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Assessment methods and criteria 
for the subject of ”C-TIF”

• Lecture - written exam.

• Laboratory - 5 simulation exercises (PSPICE).

• Final grade - weighted average of the exam 
grade (weight 3) and laboratory (weight 1).

• For those who are interested, there will be a 
extra exam with 15% attendance at lectures, it 
will be during last hour of lecture or 
immediately after last lecture.
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List of topics - lecture
• Introduction, classification of continuous-time 

active filters.

• Building blocks and properties of operational 
amplifiers (i.e. Amps, OTAs and operational 
transresistance amplifiers).

• Current transformation, the second generation 
current convejors (CCII).

• Introduction to synthesis of active filters, 
normalization procedures, frequency 
transformations, approximation methods.

• The synthesis of second-order active filters.



5

List of topics – lecture, cont.

• Cascade  realizations of high-order filters.

• Circuit methods for grounded and floating 
inductor realizations.

• Methods for LC ladder simulations.

• The design of current-mode filters.

• The design of integrated continuous-time 
fully-differential high-order OTA-C and Gm-
C filters.
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List of topics – lecture, cont.

• Multiple-loop feedback structure realizations.

• Realization of LC ladder using gyrator structures.

• Realization of LC ladder using signal flow graph 
synthesis.

• Sensitivity, noise, nonlinear distortion and dynamic 
range considerations.

• Automatic tuning circuitry and programming.
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List of topics – laboratory

• PSPICE simulation of the CMOS Operational 
Transconductance Amplifier (OTA).

• PSPICE simulation of the second generation Current 
Conveyor (CCII).

• PSPICE simulation of the six order Cascade Filter.

• PSPICE simulation of the six order Gm-C Filter .

• Comparison investigation of properties of the Cascade
Filter and based on LC prototype realization.
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Types of filters based on different 
criteria 

• passive and active,

• analogue and digital,

• continuous–time and discrete time,

• integrated and discrete,

• lowpass, highpass, bandpass, bandstop and 
allpass,

• other criteria...
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Basic definitions [1]

Fig. 1. Two-port network a) with independent input and output 
nodes and b) with common node of signal ground [1].

v1 – voltage source, v2 – output voltage, for harmonic 
signals in a steady state:

)cos()( 111   tVtv )cos()( 222   tVtv

alternatively in complex vector notation written as (the upper 
index in the form of a dash means complex value):

1
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Basic definitions-cont. [1]

Input and output voltages can be also presented using Laplace
transformations of complex variable s, where s=+j, for 
harmonic signals in steady state substitution s=j can be used what 
in turn lead to:
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Transmittance of the circuit is equal to:
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Basic definitions-cont. [1]
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Basic definitions-cont. [1]

In the further part of the materials the marking of the complex 
symbols using upper dash has been omitted.

In the literature, the logarithmic measure of transmittance is 
often used:

[dB]   )(log20)(  jT

For  bigger than 0, the system amplifies the signal, while for 
less than 0, the system introduces attenuation. Although for 
lossy circuits,  is less than zero, its absolute value is often 
given by calling  as loss factor inted of gain factor. In the 
further part of the materials, the sign next to  should be taken 
from the context.
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Basic definitions-cont. [1]

Table 1. Values of loss and gain according to transmittance absolute value [1].
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Filters types according to 
amplitude response [1]

Filters for certain frequencies have so called pass band and stop 
band. Ideally pass band is the frequency range for which |T|=1 or 
similarly =0, and stop band is the frequency range for which 
|T|=0 and similarly =-.

Actually, ideal responses are not realisable but instead filter 
real amplitude response is continuous function presented at the 
slides as dashed line lying next to ideal solid responses.

Besides typical amplitude responses shown on next slides, 
other responses are used in real life. Such responses can be 
realised as combinations of typical responses.
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Filters types according to 
amplitude response –cont.[1]

Fig. 2. Basic types of amplitude filter 
responses, ideal response (solid 
line) and real response (dahsed 
line): 

a) lowpass,

b) hihgpass,

c) bandpass,

d) bandstop [1].
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Filter types-cont. [1]
Actually, filters have transmittances described as ratio of 
polnynomial of nominator N(s) and polynomial of denominator  
D(s):
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where: ai, i =1,...n and bj, j =1,...m are real numbers. Coefficient an

can be set as equal to 1 through nominator and denominator division 
by an. Coefficients of the nominator can be positive, negative or 
equal to 0. All coefficients of denominator ai have to be positive –
otherwise circuit can be unstable. Order of denominator have to be 
equal or grater than order of nominator. 

Because transmittance and its derivatives are continuous functions it 
is impossible to realize ideal characteristics show in Fig. 2.
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Frequency responses of real filters

Fig. 3. Filter specifications and 
actually obtained filter 
responses [1]. Vertical axis is 
the loss of the filter in 
logarithmic scale while 
horizontal axis is the radial 
frequency. 
Approximation is the process 
of finding of transmittance 
which satisfies filter 
specifications.

Synthesis is the process of 
finding of physical realisation 
of required transmittance.
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Inserted loss/gain of the filter while 
maintaining general response shape

Fig.4. Passband filter with extra gain (a) and loss (b) [1].
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Why to use analogue filters in the 
era of digital signal processing?

Today applications of analogue filters:

• as antialiasing / smoothing filters, in this area analogue filters are 
not replaceable!

• for very high frequencies,

• in applications justified by costs.
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Factors determining the type of used  
filter [1]

• the technology required,

• power supply voltages and power consumption,

• the cost of implementation,

• frequency ranges of operation,

• stability and sensitivity to parameter changes,

• the weight and dimensions of the filter,

• noise and dynamic range.
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Analogue filters frequency of 
operation

Fig. 5. Types and frequency ranges of analogue filters [1].
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Passive devices in integrated 
circuits [1]
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Normalisation of devices values and 
frequency
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Normalised values are calculated according to the following 
equations (they are dimensionless):
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Normalisation of devices values 
and frequency – cont.

Normalisation / denormalisation allows the analysis of filters 
around a normalized pulsation chosen as equal to 1rad / sec.

Normalisation does not change the shape of transmittance but only 
transfers to other (usually lower) frequencies.

Using the normalisation and denormalisation process for various 
values of normalising resistance, we have an additional field of 
freedom in the selection of the actual values of elements R, L, C.
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Amplifiers used in integrated circuits

• voltage operational amplifier (OA),

• transconductance amplifier (OTA),

• current conveyor, second generation current 
conveyor (CCII),
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Parameters of ideal and typical OA [1]

Ideally OA is a voltage controlled voltage source having following 
parameters:

- infinitive differential voltage gain,

- common mode gain equal to zero,

- infinitive input resistance,

- output resistance equal to zero,

- infinitive values of: bandwidth, output current and voltage limit, 
slew rate, input and output signal ranges...
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OA–cont. [1]

Typical internal schematic of popular ”741” OA is presented below 
[1].

Fig. 6. Bipolar OA [1] of type 
”741”.
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OA–cont. [1]

Fig. 7. Simplified model of OA from fig.6.
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OA–cont. [1]
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OA–cont. [1]

Fig. 8. Frequency responses and parameters of  ”741” OA [1].



31

OTA (Operational Transconductance Amplifier) [2]

Fig. 9. Typical block diagrams of OTA (a) and its ideal 
representation (b) [2].
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OTA - cont. [2]
Ideal OTA is described by equation:

)(   vvGi mOUT

It is often that value of transconductance factor could be 
controlled by external signal:

BBmm IIGG  )(

Parameters of ideal OTA:

• infinitive input and output resistance,

• transconductance factor Gm of constant value (it does not strive 
for infinity as it is for ideal OA),
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OTA - cont. [2]
Parameters of ideal OTA – cont.:

• voltage gain for OTA without output load tends to infinity,

• no limitation on the ranges of input and output signals, 

• infinitive passband,

• full linearity of the amplifier, OTA’s linearity is very important 
in contrast to the OA, it is because OTA works usually without 
negative feedback,

• no amplification of of common mode signals,

• independence of the output signal on supply voltages, ...
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Basic applications of OTAs [2]

Fig. 10. Basic applications of OTAs (a) inverting amplifier, (b) non-inverting 
amplifier, (c) inverting amplifier using only OTAs, (d) active impedance, (e) 

impedance inverter (gyrator), (f) non-inverting integrator [2].

-

-

+
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Small-signal OTA’s models [1]

Fig. 11. Small – signal models of single output (a) and fully-balanced (b) 
OTAs [1].
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Why OTAs are suitable for HF 
and IC ?

Fig. 12. Voltage mode integrator (a) and its small-signal model (b), current 
mode integrator (c) [1].

Designed capacitances are connected in parallel to the parasitic
capacitancess - so the latter can be included in the design process 
and almost completely eliminated. Such compensation is called 
predistortion.
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Square - law MOS device model
Basic equations for N MOS transistor

drain current in ohmic (also called triode) region:

drain current in saturation (also called penthode) region:

)(0   BSTT vVV
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where: VT – threshold voltage [V],
VT0 – threshold voltage for zero bulk-source voltage, i.e. for VBS=0 [V], 
- bulk effect parameter [ ], 
- surface potential (about 0.7V), 
- mobility of the carriers in the channel [m2/(sec V)], 
COX – oxide capacitance by unit area [F/m2], 
- channel length modulation coefficient [1/V], 
W, L – the width and the length of the MOS device channel, respectively [m].
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Analysis of a simple OTA circuit

Fig. 13. Simple CMOS OTA.

Assumptions:

• the transistors are identical 
in pairs, i.e. M1 = M2, M3 
= M4 and M5 = M6, which 
amounts to the equality of 
their transconductance 
coefficients K,

• the operating point is 
determined by the IBIAS

current source,

• in the first approximation, 
the output resistances of the 
devices are omitted.

GT-i5830
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Analysis of OTA, I / O voltage range
The operating point w determines the IBIAS current, which gives the 
following gate - source voltages:
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Common mode positive/negative voltage swing at input of OTA 
(for zero input differential voltage) assuming all devices in 
saturation is equal to:
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Output voltage range assuming all devices working in saturation 
is equal to:
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Analysis of OTA, simplified small -
signal analysis for low frequencies

Fig. 14. Small-signal 
analysis is made 

assuming short – circuit 
at output.
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For low frequencies:

where:
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Analysis of OTA, simplified small -
signal analysis – cont.

Simplified small-signal model for frequency analysis, it takes into 
account only the gate-source capacitance of the current mirror.

Fig. 15. Simplified small-signal model of OTA from Fig. 13.

Capacitors and resistors values can by expressed by equations:
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where: COX – oxide capacitance by unit area,  - channel length 
modulation coefficient .
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For the output short circuit as in Fig. 15, the OTA transfer function 
is equal to:
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Summary of OTA small-signal 
analysis:

• it is possible to regulate the amplifier's transconductance by 
adjusting the IBIAS current, this control is square root relationship 
and therefore the resultant transconductance changes are not very 
large,

• the parasitic pole lies at =-gm3/CG, which results in severe 
frequency limitation, the solution may be W/L modification to 
broaden the band, usage of high frequency current mirror or usage 
of one-stage OTA with negative load resistance,

• finite low frequency voltage gain may turn out to be too small for 
certain applications, in such a case you some can apply: large L-size 
transistors, cascade current mirrors loads or negative resistance 
loads of the OTA.
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Large-signal analysis of a CMOS pair

iIiD 1

To simplify the calculations, we introduce the following designations:
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Kirchhoff voltage law for the input circuit can be written as 
follows:
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Large-signal analysis – cont.

One can find the input voltage where the output current i differs 
(1-E) times from the ideal value (the E factor is the error of the 
output current):
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so:

The value of the input voltage for which the saturation of the CMOS 
pair occurs, i.e. i=I is equal to:

IDMAXID V
K

I
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For example, if E=1%, then:
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Large-signal analysis – cont.
Large - signal OTA transconductance can be determined by 
calculation of the derivative of the output current in respect to the 
input voltage:
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Similarly as for a current error, a transconductance error can be 
determined. A 1% transconductance error occurs for 
approximately 0,11VIDMAX .
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Large-signal analysis – cont.
Large - signal characteristics for K=100A/V2, VTN=1V, I=50 A

Fig. 16. Output current of the MOS differential pair from Fig. 13.
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Large-signal analysis – cont.

Fig. 17. Large – signal transconductance of MOS pair from Fig. 13.

Large - signal characteristics for K=100A/V2, VTN=1V, I=50 A
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Large-signal analysis – summary:

• the differential CMOS pair has a small range of linearity of the
input differential voltage, representing about 20% of the entire
available input signal for 1% of the current error, alternatively 
representing about 11% of the possible input signal for 1% of 
the transconductance error,

• in order to increase the linearity range, a different V-I converter 
should be used (eg MOS pairs in cross connection, degenerating 
resistors, four transistors in cross connection, MOS transistors in 
the triode range, asymmetrical pairs and others),

• in the differential CMOS pair, tuning of the transconductance 
Gm value can be implemented by adjusting the IBIAS current, the 
change is the square root function of this current.
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Fully differential OTA

Fig. 18. Fully differential OTA, block diagram and circuit realization with the 
use of MOS differential pair and current mirrors.



51

Common Mode Feedback (CMFB)

In an amplifier with a fully differential output, in the case of a differential load or a 
capacitive load, there is the problem of self-acting appearance of voltage on 
individual outputs in respect to the ground. Therefore, these amplifiers have to be 
equipped with a circuit stabilizing common – mode component of the output voltage. 
Such a citcuit is called Common Mode Feed Back (CMFB).

Fig. 19. Fully differential OTA loaded in respect to the ground (a) and fully  
differentially (b). In case (b) it have to be equipped with CMFB, otherwise 

output stage of the amplifier will exhibit high value of common-mode voltage 
and output stage will saturate.
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CMFB example of realization

(a)                                                             (b)

Fig. 20. Principles of operation of CMFB circuitry (a) and realization utilizing 
MOS devices working in triode region (b).
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Computational examples: parameters 
for typical 0.5μm CMOS process

5[V ]VDD-VSS8

0,02[1/V ]P7

0,01[1/V ]N6

2,5[fF/m2 ]COX5

20[A/V2 ]0,5PCOX4

50[A/V2 ]0,5NCOX3

-0,9[V]VTP2

0,6[V]VTN1

ValueUnitParametrL.p.
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Calculation example no 1: OTA

2/5M14

8/5M12, M13

4/5M11

4/5M10

16/5M8, M9

8/5M7

16/4M5, M6

4/4M1-M4

Dim.

W/L

[m/m]

Device

10AVBIAS

-2,5VVSS

2,5VVDD

ValueParameter

All previously presented 
parameters of the OTA have to be 
calculated (pages 39-46).

5[V ]VDD-VSS8

0,02[1/V ]P7

0,01[1/V ]N6

2,5[fF/m2 ]COX5

20[A/V2 ]0,5PCOX4

50[A/V2 ]0,5NCOX3

-0,9[V]VTP2

0,6[V]VTN1

ValueUnitParametrL.p.

5[V ]VDD-VSS8

0,02[1/V ]P7

0,01[1/V ]N6

2,5[fF/m2 ]COX5

20[A/V2 ]0,5PCOX4

50[A/V2 ]0,5NCOX3

-0,9[V]VTP2

0,6[V]VTN1

ValueUnitParametrL.p.
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Calculation example no 1: OTA – cont.
The results of the calculations are as follows:

ID10=10A, ID7=20A, ID8= ID9= 40A, ID5= ID6= 40A,

K1= 50A/V2, K3= 20A/V2, K10= 40A/V2, K14= 20A/V2,

VGS1=1,047V, |VGS3|=1,607V, VGS7..GS8=1,1V, VDS11..DS14=0,132V,

VSWI-=-0,821V, VSWI+=1,493V, VSWO-=-1,868V, VSWO+=1,907V,

Gm=89,44S, P=-212,2Mrad/sec (33,77MHz),

Ao=149,1V/V=43,5dB, VIDMAX=0,632V,

1% current error occurs for |vID|=0,126V, 

1% transconductance Gm error occurs for |vID|=0,0695V, 
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Homework no 1
For the OTA amplifier shown in the drawing, determine the 
parameters discussed earlier in the lecture. Technology parameters 
as previously stated.

2 * 2/2M11

2/2M14

4 * 2/2M12, M13

4/2M10

4 * 4/2M8, M9

2 * 4/2M7

4 * 2/2M5,M6

2/2M3, M4

12/4M1,M2

Dimmensions

W/L

[m/m]

Device

10AIBIAS

-2,5VVSS

2,5VVDD

ValueParameter
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First and second generation current 
conveyor

Fig. 21. Graphical representation  
of current conveyor. CCI stands 

for first generation current 
conveyor while CCII is for 

second generation
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For CCI a=1, while for CCII 
a=0. For a positive conveyor, the 
"+" sign next to the one is 
selected.

In the literature there are also known conveyors with current 
amplification, in such a case "1" from the bottom row changes into 
the current gain factor "k".
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CCII+ exemplary internal structure 
and parameters [3]

(a)                                                             (b)

Fig. 22. CCII+ schematic in CMOS technology (a) and its real parameters (b) [3].
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Basic applications of CCII -
voltage amplifier

Fig. 23. Voltage amplifier using CCII+. 
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Basic applications of CCII -
differential voltage amplifier

Fig. 24. Differential voltage amplifier 
using CCII+. 
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Basic applications of CCII -
adder

Fig. 25. Voltage adder with the use of CCII+. 
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Basic applications of CCII -
gyrator

Fig. 26. Gyrator with the use of CCII+. 
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Basic applications of CCII -
integrator

Fig. 27. Integrator with the use of CCII+. 
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Basic applications of CCII -
differentiating circuit

Fig. 28. Differentiating circuit with the use of CCII+. 
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Second order sections (biquads), 
lowpass (LP) section [1]

Transfer function of II-order lowpass section is given by:
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s
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where: H – gain for low frequencies, Q – quality factor and 0– pole 
frequency, also sometimes called natural frequency or corner 
frequency.

Poles of T(s) are a pair of conjugates on the left s-plane. Hence if we
denote the denominator of T(s) as:

 222 2))(()(   ssjsjssD

Parameters and poles locations can be tied by equations:
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Second order sections, LP – cont. [1]
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Fig. 29. Pole location and relationship with biquad parameters  [1]. 
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Second order sections, LP – cont. [1]

Fig. 30. Pole locations for different values of biquad 
parameters [1]. 
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Second order sections, LP – cont. [1]

Normalized frequency responses (in respect to module and natural
frequency) can be obtained by assumption H=1 and substitution  
sn=s/0. Then we get:
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Thus, the amplitude and phase characteristics are equal to:
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Second order sections, LP – cont. [1]

Fig. 31. Frequency responses of the second order lowpass section, (a) 
amplitude and (b) phase[1]. 
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Second order sections, LP,  realization I 
(sum products)

Physical implementation of the normalized second order section:
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Fig. 32. Direct implementation of the second order 
lowpass section using products of sum. 
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II - order sections, LP,  realization II 
(product realization)

Fig. 33. Realization of block 1/(s+1/Q) – lossy integrator.

1
1)(

)(
)(

2

0





s
Q

s

H

sV

sV
sT

I








 1

1
)()( 2

0 s
Q

ssVsHVI=>

)()()(
1

00 sVsHVsV
Q

ss I 









=>

=>  
 Qss

sVsHVsV I
1

11
)()()( 00


 =>

QssV

sV
sV

Q
sV

ss
sVsV

A

C
CABC

1

1

)(

)(
)(

1
)(

11
)()(















72

II - order sections, LP,  realization II 
(product realization)

Fig. 34. Direct implementation of the second order lowpass section - products.
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Physical implementation of the 
second-order lowpass section [1]

Fig. 35. Realizations of the biquad from Fig. 34 with changes of integration and 
gain signs [1].
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Physical implementation of the second-
order lowpass section –cont.[1]

Fig. 36. Components for biquad implementation using operational amplifiers [1].

Fig. 37. Tow-Thomas biquad section , normalized [1].
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How to get a real filter from the 
normalized version?

• through denormalization procedure,

• through comparison of circuit having real 
values components with desired transfer 
function
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Denormalization with the use of 
calculation example (no 2)

Calculation example: Please design Thow-Thomas lowpass biquad 
section with natural frequency of value f0=10kHz, quality factor Q=10 
and gain equal to H=1. 

Denormalizing radial frequency: S=2f0=2*3,1415*10kHz=                    
62831,5[rad/sec],

We assume normalizing resistance of convenient value, for example 
RS=10k. Hence all resistors have values of 10k except resistor in 
lossy integrator whose vale is equal to RS *Q=100k.

Capacitance values are equal to: 
C=CN*1/(RS*S)=1/10k/62381,5rad/sec=1,5915nF
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Frequency responses after 
denormalization procedure

Fig. 38. Frequency responses of Tow-Thomas biquad after denormalization.



78

Transfer function comparison 
method [1]

Fig. 39. Tow-Thomas biquad section [1].

Transfer function of the circuit in Fig. 39 is equal to [1]:
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Comparison method – cont. [1]
Transfer function of second – order lowpass section is equal to:
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Comparing above equation with transfer function for Tow-Thomas 
biquad one can obtain:
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The Tow-Thomas section enables orthogonal (independent) tuning of 
parameters:

• we can first set values: R2, R4, C1, C2 to obtain the desired value of 0,

• then by adjusting R1 we only change Q - without H and 0 changes,

• finally we set R3 which changes only H - without changes in Q and 0.
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OTA-C implementation

Fig. 40. Product realization of second-order lowpass section (a) and its 
normalized OTA-C implementation (b).

(a)

(b)
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Mixed mode voltage / current  
OTA-C implementation

Fig. 41. Product realization of second-order lowpass section (a) and its 
normalized, mixed mode voltage and current  OTA-C implementation (b).

(a)

(b)
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Fig. 42. Conversion of the single output to 
fully differential OTA-C implementation [1].
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Fully differential OTA-C 
implementation

Fig. 43. Fully differential version of the filter from Fig.41.
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Calculation example no 3

Please design fully differential lowpass 2-order OTA-C filter with 
quality factor Q=4, gain H=1 and natural frequency f0=50MHz 
by the use of:

a) denormalization and

b) transfer function comparison.

OTAs with gm values in the range of 10-100S are available. 
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A) – solution with the use of denormalization. Denormalizing radial
frequency:

sec/16,3145022 00 MradMHzf  

Since the available transconductances are in the range of 10-
100S, we choose the main transconductance equal to 100S 
and hence the value of the normalizing resistance is equal to:

R
R

R
S

n

1
 GRG Sn  Sn RGG GGR nS 

 kSRS 101001 

while capacitor values are equal to:

  pFMradkRCC SSn 31831,0sec)/16,31410/(1  
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Transconductance of a 1/Q normalized amplifier reach the value of:

SkRGG SnQ 2510/4/1/1 

Thus the final filter scheme will be as follows:

Fig. 44. Calculated values of filter devices using the 
denormalization method.
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B) Transfer function comparison method.

Fig. 45. General schematic of lowpass second order OTA-C 
section.
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B) Transfer function comparison method – cont. The determination 
of the values of the output voltage and intermediate voltage from the 
system gives the following results:
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Comparing the above expression with 
the general LP II order section 
transfer function one can obtain:
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B) Transfer function comparison method – cont. We have a larger 
freedom for device’s values selection than for denormalization of the 
prototype method. For example, we can choose the same values of
transconductances, each equal to 100S and then capacitors 
determine from the formulas:
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Fig. 46. Calculated values of filter devices using the transfer function comparison method.
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Homework no 2
Please design a second order lowpass filter with quality factor 
Q=5, gain H=2 and natural frequency f0=5kHz using second 
generation current conveyors. Use the product realisation of 
biquad section as shown in the figure below for the design. 
Values of devices have to be calculated using denormalization as
well as transfer function comparison methods.
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II – order sections, all types of 
transfer functions [1]

Fig. 47a. II-order sections - magnitude responses and 
poles and zeros locations [1].



92Fig. 47b. II-order sections - magnitude responses and poles and zeros 
locations [1].
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Fig. 48. II-order sections - phase
responses [1].
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Higher order filters

Fig. 49. II-order sections in cascade configuration can gain in more 
ideal (brick wall) lowpass frequency response [1].
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Popular approximations

• Butterworth, maximally flat magnitude

• Chebyshev, equal-ripple magnitude

• Inverse Chebyshev

• Cauer

• Elliptic

• Bessel-Thomson, and others
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Butterworth response [1]

)(Im)(Re)(  jTjjTjT 

Transfer function T(j) can be written as the sum of real and 
imaginary parts:

The real part is symmetrical in respect to the Y axis and the 
imaginary part is symmetrical in respect to the origin of the 
coordinate system:

)(Im)(Re)(  jTjjTjT 

T(-j) is conjugate of T(j):

)()( *  jTjT 

Because:

    222* )(ImRe)()(  jTTTjTjT 

So:

)()()(
2

 jTjTjT 



97

Butterworth response – cont. [1]

)(

)(

)(

)(
)(

2

2

2

2

2










B

A

jD

jN
jT

n

n

n 

We can express the square of the transfer function module as a 
fraction of two polynomials, where n expresses the degree of a 
polynomial and the polynomials A and B must be even:

Let define a characteristic function K(s) being the deviation of the 
inverse of the transfer function module from unity:
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The value of the characteristic function module in the filter band 
should be equal to zero and infinity beyond this band.
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Butterworth response – cont. [1]

Fig. 50. Plots of the transfer function module (a) and the characteristic 
function module (b) for the low-pass filter [1].

An exemplary graph of the transfer function module is shown in 
Fig. 50 (a) and the characteristic function module in Fig. 50 (b).
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Butterworth response – cont. [1]

For a lowpass filter, the normalized value of polynomial A is equal 
to 1. Thus, the square of the transfer function module can be 
described as:
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Hence, the square value of the characteristic function module will 
be equal to:
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Now assume that the characteristic function |K(j)| should be as 
flat as possible - so its subsequent derivatives for =0 should be 
equal to zero, hence:  
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Butterworth response – cont. [1]
From the previous expression, it follows that B2=B4=B2(n-1)=0 and 
the characteristic function takes the form:
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The square of the transfer function module is equal (for 
designation B2n=):
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Fig. 51. Butterworth amplitude 
responses for orders from n=1 do 10, 

=1 [1].
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Butterworth response – cont. [1]
If we assume that =1, then:
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The properties resulting from the above equation are as follows:

• there is no zeros of transfer function,

• |Tn(j0)|=1 regardless of n,

• |Tn(j1)|=1/20,5=0,707 which corresponds to -3dB on the amplitude 
characteristic,

• for large  we have a decrease in amplitude responses equal to 
20n/decade.
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Butterworth response – cont. [1]
It can be mathematically proved that the positions of the 
Butterworth transfer function poles are uniform on the unit circle. 
This is shown in Fig. 52.

Fig. 52. Location of Butterworth 
transfer function poles for orders from 
n = 1 to 7 [1].

Fig. 53. Butterworth's phase curves for 
orders from n = 1 to 10 [1].
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Butterworth response – cont. [1]
Locations of the Butterworth transfer function poles [1]:

Coefficients of the denominator polynomial [1]: 
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
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Butterworth response – cont. [1]

Quality factors Q of Butterworth’s poles: [1]
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Butterworth response – cont. [1]
In order to determine which order of the filter is sufficient, one can 
use the following formula or use the monograms available in the 
literature [1].
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Calculation example no 4 – cascade 
realization of the filter

A lowpass filter of 7-order using Butterworth approximation 
should be designed. The 3dB passband of the filter should be equal 
to 50kHz and cascade implementation should be used.

Solution: From the table of quality factorses of Butterworth 
transfer function, we read the following values: Q=0.55, Q=0.8 and 
Q=2.24 and the need for real pole. Hence our filter will consist of 3 
biquad sections (implemented using any amplifier, e.g. OTA, OA, 
CCII+) and a section with a real pole (e.g. RC).

Fig. 54. Implementation of the filter from the calculation example.
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Calculation example – results 
checking using the PSPICE simulator

PSPICE file:
VII – order, lowpass, Butterworth’s filter
.param f=50k
.param w={2*3.1415*f}
Vin in 0 dc 0 ac 1 sin(0 1 1)                        -- input
.subckt biquad_lp_id out in params: wo=1 Q=1         -- declaration of biquad sec.
E1 out 0 laplace {V(in)}={wo*wo/(s*s+wo/Q*s+wo*wo)}
.ends
.subckt real_pole out in params: wo=1                -- decl. of real pole section
E1 out 0 laplace {V(in)}={wo/(s+wo)}
.ends
************** Filter sections
X1 2 1 biquad_lp_id params: wo={w} Q=0.55
X2 3 2  biquad_lp_id params: wo={w} Q=0.8
X3 out 3  biquad_lp_id params: wo={w} Q=2.24
X4 1 in real_pole   params: wo={w}
RL out 0 1                                           -- load
************** Analyzes
.ac dec 100 .001 100
.tran 0.01 10 9 0.01
.probe
.end
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PSPICE simulation results



109

RLC prototype based filters [1]

Although RLC filters are not active integrated filters they are very 
useful in the design of active filters due to:

• low sensitivity of filter parameters in respect to filter 
components parameters,

• those filters are widely used today for high frequencies or for
powerless systems,

• active filters are designed based on passive prototypes what 
gives the transfer of good properties to their active counterparts,

• already known knowledge of approximation and synthesis of 
filters can be used.
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RLC filters synthesis [1]

Fig. 55. Double terminated 
RLC filter: (a) general 
representation, (b) VI order 
lowpass filter, (c) impedance 
and admittance representation 
of the filter [1].
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RLC filters synthesis [1]-cont.
Input impedance of the filter in Fig. 55(a) is equal to:
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Input current can be calculated as:
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RLC filters synthesis [1]-cont.
The transfer function T(s) in now multiplied by the coefficient 
sqrt(4R1/R2) to obtain the H(S) normalized to 1 for the pass band:

1
4

)(

)(4
)(

2

1

1

2

2

2

12





in

in

S ZR

RR

jV

jV

R

R
jH






Using previous equations one can obtain
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The (j) term is cold reflection coefficient. Using above equations 
it can be find as:
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RLC filters synthesis [1]-cont.

And  hence:

What gives 2 possible input impedances:
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The above two impedances implement our desired transfer function. 
The procedure for synthesizing the RLC prototype is thus as follow:

• we have a given H(s) and from here we find (s),

• then we set values of R1 and R2 and get two possible values of 
Zin(s) realizing the given transfer function,

• finally we can arrange the RLC ladder with the designated 
impedance Zin(s).
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RLC filters 
synthesis [1]-

cont.

Fig. 56. RLC filters synthesis 
procedure example [1].
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RLC filters synthesis [1]-cont.

Fig. 57. Values of normalised Butterworth RLC filter prototype [1].
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Calculation example – VII order RLC  
Butterworth filter (#5)

A low-pass Butterworth, RLC, VII order filter with 3dB frequency 
of  50kHz should be designed

Solution: choose one of the implementations from the table, select a 
normalizing resistance equal to, for example, 20k and then based 
on the normalised values table (Fig. 57) calculate the actual values 
as:

n

S

S L
R

L


n

SS

C
R

C


1
 nS RRR 

Calculation results:

R1=R2=20k, C1=70,82pF, L2=79,38mH, 
C3= 286,8pF, L4=127,3mH, C5=286,8pF, 
L6= 79,38mH, C7= 70,82pF

kHzS 502 
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Calculation example (#5) PSPICE 
silulation results

Fig. 58. Results of the PSPICE simulation of the Butterworth filter realized by 
the cascade technique (green) and using the RLC prototype (red).
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Homework no 3

Please design a 6th order filter using Butterworth approximation of  
transfer function. Please use cascade implementation (with OTA-C 
biquads) and also RLC ladder implementation. Filter should exhibit 
3dB passband for frequency equal to 100kHz. Available are OTA 
amplifiers of S transconductance value, resistors of values in 
the range of 10 - 30k and capacitors of any value. In order to 
verify design correctness the PSPICE simulation of the filters should 
be also performed.
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Active filters based on RLC 
ladder filters

Due to the good sensitivity properties, RLC filters are often a 
pattern that is then used for implementation one of  following 
ways:

• direct simulation of the RLC prototype,

- direct devices replacement method (+ impedance 
transformations),

- using Bruton's transformation,

- using Gorski – Popiel’s technique,

• simulation of the signal flow graph.
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Direct simulation of RLC prototype 
– gyrator

Fig. 58. Gyrator (a) and its symbol (b) and use as a coil imitation [1].

The gyrator is described by the following equations, where gm is 
a gyration conductance parameter:

1221   oraz  gmVIgmVI 

If the impedance ZL is placed on terminals ”2” of the gyrator, 
impedance seen from ”1” terminals will be equal to:

)(

111
)(

2
2

2

2 sZgmV

I

gm
sZ

L

in 








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Direct simulation of RLC prototype 
– gyrator, cont. 

So when the gyrator is loaded with a capacitor, at the input a coil 
with an inductance equal to L=C/gm2 is seen:

sL
sCgm

sZ sCZin L


)/(1

11
)(

2)/(1

How to realize a gyrator? Using equations of the gyrator, e.g. 
directly, through the use of transconductance amplifiers.

Fig. 59. OTA implementation of a grounded gyrator.
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Direct simulation of RLC prototype 
– gyrator, cont.

Fig. 60. Fully-differential OTA 
implementation of a non-grounded 

gyrator.

Fig. 61. Realization of a non-grounded 
coil using 2 gyrators [1].
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Direct simulation of RLC prototype 
– gyrator, cont.

Fig. 62. Implementation of non - grounded symmetrical coils using two 
fully-balanced OTAs.

Homework no 4
How can the gyrator be realized using operational amplifiers and
second generation current conveyors? Please provide schematics 
and values of gyration conductance / resistance factors.
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Direct simulation of RLC prototype –
summary

Summary of the technique:

• devices that can be directly implemented are carried out without 
changes, examples: capacitors, sometimes resistances,

• the remaining devices are realized by active simulation, examples: 
L => gyrator + C, R => OTA in the resistor connection ... 

• the real devices values are calculated by denormalization of the 
RLC prototype, it is based on known filter characteristic frequency  
and possible ranges of realizable values of active and passive 
devices.
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Calculation example no 6
Please design a lowpass, V-order, Butterworth approximation, fully 
differentional OTA-C filter with 3dB passband frequency equal to 
20MHz. Direct simulation of RLC ladder prototype should be used.
OTAs with S transconductance are available.

Solution: one can find in Fig. 57 the values of the normalized RLC 
prototype elements. There are two possible realizations containing 3 
coils and 2 capacitors or 3 capacitors and 2 coils. We choose the 
implementation with a smaller number of coils, because these 
elements are implemented using the simulation method. The prototype 
of the RLC filter is thus as below:

Fig. 63. A normalized RLC ladder prototype of a V-order lowpass filter 
with a Butterworth approximation [1].
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Fig. 64. A fully differentional OTA-C filter implemented by direct RLC 
ladder prototype simulation method.
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The values of individual devices can be calculated on the basis of 
denormalization:

 kSgmRS 2050/1/1  sec/66,125202 MradMHzS  
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General simulation of signal flow graph 
of the RLC ladder prototype [1]

Vo

Y1

Z2

Y3

Z4

Yn-1

Zn Vn

V2 V4

I3I1 In-1 In+1= 0

........

........

Fig. 65. Immitance ladder representing the RLC filter.

Fig. 65 shows a typical immitance ladder of the RLC filter. The number of Z/Y
devices is n. In the case of the odd order of the filter, i.e. when m=n-1, the device  Y1

or Zn must represent only the resistance. The admittance devices have odd indexes, 
and impedance one have even indexes. For the distinction they will be marked with 
the letters i and j respectively. Input and output voltages are denoted by V0 and Vn, 
respectively. According to Fig. 65, current flowing through Y branches and voltage 
on Z branches can be represented by the following formulas:
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  2312 )()()( ZsIsIsV 

  3423 )()()( YsVsVsI    4534 )()()( ZsIsIsV 

...

  121 )()()(   nnnn YsVsVsI   jjjj ZsIsIsV )()()( 11  

  1201 )()()( YsVsVsI 

Those relationships are valid for odd values of i in the range from 1 to 
n-1 and even j values in the range from 2 to n, with In+1(s)=0. In each 
of the above equations, there are currents and voltages related to the 
respective branches. We multiply those equations and divide them by 
the resistive scaling factor R* and get:

  *11* )()()( RYsVsVsIR iiii     **1*1 /)()()( RZRsIRsIsV jjjj  

  iiii YsVsVsI )()()( 11  

The above equations can be rewritten in the general form:

  jjjj ZsIsIsV )()()( 11  
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Marking further as:

)()(* sVsIR Iii  Yii TRY * Zjj TRZ */

we get:

  YiiiIi TsVsVsV )()()( 11     ZjIjIjj TsVsVsV )()()( 11  

And then we can accomplish these equations using a voltage signal 
graph as shown in the figure below.

Fig. 66. Signal flow graph realizing the simulation of the filter prototype 
from Fig. 65.

TZn

........

........

V2V0 V4 Vn

VI1 VI3 VI5 VIn+1=0

1 -1 1 1 1-1 -1

-1 -1 -1 -11 11

TZ4
TZnTY3TZ2TY1 TY5

........
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Simulation of the signal flow graph of 
the RLC ladder lowpass prototype [1]

Fig. 67. Lowpass RLC filter.

The lowpass filter can contain serial R-L circuits in horizontal 
branches and parallel R-C in vertical branches. Therefore, the 
corresponding values of the lowpass filter immitances can be 
expressed by the following relationships:

jj

j
RsC

sZ
/1

1
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

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i
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


1

)(
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In the absence of resistive elements, the equations above take the 
form:

i

i
sL

sY
1

)( 
j

j
sC

sZ
1

)( 

After multiplying / dividing by the scaling resistance R* we get 
transfer functions:
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*

1
/)(

RsC
RsZT

j

jZj 

The above transfer function represent lossy or ideal integrators for 
branches with or without resistances, respectively.

The lowpass RLC filter can be implemented using integrators and 
active adders!
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OTA-C implementation of lowpass 
signal flow graph simulation technique

Practical OTA-C filters are usually made using differential 
amplifiers. In order to simplify the schematic diagrams of presented 
implementations here grounded OTAs are used.

Fig. 68. Implementation of the summing and integrating branch using 
OTA amplifiers and capacitors.
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Comparing the previous expressions with the description of the circuit 
from Fig. 68 and using the denormalization of the RLC prototype, the
TYi transfer functions can be realized in the manner shown in Fig. 69. 
In this case, the system parameters can be calculated using:

Fig. 69. TYi branch realisation of transfer function for lowpass filter.
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gm1i
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S

Gi
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C

gm *1  Pi
S

ii R
R

R
gmgm

*

12 

where: gm1i, gm2i, Cgi – values of devices in corresponding i branch , 
R* - scaling resistance, RS – normalizing resistance.
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Similarly as above, for TZj we can get:

*

1

RC

R

C

gm

Pj

SS

Gj

j 


PjS

jj
RR

R
gmgm *

12 

where: gm1j, gm2j, CGj– values of devices in corresponding j branch, 
R* - scaling resistance, RS – normalizing resistance.

Fig. 70. TZj branch realisation of transfer function for lowpass filter.
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Calculation example no 7
Please design a fully differentall, lowpass, V-order filter, Butterworth 
approximation with 3dB passband equal to 20MHz. The RLC ladder 
prototype signal flow graph simulation technique should be used.
OTAs with transconductance equal to S are available.

Solution: we find in Fig. 57 the values of the standardized RLC ladder 
prototype devices. There are two possible realizations containing 3 
coils and 2 capacitors or 3 capacitors and 2 coils. We choose any 
implementation, e.g. like this one below:

Fig. 71. RLC ladder prototype of the V-order lowpass filter.
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On the basis of Fig. 69 and Fig. 70, we set the final schematic of the 
filter as in Figure 72.

Fig. 72. OTA-C implementation of V-order, lowpass filter using signal
flow graphs simulation. In place of amplifiers, both symmetrical and 

grounded OTAs can be used.
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To determine the final values of devices, we assume that the 
normalizing resistance is equal to the scaling resistance RS=R*, using 
transconductance of value gm=S for all OTAS we get values:
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Frequency transformations [1]
So far, the lecture presents techniques of approximation and 
synthesis of lowpass filters. Frequency transformations allow the 
transfer of known techniques for lowpass filters to filters with
different characteristics. There are many different frequency 
transformations known and here the two basic ones will be 
presented:

• LP – HP transformation,

• LP – BP transformation.

The symbolism used will be as follows:

• coordinates associated with the LP prototype will use capital letters 
S=+j,

• coordinates for the target filter will use lower case letters sj. 
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Frequency transformations [1]-cont.
The problem that we want to solve can be presented as follows:

• we have transfer function TL(S) with known and desirable 
parameters,

• we are looking for a function X transforming this transfer function 
to a highpass, bandpass or other desired transfer function:

=X

• we want to transform only the horizontal axis of the |TL(j )|
module, without any change in the vertical axis,

• it must also be remembered that transmittance TL(j ) is an even 
function of frequency, also defined for negative values.
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LP – HP transformation [1,5]
Transformation is made by substitution:



1


What for the complex variable corresponds to the transformation:

s
S

1


Fig. 73. Frequency change in LP - HP transformation [1].
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Fig. 74. Transformation of 
highpass filter requirements 
into the equivalent lowpass 
one [1].

The procedure of highpass filter design using LP-HP transformation:

• frequency normalization of the highpass filter,

• transfer of the characteristic frequencies to the lowpass form using 
the rule of inverting frequency values (omitting the sign), this is 
shown in Fig. 74,

• selection of the transfer function of an appropriate filter that meets 
requirements of lowpass filter (approximation),

• determination of highpass filter transfer function by substitution 
S=1/s,

• realization of the determined transfer function (synthesis).
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Remarks regarding realization of the 
new, highpass transfer function 

In the case of cascade realization using biquad sections, the LP
transmittance changes as follows:
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Hence the conclusion that in the case of a cascaded filter realization, 
frequency transformation converts LP biquads to HP ones.

where: 
O

O


1

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Remarks regarding realization of the 
new, highpass transfer function

In the case of RLC ladder prototype simulation, the devices are 
replaced, which can be determined by comparing the immitances:

C
s

Y/sSSCY HPCLPC

1
 admitance  tochanges 1for  ,, 

The remaining devices are unchanged.

L
s

Z/sSSLZ HPCLPL

1
  impedance  tochanges 1for  ,, 

Hence the conclusion that capacitor C in the LP filter turns into a 
1/C coil in the HP filter. Similarly, the L coil in the LP filter turns 
into a 1/L capacitor in the HP filter.

LP – HP transformation does not change order of the filter.



145

Calculation example no 8, 
highpass filter design

Please design a highpass filter which should attenuate less than 3dB 
signals with frequencies above 50kHz and more than 40dB signals 
with frequencies below 12.5kHz.

Solution: we carry out the procedure in accordance with the 
principles of using the LP => HP transformation:

• normalization: 50kHz -> 1rad/sec, 12,5kHz ->0,25rad/sec,

• transformation of requirements to LP: attenuation for 1rad/sec 
remains on 3dB, while attenuation of 40dB for 0.25rad/sec turns into 
attenuation equal to 40dB for 1/0.25 = 4rad/sec,

• we use Butterworth approximation, from the graph on page 104 we
find a filter order of at least 4,
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When implemented in a cascade form, we get two HP biquad 
sections with Q=0.54 and Q=1.31 (table on page 103) and a natural 
frequency of 50kHz.

Fig. 75. Cascade realization of highpass filter.

When implementing based on the RLC ladder, we start with the 
RLC prototype as shown below (from page 114, fig. 57).

Fig. 76. LP RLC IV-order Butterworth prototype [1].
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Then we change the LP prototype to the HP one, what gives the 
circuit as below.

Finally, the HP RLC prototype is denormalized and implemented in 
an active form by any method, e.g. direct prototype simulation or 
signal flow graph simulation.

Fig. 77. HP RLC 4th order Butterworth prototype.
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Fig. 78. OTA-C fully differential implementation of 4-th order highpass
Butterworth's filter.

kHzS 502 

Suppose we have OTA amplifiers with gm=81,S, then the values 
of individual capacitors can be determined from the equations:

SgmRS 04,81/1/1 

pF
gm

C
S

85,674
7654,0

1
21 


pF

gm
C

S

18,279
848,1

1
23 



pF
gm

gm
gm

gmLC
SS

58,139
848,1

11

848,1

1 22
22 



pF
gm

C
S

02,337
7654,0

1
4 





149

PSPICE netlist to the calculation example no 8
Example No 8
* Parameter settings
.param fo=50k
.param wo={2*3.1415*fo}

* Input source
Vin in 0 dc 0 ac 1
* Input for balanced filter
Ep in_p 0 in 0 0.5
Em in_m 0 in 0 -0.5

* Declaration of ideal HP biquad subcircuit
.subckt biquad_hp_id out in params: wo=1 Q=1
E1 out 0 laplace {V(in)}={s*s/(s*s+wo/Q*s+wo*wo)}
.ends

* Cascaded ideal filter version, output node (2)
X1bq 2 1 biquad_hp_id params: wo={wo} Q=0.54
X2bq 1 in biquad_hp_id params: wo={wo} Q=1.31
RL 2 0 1

* RLC HP denormalized prototype, output node (7)
.param rs={1/gm}
.param gm=81.04u
Ri in 5 {1*rs}
C1 5 6 {1/0.7654/wo/rs}
L2 6 0 {1/1.848/wo*rs}
C3 6 7 {1/1.848/wo/rs}
L4 7 0 {1/0.7654/wo*rs}
Ro 7 0 {1*rs}

* Power supply for OTAs
vdd vdd 0 2.5V
vss vss 0 -2.5V

*OTA subcircuit declaration
* Name out+ out- in+ in- Vdd Vss
.sub OTA out_p out_m in_p in_m Vdd Vss
M1 1 in_p 3 vdd pfet w=12u l=4u
M2 2 in_m 3 vdd pfet w=12u l=4u
M3 1 1 vss vss nfet w=2u l=2u
M4 2 2 vss vss nfet w=2u l=2u
M5 out_m 2 vss vss nfet w=2u l=2u m=4
M6 out_p 1 vss vss nfet w=2u l=2u m=4
M7 3 7 4 vdd pfet w=4u l=2u m=2
M8 out_m 7 5 vdd pfet w=4u l=2u m=4
M9 out_p 7 5 vdd pfet w=4u l=2u m=4
M10 7 7 6 vdd pfet w=4u l=2u m=1
M11 4 0 vdd vdd pfet w=2u l=2u m=2
M12 5 out_m vdd vdd pfet w=2u l=2u m=4
M13 5 out_p vdd vdd pfet w=2u l=2u m=4
M14 6 0 vdd vdd pfet w=2u l=2u m=1
Ibias 7 vss 10u
.ends

* OTA-C fully balanced HP filter, output nodes (16,15)
C1gma  11  13  674.85pF
C1gmb  12  14  674.85pF 
C2gm   13b 14b 139.58pF
C3gma  13  15  279.18pF
C3gmb  14  16  279.18pF 
C4gm   15b 16b 337.02pF
X1 12   11 in_p in_m Vdd Vss OTA
X2 12   11   11    12 Vdd Vss OTA
X3 16   15   15    16 Vdd Vss OTA
X5 14b  13b  13    14 Vdd Vss OTA
X6 14   13   14b   13b Vdd Vss OTA
X7 16b  15b  15    16 Vdd Vss OTA
X8 16   15   16b   15b Vdd Vss OTA

* analysis
.ac dec 100 1k 1000meg
.lib ami_c5.lib
.probe
.end
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Fig. 79. Results of PSPICE simulations of HP IV-order filter from example no 8, 
(green) cascade implementation using ideal biquad sections, (red) denormalized HP 
RLC prototype, (blue) symmetric OTA-C implementation using real CMOS OTA 

amplifiers (the same as in lab ex. no 1).
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LP – BP transformation [1,5]
Rules are the same as for LP=>HP, only the transforming function
changes.
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Fig. 80. Replacement of frequency characteristics in the LP=>BP transformation [1].
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Fig. 81. Transformation of the frequency axis in the LP => BP transformation [1].
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The substitution S=f(s) for the LP=>BP transformation changes 
the order of the resultant filter to a twice higher value.
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The conversion of the LP filter devices into BP equivalents can be 
calculated using the comparison of immitances:
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Fig. 82. Replacement of the devices of LP prototype after LP=>BP
transformation.
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Calculation example no 9,
design of bandpass filter

Please design a bandpass filter with an attenuation not greater than 
3dB in the 900kHz - 1100kHz band. For frequencies below 800kHz 
and above 1200kHz filter attenuation should be at least 15dB.

Solution: we perform the procedure as for the HP filter:

Normalization of filter requirements to o =1 :

kHzkHzkHzfffO 995900110012 

sec/625182 kradfOS  

9045,0995/900/2      900 111  kHzkHzfkHzf SBPBP 

1055,1995/1100/2      1100 222  kHzkHzfkHzf SBPBP 

201,09045,01055,112  BPBPBW 
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804,0995/800/2      800 333  kHzkHzfkHzf SBPBP 

206,1995/1200/2      1200 444  kHzkHzfkHzf SBPBP 

Transfer of BP normalized frequencies LP frequencies:



 221 O

BW




1
9045,0

19045,0

201,0

1 22

1 


 1
1055,1

11055,1

201,0

1 22

2 




188,2
804,0

1804,0

201,0

1 22

3 


 8747,1
206,1

1206,1

201,0

1 22

4 




In the frequenies listed above, the minus sign should be omitted. The 
required attenuation for 4 is more stringent than for 3. We choose 
the approximation of Butterworth and using the drawing on page 104 
we can see that in the pulsation range equal to 1.8747, this figure is 
not precise enough to estimate the required order of the LP filter.
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nn jT
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1
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
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
So we use followin equation:

 

723,2
6284,0

422,3

2

1

8747,1ln

623,30ln

2
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)623,30(log
2

1
1
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1
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2

1
1
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1
log

2

1
8747,1220/15

8747,12
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

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


























jT
n

n

We choose the integer value n=3. Now it is necessary to 
implement the Butterworh LP 3 filter properly denormalized and 
transformed to the BP version. We choose the method of direct 
simulation of the RLC prototype.

Fig. 83. Butterworth's LP, RLC, III-order normalized prototype [1].



157

Fig. 84. Butterworth, BP, normalized, VI-order, RLC prototype corresponding to 
the LP prototope from Fig. 83 for BW=0.201.

Fig. 85. Fully differentail OTA-C realization of the filter prototype from Fig.84.
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Values of capacitors are determined using denormalization 
procedures, we assume that gm=81.04S:

pF
gm

C
S

49,64
201,0

1
1 


sec/8,62512 kradfOS  

pF
gm

gm
gm

gmLC
SS

L 6055,2201,0
1

1

201,0 22
11 



pF
gm

C
S

6055,2
2

201,0
22 



pF
gm

gm
gm

gmLC
SS

L 98,128
201,0

21

201,0

2 22
22 



pF
gm

C
S

49,64
201,0

1
3 



pF
gm

gm
gm

gmLC
SS

L 6055,2201,0
1

1

201,0 22
33 


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Fig. 86. Results of PSPICE simulation, (green) RLC prototype, (blue) filter as in 
Fig. 85 with ideal OTA amplifiers and (red) OTA amplifiers as in lab ex. no 1.
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Rys. 87. Results of PSPICE simulation zoomed to passband region, (green) RLC 
prototype, (blue) filter as in Fig. 85 with ideal OTA amplifiers and (red) OTA 

amplifiers as in lab ex. no 1.


