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Distortion and gain measures for non-inertial 

systems for harmonic excitation

For simplicity non-inertial non-linear circuit is assumed. Its transfer function is 

given by the polynomial:
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Gain an distortion for single harmonic excitation can be found by substitution:
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Distortion and gain measures for non-inertial 

systems for harmonic excitation
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Fig. 1. Harmonic content with for harmonic excitation of non-inertial system described by 
3rd degree polynomial.
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Distortion and gain measures for non-inertial 

systems for harmonic excitation

• Individual powers of a polynomial result in harmonics with 

frequencies that are multiples of the power of a polynomial.

• The even powers of the polynomial also change the constant 

component of the output signal and make it dependent on the 

amplitude of the input signal.

• The amplitudes of individual subsequent harmonics are 

decreasing with the harmonic number.

• With slight distortion of the processing system, you can 

approximate its properties by limiting the describing function 

to the first few powers of the polynomial.
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Bipolar differential pair
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Emitter currents of transistors:

hence:

Together with Kirchhoff's current law, 

it gives the following equations:

Fig. 2. Bipolar differential pair.
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The harmonic signal gain

Def: Gain of the harmonic wave can be defined as the ratio of the amplitude

of the first harmonic output signal to the amplitude of the input signal:
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The above gain is not constant and depends on the amplitude of the input signal.

Depending on the sign of the K3 coefficient, both increase (expansion) and

reduction (compression) of the gain can occur.
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Bipolar differential pair, cont.
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The solution gives the following results:

Using 

substitution:
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Fig. 3. Normalized emitter currents of bipolar 
differential pair.
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Bipolar differential pair, cont.
The difference of emitter currents is therefore equal to:
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The difference of collector currents will be equal:
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If we treat current I as one of the processed signals, then we obtain the multiplication of 

the term tanh(x) and the current I. The term tanh(x), for a strong limitation of x << 1 (i.e. 

for vID<<2VT) can be approximated by a linear function.
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NOTE: there are no even terms in the

expansion of the output current into a

power series – it results in reduced value of

harmonic distortion.
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Bipolar differential pair, cont.
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We expand output current into a power series and limit to the 4th term:
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For example, for THD <1%, the amplitude of the harmonic signal fed to the differential 

pair input must be:

]mV[3,1701,0]mV[254848 22 == THDVB T
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Bipolar differential pair, cont.
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The gain of harmonic signals, which is transconductance for a differential pair,

will be equal to:

Denoting as low signal transconductance:
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The above calculations are valid as long as the higher order factors are not

dominant, in order to calculate this we can apply the inequality:
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In practice, due to the quadratic relationship between terms of 5 and 3 order

limitation vID<2VT is enough.
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Bipolar differential pair as a 

simple multiplier.
The difference of collector currents is equal to:
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Gilbert multiplier cell
For simplicity,  = 1 is assumed, so the collector currents are equal to the emitter currents.
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Multiplier – increasing the linearity range for the Y input

For the circuits shown below, assuming that the vY signal passes to the emitters of the transistors 

without reducing the value, the collector currents are equal to:

Y

Y
C

R

vI
i +=

2
5

Y

Y
C

R

vI
i −=

2
6

( )
Y

Y

T

X
Vv

T

X

Y

Y

T

X
CCO

R

v

V

v

V

v

R

v

V

v
iii

TX
==








=








−= 265

2
tanh2

2
tanh

Y

Y
CC

R

v
ii 265 =−

The condition of the 1: 1 signal transition 

to the Q5 and Q6 emitters (derived from 

the small signal T model of BJT):

I

V
R

I

VR
r

R T
Y

TY
e

Y 4
2/22

6,5 

The condition of not draining the I / 2 current:

YY

Y

Y IRv
R

vI

2

1

2


Fig. 6. Increasing the linearity range for the Y input of the 
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16

Gilbert multiplier - increasing the 

linearity range for both inputs

Fig. 7. Gilbert multiplier with both inputs linearisation.
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For simplicity, =1 was used, so the collector currents are equal to the emitter currents. It 

was assumed that the transistors are identical in pairs. The base-emitter voltage can be 

estimated as:

For voltage designated as vXLN, one can arrange Kirchhoff's voltage laws:
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Substituting to the above equation and 

finding the difference in currents we 

get:
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Hence, the output current being the difference of the currents of the respective pairs is equal to:

The above relationship is limited for input voltages that zeroes one of the lower differential 

pair currents, i.e. for input voltages in the range:
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Differential current converter circuit
For the circuit as shown in the scheme, current Kirchhoff’s law in the input nodes of 

operational amplifier A can be written as:
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If we assume the equality of resistors

RC1=RC2=RC   and RF1=RF2=RF

and ideal amplifier A, then the output 

voltage is equal to:

( ) FO Riiv 21 −=

Fig. 8. Differential current to single output 
voltage converter.
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Fig. 9. Linearized four-quadrant Gilbert multiplier with voltage output.
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Implementation of selected 

non-linear functions

• Division

• Square up

• Square root

• Logarithm

• Exponential circuit
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Ideal Operational Amplifier 

virtual short circuit rule
For an ideal OA, differential gain AD tends to infinity. Let's assume that OA 

works in negative feedback loop as e.g. in the picture below.

Circuit equations for the above case:
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In an ideal OA with negative feedback loop the voltage difference between the inputs tends to 

zero, which in practice means a "virtual" short circuit between the amplifier's inputs

Fig. 11. Operational amplifier with 
negative feedback loop K.

Fig. 10. Operational 
Amplifier (OA) symbol.
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Division
Assuming negative feedback loop input voltage vY is limited  to positive values. For ideal 

OA:
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Fig. 12. Division circuit.
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Square up

Fig. 13. Square up circuit with the use of 
multiplier.
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Square root
Assuming the negative feedback loop the output voltage vO is limited to positive values, so 

the input voltage must be negative! Current equation assuming ideal OA:
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Fig. 15. Square root circuit.
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Logarithm

Assuming negative feedback loop and positive collector current input voltage vX is limited 

to positive values. For ideal OA:
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Exponential circuit
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Due to the necessity to force 

the NPN transistor to work in 

the active normal range it is 

necessary to apply polarizing 

voltage VP, vCE= VP.

Fig. 17. Exponential circuit.

Assuming negative feedback loop and positive collector current input voltage vX is limited 

to positive values. For ideal OA:


