Introduction to Basic Electronic Circuits non-linear circuits

Ph.D., D.Sc. Bogdan Pankiewicz - lecture, WETI PG room EA307
www.ue.eti.pg.gda.pl/~bpa/ec/

Lecture content

- Distortion and gain measures for non-inertial systems for harmonic excitation
- Differential bipolar pair
- Simple analogue multiplier using differential pair
- Gilbert multiplier
- Selected non-linear circuits

Literature:

1) U. Tieze, C. Schenk, E Gamm „Electronic circuits, handbook for design and applications", Springer 2002.
2) R. L. Geiger, P. E. Allen, N. R. Strader, „VLSI design techniques for analog and digital circuits", McGraw-Hill 1990.
3) P. E. Allen, D. R. Holberg, „CMOS analog circuit design", Sunders College Publishing, 1987.
4) P. R. Gray, R. G. Meyer, "Analysis and design of analog integrated circuits", John Wiley \& Son, Inc. 1993.
5) P. Wambacq, W. Sansen, „Distortion analysis of analog integrated circuits", Kluwer Academic Publishers, 1998.

Distortion and gain measures for non-inertial systems for harmonic excitation

For simplicity non-inertial non-linear circuit is assumed. Its transfer function is given by the polynomial:

$$
v_{\text {OUT }}=f\left(v_{I N}\right)=K_{0}+K_{1} v_{I N}+K_{2} v_{I N}^{2}+K_{3} v_{I N}^{3}
$$

Gain an distortion for single harmonic excitation can be found by substitution:

$$
v_{I N}=B \cos \left(\omega_{B} t\right)
$$

Components of individual powers:

$$
\cos ^{2} \alpha=\frac{1}{2}+\frac{1}{2} \cos (2 \alpha)
$$

$$
\begin{aligned}
& K_{1} v_{I N}=K_{1} B \cos \left(\omega_{B} t\right) \quad \cos ^{3} \alpha=\frac{1}{4} \\
& K_{2} v_{I N}^{2}=K_{2} B^{2} \cos ^{2}\left(\omega_{B} t\right)=\frac{1}{2} K_{2} B^{2}+\frac{1}{2} K_{2} B^{2} \cos \left(2 \omega_{B} t\right) \\
& K_{3} v_{I N}^{3}=K_{3} B^{3} \cos ^{3}\left(\omega_{B} t\right)=\frac{1}{4} K_{3} B^{3} \cos \left(3 \omega_{B} t\right)+\frac{3}{4} K_{3} B^{3} \cos \left(\omega_{B} t\right)
\end{aligned}
$$

$$
\cos ^{3} \alpha=\frac{1}{4} \cos (3 \alpha)+\frac{3}{4} \cos \alpha
$$

Distortion and gain measures for non-inertial systems for harmonic excitation

$$
\begin{aligned}
& v_{\text {OUT }}=f\left(B \cos \left(\omega_{B} t\right)\right)=K_{0}+K_{1} B \cos \left(\omega_{B} t\right)+\frac{1}{2} K_{2} B^{2}+\frac{1}{2} K_{2} B^{2} \cos \left(2 \omega_{B} t\right) \\
& +\frac{1}{4} K_{3} B^{3} \cos \left(3 \omega_{B} t\right)+\frac{3}{4} K_{3} B^{3} \cos \left(\omega_{B} t\right) \\
& =K_{0}+\frac{1}{2} K_{2} B^{2}+\left[K_{1} B+\frac{3}{4} K_{3} B^{3}\right] \cos \left(\omega_{B} t\right)+\frac{1}{2} K_{2} B^{2} \cos \left(2 \omega_{B} t\right)+\frac{1}{4} K_{3} B^{3} \cos \left(3 \omega_{B} t\right)
\end{aligned}
$$

Fig. 1. Harmonic content with for harmonic excitation of non-inertial system described by 3rd degree polynomial.

Distortion and gain measures for non-inertial systems for harmonic excitation

- Individual powers of a polynomial result in harmonics with frequencies that are multiples of the power of a polynomial.
- The even powers of the polynomial also change the constant component of the output signal and make it dependent on the amplitude of the input signal.
- The amplitudes of individual subsequent harmonics are decreasing with the harmonic number.
- With slight distortion of the processing system, you can approximate its properties by limiting the describing function to the first few powers of the polynomial.

Bipolar differential pair

Fig. 2. Bipolar differential pair.
Emitter currents of transistors:

$$
i_{E 1}=\frac{I_{S}}{\alpha} e^{\frac{v_{B 1}-v_{E}}{V_{T}}} \quad i_{E 2}=\frac{I_{S}}{\alpha} e^{\frac{v_{B 2}-v_{E}}{V_{T}}}
$$

hence:

$$
\frac{i_{E 1}}{i_{E 2}}=\frac{\frac{I_{S}}{\alpha} e^{\frac{v_{B 1}-v_{E}}{V_{T}}}}{\frac{I_{S}}{\alpha} e^{\frac{v_{B 2}-v_{E}}{V_{T}}}}=e^{\frac{v_{B 1}-v_{B 2}}{V_{T}}}=e^{\frac{v_{I D}}{V_{T}}}
$$

Together with Kirchhoff's current law, it gives the following equations:

$$
\left\{\begin{array}{l}
i_{E 1}+i_{E 2}=I \\
i_{E 1} / i_{E 2}=e^{v_{D D} / V_{T}}
\end{array}\right.
$$

The harmonic signal gain

Def: Gain of the harmonic wave can be defined as the ratio of the amplitude of the first harmonic output signal to the amplitude of the input signal:

$$
A_{H}(B)=\frac{1 \text {-st harmonic amplitude }}{\text { amplitude of input sine wave }}=\frac{\left[K_{1} B+\frac{3}{4} K_{3} B^{3}\right]}{B}=K_{1}+\frac{3}{4} K_{3} B^{2}
$$

The above gain is not constant and depends on the amplitude of the input signal. Depending on the sign of the K_{3} coefficient, both increase (expansion) and reduction (compression) of the gain can occur.

Bipolar differential pair, cont.

The solution gives the following results:

$$
\left\{\begin{array}{l}
i_{E 1}=I\left(\frac{1}{1+e^{-v_{I D} / V_{T}}}\right) \\
i_{E 2}=I\left(\frac{1}{1+e^{v_{I D} / V_{T}}}\right)
\end{array}\right.
$$

Fig. 3. Normalized emitter currents of bipolar differential pair.
$\begin{array}{ll}\text { Using } \\ \text { substitution: }\end{array} \quad \frac{v_{I D}}{V_{T}}=x=2 y$ a changeable part of the emitter current can be calculated as:

$$
\begin{aligned}
& i_{E 1}-\frac{I}{2}=\frac{I}{1+e^{x}}-\frac{I}{2}=\frac{I}{2}\left(\frac{e^{x}-1}{e^{x}+1}\right)=\frac{I}{2}\left(\frac{e^{2 y}-1}{e^{2 y}+1}\right)=\frac{I}{2}\left(\frac{e^{2 y-y}-e^{-y}}{e^{2 y-y}+e^{-y}}\right) \\
& =\frac{I}{2}\left(\frac{e^{y}-e^{-y}}{e^{y}+e^{-y}}\right)=\frac{I}{2} \tanh (y)=\frac{I}{2} \tanh \left(\frac{v_{I D}}{2 V_{T}}\right) \quad \text { and: } \\
& i_{E 2}-\frac{I}{2}=-\frac{I}{2} \tanh (y)=-\frac{I}{2} \tanh \left(\frac{v_{I D}}{2 V_{T}}\right)
\end{aligned}
$$

Bipolar differential pair, cont.

The difference of emitter currents is therefore equal to:
$i_{E 1}-i_{E 2}=I \tanh (y)=I \tanh \left(\frac{v_{I D}}{2 V_{T}}\right)$
The difference of collector currents will be equal:
$i_{C 1}-i_{C 2}=\alpha I \tanh (y)=\alpha I \tanh \left(\frac{v_{I D}}{2 V_{T}}\right)$
If we treat current I as one of the processed signals, then we obtain the multiplication of the term $\boldsymbol{\operatorname { t a n h }}(\boldsymbol{x})$ and the current I. The term $\boldsymbol{\operatorname { t a n h }}(\boldsymbol{x})$, for a strong limitation of $\mathrm{x} \ll 1$ (i.e. for $v_{I D} \ll 2 V_{T}$) can be approximated by a linear function.

$$
\tanh (x) \approx x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}-\frac{17 x^{7}}{315}+\ldots
$$

So, if $v_{I D} \ll 2 V_{T}$ then:

$$
i_{C 1}-i_{C 2} \approx \alpha I\left(\frac{v_{I D}}{2 V_{T}}\right)
$$

NOTE: there are no even terms in the expansion of the output current into a power series - it results in reduced value of harmonic distortion.

Bipolar differential pair, cont.

We expand output current into a power series and limit to the 4th term:
$i_{C 1}-i_{C 2}=\alpha I \tanh (y)=\alpha I \tanh \left(\frac{v_{I D}}{2 V_{T}}\right)=\alpha I\left(\frac{v_{I D}}{2 V_{T}}-\frac{1}{3}\left(\frac{v_{I D}}{2 V_{T}}\right)^{3}+\ldots\right) \approx \alpha I\left(\frac{v_{I D}}{2 V_{T}}+\frac{v_{I D}^{3}}{24 V_{T}^{3}}\right)$
$i_{C 1}-i_{C 2}=f\left(v_{I D}\right)=K_{0}+K_{1} v_{I N}+K_{2} v_{I N}^{2}+K_{3} v_{I N}^{3}+K_{4} v_{I N}^{4}$
$K_{0}=0 \quad K_{1}=\frac{\alpha I}{2 V_{T}} \quad K_{2}=0 \quad K_{3}=-\frac{\alpha I}{24 V_{T}{ }^{3}} \quad K_{4}=0$
$H D_{2} \approx \frac{1}{2} \frac{K_{2}}{K_{1}} B=0$
$\tanh (x) \approx x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}-\frac{17 x^{7}}{315}+\ldots$
$H D_{3} \approx \frac{1}{4} \frac{K_{3}}{K_{1}} B^{2}=\frac{1}{4} \frac{2 V_{T}}{24 V_{T}^{3}} B^{2}=\frac{1}{48 V_{T}^{2}} B^{2} \Rightarrow T H D \approx H D_{3} \Rightarrow B=\sqrt{48 V_{T}^{2} T H D}$
For example, for THD $<1 \%$, the amplitude of the harmonic signal fed to the differential pair input must be:

$$
B<\sqrt{48 V_{T}^{2} T H D}=\sqrt{48 \cdot 25[\mathrm{mV}]^{2} 0,01}=17,3[\mathrm{mV}]
$$

Bipolar differential pair, cont.

The gain of harmonic signals, which is transconductance for a differential pair, will be equal to:

$$
G M_{H}=K_{1}+\frac{3}{4} K_{3} B^{2}=\frac{\alpha I}{2 V_{T}}-\frac{3}{4} \frac{\alpha I}{24 V_{T}^{3}} B^{2}
$$

Denoting as low signal transconductance: we get:

$$
g m=\frac{\alpha I}{2 V_{T}}
$$

$$
G M_{H}=g m\left(1-\frac{1}{16 V_{T}^{2}} B^{2}\right)
$$

The above calculations are valid as long as the higher order factors are not dominant, in order to calculate this we can apply the inequality:
$\tanh (x) \approx x-\frac{x^{3}}{3}+\frac{2 x^{5}}{15}-\frac{17 x^{7}}{315}+\ldots$

$$
\left|\frac{2 x^{5}}{15}\right| \ll\left|-\frac{x^{3}}{3}\right| \Rightarrow|x| \ll \sqrt{5 / 2}
$$

Because: $\quad x=\frac{v_{I D}}{2 V_{T}} \quad$ so: $\quad\left|v_{I D}\right| \ll 2 V_{T} \sqrt{5 / 2}=80[\mathrm{mV}]$
In practice, due to the quadratic relationship between terms of 5 and 3 order limitation $v_{I D}<2 V_{T}$ is enough.

Bipolar differential pair as a simple multiplier.

Fig. 4. Bipolar differential pair with current source implemented on Q3 transistor.

The difference of collector currents is equal to:

$$
\begin{aligned}
& i_{C 1}-i_{C 2}=\alpha I \tanh \left(\frac{v_{I D}}{2 V_{T}}\right)=\alpha \frac{v_{B}-V_{B E}-V_{E E}}{R_{E}} \tanh \left(\frac{v_{I D}}{2 V_{T}}\right) \\
& =\alpha \frac{v_{B}}{R_{E}} \tanh \left(\frac{v_{I D}}{2 V_{T}}\right)+\alpha \frac{-V_{B E}-V_{E E}}{R_{E}} \tanh \left(\frac{v_{I D}}{2 V_{T}}\right)
\end{aligned}
$$

The output voltage is equal:

$$
\begin{aligned}
& v_{O}=v_{C 2}-v_{C 1}=V_{C C}-i_{C 2} R_{C}-\left(V_{C C}-i_{C 1} R_{C}\right) \\
& =i_{C 1} R_{C}-i_{C 2} R_{C}=\left(i_{C 1}-i_{C 2}\right) R_{C}
\end{aligned}
$$

And so:

$$
\begin{array}{ll}
v_{O}=\alpha \frac{v_{B}}{R_{E}} \tanh \left(\frac{v_{I D}}{2 V_{T}}\right) R_{C} & \text { <- multiplic } \\
+\alpha \frac{-V_{B E}-V_{E E}}{R_{E}} \tanh \left(\frac{v_{I D}}{2 V_{T}}\right) R_{C} & \text { <- gain } 13
\end{array}
$$

Gilbert multiplier cell

For simplicity, $\boldsymbol{\alpha}=1$ is assumed, so the collector currents are equal to the emitter currents.

Fig. 5. Gilbert multiplier cell.

$$
\begin{aligned}
& i_{O}=\left(i_{C 1}+i_{C 3}\right)-\left(i_{C 2}+i_{C 4}\right)=\left(i_{C 1}-i_{C 2}\right)-\left(i_{C 4}-i_{C 3}\right) \\
& =i_{C 5} \tanh \left(\frac{v_{X}}{2 V_{T}}\right)-i_{C 6} \tanh \left(\frac{v_{X}}{2 V_{T}}\right) \\
& =\left(i_{C 5}-i_{C 6}\right) \tanh \left(\frac{v_{X}}{2 V_{T}}\right) \\
& =I \tanh \left(\frac{v_{X}}{2 V_{T}}\right) \tanh \left(\frac{v_{Y}}{2 V_{T}}\right) \\
& =\left\lvert\, \begin{array}{l}
v_{X} \ll 2 V_{T} ; v_{Y} \ll 2 V_{T} \\
=I\left(\frac{v_{X}}{2 V_{T}}\right)\left(\frac{v_{Y}}{2 V_{T}}\right) \\
v_{O}=v_{C 2}-v_{C 1} \\
\quad=V_{C C}-\left(i_{C 2}+i_{C 4}\right) R_{C}-\left(V_{C C}-\left(i_{C 1}+i_{C 3}\right) R_{C}\right) \\
\quad=\left(i_{C 1}+i_{C 3}\right) R_{C}-\left(i_{C 2}+i_{C 4}\right) R_{C}=i_{O} R_{C} \\
\approx I\left(\frac{v_{X}}{2 V_{T}}\right)\left(\frac{v_{Y}}{2 V_{T}}\right) R_{C}=K_{V} v_{X} v_{Y}
\end{array}\right.
\end{aligned}
$$

Multiplier - increasing the linearity range for the Y input

For the circuits shown below, assuming that the v_{Y} signal passes to the emitters of the transistors without reducing the value, the collector currents are equal to:

$$
i_{C 5}=\frac{I}{2}+\frac{v_{Y}}{R_{Y}} \quad i_{C 6}=\frac{I}{2}-\frac{v_{Y}}{R_{Y}} \quad i_{C 5}-i_{C 6}=2 \frac{v_{Y}}{R_{Y}} \quad i_{o}=\left(i_{C 5}-i_{C 6}\right) \tanh \left(\frac{v_{X}}{2 V_{T}}\right)=2 \frac{v_{Y}}{R_{Y}} \tanh \left(\frac{v_{X}}{2 V_{T}}\right)=\left.\right|_{v_{X} \ll 2 v_{T}}=\frac{v_{X}}{V_{T}} \frac{v_{Y}}{R_{Y}}
$$

The condition of the $1: 1$ signal transition to the Q5 and Q6 emitters (derived from the small signal T model of BJT):

$$
\frac{R_{Y}}{2} \gg r_{e 5,6} \Rightarrow \frac{R_{Y}}{2} \gg \frac{V_{T}}{I / 2} \Rightarrow R_{Y} \gg 4 \frac{V_{T}}{I}
$$

The condition of not draining the I / 2 current:

$$
\frac{I}{2}>\left|\frac{v_{Y}}{R_{Y}}\right| \Rightarrow\left|v_{Y}\right|<\frac{1}{2} I R_{Y}
$$

Fig. 6. Increasing the Linearity range for the Y input of the Gilbert cell.

Gilbert multiplier - increasing the linearity range for both inputs

For simplicity, $\boldsymbol{\alpha}=1$ was used, so the collector currents are equal to the emitter currents. It was assumed that the transistors are identical in pairs. The base-emitter voltage can be estimated as:

$$
i_{C}=I_{S} e^{\frac{v_{B E}}{V_{T}}} \Rightarrow v_{B E}=V_{T} \ln \frac{i_{C}}{I_{S}}
$$

For voltage designated as $v_{X L N}$, one can arrange Kirchhoff's voltage laws:

$$
v_{X L N}=v_{B E 1}-v_{B E 2}=v_{B E 9}-v_{B E 10} \quad v_{X L N}=v_{B E 4}-v_{B E 3}=v_{B E 9}-v_{B E 10}
$$

So:

$$
V_{T} \ln \frac{i_{C 1}}{I_{S 1}}-V_{T} \ln \frac{i_{C 2}}{I_{S 2}}=V_{T} \ln \frac{i_{C 9}}{I_{S 9}}-V_{T} \ln \frac{i_{C 10}}{I_{S 10}} \Rightarrow \ln \frac{i_{C 1}}{i_{C 2}}=\ln \frac{i_{C 9}}{i_{C 10}} \Rightarrow \frac{i_{C 1}}{i_{C 2}}=\frac{i_{C 9}}{i_{C 10}}
$$

Substituting to the above equation and $\quad i_{C 9}=I_{X} / 2+v_{X} / R_{X} \quad i_{C 10}=I_{X} / 2-v_{X} / R_{X}$ finding the difference in currents we get:

$$
\begin{aligned}
& i_{C 1}-i_{C 2}=i_{C 5}\left(\frac{2}{I_{X}} \frac{v_{X}}{R_{X}}\right) \\
& i_{C 4}-i_{C 3}=i_{C 6}\left(\frac{2}{I_{X}} \frac{v_{X}}{R_{X}}\right)
\end{aligned}
$$

Similarly, for Q3 and Q4 pair their current difference can be defined as:

Hence, the output current being the difference of the currents of the respective pairs is equal to:

$$
\begin{aligned}
& i_{O}=\left(i_{C 1}+i_{C 3}\right)-\left(i_{C 2}+i_{C 4}\right)=\left(i_{C 1}-i_{C 2}\right)-\left(i_{C 4}-i_{C 3}\right)=i_{C 5}\left(\frac{2}{I_{X}} \frac{v_{X}}{R_{X}}\right)-i_{C 6}\left(\frac{2}{I_{X}} \frac{v_{X}}{R_{X}}\right) \\
& =\left(i_{C 5}-i_{C 6}\right)\left(\frac{2}{I_{X}} \frac{v_{X}}{R_{X}}\right)=\left(2 \frac{v_{Y}}{R_{Y}}\right)\left(\frac{2}{I_{X}} \frac{v_{X}}{R_{X}}\right)=v_{X} v_{Y} \frac{4}{I_{X} R_{X} R_{Y}}
\end{aligned}
$$

The above relationship is limited for input voltages that zeroes one of the lower differential pair currents, i.e. for input voltages in the range:

$$
\frac{I_{X}}{2}>\left|\frac{v_{X}}{R_{X}}\right| \Rightarrow\left|v_{X}\right|<\frac{1}{2} I_{X} R_{X} \quad \frac{I_{Y}}{2}>\left|\frac{v_{Y}}{R_{Y}}\right| \Rightarrow\left|v_{Y}\right|<\frac{1}{2} I_{Y} R_{Y}
$$

The output voltage, similarly to previous circuits, can be determined as:

$$
\begin{gathered}
v_{O}=v_{C 2}-v_{C 1}=V_{C C}-\left(i_{C 2}+i_{C 4}\right) R_{C}-\left(V_{C C}-\left(i_{C 1}+i_{C 3}\right) R_{C}\right) \\
=\left(i_{C 1}+i_{C 3}\right) R_{C}-\left(i_{C 2}+i_{C 4}\right) R_{C}=i_{O} R_{C}=v_{X} v_{Y} \frac{4}{I_{X} R_{X} R_{Y}} R_{C}=K_{V} v_{X} v_{Y} \\
K_{V}=\frac{4 R_{C}}{I_{X} R_{X} R_{Y}}
\end{gathered}
$$

Differential current converter circuit

For the circuit as shown in the scheme, current Kirchhoff's law in the input nodes of operational amplifier A can be written as:

$$
\frac{V_{C C}-v_{-}}{R_{C 1}}+\frac{v_{o}-v_{-}}{R_{F 1}}=i_{1} \quad \frac{V_{C C}-v_{+}}{R_{C 2}}=\frac{v_{+}}{R_{F 2}}+i_{2}
$$

If we assume the equality of resistors $R_{C 1}=R_{C 2}=R_{C}$ and $R_{F 1}=R_{F 2}=R_{F}$ and ideal amplifier A, then the output voltage is equal to:

$$
v_{O}=\left(i_{1}-i_{2}\right) R_{F}
$$

Fig. 8. Differential current to single output voltage converter.

$$
v_{\text {OUT }}=i_{O} R_{F}=v_{X} v_{Y} \frac{4}{I_{X} R_{X} R_{Y}} R_{F} \quad K_{V}=\frac{4 R_{F}}{I_{X} R_{X} R_{Y}}
$$

$$
v_{O} \neq i_{O} R_{C}
$$

Fig. 9. Linearized four-quadrant Gilbert multiplier with voltage output.

Implementation of selected non-linear functions

- Division
- Square up
- Square root
- Logarithm
- Exponential circuit

Ideal Operational Amplifier virtual short circuit rule

For an ideal OA, differential gain A_{D} tends to infinity. Let's assume that OA works in negative feedback loop as e.g. in the picture below.

Fig. 10. Operational Amplifier (OA) symbol.

Fig. 11. Operational amplifier with negative feedback loop K.
Circuit equations for the above case:

$$
v_{O}=A_{D} v_{I D}=A_{D}\left(v_{I}-v_{O} K\right) \Rightarrow v_{O}\left(1+A_{D} K\right)=A_{D} v_{I} \Rightarrow v_{O}=\left.v_{I} \frac{A_{D}}{1+A_{D} K}\right|_{A_{D} \rightarrow \infty}=v_{I} / K
$$

And what is the value of differential input voltage?

$$
v_{I D}=\frac{v_{O}}{A_{D}}=\frac{v_{I} \frac{A_{D}}{1+A_{D} K}}{A_{D}}=\left.v_{I} \frac{1}{1+A_{D} K}\right|_{A_{D} K \rightarrow \infty}=0
$$

In an ideal OA with negative feedback loop the voltage difference between the inputs tends to

Division

Assuming negative feedback loop input voltage v_{Y} is limited to positive values. For ideal OA:

$$
i_{R 1}=\frac{v_{X}}{R_{1}}=\frac{-K_{V} v_{Y} v_{O}}{R_{2}} \Rightarrow v_{O}=-\frac{R_{2}}{K_{V} v_{Y}} \frac{v_{X}}{R_{1}}=-\frac{R_{2}}{K_{V} R_{1}} \frac{v_{X}}{v_{Y}}
$$

Fig. 12. Division circuit.

Square up

Fig. 13. Square up circuit with the use of multiplier.

Square root

Assuming the negative feedback loop the output voltage v_{O} is limited to positive values, so the input voltage must be negative! Current equation assuming ideal OA :

$$
i_{R 1}=-\frac{v_{X}}{R_{1}}=\frac{K_{V} v_{O}^{2}}{R_{2}} \Rightarrow v_{O}=\sqrt{-v_{X} \frac{R_{2}}{K_{V} R_{1}}}
$$

Fig. 15. Square root circuit.

Logarithm

Assuming negative feedback loop and positive collector current input voltage v_{X} is limited to positive values. For ideal OA:

$$
i_{R 1}=\frac{v_{X}}{R_{1}}=i_{C}=I_{S} e^{\frac{v_{B E}}{V_{T}}}=I_{S} e^{\frac{-v_{O}}{V_{T}}} \Rightarrow \ln \left(\frac{v_{X}}{I_{S} R_{1}}\right)=\frac{-v_{O}}{V_{T}} \Rightarrow v_{O}=-V_{T} \ln \left(\frac{v_{X}}{I_{S} R_{1}}\right)
$$

Fig. 16. Logarithm circuit.

Exponential circuit

Assuming negative feedback loop and positive collector current input voltage v_{X} is limited to positive values. For ideal OA:

$$
i_{R 2}=\frac{v_{O}-V_{P}}{R_{2}}=i_{C}=I_{S} e^{\frac{v_{B E}}{V_{T}}}=I_{S} e^{\frac{v_{X}}{V_{T}}} \Rightarrow v_{O}=R_{2} I_{S} e^{\frac{v_{X}}{V_{T}}}+V_{P}
$$

Due to the necessity to force the NPN transistor to work in the active normal range it is necessary to apply polarizing voltage $V_{P}, v_{C E}=V_{P}$.

Fig. 17. Exponential circuit.

