
STM32 Ecosystem workshop
T.O.M.A.S Team

• Now, to complete our task, we have to

• Switch to SW4STM32 for some software modification

• Compile the code with added new features

• Run the code on NUCLEO-L476RG board using SW4STM32

2

Our goals for this session

How to migrate the project between two different microcontrollers:

Importing STM32CubeMX project

Running automatic migration to new platform (STM32L476RGT6 MCU)

Tuning project in STM32CubeMX:

 Updating clocks

 Re-configuring peripherals

 Generating project for new MCU

Tuning project in SW4STM32:

 Importing modified project to the same workspace

Apply necessary modifications to generated sources

Compile and run project on the new platform

3

Concept of the system
migration to NUCLEO-L476RG

4

dacbuf

32

adcbuf

32

DAC

CH1

ADC1

CH1

PA4

PA1

jumper

connection

DMA1

Channel 2

DMA2

Channel 1

Tim2 trigger

(TRGO,

Update)

Tim2 trigger

(OC4)

Buffers in

FLASH, SRAM

TIM2

HSI

8MHz

STM32L053R8T6

Hardware overview

TIM2

dacbuf

32

adcbuf

32

DAC1

CH1

ADC1

CH6

PA4

PA1

jumper

connection

DMA1

Channel 3

DMA1

Channel 1

Tim2 trigger

(TRGO,

Update)

Tim2 trigger

(OC2)

Buffers in

FLASH, SRAM

TIM2

HSI*PLL

80MHz

STM32L476RGT6

Hardware overview

TIM2

5Hz, 50% duty cycle5Hz, 50% duty cycle

Importing L4_DAC_ADC example
5

Import newly generated L4_DAC_ADC project

into a SW4STM32 workspace (a new one or any

of previously used).

Hint. In case of multiproject

workspace selecting active

project is done by click on it

(right button on mouse)

Import the project into the workspace 1/3
SW4STM32

6

IMPORT project

into workspace

It is possible to import multiple projects into a single workspace

Follow the below steps to import L4_DAC_ADC project into empty workspace:

7

Import the project into the workspace 2/3
SW4STM32

Select L4_DAC_ADC project (previously generated by STM32CubeMX)

Select project location

(as configured in

STM32CubeMX)

8

Import the project into the workspace 3/3
SW4STM32

Warnings and errors after build the project

Once project is included into the workspace, its

folder structure becomes visible in Project

Explorer and project is build automatically

Places dedicated for user code are marked by
/* USER CODE … BEGIN*/

and
/* USER CODE … END*/

comment lines.

These places are protected from being overwritten during code

re-generation by STM32CubeMX (if configured so).

This is possible to define another user code places in .c source

files but not possible in .h header files.

Let’s add some code to our generated template to make it working

9

Make the L4_DAC_ADC project running
adding some code

Modifying the code
adding own variables - task

11

Tasks (in main.c file):

1. Add data buffer to be used by DAC to

generate signal (sine wave example on the

right – available within sine.h file)

2. Declare data buffer for ADC to store

measured data

Modifying the code
adding own variables - solution

12

Tasks:

1. Add data buffer to be used by DAC to generate signal (sine wave example

on the right – available within sine.h file)

2. Declare data buffer for ADC to store measured data

/* USER CODE BEGIN PV */

/* Private variables ---*/

#define ADCBUFSIZE 32

#define DACBUFSIZE 32

const uint16_t dacbuf[DACBUFSIZE] = {

2047, 2447, 2831, 3185, 3498, 3750, 3939, 4056, 4095, 4056,

3939, 3750, 3495, 3185, 2831, 2447, 2047, 1647, 1263, 909,

599, 344, 155, 38, 0, 38, 155, 344, 599, 909, 1263, 1647};

uint16_t adcbuf[ADCBUFSIZE];

/* USER CODE END PV */

Modifying the code
start the peripherals configured within STM32CubeMX - task

13

Tasks (in main.c file):
1. Start ADC calibration

2. Start ADC to work with DMA on declared

ADC buffer

3. Start DAC to work with DMA on declared

DAC buffer

4. Start Channel4 of Timer2 to work in

“Output Compare without output” mode

(trigger of ADC on Capture Compare

event on channel 2 and for DAC on

update)

To simplify coding process you can use

code assistant by pressing Ctrl+SPACE

14

Modifying the code
start the peripherals configured within STM32CubeMX - solution

Tasks:
1. Start ADC calibration (necessary delay is implemented in dedicated HAL function)

2. Start ADC to work with DMA on declared ADC buffer

3. Start DAC to work with DMA on declared DAC buffer

4. Start Channel4 of Timer2 to work in “Output Compare without output” mode

(trigger of ADC on Capture Compare event on channel 2 and for DAC on update)

/* USER CODE BEGIN 2 */

HAL_ADCEx_Calibration_Start(&hadc1,ADC_SINGLE_ENDED);

HAL_ADC_Start_DMA(&hadc1,(uint32_t *)adcbuf, ADCBUFSIZE);

HAL_DAC_Start_DMA(&hdac1,DAC_CHANNEL_1,(uint32_t *)dacbuf ,DACBUFSIZE,DAC_ALIGN_12B_R);

HAL_TIM_OC_Start(&htim2, TIM_CHANNEL_2);

/* USER CODE END 2 */

Let’s check whether the application is working correctly

• Configure the toolchain if necessary (parallel build, C99 dialect)

• Compile the code

• Start debug session

15

16

Useful project settings in SW4STM32
C dialect and parallel build

1. Configure C standard to

C99 to avoid possible

compilation errors

2. Enable parallel build to

make use of your

machine potential and to

shorten compilation time

C/C++ Build->Settings->Tools Settings tab->MCU GCC Compiler->Dialect

C/C++ Build->Behavior tab

1

2

Project->Properties

17
Build the project in SW4STM32

• To build the project either press Ctrl+B

or click Make All icon

• In case of multiple compilation errors,

re-run Indexing of the project

• After proper build there are information

about code/data space usage in

Console window displayed

18

Configure the debug session in SW4STM32
for single project in the workspace

• Before running debug session this is

necessary to configure it for current project

• In case, there is a single project in the

workspace, this is enough to click the “bug”

icon and:

1. Select “Ac6 STM32 C/C++ Application”

line and click OK

2. In case the project was generated on

existing/defined board (like NUCLEO-

L476RG in our example) debug will

run automatically

3. Otherwise it is necessary to configure

debug device (STLinkV2-1 in our case)

and debug interface (SWD in our

case) and click OK

• Next step would be to run the debug session

(see the next slide)

1

3

19

Configure the debug session in SW4STM32
for multiple projects in the workspace 1/2

Before debugging current project for the

first time, this is necessary to configure its

debug session

Double click (or use right mouse button

to select) to create a new debug

configuration for the current project

All project parameters should

be filled-in automatically

Select Debug Configuration

option1

2

3

20

Run the debug session in SW4STM32
for multiple projects in the workspace 2/2

• Connect Nucleo board with miniUSB cable

(ST-Link)

• In case of the projects generated for ST

board, there should be selected board

configuration script which specifies debug

device and its interface (you can check it in

Debugger tab)

• Debug perspective will be run (please select

Yes in the information window)

• This is enough just to click a “bug” icon to

enter debug session next time.

1

2

3

4

21

Run the debug session in SW4STM32
for multiple projects in the workspace, but no board specification

• Connect Nucleo board with miniUSB cable (ST-Link)

• Under Debugger tab select debug device (ST LinkV2-1 for Nucleo ones) and debug interface (SWD)

• Click Apply and then Debug

• Debug perspective will be run (please select Yes in the information window)

• This is enough just to click a “bug” icon to enter debug session next time.

1

2

3
4

Debug session perspective
watching the variables

22

• This is possible to monitor CPU registers, peripherals registers and variables during debug session

when we pause the code execution (no live view is possible for the time being).

• To add variable to be monitored – select it, press right mouse button and select “Add Watch

Expression”. It will appear in Expressions tab.

• Values which have changed since previous project pause will be presented on yellow background

Watched variables

Values changed

since previous

application pause

Debug session perspective
watching the registers content

23

• This is possible to monitor CPU registers, peripherals registers and variables during debug session

when we pause the code execution (no live view is possible for the time being).

• To add peripheral register to watch – select it, press right mouse button and select “Activate”.

Peripheral icon and its registers names will be highlighted in green and will contain “caught” values

on next debug pause.

• Values which have changed since previous project pause will be highlighted in red.

Core registers
Peripherals

registers

Non-watched

peripheral

Watched

peripheral

Value changed

since previous

application pause

24

Handling the debug session
SW4STM32

1. Skip all breakpoints

2. Run/resume

3. Suspend

4. Terminate debug session

5. Disconnect from the target

6. Step into

7. Step Over

8. Step Return

1 2 3 4 5 6 7 8

windows configuration in debug perspective

Let’s run the debug session and see some effects

• Add adcbuf[] as a new item to be monitored

• After a while (at least 6.4 seconds to fill whole adcbuf[] buffer) pause the

debug session and analyze the adcbuf[] content

25

Results in debug session
monitoring adcbuf[] buffer

To add new variable to be

monitored in debug session

it is needed to:

1. Right click on the

variable name

2. Select “Add Watch

Expression”

3. New position in

“Expressions” tab will

appear.

4. This is not live debug,

therefore to check the

values it is necessary to

pause the session

5. Updated positions are

highlighted in yellow

26

1

2

3

4

5

What have we learnt?

How to migrate the project between two different microcontrollers:

Importing STM32CubeMX project

Running automatic migration to new platform (STM32L476RGT6 MCU)

Tuning project in STM32CubeMX:

 Updating clocks

 Re-configuring peripherals

 Generating project for new MCU

Tuning project in SW4STM32:

 Importing modified project to the same workspace

 Apply necessary modifications to generated sources

 Compile and run project on the new platform

27

Enjoy!

www.st.com/mcu

/STM32 @ST_World st.com/e2e

http://www.st.com/stm32l4

