} \mathbf{m V}$; for circuits A i B: $f_{1}=50 \mathrm{kHz}$, and for circuits C i D: $f_{1}=150 \mathrm{kHz}$

Circuit	A: CE	B: CE-RE	C: CC	D: CB
$V_{\text {in }} \quad[\mathrm{mV}]$			300	
$f_{L \text { LadB }}, K_{u}\left(f_{L 3 a B}\right)=0.707 \cdot K_{u}\left(f_{1}\right) \quad[\mathrm{kHz}]$				
$V_{\text {out }} \quad[\mathrm{mV}]$	800	300		300
$f_{H 3 a B}, K_{u}\left(f_{H 3 \Delta B}\right)=0.707 \cdot K_{u}\left(f_{1}\right) \quad[\mathrm{kHz}]$				
$f_{0}=\sqrt{f_{L 3 A B} \cdot f_{H 3 d B}} \quad[k H z]$				
$K_{u}\left(f_{0}\right) \quad[\mathrm{V} / \mathrm{V}]$				
Measure $R_{\text {in }}$: $\quad V_{\text {out }}$, $[\mathrm{mV}]$				
Measure $R_{\text {out }}$: $\quad V_{\text {out }}{ }^{\text {c }}$ [$\mathrm{mV}^{\text {c }}$				

2.2. Measure of amplitude characteristics CE, CE-RE, $\mathbf{C C}$ and $\mathbf{C B}, K_{u}=V_{o u} / V_{i n}, V_{i n}$ as above

A: CE			B: CE-RE			C: CC			D: CB		
f	K_{u}		f	K_{u}		f	K_{u}		f	K_{u}	
[kHz]	$[V / V]$	2	$[k H z]$	$[V / V]$	$20 \cdot \log \left\|K_{u}\right\|$	[kHz]	$[V / V]$	$20 \cdot \log \left\|K_{u}\right\|$	[kHz]	$[V / V]$	$20 \cdot \log \left\|K_{u}\right\|$
200 Hz			100 Hz			70 Hz			10.0		
400 Hz			200 Hz			100 Hz			12.0		
700 Hz			400 Hz			200 Hz			14.0		
1.0			700 Hz			400 Hz			17.0		
2.0			2.0			700 Hz			20.0		
4.0			4.0			1.0			27.0		
7.0			10			10.0			50.0		
10			50			50.0			100.0		
50			100			100.0			500.0		
100			400			150.0			700.0		
150			500			700.0			800.0		
200			600			1 MHz			900.0		
400			700			1.2 MHz			1 MHz		
500			1 MHz			1.4 MHz			1.2 MHz		

3. Production of results

1) Plot the measured characteristics on separate charts. The vertical axis should be gain expressed in logarithmic measure, ie., the horizontal axis (signal frequency) should be logarithmic.
2) Calculate the theoretical operating point of transistors, small signal gain, the input and output.resistances.

For the calculations assume: $V_{C C}=12 \mathrm{~V}, V_{T}=25 \mathrm{mV}, V_{B E}=0.7 \mathrm{~V}, \beta=160, R_{B_{1}}=43 \mathrm{k} \Omega, R_{B_{2}}=22 \mathrm{k} \Omega, R_{C}=6.2 \mathrm{k} \Omega$,
$R_{E}=3.13 \mathrm{k} \Omega, R_{E_{1}}=160 \Omega, R_{B U F}=1000 \mathrm{k} \Omega, R_{S}{ }^{\prime}=1 \mathrm{k} \Omega, R_{L}{ }^{\prime}=4.7 \mathrm{k} \Omega$
Operating point: $V_{B}=V_{C C} \frac{R_{B_{2}}}{R_{B_{1}}+R_{B_{2}}}=\ldots \ldots \ldots \ldots \ldots I_{C}=\frac{V_{B}-V_{B E}}{R_{E}}=\ldots \ldots \ldots \ldots \ldots . . \ldots, V_{C E}=V_{C C}-\left(R_{C}+R_{E}\right) \cdot I_{C}=$ \qquad
Additionally calculate: $g_{m}=\frac{I_{C}}{V_{T}}=$ \qquad $r_{\pi}=\frac{\beta}{g_{m}}=$ $r_{e}=\frac{r_{\pi}}{\beta+1}=$ \qquad
By calculations use the following formulas:

A: CE	B: CE-RE	D: CB					
Small signal gain K_{u}							
$R_{\text {in }} \cdot g \cdot \frac{R_{C} \cdot R_{\text {BUF }}}{R_{c}+R_{\text {l }}}$	$R_{\text {in }} \cdot \frac{r_{\pi}}{R_{\pi}} \cdot g \cdot \frac{R_{C} \cdot R_{\text {BUF }}}{R_{C}+R_{\text {er }}}$	$R_{\text {in }} \cdot \frac{\beta}{(\beta+1) \cdot r_{e}} \cdot \frac{R_{C} \cdot R_{\text {BUF }}}{R_{c}+R_{\text {l }}}$					
$R_{\text {in }}+R_{S}{ }^{\prime}{ }^{\text {m }} \cdot \frac{R_{C} \cdot R_{\text {d }}}{R_{C}+R_{\text {BUF }}}$	$R_{i n}+R_{S} r_{\pi}+(\beta+1) R_{E_{1}}{ }^{\prime}{ }_{m} \frac{R_{C}+R_{\text {BUF }}}{}$	$R_{i n}+R_{S}(\beta+1) \cdot r_{e} \quad R_{C}+R_{\text {BUF }}$					
Theoretical input resistance $R_{\text {in }}$							
$r_{\pi}\left\\|R_{B_{1}}\right\\| R_{B_{2}}=\left(\frac{1}{r_{\pi}}+\frac{1}{R_{B_{1}}}+\frac{1}{R_{B_{2}}}\right)^{-1}$	$\left(r_{\pi}+(\beta+1) R_{E_{1}}\right)\left\\|R_{B_{1}}\right\\| R_{B_{2}}=\left(\frac{1}{r_{\pi}+(\beta+1) R_{E_{1}}}+\frac{1}{R_{B_{1}}}+\frac{1}{R_{B_{2}}}\right)^{-1}$	$R_{i n}=R_{E} \\| r_{e}=\frac{R_{E} \cdot r_{e}}{R_{E}+r_{e}}$					
Measured input resistance $R_{\text {in }}$							
$R_{\text {in }}=\frac{V_{\text {out }}{ }^{\prime}}{V_{\text {out }}-V_{\text {out }}} \cdot R_{s}-R_{s}$							
$R_{S}=1 \mathrm{k} \Omega$	$R_{S}=1 \mathrm{k} \Omega$	$R_{S}=0.1 \mathrm{k} \Omega$					
Theoretical output resistance $R_{\text {out }}$							
R_{C}							
Measured output resistance $R_{\text {out }}$							
$R_{\text {out }}=\frac{R_{\text {BUF }} \cdot R_{L}^{\prime}}{\frac{R_{\text {BUF }} \cdot V_{\text {out }}^{\prime}}{V_{\text {out }}-V_{\text {out }}}-R_{L^{\prime}}}$							

The calculation results compare with the results of measurements in the table below.

	A: CE		B: CE-RE		C: CC		D: CB	
	theoretical	measured	theoretical	measured	theoretical	measured	theoretical	measured
K_{u}								
$R_{\text {in }}[k \Omega]$								
$R_{\text {out }}[k \Omega]$								
$f_{L 3 d B}[k H z]$								
$f_{H 3 d B}[k H z]$					26 M			

For all measurements in the exercise, place your own conclusions and observations. Compare deals between each other and comment on compliance calculations with the measurements.

