Continuous-Time Integrated
Filters

First semester of second level studies
Prepared by PhD., DsC., Bogdan Pankiewicz, Associate Professor

Gdansk, March, 2018



Assessment methods and criteria
for the subject of ”C-TIF”

Lecture - written exam.
Laboratory - 5 simulation exercises (PSPICE).

Final grade - weighted average of the exam
grade (weight 3) and laboratory (weight 1).

For those who are interested, there will be a
extra exam with 15% attendance at lectures, it
will be during last hour of lecture or
immediately after last lecture.
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List of topics - lecture

Introduction, classification of continuous-time
active filters.

Building blocks and properties of operational
amplifiers (1.e. Amps, OTAs and operational
transresistance amplifiers).

Current transformation, the second generation
current convejors (CCII).

Introduction to synthesis of active filters,
normalization procedures, frequency
transformations, approximation methods.

The synthesis of second-order active filters.



List of topics — lecture, cont.

Cascade realizations of high-order filters.

Circuit methods for grounded and floating
inductor realizations.

Methods for LC ladder simulations.
The design of current-mode filters.

The design of integrated continuous-time
fully-differential high-order OTA-C and Gm-
C filters.



List of topics — lecture, cont.

Multiple-loop feedbacl
Realization of LC ladd

K structure realizations.

er using gyrator structures.

Realization of LC ladc
synthesis.

er using signal flow graph

Sensitivity, noise, nonlinear distortion and dynamic

range considerations.

Automatic tuning circuitry and programming.



List of topics — laboratory

PSPICE simulation of the CMOS Operational
Transconductance Amplifier (OTA).

PSPICE simulation of the second generation Current
Conveyor (CCII).

PSPICE simulation of the six order Cascade Filter.
PSPICE simulation of the six order Gm-C Filter .

Comparison investigation of properties of the Cascade
Filter and based on LC prototype realization.



Types of filters based on different
criteria

 passive and active,

 analogue and digital,

e continuous—time and discrete time,
* integrated and discrete,

* lowpass, highpass, bandpass, bandstop and
allpass,

e other criteria...



Basic definitions [1]

v, — voltage source, v, — output voltage, for harmonic
signals 1n a steady state:

v,(¢) =V, cos(wt +6,) v,(t) =V, cos(wt +06,)

alternatively in complex vector notation written as (the upper
index 1n the form of a dash means complex value):

v, =
& ' (CE;C/ | |
i)

Fig. 1. Two-port network a) with independent input and output
nodes and b) with common node of signal ground [1].

V
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Basic definitions-cont. [1]

Input and output voltages can be also presented using Laplace
transformations of complex variable s, where s=otjw, for
harmonic signals 1n steady state substitution s=j® can be used what
in turn lead to:

ej91 (jo)

v, =V,(s) V,(jw)

S=jw

ej‘92 (jo)

V, =V,(s) V,(jw)

S=jw

Transmittance of the circuit is equal to:

Vy(s)
T'(s)==— whatin steady state turns to =>

Vi(s) '



Basic definitions-cont. [1]

V,(s)

ejgz(a))

J10,(0)~6, (0)]

S=jw

1(s)

V)"

Amplitude response:

‘T(]a))‘ =>

Phase response:

O(w) = 0,(v) -0, (o) =>

— e’

ejel(w)

0,(w) =0, (v)+0(w)
11



Basic definitions-cont. [1]

In the further part of the materials the marking of the complex
symbols using upper dash has been omitted.

In the literature, the logarithmic measure of transmittance 1s
often used:

a(w) =20log|T(jw)| [dB]

For o bigger than 0, the system amplifies the signal, while for o
less than 0, the system introduces attenuation. Although for
lossy circuits, o 1s less than zero, its absolute value 1s often
given by calling a as loss factor inted of gain factor. In the
further part of the materials, the sign next to o should be taken
from the context.
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Basic definitions-cont. [1]

Table 1. Values of loss and gain according to transmittance absolute value [1].

Loss Gain
o [dB] |'.|"[f.l'--:rj_:l| « [dB | T(jw)
—100 107 100 10°
—60 103 60 10°
—20 0.1 20 10
6 0.501 6 1,905
-3 0.707 3 1.414
—1 0.891 s 1.122

—.1 0.959 0.1 1.011
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Filters types according to
amplitude response [1]

Filters for certain frequencies have so called pass band and stop
band. Ideally pass band 1s the frequency range for which |T|=1 or

similarly a=0, and stop band 1s the frequency range for which
I'T|=0 and similarly o=-oo.

Besides typical amplitude responses shown on next slides,
other responses are used in real life. Such responses can be
realised as combinations of typical responses.

Actually, 1deal responses are not realisable but instead filter
real amplitude response 1s continuous function presented at the
slides as dashed line lying next to 1deal solid responses.

14



Filters types according to
amplitude response —cont.|[1]

I'l lowpass Tl highpass
h f Fig. 2. Basic types of amplitude filter
[ = "T‘f _— ‘_k - - responses, ideal response (solid
1 | ; line) and real response (dahsed
i ] ;o line):
0 —— 0 L - 2 -
0 a) lowpass,
b) hihgpass,
T bindpes | i ¢) bandpass,
1 \ F ,f d) bandstop [1].

3

£
<5
t
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Filter types-cont. [1]

Actually, filters have transmittances described as ratio of
polnynomial of nominator N(s) and polynomial of denominator

D(s): ~ N(s) b,s"+b, s"" +..+bs+b,

D(s) as"+a, s +..+as+a,

where: a;, i =1,...n and b, j =1,...m are real numbers. Coetficient a,
can be set as equal to 1 through nominator and denominator division
by a,. Coefficients of the nominator can be positive, negative or
equal to 0. All coefficients of denominator a; have to be positive —
otherwise circuit can be unstable. Order of denominator have to be
equal or grater than order of nominator.

Because transmittance and its derivatives are continuous functions it
1s impossible to realize i1deal characteristics show 1n Fig. 2.
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Frequency responses of real filters

a, dB I a, dB |
Lowpass ’ I:I Highpass ) . . .
Fig. 3. Filter specifications and
a{wl\ﬂiié min § actually obtained filter
: A\ S . ..
Transition fI - —i F—Tmnsition responses [1]. Vertical axis is
I 1\ the loss of the filter in
e Pas e S St : Pass > . . .
Rasg--st T s A\ logarithmic scale while
o sgf - JA :
_— horizontal axis 1s the radial
% w, @ 0 w, frequency.
(b) Approximation is the process
o, dB r o dB | ! of finding of transmittance
’ | Band Bandst : .
) Bt N which satisfies filter
in I min | . .
0@ - specifications.

Synthesis is the process of
finding of physical realisation
of required transmittance.
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Inserted loss/gain of the filter while
maintaining general response shape

A
e, dB |‘
- i
a, dB 1‘ ;
\ /
\ L |
5 I " )
0 \I_/E nsertion gain
! il
\a)

Fig.4. Passband filter with extra gain (a) and loss (b) [1].
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Why to use analogue filters in the
era of digital signal processing?

Today applications of analogue filters:

e as antialiasing / smoothing filters, 1n this area analogue filters are
not replaceable!

« for very high frequencies,

* in applications justified by costs.

19



Factors determining the type of used
filter [1]

* the technology required,

» power supply voltages and power consumption,
* the cost of implementation,

* frequency ranges of operation,

* stability and sensitivity to parameter changes,
 the weight and dimensions of the filter,

* noise and dynamic range.

20



Analogue filters frequency of
operation

Discrete analog active RC filters

Switched-capacitor active filters

Integrated analog active filters

Passive LC filters

Distributed
(waveguide) filters

| | | | | | | L | | | l
| 10 102 1P 1o 10° 10° 107 108 10 1010 10
Hz | kHz 1 MH= 1 GHz

Frequency, Hz

Fig. 5. Types and frequency ranges of analogue filters [1].
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Passive devices 1n integrated

circuits [1]

Discrete Integrated
Tolerances 1-20% 10—40% absolute
0.1-1% for ratios
Resistors
Preferred range 1-100 k<2 Process dependent: values
Lower limit 0.05-1 k€ with 10% to 309% tolerances
Upper limit 100-500 k€2 in the range of 50 {1-1 k2
Capacitors
Readily realizable 5 pF-1 paF 0.5-5 pF
Practical 0.5 pF-10 uF 0.2-10 pF
Marginally practical 0.2 pF-3500 uF 0.1-50 pF
Inductors
Readily realizable 1 uH-10mH Real inductors with large losses
Practical 0.1 uH—50 mH of the order of 1 O nH or less
Marginally practical 100 nH—1H
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Normalisation of devices values and
frequency

Normalised values are calculated according to the following
equations (they are dimensionless):

0 1
L =—=7 C,=w,R,C R =—R
R R,
where: R, — normalising resistance, o, — normalising angular
frequency.

Having normalised values real ones can be calculated by:

R |
L=—L C=——-U°C, R=R.R
Wg Ry >

n

23



Normalisation of devices values
and frequency — cont.

Normalisation / denormalisation allows the analysis of filters
around a normalized pulsation chosen as equal to 1rad / sec.

Normalisation does not change the shape of transmittance but only
transfers to other (usually lower) frequencies.

Using the normalisation and denormalisation process for various
values of normalising resistance, we have an additional field of
freedom 1n the selection of the actual values of elements R, L, C.

24



Amplifiers used in integrated circuits

 voltage operational amplifier (OA),
* transconductance amplifier (OTA),

* current conveyor, second generation current
conveyor (CCII),

25



Parameters of 1deal and typical OA [1]

Ideally OA 1s a voltage controlled voltage source having following
parameters:

- infinitive differential voltage gain,
- common mode gain equal to zero,
- infinitive input resistance,

- output resistance equal to zero,

- infinitive values of: bandwidth, output current and voltage limit,
slew rate, input and output signal ranges...

26



OA—cont. [1]

Typical internal schematic of popular 7417 OA 1s presented below

[1].

Noninverting
input

Inverting
input

(]
Offset
null

Fig. 6. Bipolar OA [1] of type
7741,



Fig. 7. Simplified model of OA from fig.6.

A(S)I VO(S) — gm
V.(s)=V_(s) sC/(1+1/A4,)+1/(RA,)
~ gm — gm/Cl
sC,+1/(R4,) s+1/(RC,A,)

1>>1/ 4,
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OA—cont. [1]

Direct current gain (and for small frequencies):

3dB angular frequlency:
W, =
RC A4,

Cutoff angular frequency:

®, = i—m = A0)w,
1

29



Voltage (dB)

Phase (deqg)

OA—cont. [1]

125
™ L
25
_25 A Open-loop gain 2x 10°
R Input resistance 2% 10° Q
Rs Output resistance 75 Q
75 | Viws Positive voltage swing 21 Vv
0.1 10 1000 105 107 108 Viu- Negative voltage swing -2l v
Frmuency (HI} Vos Input offset voltage 0.001 v
Is Input bias current 8x 10°% A
0, = Input offset current 2x 107% A
SR Slew rate 5x 10°
-50 £ Unity-gain bandwidth 1.5 x 10¢
foz Location of second pole 4.5 x 108
Ce Compensation capacitance Ix 10~1
100
150
-200 |
0.1 10 1000 105 107 108

Frequency (Hz)

Fig. 8. Frequency responses and parameters of ”741” OA [1]. 30



OTA (Operational Transconductance Amplifier) [2]

Fig. 9. Typical block diagrams of OTA (a) and its ideal
representation (b) [2].

31



OTA - cont. |2]

Ideal OTA 1s described by equation:

iOUT — Gm (V+ _V_)

It 1s often that value of transconductance factor could be
controlled by external signal:

G =G, (I;)=nl,

Parameters of 1deal OTA:
* infinitive mput and output resistance,

* transconductance factor G,, of constant value (it does not strive
for infinity as it is for ideal OA),

32



OTA - cont. [2]

Parameters of 1deal OTA — cont.:

 voltage gain for OTA without output load tends to infinity,
* no limitation on the ranges of input and output signals,

* infinitive passband,

« full linearity of the amplifier, OTA’s linearity 1s very important
in contrast to the OA, it 1s because OTA works usually without
negative feedback,

* no amplification of of common mode signals
9

 independence of the output signal on supply voltages, ...

33



Basw apphcatlons of OTAs [2]

o YouT

(d) (e) (f)

Fig. 10. Basic applications of OTAs (a) inverting amplifier, (b) non-inverting
amplifier, (¢) inverting amplifier using only OTAs, (d) active impedance, (¢)

impedance inverter (gyrator), (f) non-inverting integrator [2].
34



Small-signal OTA’s models [1]

(b)

Fig. 11. Small — signal models of single output (a) and fully-balanced (b)

OTAs [1]. 5



Why OTAs are suitable for HF
and IC ?

v, §
: + v ? /
l
Fl f b+ - ! + /
§ . 1 I [ i §rh o {f" s ( g +
pr] v e s W & I e
| gy m 1 F
o & R N aLs |
= } |
(a) (b) (C)

Fig. 12. Voltage mode integrator (a) and its small-signal model (b), current
mode integrator (¢) [1].

Designed capacitances are connected in parallel to the parasitic
capacitancess - so the latter can be included in the design process
and almost completely eliminated. Such compensation is called

predistortion. y



Square - law MOS device model

Basic equations for N MOS transistor

VT:VTO+7(\/¢_VBS_\/g) K'=uC,,

drain current in ohmic (also called triode) region:

K'W LWl W
Ip = I3 (VGS_VT_VDS/Q’)VDS K_EKT_E'UCOXT
drain current in saturation (also called penthode) region:
K'W 2
Ip = 2] (VGS_VT) (1+/1VDS)

where: V. — threshold voltage [V],

V5, — threshold voltage for zero bulk-source voltage, 1.e. for V=0 [V],
v- bulk effect parameter [,/],

¢- surface potential (about 0.7V),

u- mobility of the carriers in the channel [m?/(sec V)],

C,x— oxide capacitance by unit area [F/m?],

A- channel length modulation coefficient [1/V],

W, L — the width and the length of the MOS device channel, respectively [m]. -



Analysis of a ssmple OTA circuit

Output stage (current mirror) \ I Voo
I

!

;

, |

: M3:I—o—I:M4 i

| ;

| j
|

I I |

(v) [B[AS
V' Input voltdge to current converter

| (MOP differential pair)
Sy S v Cnlt
j Mo
I Vs

Fig. 13. Simple CMOS OTA.

Assumptions:

e the transistors are 1dentical
in pairs, 1.e. M1 = M2, M3
= M4 and M5 = M6, which
amounts to the equality of
their transconductance
coefficients K,

* the operating point 1s
determined by the I,
current source,

* in the first approximation,
the output resistances of the

devices are omitted.
38



Analysis of OTA, I/ O voltage range

The operating point w determines the 7, ¢ current, which gives the
following gate - source voltages:

/[ 1/21
VGSS = VGS6 — % + VTN VGSl — VGSZ :\/ KBIAS + VTN
5 1

1/21
|VGS3| = |VGS4| = \/ e +|VTP|

Common mode positive/negative voltage swing at input of OTA
(for zero input differential voltage) assuming all devices 1n
saturation 1s equal to:

Vawi- =Vss +Vass = Vv + Vs Vewre =Vop — |VGS3| + Vo

Output voltage range assuming all devices working in saturation
1s equal to:

Vavo. =v,_ — Vo Vewor =V _|VGS4| + |VTP| 39



Analysis of OTA, simplified small -
signal analysis for low frequencies

o S—
Vip T G
o Sm——

For low frequencies:

| | Fig. 14. Small-signal

Iy =1, —l4, = Evidgm1 +§vm,gm2 o —gm, = Via &M analysis 1s made
assuming short — circuit
at output.
where:

gm, = \/2K1]BIAS

40



Analysis of OTA, simplified small -
signal analysis — cont.

Simplified small-signal model for frequency analysis, 1t takes into
account only the gate-source capacitance of the current mirror.

Co=CassCosy

VJD(s)T CAP %% Vgsg(s)T q? % ?Io(s) TVO(s)
1 = ++ 1 o+ 44

- Vin(8)&m 1/g,; Visa($)&ma 1o T0alT 04

Fig. 15. Simplified small-signal model of OTA from Fig. 13.

Capacitors and resistors values can by expressed by equations:

2 1 2
Co =Cgs3 +Cpsy = _(W3L3 +W,L, )COX Foo = Tos = =
3 Ay Mg

where: C,,, — oxide capacitance by unit area, A- channel length

modulation coefficient . 4



For the output short circuit as in Fig. 15, the OTA transfer function

1s equal to:
1,(s) ghty

Vip(s) SCq +gmy

So transmittance has a parasitic pole for radial frequency equal to:

8,

Co

@p =

However, the voltage gain when the output 1s opened will be
equal to:
Vo(s) ghty

= 9m,r,
Vi(s) © 10 SCy +gm,

Low frequency voltage gain is therefore equal to:

AO — gmlro 42



Summary of OTA small-signal
analysis:

*it 1s possible to regulate the amplifier's transconductance by
adjusting the [, current, this control 1s square root relationship
and therefore the resultant transconductance changes are not very
large,

e the parasitic pole lies at w=-gm,;/C,, which results in severe
frequency limitation, the solution may be W/L modification to
broaden the band, usage of high frequency current mirror or usage
of one-stage OTA with negative load resistance,

» finite low frequency voltage gain may turn out to be too small for
certain applications, 1n such a case you some can apply: large L-size
transistors, cascade current mirrors loads or negative resistance

loads of the OTA.
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Large-signal analysis of a CMOS pair

To simplify the calculations, we introduce the following designations:

i=1+i iy, =I—-i 1:13% K=K, =K,

Kirchhoff voltage law for the input circuit can be written as
follows:

/I+i /I—i
Vip = Vags1 ~ Vasi :|: 7+VTN:|_|: 7+VTN:|

We solve the above equation 1n order to determine current i:

K 2
i = VKT, 1- :]ID

44



Large-signal analysis — cont.

The value of the mput voltage for which the saturation of the CMOS
pair occurs, 1.e. 1=/ 1s equal to:

1
|VJD| < ‘/5\/; =V ipvax

One can find the input voltage where the output current i differs
(1-E) times from the 1deal value (the £ factor 1s the error of the
output current):

Kv;, .
JKIv,,,[1- :IID — (1-EWKIv,, S0:

1
VIDError = 2\/;\/1 —(1 _E)2 = ‘/5\/1 —(1 _E)2 Vibaax

For example, 1f £=1%, then:

ViDEror == ‘/5\/ 1-(1-0,0 1)2 V[DMAX ~ 092VIDMAX 45



Large-signal analysis — cont.

Large - signal OTA transconductance can be determined by
calculation of the derivative of the output current in respect to the
input voltage:

1 di

K
—Gm = —JKI / VJD
2 v, / Kv? Kvip
41

Similarly as for a current error, a transconductance error can be
determined. A 1% transconductance error occurs for
approximately 0,11V, -

46



Large-signal analysis — cont.
Large - signal characteristics for K=100uA/V?, V=1V, I=50 pA

%%%%%%%%%%
e
w"“wﬁ
L
-
.
—
o
>
-~
-
Wﬁ*‘
e

A~
yw
v

-
P
"
>
=
'
L
-
=
"
—
:}c@mfxw’"x

Fig. 16. Output current of the MOS differential pair from Fig. 13.
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Large-signal analysis — cont.
Large - signal characteristics for K=100uA/V?, V=1V, I=50 pA

891.3 . . B

60u

1/26m|
I

20u}—f

0

-1.0v. -0.8v -06V -04V -02v -00v 02V 04V 06V 0.8V 1.0V
Vf.@

Fig. 17. Large — signal transconductance of MOS pair from Fig. 13.
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Large-signal analysis — summary:

 the differential CMOS pair has a small range of linearity of the
input differential voltage, representing about 20% of the entire
available mput signal for 1% of the current error, alternatively
representing about 11% of the possible input signal for 1% of
the transconductance error,

 1n order to increase the linearity range, a different V-I converter
should be used (eg MOS pairs in cross connection, degenerating
resistors, four transistors in cross connection, MOS transistors in
the triode range, asymmetrical pairs and others),

 1n the differential CMOS pair, tuning of the transconductance
Gm value can be implemented by adjusting the 7, . current, the
change 1s the square root function of this current.
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Fully differential OTA

°—+\ Loyt

I
I
I
—< | I
Vo, Gm : M4 MS5 :
' I
' I
I

4

e el

v, 177771 T
— 4
+ | I l )i
Vip 1M1 . M2 I BIAS
P S— |
V. I Input| V- I converter I
I (MOS \differential pair) | E
O
M7 M8 M9 M10

&
._I VSS

Fig. 18. Fully differential OTA, block diagram and circuit realization with the
use of MOS differential pair and current mirrors. 50



Common Mode Feedback (CMFB)

In an amplifier with a fully differential output, in the case of a differential load or a
capacitive load, there i1s the problem of self-acting appearance of voltage on
individual outputs in respect to the ground. Therefore, these amplifiers have to be
equipped with a circuit stabilizing common — mode component of the output voltage.
Such a citcuit is called Common Mode Feed Back (CMFB).

- P o -
Vi T Gm T Vour Vin T Gm 2R T Vour
4 " +
o] — O]
(@ - )

Fig. 19. Fully differential OTA loaded in respect to the ground (a) and fully
differentially (b). In case (b) it have to be equipped with CMFB, otherwise
output stage of the amplifier will exhibit high value of common-mode voltage
and output stage will saturate.



CMEFB example of realization

Output stage (2 current mirrors) |I Voo

=
o
O T

|
I
I
I
VB]AS—CM v Input| V- I converter |
CMFB ’ 1 (MOS \differential pair) |
Veuson= L — - b -2
f (VO++VO) :.II I_
M7 M8
il Bl N
! _L_I: Mil M12
I P
| =
I CMFB
(a) (b)

Fig. 20. Principles of operation of CMFB circuitry (a) and realization utiligzing
MOS devices working in triode region (b).



Computational examples: parameters
for typical 0.5um CMOS process

L.p. | Parametr Unit Value

1 Vi [V] 0,6

2 Vip [V] -0,9

3 0,516,Cox [LA/V?] 50

4 0,50,Cpy [LA/V?] 20

5 Cox [fF/um? | 2,5

6 Ay [1/V] 0,01

7 Ap [1/V] 0,02
8 Vop-Vss [V] 5
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Calculation example no 1: OTA

=
-
i
|}j-L

Dim. L.p. | Parametr Unit Value
; 1 V. [V] 06 |——=—=——=—=——— === -~ .
Device W/L 5 Vm [V] 0.9 I Output stage (2 current mirrors) | Voo
[um/pm] Ir d | =
3 0,5uyCox [pA/V2] l I
MI1-M4 4/4 4 | 05uCop | [MAN?] | :
M5, M6 16/4 5 Cox [fF/pm? ] ! M5 |
6 A Y |
M7 8/5 g EAd f«'!
7 Ap [1/V] I -
M8, M9 16/5 8 | Vorls V] I M6
|
M10 s Y =g Ads-—-—-=A---- =
lour Lour
Ml11 4/5
M12, M13 8/5 1
M14 25 :
o |
v I Input) V- I converter |
Parameter Value _ | (MOS |differential pair) |
iy — ot
Vo 2,5V :l-l I-I: I-l: | E
Vss -2,5V M7 M8 M9
VBIAS IOMA |_ ____________ “ T~ 715 - =
I o
=
All previously presented ! cm - |
parameters of the OTA have to be
54

calculated (pages 39-46).



Calculation example no 1: OTA — cont.

The results of the calculations are as follows:

I5;,~100A, I,,=20uA, [, I,~ 40uA, I~ [~ 40uA,
K,=50uA/V?, K,=20uA/V?, K, = 40uA/V?, K, = 20uA/V?,
Vas=LOATV, [Vissl=1,607V, Viss 655~ 1,1V, Vi psia=0,132V,
Verr=-0,821V, V¢ . =1,493V, Vepo.=-1,868V, V¢pr.=1,907V,
Gm=89,44uS, w,=-212,2Mrad/sec (33,77MHz),
Ao=149,1V/V=43,5dB, V,p;,,,=0,632V,

1% current error occurs for |v,,|=0,126V,

1% transconductance Gm error occurs for |v,,|=0,0695V,
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Homework no 1

For the OTA amplifier shown in the drawing, determine the
parameters discussed earlier in the lecture. Technology parameters
as previously stated.

Dimmensions
Device W/L
[um/pm]
M1,M2 12/4
M3, M4 2/2
M5,M6 4*2/2
M7 2%4/2
MS, M9 4 *4/2
MI10 4/2
Ml11 2%2/2
M12, M13 4*2/2
M14 2/2
Parameter Value
Vop 2,5V
Vs -2,5V
Ipias 10pA

[ CMFB Voo
I =
|
! M1 M12
(. I K hl | A
N M7 MSI“' I_‘_M9
I = I—E
I Input| V-1 converter |
v, I (MOS \differential pair) |
O I |
+ &
M1 M2 '
- | |
—
LR I LS
in in, lour lour
R e e R ,
I M3 M6} :
I
: P
I
' M4 M5 :
I
| I
1 ® &
|

Qutput stage (2 current mirrors)



First and second generation current

conveyor
Iy I IR
P et} o7 iy Iy 0 a 0w
) K CCll Lo V; v [=|1 0 0]i,
o= i, 0 =1 Ofv,
iy -0 - T
Fig. 21. Graphical representation For CCI a=1, while for CCII

of current conveyor. CCI stands
for first generation current
conveyor while CCII 1s for

second generation selected.

a=0. For a positive conveyor, the
"+" sign next to the one 1s

In the literature there are also known conveyors with current
amplification, in such a case "1" from the bottom row changes into

the current gain factor "k".
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CCII+ exemplary internal structure

and parameters [3]

i Vdd
I_._l E __""i[ € _il Characteristics
. = \"]m—\'}g 1.5V 1.2V
il ! - Iwa (5ee fig.1) HELA 2.08 uA
o i <l Toms c2 Rx 9,98 Q 192 2
] Fd Cy 0.18pF  0.1&8pF
HIE Il P P
—_ll; ;,37 ¥ Rz 125KQ _ 600KQ _
MK, MRt Cz 0.3 pF 0.8 pF
—"‘* iE -3dB Bandwidth 32 MHz 21 MHz
T -H Power Consumption 250 pWw 13 pW
Vss
(a) (b)

Fig. 22. CCII+ schematic in CMOS technology (a) and its real parameters (b) [3].
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Basic applications of CCII -
voltage amplifier

GO =

I .
_l_ R, }222 _T_ v, R

Fig. 23. Voltage amplifier using CCII+.
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Basic applications of CCII -
differential voltage amplifier

e s I
A SOV == ——

X
N 2 v R, +R
P V) o _ 1% 3

! _Rz Vv, R,

ST = T—

\/\/\

R;

Fig. 24. Differential voltage amplifier
using CCII+.
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Basic applications of CCII -
adder

e
(Cf i Qe

vt Hx
R32 T"o
_l_,% L —l— v0=£%1+;—22j133

o——1Y7

ccn 7z

X

|
L e

Fig. 25. Voltage adder with the use of CCII+.
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Basic applications of CCII -

gyrator
K
U cen 2 ' kiR
o cci z 7, =——22
X X Z

Fig. 26. Gyrator with the use of CCII+.
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Basic applications of CCII -

integrator

cCcll 7
— X |
TVO vo(t) =

3
—l— ER ‘T 1

Fig. 27. Integrator with the use of CCII+.
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Basic applications of CCII -
differentiating circuit

o Y
T CCll 7
v, Y v, ()
T,,O v, (t) = RC ;t
1T

= 1

Fig. 28. Differentiating circuit with the use of CCII+.
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Second order sections (biquads),
lowpass (LP) section [1]

Transfer function of II-order lowpass section is given by:

NG) _ @

"= , @, .

where: H — gain for low frequencies, Q — quality factor and @,— pole

frequency, also sometimes called natural frequency or corner
frequency.

Poles of 7(s) are a pair of conjugates on the left s-plane. Hence 1f we
denote the denominator of 7(s) as:

D(S):(S+a+j,6’)(s+a—jﬂ)=sz+2as+(a2+ﬂ2)

Parameters and poles locations can be tied by equations: 65



Second order sections, LP — cont. [1]

o =—- Q=— w, =a’+f’ p=a, |1-

—x = W, 20 ) p—

Fig. 29. Pole location and relationship with biquad parameters [1].
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Second order sections, LP — cont. [1]

Lines of constant a = w, /(2Q)

. i i p
J L - ! J
0 i
2
Lines of constant
Contours of ~ Q,<¢;
constant Wy,
Wo3 > Wy > W, Q. ﬂtl
T -
o 0 0
0,
i
| I
L i
(a) (b) ()

Fig. 30. Pole locations for different values of biquad
parameters [1]. 67



Second order sections, LP — cont. [1]

Normalized frequency responses (in respect to module and natural
frequency) can be obtained by assumption A=1 and substitution
s, =s/@,. Then we get:

T(s)=— (@) ==

sP+—s+1 (jof +— jo+l L2+1-w

Thus, the amplitude and phase characteristics are equal to:

7(jo)|= S o @0
\/(a)/Q)er(l—a)Z) o=-t (l—a)zj
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Second order sections, LP — cont. [1]

"
+20 ! l
- | Q=10
\ 5
+10
BR 25
I
+5 . ' /i 1.67
a 1*.25
° . q
% | —3 dB
—3p————- ——t —t — -t —+—1
Fe T[]
0.707 —12 dBjoctave
N 10
15 _sol-0 =167 s
0.1 0.2 05 1.0 2.0 5.0 .25 N 2.5
0.837 NN
w o
S ™ 051 [
(a) =
_160 \H.._--... -
N -
—200
0.1 0.2 0.5 1.0 2.0 5.0 10.0
)
(b)

Fig. 31. Frequency responses of the second order lowpass section, (a)
amplitude and (b) phase[1]. 69



Second order sections, LP, realization I
(sum products)

Physical implementation of the normalized second order section:

T(s)= Vo(s) = H = HV,(s)=V, (S)(Sz +is + lj ==
Vi (s) s+ iS +1 0
0 Vis)
Ot 0 et [y
Vi(s) Vy(s) Viy(s)
v _ g ) FolW) To ]
O(S) S2 SQ S2 VO(S)

e
4
1/s 1/s
Fig. 32. Direct implementation of the second order
lowpass section using products of sum.
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II - order sections, LP, realization II

(product realization)
H

T(s)=———= 1 =>  HV,(s)= VO(S)(SZ +és+lj =>

11
s (S+1/Q)

S(s +é]VO (s)=HV,(s)-V,(s) => Vi(s)= (HV1 (s)=V, (S)) =>
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II - order sections, LP, realization II
(product realization)

Lﬂ@z@%@%%@ﬂl 1

s (s+1/0)
-1
-1/Q) ' A
Vis) |
G—fpi /1 1’s [ 5 e—0
Vor(s) Vis(s) Vo($)=Vor(s)

Fig. 34. Direct implementation of the second order lowpass section - products.
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Physical implementation of the
second-order lowpass section [ 1]

1 _‘—_.__.
|

l/ ==
O /H |- 1 1 o
V, : O - V,
i
(a)

]'Ji

. b | ~——
| 110
O—a H 1 W ~1 O

Ve -V,

Fig. 35. Realizations of the biquad from Fig. 34 with changes of integration and

gain signs [1]. s



Physical implementation of the second-
order lowpass section —cont.[1]

—AM—

*"7": . [

I ™

:io—% |— | Vi : _

VoA ! PM D_WED‘Q
|/H Vs Vi Y

= T - j - T,

Fig. 36. Components for biquad implementation using operational amplifiers [1].

Ny
LR (I o

Fig. 37. Tow-Thomas biquad section , normalized [1]. 74




How to get a real filter from the
normalized version?

 through denormalization procedure,

 through comparison of circuit having real
values components with desired transfer
function
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Denormalization with the use of
calculation example (no 2)

Calculation example: Please design Thow-Thomas lowpass biquad
section with natural frequency of value f,=10kHz, quality factor O=10
and gain equal to H=1.

Denormalizing radial frequency: w=27f,=2%*3,1415*10kHz=
62831,5[rad/sec],

We assume normalizing resistance of convenient value, for example
R~=10kQ. Hence all resistors have values of 10k except resistor in
lossy integrator whose vale 1s equal to R *O=100k(2.

Capacitance values are equal to:
C=C,*1/(R¢* ws)=1/10k€2/62381,5rad/sec=1,5915nF
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Frequency responses after
denormalization procedure

_____________________________________________________________________________________________________________________________________________________________________
e A B T i A o e e S L e e ] b e s nk b s B e s nien s naak S L s i Bt s Gt e b s L G S B e B G L L L

e e e e P i e S e e o e 5 e P L e ] ] S e o e S e e e ) e e S e B e 0 e s e s s s e e e e e e e S

S N NS NS | S—— W ————— —. .. W)

I A e S b S e R s e i e R

188Hz 300Hz 1.8KHz 3.8KHz 18KHz 30KHz 188Hz = 38BKHz

Fig. 38. Frequency responses of Tow-Thomas biquad after denormalization.
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Transfer function comparison
method [ 1]

-

-—0

Ve J_:

e i,

Fig. 39. Tow-Thomas biquad section [1].

Transfer function of the circuit in Fig. 39 1s equal to [1]:

Vi(s) _

T(s)= -

A08

J(R,R,C,C,)

s+ S/(RICI )+ 1/(R2R4C1C2)
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Comparison method — cont. [1]

Transfer function of second — order lowpass section 1s equal to:

I'(s)=xtH

Comparing above equation with transfer function for Tow-Thomas

biquad one can obtain: R
2

a)z _ 1 Q — Rl Cl H :R—
" R,R,C.C, JR.R, VG, ;

The Tow-Thomas section enables orthogonal (independent) tuning of
parameters:

 we can first set values: R,, R,, C,, C, to obtain the desired value of @,
» then by adjusting R, we only change Q - without / and ), changes,

» finally we set R; which changes only H - without changes in O and .
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OTA-C implementation

A .

-1/0 1l
Vifs)
Qe 1/s l PRI = —

Vouls) Vip(s) Vis)=Vy(s)

NV‘
2
—
|
|
T
O
/ |

1
= —E? = L, TVU(s)
ik L
T

(b)
Fig. 40. Product realization of second-order lowpass section (a) and itsgo
normalized OTA-C implementation (b).



Mixed mode voltage / current
OTA-C implementation

Y A

-1/Q )\ (a)
Vi(s)
Qe [ 175 1}— 15

Lou(s) Vos(s) Vi(s)=Vy(s)

T %
L —

(b)
I

Fig. 41. Product realization of second-order lowpass section (a) and its
normalized, mixed mode voltage and current OTA-C implementation (b).
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grnl

+V, O0——

(a)

_I.J'I o_

(c)

Fig. 42. Conversion of the single output to
fully differential OTA-C implementation [1].
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Fully differential OTA-C
implementation

v | | 1 1o | | I ] i Vol
+ +
R T,

Fig. 43. Fully differential version of the filter from Fig.41. 23



Calculation example no 3

Please design fully differential lowpass 2-order OTA-C filter with
quality factor 0=4, gain A=1 and natural frequency f,=50MHz
by the use of:

a) denormalization and
b) transfer function comparison.

OTAs with gm values in the range of 10-100uS are available.

84



A) — solution with the use of denormalization. Denormalizing radial
frequency:

@, =2nf, =2x50MHz = 314,16 Mrad / sec

Since the available transconductances are in the range of 10-
100uS, we choose the main transconductance equal to 100uS
and hence the value of the normalizing resistance is equal to:

R, =7—K G, =R,G R, =G, /G G=G, /R,
S

R, =1/1004S =10k

while capacitor values are equal to:

C=C,/(Rywg)=1/(10kQ314,16Mrad / sec) = 0,31831pF
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Transconductance of a 1/0 normalized amplifier reach the value of:

G,p =G, /Ry =1/4/10kQ = 2548

Thus the final filter scheme will be as follows:

]
-+
>

g

\

R 100uS v,
1008 us
318 31/F l '

Fig. 44. Calculated values of filter devices using the
denormalization method. 86




B) Transfer function comparison method.

o~ [ A
2 . C, . Vo
T Sy &y
o———/ -
Fig. 45. General schematic of lowpass second order OTA-C
section.

am
Y =sC, +gm, Vo(S):VOB(S)T3

SCo

gm gm,
V. .(s)=V,(s)——=V,(s
05 () 1()Y o()Y
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B) Transfer function comparison method — cont. The determination
of the values of the output voltage and intermediate voltage from the

system gives the following results:

g gmlgm32 gm, gnt,
Vos(5) _ C Vo(s) _ C,C,
V,(s) g2 &My | M8y V,(s) G2y &M 8Ms 8,
C, C,C, C, C,C,
Comparing the above expression with T(s)=H @,
1 (),
the general LP IT order sectlog 2+ 20 51
transfer function one can obtain:
gms;gm
w2 =208 =, Z\/ﬁ
C1C2 1>2

Hop = 8M8™M = H
C,C,

0 G

w, _ 8gm, = 0= C, gm,gm,
C, gm22

g,

gmy
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B) Transfer function comparison method — cont. We have a larger
freedom for device’s values selection than for denormalization of the
prototype method. For example, we can choose the same values of
transconductances, each equal to 100uS and then capacitors

determine from the formulas:

C, gm,gm C
Q:4:\/C1 3 24: C_1
2 &My 2

gm, = gm, = gmy = gm, =1004S

=> (C, =16C,

10045100uS  100uS

16C,C, AC,

C,=16C, =1273,12 fF

®, =27f, =314,16 M[rad / sec] = \/w -
C1C2
100uS
= =79.57
> 4e314,16Mrad /sec JE
1273, 12fF
I . . 79,57/F .
N 00“% T 100u§ 100@ T IOOHE
o—-——-—'—// s .../_ _

Fig. 46. Calculated values of filter devices using the transfer function comparison method.

0

‘ VO
o
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Homework no 2

Please design a second order lowpass filter with quality factor
0=5, gain H=2 and natural frequency f,=5kHz using second
generation current conveyors. Use the product realisation of
biquad section as shown in the figure below for the design.
Values of devices have to be calculated using denormalization as
well as transfer function comparison methods.

-1/0 ] )\
Vi(s) |
O—p{ [ 1/s PRI = % S o)
Viu(s) Vis(s) Vls)=Vy(s)
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II — order sections, all types of
transfer functions [ 1]

Frequency Response Poles/Zeros Name
LI}
. |T| ‘-F"'
f""l._l sz
Tip= —an - ¢ Lowpass
5 -5 = !
:, 1] :
( L =
1
., “\
03] >’
. Jjw
- 4 R
. } . JJ‘
Tap = — ﬂ%i r # Bandpass
L 0 § =+ : ¢ o
l.".hI
()] \'K.q_ _
|7 ’flfc)
y y LR Jﬂ
- 5 4+ agp .
Tge = —— . 1 i Bandstop “notch™
5° § =+ g i
Q 4 o
0} % _
Fig. 47a. II-order sections - magnitude responses and 91

poles and zeros locations [1].



T y = b) —
H 2 . % 2
574 —5 4wy
Q
2 ¢ 2
7= —5+uw
Tap = —&
§° 4 — 8 oy
Tipn = 5° 4k w]
N = -
L 2 fm
St s— 4+ wﬁ
Q
5%+ h? mﬁ
TwpN = ——@5— >
ST+ 85— + ay
Q

|7

Highpass

Allpass

Lowpass notch

Highpass notch

Fig. 47b. II-order sections - magnitude responses and poles and zeros

locations [1].



0, degrees for case:
LP BP HP AP

0 90 180 0
—45 | 45 1351 —90
=1 0 90 | —180

=135| —45 | 45 | —270 Fig. 48. II-order sections - phase

responses [1].

=180 —90| 0 | —360

BE 90

¢, degrees
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Higher order filters

T: I?.: .:lr] producl ._———"_’“}\H"""--.

1
0 0.5 1.0 1.5

0

Fig. 49. II-order sections in cascade configuration can gain in more

1deal (brick wall) lowpass frequency response [1]. o4



Popular approximations

Butterworth, maximally flat magnitude
Chebyshev, equal-ripple magnitude
Inverse Chebyshev

Cauer

Elliptic

Bessel-Thomson, and others
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Butterworth response [1]

Transfer function 7(jw) can be written as the sum of real and
Imaginary parts:
I'(jo)=ReT(jo)+ jImT(jw)

The real part 1s symmetrical in respect to the Y axis and the
imaginary part 1s symmetrical in respect to the origin of the
coordinate system:

I'(-jo)=ReT(jo)-jImT(jo)
T'(-jw) 1s conjugate of 7(jw):
T(-jw)=T (jo)
Because:
T(jo)-T'(jo)=ReTf +(ImT) =|T(jo)
So:

T(jo) =T(jw) T(~jo)
96



Butterworth response — cont. [ 1]

We can express the square of the transfer function module as a
fraction of two polynomials, where n expresses the degree of a
polynomial and the polynomials 4 and B must be even:

N,Go) 4@
D (ja))|2 B(w*)

T,(jo) =

Let define a characteristic function K(s) being the deviation of the
inverse of the transfer function module from unity:

_ B(o*)— A(e)

Kol =[rGe) " -1==——

The value of the characteristic function module in the filter band
should be equal to zero and infinity beyond this band.
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Butterworth response — cont. [ 1]

An exemplary graph of the transfer function module i1s shown in
Fig. 50 (a) and the characteristic function module in Fig. 50 (b).

1T | IK]
" Small error

-== _ Brick wall

e

s s e E S EEEE SNBSS S8

[

(a) (b)

Fig. 50. Plots of the transfer function module (a) and the characteristic
function module (b) for the low-pass filter [1]. 98



Butterworth response — cont. [1]

For a lowpass filter, the normalized value of polynomial 4 is equal
to 1. Thus, the square of the transfer function module can be
described as:

N,(Go)| 1 1

D, (ja))|2 B(®w’) 1+B,w’+B,0"+B.o’+..+B, 0"

T,(jo)| =

Hence, the square value of the characteristic function module will
be equal to:

K,(jo) =B,0* +B,w* + B +...+ B, 0"

Now assume that the characteristic function |K(jw)| should be as
flat as possible - so its subsequent derivatives for =0 should be

equal to zero, hence: ) )
2kGor)

d(w?)

‘w:O:O fork=12,..n-1



Butterworth response — cont. [ 1]

From the previous expression, it follows that B,=B,=B,, ;=0 and
the characteristic function takes the form:

K,(jo) =B,,0" =&0”

The square of the transfer function module 1s equal (for
designation B, =&°):

1.0
Tn(Ja))| - o 2 on NN
1+B, o l+& w . \‘\\
T, (jw)l it \\\ \\ S ——
: \‘\\ \\ ~ 2
Fig. 51. Butterworth amplitude 0.2 Gﬁk\\“\
responses for orders from n=1 do 10, ];J/'i\\\\\\\
S B =



Butterworth response — cont. [1]

If we assume that &=/, then:

1

1+ @*"

T,(jo)| =

The properties resulting from the above equation are as follows:
e there 1s no zeros of transfer function,
*|T,(jO)|=1 regardless of n,

|7 (j1)|=1/2°°=0,707 which corresponds to -3dB on the amplitude
characteristic,

e for large @w we have a decrease in amplitude responses equal to
20n/decade.
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Butterworth response — cont. [1]

It can be mathematically proved that the positions of the
Butterworth transfer function poles are uniform on the unit circle.
This 1s shown 1n Fig. 52.

Jlad II'HZ_.-_." If;_,rl
n=4 n=3 n==6 "
f’/{\ x/ ll.'- x:r \ o
L‘h‘ \ / M"\\.l'l L ‘\_\ \ f.:l: - M._H
—} —— = —
‘){’ / 1'.‘ e g /1 0 ';(;.r
! T T I j’./ / | I £ 7’ ! - _ \ -";
“ W= l0.0 Weo Y = U X ¥y= %I »
{__' :{‘Iﬂ :-\D ij‘—- _:l--.l‘ICI 1*‘-! '-J._"-\D b
Fig. 52. Location of Butterworth
transfer function poles for orders from 200
n=1to7][l]. k.

Fig. 53. Butterworth's phase curves for

orders fromn =1 to 10 [1].
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Butterworth response — cont. [1]

Locations of the Butterworth transfer function poles [1]:

=2 n=3 n=4¢4 n=2>y n==6 n="7 n=2=38 n=>9

—0.7071068 —0.5000000 —0.3826834 —0.8090170 —0.2588190 —0.9009689 —0.1950903 —0.9396926
+j0.7071068 +j0.8660254 =+j0.9238795 =+;0.5877852 +;0.9659258 + j0.4338837 =+ 0.9807853 =,0.3420201
=1.0000000 -09238795 -0.3090170 -0.7071068 —0.2225209 0.5555702 —0.1736482

£j0.3826834 +j0.9510565 £;0.7071068 +0.9649279 +;0.8314696 = ;0.9848078

—1.0000000 —0.9659258 0.6234898 —0.8314696 —0.5000000

+j0.2588190 +;0.7818315 +;0.5555702 +;0.8660254

—1.0000000 —0.9807853 —0.7660444

+j0.1950903 =+;0.6427876

—1.0000000

Coefficients of the denominator polynomial [1]; B.(s)=s"+ ?:aisi

dan a) as a3 14 as dg as ag

=

1.0000000 1.4142136

1.0000000 2.0000000  2.0000000

10000000 26131259 3.4142136 2.6131259

1.0000000 3.2360680 5.2360680 5.2360680 3.2360680

1.0000000 3.8637033 7.4641016 9.1416202 7.4641016 3.8637033

1.0000000 4.4939592 10.0978347 14.5917939 14.5917939 10.0978347 4.4939592

1.0000000 5.1258309 13.1370712 21.8461510 25.6883559 21.8461510 13.1370712 5.1258309

1.0000000 5.7587705 16.5817187 31.1634375 41.9863857 41.9863857 31.1634375 16.5817187 5.7587705
1.0000000 6.3924532 20.4317291 42.8020611 64.8823963 74.2334292 64.8823963 42.8020611 20.4317291 6.3924

SO 00 =] OnLh LD B




Butterworth response — cont. [1]

Quality factors QO of Butterworth’s poles: [1]

n even n odd?

2 4 6 8 10 12 14 16 3 3 7 9 11 13 15

071 054 052 0351 051 030 0350 050 100 062 055 0353 052 05 Dm

131 0.71 0068 . 056 08 .05 BS2 1.62 08 065 059 05 055
193 . 0% 071 O63 . 039 057 224 100 076 0.67 0.62
256 1.10 082 0.71 065 288 120 038 075
320 131 094 079 351 141 100
3557 I3l & 106 415 1.62
447 1.72 478

5.10

* For n odd there is also a real pole for which 0 = 0.5.
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Butterworth response — cont. [1]

In order to determine which order of the filter is sufficient, one can
use the following formula or use the monograms available in the

literature [1]. T (ja))|2 1
n _ 2
1+ o™
140 T
10/
120 8
3
& = 100} 8
2 g
- % 80}
= = 4
z -}
U 3
£ £
2 s}
o} n=
D | L 1 1
0 2.0 4.0 6.0 8.0 10
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Calculation example no 4 — cascade
realization of the filter

A lowpass filter of 7-order using Butterworth approximation
should be designed. The 3dB passband of the filter should be equal
to 50kHz and cascade implementation should be used.

Solution: From the table of quality factorses of Butterworth
transfer function, we read the following values: 0=0.55, 0=0.8 and
(0=2.24 and the need for real pole. Hence our filter will consist of 3
biquad sections (1mplemented using any amplifier, e.g. OTA, OA,
CCII+) and a section with a real pole (e.g. RC).

real pole of
transfer function

in LP BIQUAD 5 LP BIQUAD LP BIQUAD out
o——,/\/\f H=1, 0=0,55 H=1, 0=08 H=1, 0=224 }—o
©,=2n50kHz ©,=2n50kHz ©,=2n50kHz

Vinds) T T Vour(s)

1 1 L

C,=1/(2n50kHz10kQY)=318,3pF

106
Fig. 54. Implementation of the filter from the calculation example.



Calculation example — results
checking using the PSPICE simulator

PSPICE file:

VII - order, lowpass, Butterworth’s filter
.param f=50k

.param w={2*3.1415*f}

Vin in 0 dc 0 ac 1 sin(0 1 1)

.subckt biquad lp id out in params: wo=1 Q=1
El out 0 laplace {V(in) }={wo*wo/ (s*s+wo/Q*s+wo*wo) }
.ends

.subckt real pole out in params: wo=l

E1l out 0 laplace {V(in) }={wo/ (s+wo) }

.ends

* Kk k k k k ok ok ok ok ok ok ok ok Fllter SeCtiOI’lS

X1 2 1 biquad 1lp id params: wo={w} Q=0.55

X2 3 2 Dbiquad lp id params: wo={w} 0=0.8

X3 out 3 biquad lp id params: wo={w} Q=2.24
X4 1 in real pole params: wo={w}

RL out 0 1

* Kk k k k k k ok ok ok ok ok ok ok Analyzes

.ac dec 100 .001 100

.tran 0.01 10 9 0.01

.probe

.end

input
declaration of biquad sec.

decl. of real pole section

load
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PSPICE simulation results

LO.832K, -3.8133 §
10.000K, -170.343n
48.0832K,

=/
(R e
-+

[T

188KHz J88KHz
foiudb({1) — vdb{in) < wdb{2)-udb({1) wdb(3)-vdb({2) s+ vdb{out)-vdb{3) o vdb{out)
F




RLC prototype based filters [1]

Although RLC filters are not active integrated filters they are very
useful in the design of active filters due to:

* low sensitivity of filter parameters in respect to filter
components parameters,

e those filters are widely used today for high frequencies or for
powerless systems,

e active filters are designed based on passive prototypes what
gives the transfer of good properties to their active counterparts,

* already known knowledge of approximation and synthesis of

filters can be used.
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RLC filters synthesis [1]

Rl 1 1

-~

Lossless ladder

Fig. 55. Double terminated
RLC filter: (a) general
representation, (b) VI order
lowpass filter, (¢) impedance

and admittance representation
of the filter [1].
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RLC filters synthesis [1]-cont.

Input impedance of the filter in Fig. 55(a) 1s equal to:
Zin - Rin + JXln
Input current can be calculated as:

VS
R+Z,

I =

Since the system 1s lossless, all power entering the filter 1s lost
on the load resistance:

V. (io)
PRl Gof <2V thus
R2
R VsGa (o) N LAY 02 RTINS (97
|R1 + Z,'n 2 Rz What glVeS. VS (]C()) | (Jw)| |R1 + Zin i




RLC filters synthesis [1]-cont.

The transfer function 7¢(s) in now multiplied by the coefficient
sqrt(4R1/R2) to obtain the H(S) normalized to 1 for the pass band:

2
4R, Vz(]w)| _ 4RR,

H(jo) = —
o) R, |Vs(jo)| R +2Z,

5 =

Using previous equations one can obtain

2

- =1-|p(jo)

o =1- S
R

1 in

The p(jw) term 1s cold reflection coefficient. Using above equations
it can be find as:

_ |R1 o Zin (]a))|2
s=jo |R1 n Zl'n (]C())|2 112

o) =|p(s)]|o(-s)



RLC filters synthesis [1]-cont.

_ L R-Z,0)
=i R+Z,(s)
What gives 2 possible input impedances:

And hence: |,0(J'60)|2 =|p(s)||o(=s)

Z,(s) =R, 1+ p(s) lub Z,(s)=R, L= pls)
1_/0(‘9) 1+/0(S)

The above two impedances implement our desired transfer function.
The procedure for synthesizing the RLC prototype 1s thus as follow:

* we have a given H(s) and from here we find po(s),

* then we set values of R, and R, and get two possible values of
Z, (s) realizing the given transfer function,

* finally we can arrange the RLC ladder with the designated
impedance Z, (s).
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Procedure to obtain
doubly terminated

Example: Butterworth

n=3
lowpass prototype R,=R,=1
? s 1
Hr,iL..‘J‘.Rl.R, H{jw)* =
‘ | + w®
l = ‘&
PUw)|* pliw)? =
| + w®
1 153
pis) pls) = =
l j3 + 252 4 :-.h + I
i s+ s+ ] t]
Z..(s) Z =( -

|

Continued fraction
expansion

Two circuit
realizations

RLC filters
synthesis [1]-
cont.

Fig. 56. RLC filters synthesis
procedure example [1].
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RLC filters syn

t

hesis [1]-cont.

L
— Y Y Y .
G/ 15

n C Ly Cs Ly Cs Lg Cy Ly

2 1.414 1.414

3 1.000 2.000 1.00O0

4 0.7654 1.848 1.848 0.7654

5 0.6180 1.618 2.000 1.618 0.6180

6 0.5176 1.414 1.932 1.932 1.414 0.5176

7 0.4450 1.247 1.802 2.000 1.802 1.247 0.4450 :

8 0.3902 1.111 1.663 1.962 1.962 1.663 1.111 0.3902

Y 0.3473 1.000 1.532 1.879 2.000 1.879 1.532 1.000
10 0.3129 0.9080 1.414 1.782 1.975 1.975 1.782 1414
n L L; Cg

: 1

Fig. 57. Values of normalised Butterworth RLC filter prototype [1].
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Calculation example — VII order RLC
Butterworth filter (#5)

A low-pass Butterworth, RLC, VII order filter with 3dB frequency
of 50kHz should be designed

Solution: choose one of the implementations from the table, select a
normalizing resistance equal to, for example, 20k€2 and then based
on the normalised values table (Fig. 57) calculate the actual values
as:

1 c L:&Ln R=RR

Ry Wg

C = @, =2750kHz

n

Calculation results:

L,

1 2
m R,=R,=20kQ, C,=70,82pF, L,=79,38m,
v Q ¢, c, j | Cy=286,8pF, L,=127,3mH, C.=286,8pF,

L= 79,38mH, C.= 70,82pF
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Calculation example (#5) PSPICE
___silulation results |
%m

_________________________________________________________________________________________

.......................................................................................................................

__________________________________________________________________________________________________________________________

___________________________________________________________________________________________________________________________

____________________________________________________________________________________________________________________

............................................................................................................................

............................................................................................................................

___________________________________________________________________________________________________________________________

..................................................................................................................................

i e g e e e A A g g o R e e B B M N

J0KHz 186KHz 3B0KHz

Fig. 58. Results of the PSPICE simulation of the Butterworth filter realizedB
the cascade technique (green) and using the RLC prototype (red).



Homework no 3

Please design a 6th order filter using Butterworth approximation of
transfer function. Please use cascade implementation (with OTA-C
biquads) and also RLC ladder implementation. Filter should exhibit
3dB passband for frequency equal to 100kHz. Available are OTA
amplifiers of 100uS transconductance value, resistors of values in
the range of 10 - 30kQ) and capacitors of any value. In order to
verify design correctness the PSPICE simulation of the filters should
be also performed.
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Active filters based on RLC
ladder filters

Due to the good sensitivity properties, RLC filters are often a
pattern that 1s then used for implementation one of following
ways:

e direct simulation of the RLC prototype,

- direct devices replacement method (+ impedance
transformations),

- using Bruton's transformation,
- using Gorski — Popiel’s technique,

« simulation of the signal flow graph.
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Direct stmulation of RLC prototype
— gyrator

!

V. | Z 7 |

O __b_

'
——

0—
)
3

Fig. 58. Gyrator (a) and its symbol (b) and use as a coil imitation [1].

The gyrator 1s described by the following equations, where gm 1s
a gyration conductance parameter:

I, =—gmV, oraz I, = gmV),

If the impedance Z, 1s placed on terminals ”2” of the gyrator,
impedance seen from 7’1"’ terminals will be equal to:

PRAUELE B I B
gt V) gm® Z,(s) 120




Direct stmulation of RLC prototype
— gyrator, cont.

So when the gyrator 1s loaded with a capacitor, at the input a coil
with an inductance equal to L=C/gm?’ is seen:

|
=0y gm” 1/(sC) -7

How to realize a gyrator? Using equations of the gyrator, e.g.
directly, through the use of transconductance amplifiers.

Fig. 59. OTA implementation of a grounded gyrator.
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Direct simulation of RLC prototype
— gyrator, cont.

Fig. 60. Fully-differential OTA

implementation of a non-grounded lo—/YYY\— 92 [o—SYYV\_,)
gyrator. . “ T I i e
| ‘o o2

—0—p—0—  —O2

Fig. 61. Realization of a non- grounded
coil using 2 gyrators [1 "



Direct stmulation of RLC prototype
— gyrator, cont.

C=2Lgm’
L Ll /Jj%,+\ .
e i L e i i

Fig. 62. Implementation of non - grounded symmetrical coils using two
fully-balanced OTAs.

Homework no 4

How can the gyrator be realized using operational amplifiers and
second generation current conveyors? Please provide schematics
and values of gyration conductance / resistance factors.

123



Direct sitmulation of RLC prototype —
summary

Summary of the technique:

* devices that can be directly implemented are carried out without
changes, examples: capacitors, sometimes resistances,

* the remaining devices are realized by active simulation, examples:
L => gyrator + C, R => OTA 1n the resistor connection ...

* the real devices values are calculated by denormalization of the
RLC prototype, it 1s based on known filter characteristic frequency
and possible ranges of realizable values of active and passive
devices.
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Calculation example no 6

Please design a lowpass, V-order, Butterworth approximation, fully
differentional OTA-C filter with 3dB passband frequency equal to
20MHz. Direct sitmulation of RLC ladder prototype should be used.
OTAs with 50uS transconductance are available.

Solution: one can find 1n Fig. 57 the values of the normalized RLC
prototype elements. There are two possible realizations containing 3
coils and 2 capacitors or 3 capacitors and 2 coils. We choose the
implementation with a smaller number of coils, because these

clements are implemented using the simulation method. The prototype
of the RLC filter 1s thus as below:

R~=1 L,~1618 L~1618 R~I

V[_ T T I_TVO

C,=0,618 C,=2 (C,~0,618

Fig. 63. A normalized RLC ladder prototype of a V-order lowpass filten2s
with a Butterworth approximation [1].



C,~Lgn’

Fig. 64. A fully differentional OTA-C filter implemented by direct RLC
ladder prototype simulation method.
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The values of individual devices can be calculated on the basis of
denormalization:

RS = l/gm = I/SOIL[S — 20kQ Wy :27T20MHZ:125,66M7"CZd/SeC

C, = 1 C, = 2045 -0,618 = 2459 fF
R o 125,66 Mrad / sec
C, = 1 C,, = 2945 -2=7958fF
R o 125,66 Mrad / sec
C, = 1 C,, = 204 -0,618 =245,9 fF
R o 125,66 Mrad / sec
C,=Lgm’=— [ .gmn*=5"p - 204 1,618 = 643,8 /F
gm- g @y 125,66 Mrad / sec
C,=Lgm’=— [, .gmn*=5"p, - 204 1,618 = 643,8
gm - g @y 125,66 Mrad / sec
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General stimulation of signal flow graph
of the RLC ladder prototype [1]

n-1 In+ 1= O
v, V,
— K ﬁ—» Y; T ........ Y'n_] ‘>_T_>_Q
v, Z, Z, Z, v,

Fig. 65. Immitance ladder representing the RLC filter.

Fig. 65 shows a typical immitance ladder of the RLC filter. The number of Z/Y
devices is n. In the case of the odd order of the filter, 1.e. when m=n-1, the device Y,
or Z, must represent only the resistance. The admittance devices have odd indexes,
and impedance one have even indexes. For the distinction they will be marked with
the letters i and j respectively. Input and output voltages are denoted by V, and V,,
respectively. According to Fig. 65, current flowing through Y branches and voltage
on Z branches can be represented by the following formulas:
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L()=(V () =V, ()Y, Va(s)=(1,(s)—L;(5))Z,

Ls) =V, () -V, (s))y, Va®)=(L()~1(9))Z,

La©=V0-V,6N., V)= -1,6))Z,
The above equations can be rewritten in the general form:
L&) =V -Va®), V=)~ 1.0))Z,

Those relationships are valid for odd values of i in the range from 1 to
n-1 and even j values in the range from 2 to n, with /,, ,(s)=0. In each
of the above equations, there are currents and voltages related to the
respective branches. We multiply those equations and divide them by
the resistive scaling factor R. and get:

RL($)=(V () -V uOXR  V,(s)={I, ()R ~1,,()R.)Z,/R.
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Marking further as:
RI(s)=V,(s) YR, =T, Z,IR. =T,
we get:
Vi($) = (V&) =Via O V()= (9) =V )T

And then we can accomplish these equations using a voltage signal
graph as shown 1n the figure below.

V]l VI3 I/IS I/I +1 :O

Fig. 66. Signal flow graph realizing the simulation of the filter prototype130
from Fig. 65.



Simulation of the signal flow graph of
the RLC ladder lowpass prototype [1]

. ”?@

Fig. 67. Lowpass RLC filter.

The lowpass filter can contain serial R-L circuits in horizontal
branches and parallel R-C 1n vertical branches. Therefore, the
corresponding values of the lowpass filter immitances can be
expressed by the following relationships:

1 1
Zj(S): Yi(S):
sC. +1/R, sL,+ R 131




In the absence of resistive elements, the equations above take the
form: 1 1
Y.(s)=— Z.(8)=——

= ©=c
After multiplying / dividing by the scaling resistance R. we get
transfer functions:

1 1
_ _ T, =7.(s)/ R, =
TY’_K(S)R*_SLZ./R*JrRZ./R* s =4 SC;R. + R./ R,
T, =Y (s)R. = 1 T, =7.(s)/R.= :
S * sL. / R, g sC R,

J
The above transfer function represent lossy or 1deal integrators for
branches with or without resistances, respectively.

The lowpass RLC filter can be implemented using integrators and
active adders! 132



OTA-C implementation of lowpass
signal flow graph simulation technique

Practical OTA-C filters are wusually made using differential
amplifiers. In order to simplify the schematic diagrams of presented
implementations here grounded OTAs are used.

gm
N
o
V2 ) I C:T___
e B T AR AR

sC + gm,

Fig. 68. Implementation of the summing and integrating branch using
OTA amplifiers and capacitors. 133



Comparing the previous expressions with the description of the circuit
from Fig. 68 and using the denormalization of the RLC prototype, the
Ty, transfer functions can be realized in the manner shown 1n Fig. 69.
In this case, the system parameters can be calculated using:

. R, R
& - s gm,; = gm,; ——R,,
Coi  LpRs R
where: gm,;, gm,,, C,;— values of devices in corresponding i branch ,

R. - scaling resistance, R.— normalizing resistance.

gm]i gm]i
e <"
L S
.
C =/ 8My;
CTT .j
o v,

Fig. 69. T, branch realisation of transfer function for lowpass filter. 134



Similarly as above, for 7, we can get:

gmlj RSC{)S R*

CGj CP]R* K lj RS RPj

where: gm,;, gm,;, Cs— values of devices in corresponding j branch,
R, - scaling resistance, R — normalizing resistance.

¢V
“T] &
- -
8y
gm, gmy,

Vi

Fig. 70. T, branch realisation of transfer function for lowpass filter.
135



Calculation example no 7

Please design a fully differentall, lowpass, V-order filter, Butterworth
approximation with 3dB passband equal to 20MHz. The RLC ladder
prototype signal flow graph simulation technique should be used.
OTAs with transconductance equal to 50uS are available.

Solution: we find in Fig. 57 the values of the standardized RLC ladder
prototype devices. There are two possible realizations containing 3
coils and 2 capacitors or 3 capacitors and 2 coils. We choose any
implementation, e.g. like this one below:

YT T LYY I LYY
C, C,

Fig. 71. RLC ladder prototype of the V-order lowpass filter.
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On the basis of Fig. 69 and Fig. 70, we set the final schematic of the
filter as in Figure 72.

gl’l’ll’] gml,] gm1,3 8m, 3 gm, s gml,s
Voo ’} v (‘ OV2 ’? - (I OV4 ’} v {‘ Q g
®— @ — >—
T T | % |T% | T
——
8y,
KI gMy ¢
gm,, am, , 8m, 4 gm,, %e *
s | T el
O + * —_ + ° - O +
L ] ps Ny L —

n

Fig. 72. OTA-C implementation of V-order, lowpass filter using signal

flow graphs simulation. In place of amplifiers, both symmetrical and

grounded OTAs can be used.
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To determine the final values of devices, we assume that the
normalizing resistance 1s equal to the scaling resistance R¢=R., using
transconductance of value gm=30uS for all OTAS we get values:

RS = l/gm = I/SOILlS — 20kQ Wy :27T20MHZ:125,66M7”Cld/SeC

Cor = % = 125,665A();§d fsec 018 =2IIF
Co2 = % G2 = 125,665]\04[?56[/36(: LOI8 =638/
Cos = %.Lm B 125,62A()4§id/sec 2= TRIE
Co4 = % Cre = 125,665]\04[?56[/36(: LOI8 =638/
C..=2" 1, V45 0618=2459fF

oF ) 125,66 Mrad / sec 138



Frequency transformations [ 1]

So far, the lecture presents techniques of approximation and
synthesis of lowpass filters. Frequency transformations allow the
transfer of known techniques for lowpass filters to filters with
different characteristics. There are many different frequency
transformations known and here the two basic ones will be
presented:

o LP — HP transformation,
o LP — BP transformation.
The symbolism used will be as follows:

« coordinates associated with the LP prototype will use capital letters
S=2+Q2,

» coordinates for the target filter will use lower case letters s=c+j.
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Frequency transformations [ 1]-cont.

The problem that we want to solve can be presented as follows:

* we have transfer function 7; (S) with known and desirable
parameters,

« we are looking for a function X transforming this transfer function
to a highpass, bandpass or other desired transfer function:

2=X(w)

* we want to transform only the horizontal axis of the |7, (j€2)|
module, without any change in the vertical axis,

* 1t must also be remembered that transmittance 7, (j€2) is an even
function of frequency, also defined for negative values.
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LP — HP transformation [1,5]

Transformation 1s made by substitution:

0=-1

0
What for the complex variable corresponds to the transformation:

s5=1

A)

(2

Fig. 73. Frequency change in LP - HP transformation [1]. 141



The procedure of highpass filter design using LP-HP transformation:

frequency normalization of the highpass filter,

transfer of the characteristic frequencies to the lowpass form using
the rule of inverting frequency values (omitting the sign), this is
shown 1n Fig. 74,

selection of the transfer function of an appropriate filter that meets
requirements of lowpass filter (approximation),

determination of highpass filter transfer function by substitution
S=1/s,

realization of the determined transfer function (synthesis).

Fig. 74. Transformation of

highpass filter requirements | e e
into the equivalent lowpass | o’

one [1].

|
b




Remarks regarding realization of the
new, highpass transfer function

In the case of cascade realization using biquad sections, the LP
transmittance changes as follows:

Q,

T.,(8)=H for § = 1/s changesinto :
S2+EOS+Q?)
2 2
Typ(s)=H 2 =H ”
1 QO 1 2 2 0)0 2
>+ 0 —+Q S"+—>s+ @,
S S
where: 20 =—
Do

Hence the conclusion that in the case of a cascaded filter realization,
frequency transformation converts LP biquads to HP ones.
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Remarks regarding realization of the
new, highpass transfer function

In the case of RLC ladder prototype simulation, the devices are
replaced, which can be determined by comparing the immitances:

. 1
Y. ,p =8Ctor § =1/s changes to admitance Y. ,,, =—C
S

. ]
Z, » =SL tor § =1/s changes to impedance Z.,, =—L
S

Hence the conclusion that capacitor C in the LP filter turns into a
1/C coil 1n the HP filter. Similarly, the L coil in the LP filter turns
into a 1/L capacitor in the HP filter.

The remaining devices are unchanged.

LP — HP transformation does not change order of the filter.
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Calculation example no 8,
highpass filter design

Please design a highpass filter which should attenuate less than 3dB
signals with frequencies above 50kHz and more than 40dB signals
with frequencies below 12.5kHz.

Solution: we carry out the procedure in accordance with the
principles of using the LP => HP transformation:

» normalization: 50kHz -> 1rad/sec, 12,5kHz ->0,25rad/sec,

e transformation of requirements to LP: attenuation for 1rad/sec
remains on 3dB, while attenuation of 40dB for 0.25rad/sec turns into
attenuation equal to 40dB for 1/0.25 = 4rad/sec,

* we use Butterworth approximation, from the graph on page 104 we
find a filter order of at least 4,
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When implemented in a cascade form, we get two HP biquad
sections with Q=0.54 and Q=1.31 (table on page 103) and a natural

frequency of 50kHz.

HP BIQUAD
H-1,0-0,54
©,=2n50kHz

;| HPBIQUAD
H-1, 01,31
©,=2150kHz

in
o
Vols) T

2

O

T Vour(s)

1

Fig. 75. Cascade realization of highpass filter.

When implementing based on the RLC ladder, we start with the
RLC prototype as shown below (from page 114, fig. 57).

R~=1 L,~0,7654 L,~1,848

C,~1,848 C,~0,7654
Fig. 76. LP RLC IV-order Butterworth prototype [1].
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Then we change the LP prototype to the HP one, what gives the
circuit as below.

C,= C,=
R~1 1/0 7654 1/1 848 R,=1
|| || °

L —
]/] 848 10,7654

Fig. 77. HP RLC 4th order Butterworth prototype.

Finally, the HP RLC prototype 1s denormalized and implemented in
an active form by any method, e.g. direct prototype simulation or
signal flow graph simulation.
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C,=Lgm’ C,~Lgnm’ R,~1/gm

Fig. 78. OTA-C fully differential implementation of 4-th order highpass
Butterworth's filter.

Suppose we have OTA amplifiers with gm=81,04uS, then the values
of individual capacitors can be determined from the equations:

wg =2750kHz R, =1/ gm=1/81,04uS

L gm Co=2— 8™ 97918 F
~2. BT 674,85pF ;= =279,18p

T 70,7654 & 1,848 o

5 1 1 5 1 gm

C,=L,gm" = : gm” = : =139,58pF
1,848 wogm 1,848  wq
| m

) S0 =337,02pF

70,7654 o, 148



PSPICE netlist to the calculation example no 8

Example No 8

* Parameter settings
.param fo=50k

.param wo={2*3.1415*fo}

* Input source

Vin in 0 dc 0 ac 1

* Input for balanced filter
Ep in p 0 in 0 0.5

Em in m 0 in 0 -0.5

* Declaration of ideal HP biquad subcircuit
.subckt biquad hp id out in params: wo=1 Q=1

E1l out 0 laplace {V(in)}={s*s/(s*s+wo/Q*s+wo*wo) }
.ends

* Cascaded ideal filter version, output node (2)
X1lbg 2 1 biquad hp id params: wo={wo} Q=0.54
X2bg 1 in biquad hp id params: wo={wo} Q=1.31
RL 2 01

* RLC HP denormalized prototype, output node (7)
.param rs={1/gm}

.param gm=81.04u

Ri in 5 {1l*rs}

Cl 5 6 {1/0.7654/wo/rs}
L2 6 0 {1/1.848/wo*rs}
C3 6 7 {1/1.848/wo/rs}
L4 7 0 {1/0.7654/wo*rs}
Ro 7 0 {1l*rs}

* Power supply for OTAs
vdd vdd 0 2.5V
vss vss 0 -2.5V

*QTA subcircuit declaration

*

Name out+ out- in+ in- Vdd Vss

.sub OTA out p out m in p in m Vdd Vss

M1
M2
M3
M4
M5
Mé
M7
M8
M9

1
2
1
2
ou
ou
3
ou
ou

in p 3 vdd pfet w=12u 1l=4u

in m 3 vdd pfet w=12u l=4u

1 vss vss nfet w=2u 1=2u

2 vss vss nfet w=2u 1=2u

t m 2 vss vss nfet w=2u 1=2u m=4
t p 1 vss vss nfet w=2u 1=2u m=4
7 4 wvdd pfet w=4u 1=2u m=2

t m 7 5 vdd pfet w=4u 1=2u m=4

t p 7 5 vdd pfet w=4u 1=2u m=4

M10 7 7 6 vdd pfet w=4u 1=2u m=1

M11
M12

4
5

0 vdd vdd pfet w=2u 1=2u m=2
out m vdd vdd pfet w=2u 1=2u m=4

M13 5 out p vdd vdd pfet w=2u 1=2u m=4

M14 6 0 vdd vdd pfet w=2u 1=2u m=1

Ibias 7 vss 10u

.ends

* OTA-C fully balanced HP filter, output nodes (16,15)
Clgma 11 13 674.85pF

Clgmb 12 14 674.85pF

C2gm 13b 14b 139.58pF

C3gma 13 15 279.18pF

C3gmb 14 16 279.18pF

C4gm 15b 16b 337.02pF

X1 12 11 in p in m Vdd Vss OTA

X2 12 11 11 12 vdd Vss OTA

X3 16 15 15 16 vdd Vss OTA

X5 14b 13b 13 14 vdd Vss OTA

X6 14 13 14b 13b Vvdd Vss OTA

X7 16b 15b 15 16 vdd Vss OTA

X8 16 15 16b 15b Vvdd Vss OTA

* analysis

.ac dec 100 1k 1000meg

.1lib ami c¢5.1ib 149

.probe
.end



-158 : :
1.8KHz 188KHz
O vdb{2) < wdb({7} udh{16,15)

Fig. 79. Results of PSPICE simulations of HP I'V-order filter from example no 8§,
(green) cascade implementation using i1deal biquad sections, (red) denormalized HP
RLC prototype, (blue) symmetric OTA-C implementation using real CMOS OTA

amplifiers (the same as in lab ex. no 1). >0




LP — BP transformation [1,5]

Rules are the same as for LP=>HP, only the transforming function

changes. 2 _
5 5 Do = W, W,
l o -—w 2 2
BW 10, BW =w, - o, S:BW : =
For the complex variable S this @y S —w, _ Q( S L % j
corresponds to the transformation: BW @y Wy S

r |77 (52}

T ] T T T
"E':]..;j ‘ﬂn} _li‘”_ujl _{U:‘-i (f]!.-! U:I[ (1 fL]v__‘ 'mﬂ 151

Fig. 80. Replacement of frequency characteristics in the LP=>BP transformation [1].



L2

1 o -
BW w

i
el L T L a——

S S ——..

Fig. 81. Transformation of the frequency axis in the LP => BP transformation [1].

The substitution S=f(s) for the LP=>BP transformation changes

the order of the resultant filter to a twice higher value.
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The conversion of the LP filter devices into BP equivalents can be
calculated using the comparison of immitances:

2

1, 1, . 1,
Y, ,,=S8CforS=—2 > Lo corresponds to admitance ¥, ,, = C -2
’ BW @, s ’ BW  BWs
2
Z, ,,=SLforS = Yo | 5 %o corresponds to impedance Z . ,, = L4120
’ BW @, s " Bw T BWs
e C : BW
— ¢ T Co/
L BW
L BW L0)02
o VYo > oYY H o

Fig. 82. Replacement of the devices of LP prototype after LP=>BP
transformation. 153



Calculation example no 9,
design of bandpass filter

Please design a bandpass filter with an attenuation not greater than
3dB 1n the 900kHz - 1100kHz band. For frequencies below 800kHz
and above 1200kHz filter attenuation should be at least 15dB.

Solution: we perform the procedure as for the HP filter:
Normalization of filter requirements to @, =1 :

fo =l fofi =1100kHz900kHz = 995kHz

W, =27f, =62518krad / sec
Jigp =900kHz => @, =27f,/ @3 = 900kHz/995kHz = 0,9045

Jfopp =1100kHz => @,z =27f, / wg =1100kHz/995kHz =1,1055

BW =, ,, — @, =1,1055-0,9045 = 0,201
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fapp =800kHz => @y, =24f,/ @ = 800kHz/995kHz = 0,804
fasp =1200kHz => @,,, =2xf, | g =1200kHz /995kHz =1,206

Transfer of BP normalized frequencies LP frequencies:

O- 1 o' - a)é
BW 0,
__ 1 09045°-1" o __ L L1055"-1° .
0,201 0,9045 > 0,201 1,1055
2 12 2 _q12
Q, - 1 0804° 1" _ 2188 Q, - 11,206 18747
0,201 0,804 0,201 1,206

In the frequenies listed above, the minus sign should be omitted. The
required attenuation for (2, is more stringent than for £2,. We choose
the approximation of Butterworth and using the drawing on page 104
we can see that in the pulsation range equal to 1.8747, this figure 1s

not precise enough to estimate the required order of the LP filter.
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1
1+ »*"

| | | | |
n=—log, 2 —-1/= _10g1,8747|: ) 1} = _10g1,8747 (30,623) =
2 { T,(jo) } 2 (o) :

11n30,623 1 3422
2 In1,8747 20,6284

T,(jo)| =

So we use followin equation:

2,723

We choose the integer value n=3. Now 1t 1s necessary to
implement the Butterworh LP 3 filter properly denormalized and
transformed to the BP version. We choose the method of direct

simulation of the RLC prototype.
R=1  L,=2 Ro~1

C,=1 C,-1
Fig. 83. Butterworth's LP, RLC, III-order normalized prototype [1]. 136



R~1 R,=1

1
1 °
02012

2/0,201

0,201/1 170,201 0,201/1

C, L, L, C, C; I

Fig. 84. Butterworth, BP, normalized, VI-order, RLC prototype corresponding to
the LP prototope from Fig. 83 for BIW=0.201.

4

CszLﬁgTrf — ]
C, G C,,=L.gnr Ry=1/gm

Fig. 85. Fully differentail OTA-C realization of the filter prototype from 15§7g.84.



Values of capacitors are determined using denormalization
procedures, we assume that gm=81.04uS:

1 m
C = 0201 i S =64,49pF wg =27f, = 6251,8krad / sec
C, =rgm’ =220 L o 2 0201.-8™ ~ 2.6055pF
1 wgm g
c, =2. 2200 8m 5 6055 pF
2w
C, =Lgm’=—2—l g2 8" _ 12308y
0,201 w,gm 0,201 w,
=L &M 64 49pF

0,201 w,

Coo=Lgm’ =220 1 02018 — 26055 pF

1 wggm Wy
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]
300KHz
udb(22,21)  vdb{122,121)

Fig. 86. Results of PSPICE simulation, (green) RLC prototype, (blue) filter as in
Fig. 85 with 1deal OTA amplifiers and (red) OTA amplifiers as in lab ex. no 1.
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28
0._86HHz 8.84HHz 0.88HHz 8.92HHz 0.96HHz 1.86HHz 1.B4HHzZ 1.88HHz 1.12HHz 1.16HHz  1.28HHz
o udb{2) < uvdb(22,21) - udb(122,121)

Frequenc

Rys. 87. Results of PSPICE simulation zoomed to passband region, (green) RLC
prototype, (blue) filter as in Fig. 85 with ideal OTA amplifiers and (red) OTA

amplifiers as in lab ex. no 1.
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