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Distortion and gain measures for non-inertial
systems for harmonic excitation

For simplicity non-inertial non-linear circuit is assumed. Its transfer function is
given by the polynomial:

VOUT:f(IN) K+KVIN+KVIN+KVIN
Gain an distortion for single harmonic excitation can be found by substitution:
Vv, = BCos(w;t
o i ) c052a=1+1cos(2a)
Components of individual powers: 2 2

K, = K,Bcos(a,t) cos® o = % cos(3a )+ % cosa

Kv,* = K,B? cos®(wyt) = ;K BZ+;K B cos(2aw,t)

K.v,~ = K,B®cos®(wgt)= % K,B? cos(Sa)Bt)+§ K,B? cos(wgt)



Distortion and gain measures for non-inertial
systems for harmonic excitation

Vour = F(Bcos(mgt))=K, +K,B cos(a)Bt)+% K,B? +% K,B? cos(2amyt)
+% K,B® cos(3wgt)+ % K,B® cos(w;t)

=K, +% K,B’ +[KlB +§ K3BS} cos(a)Bt)+% K,B’ cos(ZwBt)+% K,B® cos(3wgt)

K.B+(3/4)K.B’

(1/2)K.B’

Amplitude of harmonic
components [V]

K,+(1/2K.B

(1/4)K.B’

frequency
constant O, 20, 3o,
component

Fig. 1. Harmonic content with for harmonic excitation of non-inertial system described by 5
3rd degree polynomial.



Distortion and gain measures for non-inertial
systems for harmonic excitation

Individual powers of a polynomial result in harmonics with
frequencies that are multiples of the power of a polynomial.

« The even powers of the polynomial also change the constant
component of the output signal and make it dependent on the
amplitude of the input signal.

« The amplitudes of individual subsequent harmonics are
decreasing with the harmonic number.

« With slight distortion of the processing system, you can
approximate its properties by limiting the describing function
to the first few powers of the polynomial.



Bipolar differential pair

VCI vC2
ICI l l lC2

[ T

Fig. 2. Bipolar differential pair.

Emitter currents of transistors:

I Vp1—Vg I VB2 —VE
a a
hence:
I Vp1—Vg
V.
: 7Se T VB1—VB2 Vip
|E1:0( _e Vi V%
i I V2 —VE
E2 \V,
756 T

o

Together with Kirchhoff's current law,
It gives the following equations:

{'El""Ez =1
- . —_— VID/VT
|E1/|E2 =€



The harmonic signal gain

Def. Gain of the harmonic wave can be defined as the ratio of the amplitude
of the first harmonic output signal to the amplitude of the input signal:

3 R3
A, (B) = 1-s_t harmor_uc amp-)lltude _ 4 _K, +§ K,B?
amplitude of input sine wawve B 4

The above gain is not constant and depends on the amplitude of the input signal.
Depending on the sign of the K; coefficient, both increase (expansion) and
reduction (compression) of the gain can occur.



Bipolar differential pair, cont.

The solution gives the following results: ..}

[ 1
IEl - I 1+ e_VID/VT

0,5

N
normalized emitters currents

5 4 3 2 1 0 1 2 3 4 5 6
normalized input voltage (VB 1"')132)/ VT

Fig. 3. Normalized emitter currents of bipolar

i -.(_1 j
E2 Vip V-
L 1+g""
differential pair.

Using Yip _y = 2y achangeable part of the emitter current can be calculated as:
substitution: /.

S O O I e O U e O il I
2 1+ef 2 2le*+1) 2(e¥+1) 2(e? V4

Y a7y
_! u =ltanh(y):|—tanh Yo and:
2\ e’ +e”’ 2 2 2V

T




Bipolar differential pair, cont.

The difference of emitter currents is therefore equal to:

i, —i., =l tanh(y)=1 tanh(%j

T

The difference of collector currents will be equal:

o Vv
i, —i., =al tanh(y)=al tanh| /2
c1 e =& (y) 04 [2\/ J

T

If we treat current | as one of the processed signals, then we obtain the multiplication of
the term tanh(x) and the current I. The term tanh(x), for a strong limitation of x << 1 (i.e.
for v,p<<2V;) can be approximated by a linear function.

x3  2x° _17x7

tanh(x)zx— 3 T 15 315 T NOTE: there are no even terms in the
expansion of the output current into a
So, if v\p<<2V; then: power series — it results in reduced value of

harmonic distortion.

T T V|D
T



Bipolar differential pair, cont.

We expand output current into a power series and limit to the 4th term:

3 3
iCl - icz =al tanh (y) = al ta.nh VL = al Vi _l VL + .. |=al VID + VID -
2V 2V 3\ 2V N, 24V,

. . 2 3 4
lci — e, = f (VID): Ko + K1V|N + K2V|N + K3V|N + K4V|N

K,=0 K=" K,=0 K=—H_ k-0
2y 24V; X 2x° 17X
tanh (x) = X — =+ =~
HD. ~+Keg_g 15 315
P2 K,
HD, ~ S~ Rapz_1 2VT352= 1ZBZ:>THDzHD3:>B=\/48\/T2THD
4K, 424V, 48V,

For example, for THD <1%, the amplitude of the harmonic signal fed to the differential
pair input must be:

B < 48V, THD =,/48-25mV]?0,01=17,3[mV] 11



Bipolar differential pair, cont.

The gain of harmonic signals, which is transconductance for a differential pair,
will be equal to:

GM, =K, +5K g2 A _3_d _B?
4 N. 424V
Denoting as low signal transconductance: gm = al
we get: 2V

1
GM, =gm| 1- B*
H g ( 16\/T2 j

The above calculations are valid as long as the higher order factors are not
dominant, in order to calculate this we can apply the inequality:

x3 2x° 17X’ %> 3
tanh(x)= X——+ — - X| << /5/2
( ) 3 15 315 15 ‘ ‘
vV ]
Because: X = —2\"/3 SO. Vo] << 2V; +/5/2 =80[mV]
T

In practice, due to the quadratic relationship between terms of 5 and 3 order

limitation v,;<2V; is enough. e



Bipolar differential pair as a
simple multiplier.

V
T -~ The difference of collector currents is equal to:
R % 2}3 v

) ) iCl_icz = al tanh VA —a Ve VBE VEE tanh VA
VCI vC2 T E T

—> Vo Ve Ve

Ies I_o O_I lc2 = aV—Btanh [Vij +a ~Voe ~Vee tanh [VLJ
v 07 N Re . Re 2V,
o
[ © A _
Vi T T The output voltage is equal:
° [=(vg- V- V)R, Vo =Ve2 =Ver =Vee —leoRe _(Vcc - iClRC)
=l Re —1,Re = (i01 - iCZ)RC
T Vg And so:
REz
[ oY gt Yo )R N
Vo = —=1an c <- multiplication
Re 2V,
v VEE
Fig. 4. Bipolar differential pair with current _p(x__\/BE__\/

\"
EE h ID R _ -
tan (ZV j ¢ <-gain 4

source implemented on Q3 transistor. T

E



Gilbert multiplier cell

For simplicity, a =1 is assumed, so the collector currents are equal to the emitter currents.

tVCC

R, lp = (ic1 T ics)_(icz T iC4): (ic1 - iCZ)_(iC4 - ics)
Vo = Vo2 Ve Ves . \" ] Vv
=i. tanh| =%~ |—i..tanh| =%~
3 - Ics tan (ZVT icq tan (ZVT j

:(ics_ice)tanh VX)

01 Q2>|—o—|< 03 04 Al
= | tanh Vx tanh Wy
2V V.

tanh(x) ~ X7x73+27x5717x7 +
_I(VX ][ Vy j 3 15 315 7
Vy <<2Vp vy <<2Vp
N\ 2V,

e )

s i —
Q5 06
Vr T Vo =Vea = Vs
° T :VCC - (icz T ic4)Rc - (Vcc - (i01 + ics)Rc)
I = (i01 + ics)Rc _(icz + ic4)Rc =1,R.

Vx Vy
Vs R I(ZV j[ZV jRC =K, Vy Vy 14
Fig. 5. Gilbert multiplier cell. T T




Multiplier — increasing the linearity range for the Y input

For the circuits shown below, assuming that the v, signal passes to the emitters of the transistors
without reducing the value, the collector currents are equal to:
V. . | v . . V. ; . ; \" V. \'
+ g === Qg —log =2 |O=(|C5—|C6)tanh(zvx JZZRY tanh[ZV—XJ:

i = I Y __Vx Vy
C5 A "~ C6 C5
2 R, 2 R, R, T Y T

Vy<<M: vy
X T VT RY

The condition of the 1: 1 signal transition
to the Q5 and Q6 emitters (derived from
the small signal T model of BJT):

R R
7Y >> Mo = —

>> Va =R, >>4\i
1/2 |

The condition of not draining the 1 / 2 current:

V

1
:‘VY‘<EIRY

Y

05

/ 12 12

Viw Viw Viw

15
Fig. 6. Increasing the Llinearity range for the Y input of the
Gilbert cell.



Gilbert multiplier - increasing the
Ilnearlty range for both mputs

Fig. 7. Gilbert multiplier with both inputs linearisation.
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For simplicity, a=1 was used, so the collector currents are equal to the emitter currents.

was assumed that the transistors are identical in pairs. The base-emitter voltage can be
estimated as:

v i
_ | aV _ c
c=1.e" =v, =V, Inl—
S
For voltage designated as vy, one can arrange Kirchhoff's voltage laws:

Vyan = Veer —Vee2 = Veeg — Vaewo Vyan = Veesa —Vees = Veeg — Vee10
So:
' i i i i
VTI —V; In 2=V, In Inﬂzﬂn_ﬂzln_c9 — L - €9
s1 52 59 I510 lco lc1o lco e

It

Substituting to the above equation and  ice = Iy /2+Vy /R, i =1y /2=V, /Ry

finding the difference in currents we
get:

.. . [ 2 vy
le17le2 = '05[U R—XJ Similarly, for Q3 and Q4 pair their current
difference can be defined as:

.. [ 2 vy
lcs —lcs = lce |_R— 17
x Nx



Hence, the output current being the difference of the currents of the respective pairs is equal to:

R e L

I Ry I Ry

:(ics_im{iv_x]:(Z i ][ 2 % j:VxVY !
I Ry Ry A1k Ry I Ry R,

The above relationship is limited for input voltages that zeroes one of the lower differential
pair currents, i.e. for input voltages in the range:

Vy

V—X:\vx\<%lxRx LA

Ix

2

>

1
:>\VY\<EIYRY

X Y

The output voltage, similarly to previous circuits, can be determined as:
Vo =Veo = Ve :Vcc _(icz + ic4)Rc _(VCC _(iCl + iC3)RC)

: i i . ] 4
= (|c1 + 'cs)Rc _(lcz + 'c4)Rc = IORC =VyVy |— Rc — KVVXVY
x Nx Ry

18



Differential current converter circuit

For the circuit as shown in the scheme, current Kirchhoff’s law in the input nodes of
operational amplifier A can be written as:

VCC—V_+VO—V_ _i, Vee =V, _ Y, i
Rc1 RFl Rcz RFZ

If we assume the equality of resistors %

o WA
Rei=Reo=Re and Re=Re,=Re R,
and ideal amplifier A, then the output R, 2}2&
voltage is equal to: ) -

A

&
x R,. L’o

Vo = (il - i2)RF

Fig. 8. Differential current to single output
voltage converter.
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Vour =IloRe =V v, ———R_ Ky =———F— Vo #IoRc
IxRxRy

R, Vour

I, I,

VEE l/EE

Fig. 9. Linearized four-quadrant Gilbert multiplier with voltage output. 20



Implementation of selected
non-linear functions

Division

Square up

Square root
Logarithm
Exponential circuit

21



|deal Operational Amplifier
virtual short circuit rule

For an ideal OA, differential gain Ay tends to infinity. Let's assume that OA
works in negative feedback loop as e.g. in the picture below.

(o,
K I
=

=

de:§

Vm¢ . AD ——a ' vy
— Vo= Aply, —v.) Vo=V
V,I Vo
Fig. 10. Operational
I I Amplifier (OA) symbol.

Fig. 11. Operational amplifier with
negative feedback Loop K.

Circuit equations for the above case:

Ay

Vo = AV = A1V, VoK) = VUL+AK)=AYV, = V=V, ———— =v, /K
O AD ID AD( | ¢} ) O( AD ) AD I 6} I1+ADK Ap —>© |
And what is the value of differential input voltage? A
Vv
Vo | 1+AK 1
Vip = = =V T Ak se
A, A, 1+ A K
In an ideal OA with negative feedback loop the voltage difference between the inputs tends to 29

zero, which in practice means a "'virtual short circuit between the amplifier's inputs



Assuming negative feedback loop input voltage v, is limited to positive values. For ideal

OA:

_Vx__KvVYVo — V. = R, Vx _ R, vy
= = o =

i _ —_
" Rl RZ I<V VY Rl I<V Rl VY

Fig. 12. Division circuit. 23



Square up

Vy

I I

Fig. 13. Square up circuit with the use of
multiplier.

2
V=K, vy

24



Square root

Assuming the negative feedback loop the output voltage v, is limited to positive values, so
the input voltage must be negative! Current equation assuming ideal OA:

2
iRl:_VX = Bt = Vo =7 Vx i
R, R, Ky R,
Kv,’
R,
W
R,
yy=

Fig. 15. Square root circuit.



Logarithm

Assuming negative feedback loop and positive collector current input voltage v, is limited
to positive values. For ideal OA:

Vee —Vo
ARV o= 2 Vv —vV Vi
i=X—j =le"" =l = In2X|=—2 = v.=-V|Inl =X
R1 C S S (@) T
R, ! R

o]

o)

R, \
N .

26

Fig. 16. Logarithm circuit.



Exponential circuit

Assuming negative feedback loop and positive collector current input voltage v, is limited
to positive values. For ideal OA:

Vx Vx

Vee
Vo -V, . v v v
=9 Pj.=1le" =1e" = vy=R,Ie" +V,

IR2
2

O, o \ Due to the necessity to force
A . the NPN transistor to work in
, D the active normal range it is
/ necessary to apply polarizing
V,  voltage Vp, Vee= Vp.

27

o

Fig. 17. Exponential circuit.



