LABORATORY OF ANALOG LINEAR CIRCUITS									
Exercise:		Team:							
4b		1.							
		2.							
		3.							
Temat: Basic configurations of MOS transistor									
Data of execution of the exercise		Date of delivery of the report							

2.1. Measurement of the upper and lower cut-off frequencies f_{L3dB} and f_{H3dB} and the input and output resistances R_{in} and R_{out} of the CS, CG and CD circuits, $K_u = V_{wy} / V_{we}$ $V_{wy} = 600 \text{ mV}$; for CS and CG circuits: $f_1 = 50 \text{ kHz}$, for the CD circuit: $f_1 = 150 \text{ kHz}$ and $V_{we} = 300 \text{ mV}$

Układ		A: CS	B: CG	C: CD
$V_{ m we}$	[mV]			300
V_{wy}	[mV]	600	600	-
f_{L3dB} , $K_u(f_{L3dB}) = 0.707 \cdot K_u(f_1)$	[kHz]			
f_{H3dB} , $K_u(f_{H3dB}) = 0.707 \cdot K_u(f_1)$	[kHz]			
$f_0 = \sqrt{f_{L3dB} \cdot f_{H3dB}}$	[kHz]			
$K_u(f_0)$	[V/V]			
$R_{in}: V_{wy}'$	[mV]			
R_{out} : V_{wy}	[mV]			

2.2. Measurement of the amplitude frequency characteristic for: CS, CG and CD, $K_u = V_{wy}/V_{we}$, V_{we} as before

A: CS			B: CG				C: CD				
f	V_{wy}	K_u	$20 \cdot \log K_u $	f	V_{wy}	K_u	$20 \cdot \log K_u $	f	V_{wy}	K_u	$20 \cdot \log K_u $
[kHz]	[mV]	[V/V]	$ 20 \cdot \log \mathbf{\Lambda}_u $	[kHz]	[mV]	[V/V]	$20 \cdot \log K_u $	[kHz]	[mV]	[V/V]	$ 20 \cdot \log K_u $
40 Hz				40 Hz				40 Hz			
70 Hz				70 Hz				70 Hz			
100 Hz				100 Hz				100 Hz			
200 Hz				200 Hz				200 Hz			
400 Hz				400 Hz				400 Hz			
10.0				10.0				10.0			
50.0				50.0				150.0			
200.0				200.0				1 MHz			
300.0				300.0				1.2 MHz			
400.0				400.0				1.4 MHz			
500.0				500.0				1.5 MHz			
600.0				600.0				1.7 MHz			

3. Description of the results

- 1) Plot the measured characteristics on the individual charts. The vertical axis should be gain expressed in logarythmic measure, ie. $20 \log |K_u|$, the horizontal axis (signal frequency) should be logarythmic.
- 2) Calculate the small signal gain, input and output resistance using the equation from the paper instruction.

For all measurements place your own conclusions and observations.