
STM32 Ecosystem Workshop
T.O.M.A.S Team

• After successful code generation by STM32CubeMX this is the

right time to import it into SW4STM32 toolchain for further

processing

2

Handling the project in SW4STM32

Our goals for this session

Handling the projects generated by STM32CubeMX in SW4STM32

Import project generated by STM32CubeMX

Tune sources to run selected peripherals in desired algorithm

Build project

Configure debug session

Run debug session

Debug perspective

Watching the variables and registers content

Handling errors

5

Create a new workspace
SW4STM32

• Start Workspace launcher if not

done automatically by Eclipse.

6

Create a new workspace
SW4STM32

• Create new workspace in the desired location – but not in the same folder where

the project which will be imported is located (it must be one level above the project)

7

• An empty workspace will be

generated

Import the project into the workspace 1/3
SW4STM32

8

IMPORT project

into workspace

This is possible to import multiple projects into a single workspace

Import “L4_Blinky” project into empty workspace following below steps:

9

Import the project into the workspace 2/3
SW4STM32

In this example L4_Blinky project will be processed.

Select project location

(as configured in STM32CubeMX –

Step2)

1

2

3

4

10

Import the project into the workspace 3/3
SW4STM32

Once project is included into the workspace, its folder

structure becomes visible in Project Explorer

Places dedicated for user code are marked by
/* USER CODE … BEGIN*/

and
/* USER CODE … END*/

comment lines.

These places are protected from being removed during code

re-generation by STM32CubeMX.

This is possible to define another user code places in .c

source files but not possible in .h header files.

Warnings and errors

after build the project

• STM32CubeMX generated project is only a skeleton which should

be filled with some code from our side

• To make green LED (connected to properly configured PA5 pin) we

should continuously invoke GPIO toggle function with the proper

delay to make blink visible

11

Modifying the code
blinking green LED (PA5)

12

Tasks (within while(1) loop in main.c):

1. Add GPIO pin toggle function for PA5 pin. Which function we can use here?
?

2. Add 500ms delay between each change of the GPIO pin state. Which function we can use here?
?

Hints:

• All HAL function begins with HAL_PPP_ prefix (PPP – short name of the peripheral, i.e. GPIO)

• Please try to use Content Assistant (Ctrl+SPACE) in Eclipse

Modifying the code
blinking green LED (PA5) - solution

13

Solutions (within while(1) loop in main.c):

1. Add GPIO pin toggle function for PA5 pin. Which function we can use here?
HAL_GPIO_TogglePin();

2. Add 500ms delay between each change of the GPIO pin state. Which function we can use here?
HAL_Delay();

/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

/* USER CODE END WHILE */

/* USER CODE BEGIN 3 */

HAL_GPIO_TogglePin(GPIOA, GPIO_PIN_5);

HAL_Delay(500);

}

/* USER CODE END 3 */

14

Useful project settings in SW4STM32
configuring C dialect and parallel build

1. Configure C standard to

C99 to avoid possible

compilation errors

2. Check Enable parallel

build to make use of your

machine potential and to

shorten compilation time

Project->Properties C/C++ Build->Settings->Tools Settings tab->MCU GCC Compiler->Dialect

C/C++ Build->Behavior tab

1

2

15
Building the project in SW4STM32

• To build the project press Ctrl+B or

click Make All icon

• In case of multiple compilation

errors, re-run Indexing of the project

• After proper build there are

information about code/data space

usage in Console window displayed

16

Configure the debug session in SW4STM32
for single project in the workspace

• Before running debug session this is

necessary to configure it for current project

• In case there is a single project in the

workspace this is enough to click the “bug”

icon and:

1. Select “Ac6 STM32 C/C++ Application”

line and click ‘OK’

In case the project was generated on

existing/defined board (like NUCLEO-

L476RG in our example) debug will

run automatically

2. Otherwise (we will practice it in

L4_DAC_ADC example later) it is

necessary to configure debug device

(STLinkV2-1 in our case) and debug

interface (SWD in our case) and click

‘OK’

• Next step would be to run the debug session

(see the next slide)

1

2

17

Configure the debug session in SW4STM32
for multiple projects in the workspace 1/2

Before debugging current project for the

first time, this is necessary to configure its

debug session

Double click (or use right mouse button

to select) to create a new debug

configuration for the current project

All project parameters should

be filled-in automatically

Select Debug Configuration

option1

2

3

18

Run the debug session in SW4STM32
for multiple projects in the workspace 2/2

• Connect Nucleo board with miniUSB cable

(ST-Link)

• In case of the projects generated for ST

board, there should be selected board

configuration script which specifies debug

device and its interface (you can check it in

Debugger tab)

• Debug perspective will be run (please select

Yes in the information window)

• This is enough just to click a “bug” icon to

enter debug session next time.

1

2

3

4

19

Run the debug session in SW4STM32
for multiple projects in the workspace, but no board specification

• Connect Nucleo board with miniUSB cable (ST-Link)

• Under Debugger tab select debug device (ST LinkV2-1 for Nucleo ones) and debug interface (SWD)

• Click Apply and then Debug

• Debug perspective will be run (please select Yes in the information window)

• This is enough just to click a “bug” icon to enter debug session next time.

1

2

3
4

Debug session perspective
watching the variables

20

• This is possible to monitor CPU registers, peripherals registers and variables during debug session,

but we need to pause the code execution (no live view is possible for the time being).

• To add variable to be monitored - highlight it, press right mouse button and select “Add Watch

Expression”. It will appear in Expressions tab then.

• Values which has changed from previous project pause will be presented on yellow background

Watched variables

Values changed

from previous

application pause

Debug session perspective
watching the registers content

21

• This is possible to monitor CPU registers, peripherals registers and variables during debug session,

but we need to pause the code execution (no live view is possible for the time being).

• To add peripheral register to watch - click right mouse button and select “Activate”. Peripheral icon

and its registers names will be highlighted in green and will contain “caught” values on next debug

pause.

• Values which has changed from previous project pause will be highlighted in red.

Core registers
Peripherals

registers

Non-watched

peripheral

Watched

peripheral

Value changed

from previous

application pause

22

Handling the debug session
SW4STM32

1. Skip all breakpoints

2. Run/resume

3. Suspend

4. Terminate debug session

5. Disconnect from the target

6. Step into

7. Step Over

8. Step Return

1 2 3 4 5 6 7 8

windows configuration in debug perspective

What have we learnt?

Handling the projects generated by STM32CubeMX in SW4STM32

Import project generated by STM32CubeMX

Tune sources to run selected peripherals in desired algorithm

Build project

Configure debug session

Run debug session

Debug perspective

Watching the variables and registers content

Handling errors

23

Enjoy!

www.st.com/mcu

/STM32 @ST_World st.com/e2e

http://www.st.com/stm32l4

