Quality of HAL libraries

T.0.M.A.S Team

o

[' l life.augmented

Goal of this part

_IDemonstrate basic information about code analysis technigues and its tools

IPresent ST practices used for HAL and LL libraries quality verification

Program analysis

Program analysis Is the process of analyzing the behavior of software
programs to ensure quality attributes such as:

e correctness,
* reliability
e robustness,

* safety,

Program analysis can be performed: ra——
 during code review
« without executing the program (static program analysis),
* during runtime (dynamic program analysis),
« combination of all above.

Static program analysis

Static program analysis is the analysis of computer software that is
performed without executing a program. (init

r=r+1

Two popular static program analysis methods: ‘

* Control-flow: obtaining information about which functions can be -
called at various points during the execution of a program. tid

« Data-flow: gathering information about the values at each point of the
program and how they change over time.

/read (X)\ Data flow anomaly: n is \

n:=1 re-defined without being used

while x>y do Data flow fault: y is used
begin before it has been defined
(first time around the loop)

pass

read (y)

r write(n*y)
” X:=X-n
life.augmented \ end /

Dynamic program analysis __

Dynamic program analysis is analysis performed on executing
program.

Popular dynamic program analysis methods:

» Testing: executing the program with a

given input and evaluating its behavior
and the produced output. |

Valid/invalid

Inputs

* Monitoring: records and logs different kinds of information about
the program such as resource usage, events and intera(ition

* Program slicing: reducing the program to the minimum form
that still produces the selected behavior. 4)

I :
' =
1S7]

life.augmented

Program analysis tools

* Free software released under the terms of the GNU General Public
License

« Splint - tool for statically checking C programs for security vulnerabilities and coding mistakes.

Splint's output:

Variable ¢ used before definition
suspected infinite loop. Mo value used in loop test (c) is modified by test or loop body.
Assignment of int to char: c¢ = getchar()

LCOV - code coverage report
* Gecov and Gprof - source code coverage analysis and™ = == " T T
Branches: ' e

statement-by-statement profiling tools.
IIIIIIIZEZE!IIIIIIIIlll!ﬂ!ﬁﬁﬁﬁ!!lllIEEE:EEHI Branches ¢

Gcov provides the following information: o A e s TS
« How often each line of code executes
« What lines of code are actually executed LCOV - code coverage report
« How much computing time each section of code uses . e T
Branches: ' T mew
LCOV - a more user-friendly graphical visualization
"’Of the Gcov output. : oo
life.augmented v . ' ! cwcien s

Program analysis tools __

« Commercial software

 CodeSonar - static analysis tool from Grammatech, which identifies bugs that can result in
system crashes, unexpected behavior, and security breaches.

« Like a compiler, CodeSonar builds code using build environment, but instead of creating object code,
CodeSonar creates an abstract model of entire program.

« From the derived model, CodeSonar’s symbolic execution engine explores program paths, reasoning
about program variables and how they relate.

Source Model Intermediate Analysis Results
Code Extraction Representations

o —ng—|l—a -1

Tool used by ST to achieve

h I h u al I t Of C u b e HA L Names Databases/Symbol Table Abstract Syntax Tree (AST) Control Flow graph (CFG) call Graph
gh g y o
a °
Name Kind Location .
copy_item function item. ¢:25
item_cache variable itemnc: 10
. o000 ®
color parameter pallette.c:23
header.h file cha . . .
r E BEEE .
Y/ °

life.augmented

Quality of HAL libraries

life.al

* The STM32Cube FW package is maintained regularly through:

STM32Cube High Quality Process

* Full release (marking x.y.0)
» Patch release (marking X.y.z)
» The updater tool available with STM32CubeMX PC tool allows automatic notification and download of new
STM32Cube release or patch

Lys

life.augmented

ST

-

Maintenance Releases Policy

FW Release /
Maintenance

Firmware
Quality Review

Defects analysis Feedback
& fix collection

S1aWwolsnd

STM32Cube High Quality Process

Static Code analyze

Static code analysis

eCODESONAR Search | code inthis analysis |Z|| for

Search | Advanced Search

Home » gnuchess-x86 » gnuchess-x86 analysis 1 » Warning 71.85

« HAL going through Code Analysis Tool:

Buffer Overrun at gnuchess Ist:39958 No properties have been set

CodeSonar Industry reference tool

Show Events | Options

edit properties

Text | XML | ReML | Visible Warnings: | active

identifying vulnerabilities at compilation wun spen s sz

39550

time 4 e

« Report available on demand

Figure 4: Warnings by File

stm32f7xx_hal_cryp_ex.c
stm32f7xx_hal_sd.c
stm32f7xx_ll_usb.c
stm32f7xx_hal_crc.c (I
stm32f7xx_hal_pcd.c I
stm32f7xx_hal_eth.c I
stm32f7xx_hal_usart.c I
core_cm7.h L]
stm32f7xx_hal_flash_ex.c |G
stm32f7xx_hal_cryp.c L]
stm32f7xx_hal_tim_ex.c
stm32f7xx_hal_gpio.c L
" ’ stm32f7xx_hal_hcd.c (I
stm32f7xx_hal_pcd_ex.c L]

life.augmented stm32f7xx_hal_ltdc.c (I
0 5

_text:08065900 loc B065900:

_text:08065900 mowv dword [esp],edi

text:08065903 call thunk .strlen
:cexc:DBDGSBDB mowv dword [Esp],eax
_text:0806590B call _ thunk .malloc

% Event 15: malloc() returns the address of a new object.
= This points to the buffer that will be overrun later.
4 ¥ hide

_text:08065910 mowv dword [esp+4],edi
_text:08065914 lea ebx, [eax+l]
_text:08065917 mowv dword [esp],ebx
_text:0806591R call __thunk_.strcpy
Buffer Overrun

This code writes pastthe end of the buffer pointed to by strcpy:parameter 1.

10 15

20

Example of the report

Quality reports/STM32F7xx_HAL_V1.1.0_CodeSonarReport.pdf

STM32Cube High Quality Process

Dynamic code analysis and validation report

ST Dynamic validation test and Validation

report on CUBE HAL

« Test are run by cube HAL i.e per sub family.

« One validation test and report per peripheral /

function and package in Doxygen format

« Test are run (dynamic) in semi automatic way and

use ST evaluation boards.

Example of the report

) /4

life.augmented

o m e

Hide: Locate Back Forward Stop

Refresh

> © @ &N £ & o

Home Font Print ~ Options

Cortents Ilgdax | gearuﬁl Fa\mritesl

Bl ([STM32Fdoc HAL Drivers

[£] ADC HAL_Driver-v1.0.0RC4 Tests

|£] ADC HAL_Driver1.0.0RC4 Tests
@ Relzted Pages
= Q2| Modules

=] L:Q] HAL_ADC_Exhaustive_Test_Func

B ([Functions
[E] HAL_ADC_E_Test01
HAL_ADC_E_Test02
HAL_ADC_F_Test03
HAL_ADC_F_Test04
HAL_ADC_E_Test05
HAL_ADC_E_Test06
HAL_ADC_E_Test07
HAL_ADC_E_Test08
HAL_ADC_E Test09
HAL_ADC_E_Test10
HAL_ADC_F _Test11
HAL_ADC_F _Test12
HAL_ADC_E_Test13
HAL_ADC_E_Test14
HAL_ADC_E_Test15
[E] HAL_ADC_E_Test16

STM32L4xx_HAL_Validation_Report

Main Page | Modules | Data Structures Files | Directories ‘

STM32L4xx ADC Drivers |

/
ADC_HAL_Driver_V0.2.0RC1-Tests_Report_V1.0-stm3214xx-20_02_2015.txt

STMicroelectronics Confidential

Author:
Jean-Christophe BATLLO (IntroPackage Team)
Hardware \

= Silicon: STM32L476RGTE Rev 1.2
« STM32_NUCLEQ_64
» JTAG adapter: embedded STlink/v2

Development Toolchain

+ EWARM V7.30.1
« Settings and compiler optimization: High Size

Firmware Reference

» CortexM CMSIS drivers V4.0
« stm32l4xx CMSIS drivers V0.2.0RC1

« stm32l4xx HAL drivers V0.2.0RC1)

Validation source files

o stm22l4x¥ hal adc wvalid h

Firmware Reference

CorexM CMSIS drivers V3.20 SVN Revision 20
STM32Fdxx CMSIS drivers V2.0.0RC6 SVN Revision 206
STM32F4xx HAL drivers V1.0.0RC4 SVN Revision 2431

Validation source files

stm32faxx_hal_adc_valid.h
stm32fdxx_hal_adc_valid.c
stm32fdxx_ith
stm32fdxx_it.c
stm32faxx_hal_adc_valid_e.h
stm32fdxx_hal_adc_valid_e.c
stm32fdxx_hal_adc_wvalid_f.h
stm32faxx_hal_adc_wvalid_f.c

Not tested

Not Applicable.

Exhaustive Tests

|TEST NAME DESCRIPTION

»

|HAL_ADC_E_TestDI \assert_param Test: ADC Functions Run Time Check

[HAL_ADC_E_TestD2 HAL_ADC_Delnit Test

m

[HAL_ADC_E_TestD3 [HAL_ADC_MultiModeConfigChannel Test

[HAL_ADC_E_TestDa [HAL_ADC_Init Test

[HAL_ADC_E_TestDS HAL_ADC_Start and HAL_ADC_Stop Test

|HAL_ADC_E_TestDG

HAL_ADC_InjectedStop_IT Test

HAL_ADC_Start_IT, HAL_ADC_Stop_IT, HAL_ADC_InjectedStart_IT and

|HAL7ADC7E7TEStIJ? ‘HAL?ADC?ST:EHLDMA and HAL_ADC_Stop_DMA Test

| [HAL_ADC_E_Test08 HAL_ADC_ConfigChannel Test

| [HAL_ADC_E_Testno HAL_ADC_InjectedConfigChannel Test

|[HAL_ADC_E_Test10 HAL_ADC_InjectedConfigChannel Test

|HAL_ADC_E_Test11 \HAL_ADC_InjectedStart and HAL_ADC_InjectedStop Test

[HAL_ADC_E_Test12 [HAL_ADC_InjectedConfigChannel Test

Quality reports/Validation_Report/HAL_ADC_Validation_Report.chm

STM32Cube High Quality Process

MISRA C compliancy 1/2

STM32Cube HALs and ST Middleware C code compliant with MISRA-C
« Compliancy with a few exceptions listed and explained
* Check for MISRA-C 2004 is made using the IAR MISRA-C Checker (w/compiler: IAR C/C++ Compiler for ARM).
* Rules excluded from MISRA C Check (all Drivers):

MISRA-C Required/A

2004

Example of the report

Root Cause

dvisory

Compiler is configured to allow extensions - all code shall conform to 150 93533

IAR compiler extensions are enabled. This was allowed to support new CMSIS

1.1 Required
q standard C, with no extensions permitted types.
) Identifiers (internal and external) shall not rely on significance of more than) .
5.1 Required Some long parameters names are defined for code readability.
31 characters
- . red Moprototype seen - functions shall always have prototype declarations and This rule is violated as there is no functions prototypes for _ WFland _ WFE
. equire
q the prototype shall be visible at both the function definition macros in the CMSIS layer.
) The value of an expression of integer type shall not be implicitly converted to)
10.1 Required . . Complexity
a different underlying type.
10.6 Required AU suffix shall be applied to all constants of 'unsigned' type The "stdint.h" defined types are used to be CMSIS compliant.
Conversionsshall not be performed between a pointer to object and an e
11.2 Required . P . P . J . ‘pr_ Meeded when addressing memory mapped registers
otherthan an integral type, another pointer to object type or a pointer to void.
11.3 Advisory A cast should not be performed between a pointer type and an integral type. Needed when addressing memory mapped registers
124 Required The right-hand operand of a logical or | | operator shall not This rule is broken in some drivers when conditional instruction "if" and a long
: equire
; contain side effects. expression is used, the solution is to split this instruction in several and small
)))))) In some case we need to exit from function w/ status of Timeout or error
14.7 Required A function shall have a single point of exit at the end of the function.

immediately and not waiting for the end of process function to update the

Quality reports/MISRA_Check_STM32L4xx_HAL_Driver_V1.2.0.xls

What have we learnt?

v'Demonstrate basic information about code analysis techniques and its tools

v'Present ST practices used for HAL and LL libraries quality verification

Further reading

More information can be found in the following documents (separately for each
STM32 family):

« STM32xx HAL library validation report

available on demand -> please contact your ST technical contact person

« STM32xx HAL library MISRA C compliancy report

available on demand -> please contact your ST technical contact person

Lys

life.augmented

[§ @sT_world

WwWw.st.com/mcu

http://www.st.com/stm32l4

