

8-bit
Microcontrollers

Application Note

Rev. 8045A-AVR-02/08

AVR1306: Using the XMEGA Timer/Counter

Features
• True 16 bit operation
• Double buffered timer period setting
• 4 (2) compare or capture channels per timer

- 4 channels on each Timer 0
- 2 channels on each Timer 1
- Double buffered

• 32 bit operation with 32 bit input capture by timer cascading
• Event counter
• Timer overflow and error interrupts (and events)
• Input capture interrupts (and events)

1 Introduction
The XMEGA™ Timer/Counter modules are true 16-bit Timer/Counters with Input
Capture and Pulse Width Modulation (PWM) functionality.

This application note gives an introduction on how to use the XMEGA
Timer/Counter modules for timing, Input Capture and PWM.

2 AVR1306
8045A-AVR-02/08

2 Definitions
The definitions listed in Table 2-1 will be used throughout this document.

Table 2-1. Definitions used in this document.
Name Description
BOTTOM The Timer/Counter reaches the BOTTOM when it becomes zero.

MAX The Timer/Counter reaches it MAXimum when it becomes 0xFFFF.

TOP The Timer/Counter reaches the TOP when it becomes equal to the highest value
in the count sequence. The TOP value can be equal to the period register
(PER[H:L]) or Compare or Capture register A (CCA[H:L]), depending on the
selected Waveform Generation Mode (WGM).

UPDATE The Timer/Counter signalizes an update when it reaches BOTTOM or TOP
depending on the selected waveform generation mode (WGM).

3 Module Overview
The XMEGA Timer/Counter (TC) modules are 16-bit Timer/Counters with input
capture and compare match with optional output to I/O pin. Typical applications
include:

• Timing.
• Periodic interrupt/event generation.
• Pulse Width Modulation.
• Event time stamping.
• Event counting.
• Signal parameter measurements (Period, duty cycle, etc.).

3.1 Timer/Counter Variants
An XMEGA TC module is related to an I/O port through the I/O pins it can control with
the output compare module. The naming of the TC modules reflects the I/O port it is
connected and the available features for that Timer/Counter. Each TC module has a
name that follows the form: TCxn. TC is short for Timer/Counter, x indicates the port it
is connected to and n is the TC number within PORTx. As an example, TCD0 is
Timer/Counter 0 connected to PORTD.

Timers are available on PORTC, PORTD, PORTE or PORTF, if available on device.

Timer0 on each port has 4 compare or capture channels, while Timer1 has 2
compare or capture channels. Figure 3-1 shows how the output compare channels
are connected to the associated I/O port. Timer0 has its outputs connected to pins 0-
3 within the port, while Timer1 is mapped to pins 4 and 5.

 AVR1306

Figure 3-1. Output compare to I/O port pin mapping
PORTx

TCx0

CCA

CCB

CCC

CCD

TCx1
CCA

CCB

Px0

Px1

Px2

Px3

Px4

Px5

Px6

Px7

3.2 Clock Sources
The available clock source selections for the XMEGA TC modules are listed in Table
3-1.

Table 3-1. XMEGA Timer/Counter clock sources.
Symbol Clock selection

TC_CSEL_OFF_gc TC off (no clock selected)

TC_CSEL_DIV1_gc fCLK,SYS

TC_CSEL_DIV2_gc fCLK,SYS / 2

TC_CSEL_DIV4_gc fCLK,SYS / 4

TC_CSEL_DIV8_gc fCLK,SYS / 8

TC_CSEL_DIV64_gc fCLK,SYS / 64
TC_CSEL_DIV256_gc fCLK,SYS / 256

TC_CSEL_DIV1024_gc fCLK,SYS / 1024

TC_CSEL_EV0_gc Event channel 0

TC_CSEL_EV1_gc Event channel 1

TC_CSEL_EV2_gc Event channel 2

TC_CSEL_EV3_gc Event channel 3

TC_CSEL_EV4_gc Event channel 4

TC_CSEL_EV5_gc Event channel 5

TC_CSEL_EV6_gc Event channel 6

TC_CSEL_EV7_gc Event channel 7

3.3 Interrupts
Interrupts can be generated in the following situations:

 3

8045A-AVR-02/08

4 AVR1306
8045A-AVR-02/08

• Timer overflow.
• Timer error (Input capture data lost because input capture buffer is full).
• Compare or capture. Separate interrupts for each channel.

3.4 Period Setting
Each TC module has a period register (PER[H:L]) that controls the TOP value of the
counter (except in frequency generation mode).

The PER[H:L] register is double buffered through the PERBUF[H:L] register. Double
buffered registers are covered in section 3.7.

The PER[H:L] register is automatically initialized to 0xFFFF after a reset.

3.5 Capture or Compare Channels
Each TC module has two or four capture or compare channels. The channels can be
set up for either input capture or compare match. It is not possible to use the same
TC module for both input capture and compare match at the same time. Input capture
can be used to time stamp event, measuring waveform parameters like frequency or
duty cycle. The compare match feature can be used to generate interrupts or events
at certain time points, or for PWM/waveform generation.

The compare or capture channels consist of a set of 16-bit registers named CCx[H:L],
where x indicates the channel. Timer0, with 4 channels, has CCA[H:L], CCB[H:L],
CCC[H:L] and CCD[H:L], while Timer1 has CCA[H:L] and CCB[H:L]. In addition, each
CCx[H:L] register has an associated buffer register CCxBUF[H:L]. Double buffered
registers are covered in detail in section 3.7.

When used for input capture, the value of the PER register determines how input
capture values are interpreted. If bit 15 of PER is set to one, the entire 16 bit counter
value is stored in the capture buffer. If bit 15 of PER is zero, the event polarity is
stored in bit 15 in the capture buffer. This can be used to measure frequency
parameters like duty cycle using only one input pin and one capture channel.

3.6 Event Input Selection
The TC input capture system uses the XMEGA event system to trigger an input
capture. Refer to application note AVR1001 for more information about the XMEGA
event system.

When the TC is used for input capture, all enabled input capture channels must be
associated with an event channel. The EVSEL[3:0] bits of the CTRLD register select
the event channels that are associated with the input capture channels. EVSEL3 must
be 1 to select an event source. EVSEL[2:0] selects between the 8 event channels.

The event channels associated with the different channels cannot be selected
individually. Table 3-2 shows the mapping between global event channels and input
capture channels when EVSEL3 = 1 and EVSEL[2:0] = N. The “%” is the modulo
operator. Note that when a set of event channels have been selected for the TC, this
does not mean that these event channels are used exclusively by the TC. The TC
simply “listens” to the selected channels and is able to receive events on these event
channels.

 AVR1306

 5

8045A-AVR-02/08

Table 3-2. Event channel to input capture channel mapping.
Input capture channel Global event channel

A N

B (N + 1) % 8

C (If available) (N + 2) % 8

D (If available) (N + 3) % 8

Example 1:
EVSEL3 = 1 and EVSEL[2:0] = 0 means that input capture channels A, B, C and D
are triggered by event channels 0, 1, 2 and 3 respectively.

Example 2:
EVSEL3 = 1 and EVSEL[2:0] = 6 means that input capture channels A, B, C and D
are triggered by event channels 6, 7, 0 and 1 respectively.

If the event source is subject to noise, e.g. caused by the bouncing of an external
switch, it is possible to enable digital filtering on the event channel. See application
note AVR1001 for more information on the event system and its digital filtering
capabilities.

3.7 Double Buffered Registers
The PER[H:L] and CCx[H:L] registers in the TC modules are double buffered. They
have dedicated buffer registers named PERBUF[H:L] and CCxBUF[H:L].

Using the PER[H:L] register as an example: when writing to PER[H:L] directly, the
value will be updated immediately. If the value is instead written to PERBUF[H:L], the
value of PER[H:L] will not be updated instantly, but instead transferred from
PERBUF[H:L] on the next UPDATE condition. Each buffer register has a related
“buffer valid” flag in the CTRLE register. The buffer valid flag is set when a new value
is written to the corresponding buffer register. The flag is cleared when the buffer
register is copied to its destination. This ensures that only new values are copied.

It is also possible to lock the automatic update from buffer registers. This enables
simultaneous updates of several registers at one update condition. Setting the Timer
Lock Update (LUPD) bit in the CTRLE register enables update locking.

When the TC module is used for PWM, the buffering is typically used to make sure
that the duty cycles are not altered in the middle of a PWM period, and to synchronize
changes to all PWM channels. New compare/TOP values are typically written to the
buffer registers instead of writing directly to the CCx registers. This way, all PWM
channels can be updated at the same time (on the UPDATE event).

In Input Capture mode, the input capture values are double-buffered. A new input
capture-value is first put in the CCxBUF[H:L] register. Values stored in CCxBUF[H:L]
are transferred to CCx[H:L] if the CCIFx flag is not set. The CCIFx flag is cleared
automatically when CCx[H:L] is read. In practice, this means that the user only needs
to read the CCx[H:L] register, while the rest is handled automatically.

3.8 Modes of Operation
The TC has six different modes of operation:

6 AVR1306

• Normal mode.
• Frequency Generation mode.
• Single Slope PWM.
• Dual Slope PWM, overflow on TOP.
• Dual Slope PWM, overflow on TOP and BOTTOM.
• Dual Slope PWM, overflow on BOTTOM.

3.8.1 Normal Mode

In Normal Mode, the counter will count in the direction set by the DIR bit in CTRLF for
each clock until it reaches TOP set by PER[H:L] or BOTTOM (zero). When TOP is
reached when up-counting the counter will be set to zero when the next clock is
given. If the TC is down-counting the value will wrap around to the value in PER[H:L]
after reaching BOTTOM.

Figure 3-2. Normal mode with period setting.

Time

Ti
m

er
 v

al
ue

TOP

TOP

TOP

As shown in Figure 3-2, changing the counter value while the counter is running is
allowed. The write access has higher priority than count, clear, or reload and will be
immediate. However, if the value written is outside the BOTTOM-TOP boundary the
counter either has to count down until TOP is reached or count up until wraparound
(passing MAX) for the timer to re-stabilize to the period time.

This mode of operation must be used when using the Timer/Counter for Input
Capture.

3.8.2 Frequency Generation Mode

There is little difference between the frequency waveform generation mode (FRQ)
and the normal mode of operation. For FRQ the period (T) is controlled by the
CCA[H:L] register instead of PER[H:L], which in this case is not in use. In addition the
Waveform Generation (WG) output is toggled on each compare match between
CNT[H:L] and CCA[H:L] as shown in Figure 3-3.

8045A-AVR-02/08

 AVR1306

Figure 3-3. Frequency Generation Mode

TCNT

MAX

"update"

TOP

CNT writtenDirection ChangePeriod (T)

BOT

WG Output

The waveform generated will have a maximum frequency of fclk/2 when CCA[H:L] is
set to zero (0x0000). The waveform frequency is defined by Equation 3-1.

Equation 3-1. Frequency Calculation, Frequency generation mode

()12 +⋅
=

CCAN
f

f CLK
FRQ

Where N represents the TC clock prescaler.

The Overflow Status Flag (OVFIF) or Compare A Flag (CCAIF) can be used to
generate interrupts. If enabled, the interrupt handler routine can be used for updating
CCA[H:L] to change the output frequency.

3.8.3 Single Slope PWM Mode

As Figure 3-4 shows, in this mode of operation the counter counts from BOTTOM to
TOP then restarts from BOTTOM. The waveform generator output is set on the
compare match between the count and compare registers, and cleared at TOP.

Figure 3-4. Single slope PWM

CNT

MAX
TOP

Period (T) "match"

BOT

WG Output

CCx=BOT

CCx

CCx=TOP
"update"

The single-slope Pulse Width Modulation (PWM) provides twice the PWM frequency
compared to dual-slope PWM. The high frequency makes this mode well suited for
power regulation, rectification, and DAC applications. High frequency allows
physically small sized external filtering components, which reduces total system cost.

The period register (PER[H:L]) defines the PWM resolution. The minimum resolution
allowed for this module is 2-bit (PER[H:L]=0x0003), and maximum resolution is 16-bit

 7

8045A-AVR-02/08

8 AVR1306

(PER[H:L]=MAX). Equation 3-2 can be used to calculate the exact bit resolution for
single-slope PWM.

Equation 3-2. PWM Resolution, Single Slope PWM Mode
()1log2_ += PERR SSPWM

The PWM base frequency depends on the period setting (PER[H:L]), system clock
frequency, and clock prescaler. The PWM base frequency can be calculated using
Equation 3-3.

Equation 3-3. Frequency calculation, Single Slope PWM Mode

()1_ +
=

PERN
f

f CLK
SSPWM

Where N represents the TC clock prescaler.

The Overflow Status Flag (OVFIF) or Compare Flag (CCxIF) can be used to generate
interrupts. If enabled, the interrupt service routine can be used for updating the period
and compare buffer values.

3.8.4 Dual Slope PWM Modes

The counter behavior in dual-slope operation is shown in Figure 3-5. The counter
counts repeatedly from BOTTOM to TOP and then to BOTTOM. When the counter
hits BOTTOM or TOP, the counter changes direction immediately, holding the
BOTTOM and TOP values for only one TC clock cycle. The current counting direction
can be determined by inspecting the DIR flag in CTRLF.

The Waveform Generation (WG) output is set on BOTTOM and cleared on compare
match. The output duty cycle is thus proportional to the compare value.

Figure 3-5. Dual slope PWM

CNT

MAX

TOP

Period (T)

BOT

WG Output

CCx=BOT

CCx

CCx=TOP
"match"
"update"

The dual-slope PWM result in a lower operating frequency at equal resolution
compared to the single-slope PWM mode.

The period register (PER[H:L]) defines the PWM resolution. The minimum resolution
allowed for this module is 2-bit (PER[H:L]=0x0003), and maximum resolution is 16-bit
(PER[H:L]=0xFFFF). Equation 3-4 can be used for calculate the exact resolution for
dual-slope PWM.

8045A-AVR-02/08

 AVR1306

Equation 3-4. PWM Resolution, Dual Slope PWM Mode
()1log2_ += PERR DSPWM

The PWM base frequency depends on the period setting (PER[H:L]), system clock
frequency and clock prescaler and can be calculated using Equation 3-5.

Equation 3-5. Frequency calculation, Dual Slope PWM Mode

PERN
f

f CLK
DSPWM ⋅⋅

=
2_

Where N represents the TC clock prescaler.

The Overflow Status Flag (OVFIF) or Compare Flag (CCxIF) can be used to generate
interrupts. If enabled, the interrupt service routine can be used for updating the period
and compare buffer values.

3.9 Timer/Counter Commands
The CMD[1:0] bits in CTRLFSET are used to issue special commands to the TC.
These are described below.

3.9.1 Force Update

The “Force update” command is used to force an UPDATE condition. Buffer registers
are copied to their destination when the UPDATE conditions are met. Issuing this
command forces an UPDATE condition regardless of the counter value. This can be
used to update both the period and compare registers at the exact same time. In input
capture mode, the “Force update” command only has effect on the PERBUF/PER
registers. See section 3.7 for more information about double buffered registers.

3.9.2 Force Restart

The “Force restart” command clears the CNT[H:L] registers and the direction bit to its
reset value.

3.9.3 Force Hard Reset

The “Force hard reset” command puts all registers in that TC instance back to their
reset state. For safety reasons, the TC clock selection must be set to OFF for this
command to have any effect.

4 Accessing 16-bit Registers
Since the XMEGA has a bus width of 8 bits, 16-bit registers are accessed as two 8-bit
registers. All accesses to 16-bit registers are performed using a hardware-controlled 8
bit temporary register to ensure concurrent update of the high and low byte registers.
Each Timer/Counter has one dedicated temporary register, TEMP, that is used for
this purpose. The TEMP register is shared for all 16-bit accesses in that TC module.
Usage of the TEMP register is automatically handled when the correct byte access
order is used, but it is important to understand the mechanism to avoid corruption of
registers.

Note that on the XMEGA, the byte order for multi-byte access is always from the least
significant byte to the most significant byte.

 9

8045A-AVR-02/08

10 AVR1306

4.1 16-bit Read
Figure 4-1 illustrates how to perform a 16-bit read of CNT, and what happens
internally:

1. Read CNTL. This will cause the contents of CNTH to be transferred to TEMP in the
same clock cycle.

2. Read CNTH. This will automatically cause the contents of TEMP to be read instead
of the current value of CNTH.

The result is a snapshot of the 16-bit CNT[H:L] value at the time CNTL was read.

Figure 4-1. 16- bit read access.
CNTH CNTL

TEMP

Rn

CNTH CNTL

TEMP

R(n+1)

RnR(n+1)

1

2

4.2 16-bit Write
Figure 4-2 illustrates how to perform a 16-bit and what happens internally:

1. Write CNTL. This will cause the TEMP register to be updated with the new value
for CNTL.

2. Write CNTH. This will cause CNTL to be updated with the contents of the TEMP
register at the same time as CNTH is updated.

The result is that the 16-bit CNT[H:L] value is updated in the same clock cycle.

8045A-AVR-02/08

 AVR1306

Figure 4-2. 16-bit write access.
CNTH CNTL

TEMP

RnR(n+1)

CNTH CNTL

TEMP

RnR(n+1)

1

2

4.3 Implications of Having a Shared TEMP Register
Since one TEMP register is shared for all 16-bit registers within one TC module, there
is a possibility of register corruption if the necessary measures are not taken.

Consider the following scenario: One part of the program running in the foreground
loop is about to perform a write to CNT[H:L]. The foreground task has just finished a
write to CNTL, resulting in the TEMP register holding the low byte temporarily. Before
the foreground loop is able to write to CNTH, an interrupt is triggered. This interrupt
service routine (ISR) performs a write to the 16-bit PER[H:L] register. During this
process, the TEMP register is used for the low byte of PER[H:L]. When the ISR
returns, the contents of TEMP are corrupted. The foreground task completes the write
operation by writing to CNTH, causing the corrupted low-byte to be transferred from
TEMP to CNTL.

There are two possible solutions to this problem:

1. Make sure that every 16-bit access is performed as an atomic operation by
disabling interrupts during the access. Since the XMEGA is equipped with a multi-
level interrupt controller, this does not only apply to the foreground code, but also
low and medium level interrupts.

2. If an ISR can interrupt another 16-bit access in the same TC module, it must store
the contents of the TEMP register before the 16-bit access is performed, and
restore the TEMP register again before leaving the ISR.

4.4 16-bit Access in On-Chip Debug Stopped Mode
When the XMEGA is in On-Chip Debug (OCD) stopped mode (‘break’ in AVR Studio),
the TEMP register is bypassed. It is thus possible to access both the high and low
byte of 16-bit registers directly and there will be no automatic transfers of data to the
TEMP register. For debugging purposes the TEMP register itself can also be
read/written during OCD stopped mode.

 11

8045A-AVR-02/08

12 AVR1306

5 Using two 16-bit Timer/Counters as one 32-bit Timer/Counter
It is possible to use the event system to cascade two 16-bit Timer/Counter modules
into one 32-bit Timer/Counter with 32-bit input capture functionality.

5.1 Cascading two 16-bit Timer/Counter Modules
All Timer/Counter modules have the option of being clocked by one of the event
channels. To cascade two 16-bit TC modules and thus get a 32-bit TC, the overflow
event from the low word TC must be routed through the event system and used as
the clock for the high word TC. Figure 5-1 shows how this is done using TCC0 as low
word and TCC1 as high word, through event channel 0. Event channel 0 is configured
through the EVSYS.CH0MUX register to use the TCC0 overflow event as event
source. The CLKSEL bits in TCC1.CTRLA are configured to use event channel 0 as
clock source. The result is that TCC1 will increase by one each time TCC0 overflows.
In effect, this creates a 32-bit TC. Note that any two TC modules can be cascaded in
this way.

Figure 5-1. Cascading two 16-bit Timer/Counter modules.

TCC1H TCC1L

TCC0H TCC0L

High word

Overflow

OVF

EVMUX0

Low word

OVF
Clock
signal for
high word
T/C

5.2 Accessing the 32-bit Value
When reading the cascaded TC, the 32-bit value must be manually assembled from
the two 16-bit parts. However, since there is no temporary register for the 32-bit
counter value, the high and low words will not be read in the same clock cycle. The
low word TC might overflow just after it has been read. This would lead to an incorrect
value being read, since the overflow of the low word would lead the high word to be
increased by 1. One way to avoid this is to stop the low word TC while reading the 32-
bit count value. If stopping the TC is not acceptable, the best solution is to use a 32-
bit input capture.

The same problems can occur when a new value is written to the cascaded TC. The
safest way to write a new 32-bit value is to stop the TC, write the value and start the
TC again.

5.3 Using 32-bit Input Capture
A 32-bit Timer/Counter can be set up to perform 32-bit input capture. First, a 32-bit
Timer/Counter must be set up as described in section 5.1. Both TCs are configured

8045A-AVR-02/08

 AVR1306

 13

8045A-AVR-02/08

for input capture, with the same event channels as capture sources. However, there
is a one clock-cycle delay in the propagation of the overflow bit from the low word TC
to the high word TC. This means that it is necessary to delay the event to the high
word TC to ensure the correct input capture value. To delay the event, the EVDLY bit
in the CTRLD register must be set.

It is possible to use the EVSYS.STROBE register in the event system to manually
trigger an event on any of the available event channels. This can be used as an
alternative to reading the TC directly from software.

6 Getting Started
This section describes the basic steps for getting up and running with the
Timer/Counters in different configurations. Each of the examples listed here are
implemented in the accompanying example source code.

6.1 Basic Timer/Counter Operation
Task: Set up a Timer/Counter for use as a regular timer.

1. Set the PER[H:L] register to control the period/top value of the TC. This sets the
point where the TC wraps around to zero and where the TC overflow
interrupt/event occurs.

2. Start TC by selecting a clock source (CLKSEL in CTRLA).
In this configuration, the current timer value can be read directly from the CNT[H:L]
register. The TC overflow bit indicates whether an overflow has occurred. This bit can
be used to generate interrupts at fixed intervals.

6.2 Using the Input Capture Functionality
Task: Configure TCC0 with Input Capture Channel A enabled. The Input Capture is
triggered by the falling edge of PC0.

3. Configure PC0 for input, triggered on falling edge.
4. Select PC0 as multiplexer input for event channel 0.
5. Configure TCC0 for input capture by setting event source and event action to

“Input capture” in CTRLD.
6. Enable input capture channel A by setting the CCAEN bit in CTRLB.
7. Start the TC by selecting a clock source (CLKSEL in CTRLA).
8. Wait for Input Capture Interrupt Flag A in INTFLAGS to be set.
9. Read input capture value from the CCA[H:L] register.
10. Go to step 6.

6.3 Using Input Capture to Calculate Frequency and Duty Cycle of a Signal
Task: Configure Timer/Counter C0 to measure the frequency and duty cycle of a
signal applied to PC0.

1. Select event source(s). See section 3.6 for details on this.
2. Select event action = input capture.
3. Enable input capture channels (CCENx).
4. Set PER[H:L] to 0x7FFF. (MSB must be cleared)

14 AVR1306
8045A-AVR-02/08

5. Start the TC by selecting a clock source.
6. Wait for Input Capture Interrupt Flag A in INTFLAGS to be set.
7. Read input capture value from the CCA[H:L] register into ‘thisCapture’.
8. Check bit 15 of ‘thisCapture’.
9. If bit 15 of ‘thisCapture’ is 1

a. Save ‘thisCapture’ in ‘lastRising’
10. else

a. Calculate total period:

6.4 Using a Timer/Counter for PWM Generation
Task: Configure TCC0 for pulse width modulation output with varying duty cycle on
channel A.

1. Configure PC0 for output by setting bit 0 in PORTC.DIR.
2. Select the timer period by setting the PER[H:L] register.
3. Select a waveform generation mode by setting the WGMODE[2:0] bits in
4. Enable Compare Channel A by setting the CCAEN bit in CTRLB.
5. Start the TC by selecting a clock source (CLKSEL[3:0] in CTRLA).
6. Calculate the desired compare value.
7. Write the new compare value to CCA[H:L].
8. Wait for the TC Overflow Flag to be set. (OVFIF in INTFLAGS).
9. Clear the TC Overflow flag.
10. Go to step 6.

Using this sequence, the compare value will be updated once every PWM period.

6.5 Event Counting
Task: Configure TCC0 to count the number of switch presses on PC0, using event
channel 0. Generate interrupt after 5 key presses that toggle PC1.

1. Configure PC0 as input, sense on falling edge.
2. Configure PC1 as output.
3. Select PC0 as multiplexer input for event channel 0.
4. Enable filtering on event channel 0.
5. Set the period of TCC0 to 4 (to generate overflow interrupt after 5 switch presses).
6. Enable TCC0 overflow interrupt at low level.
7. Select event channel 0 as clock source for the TC.

In the TCC0 overflow interrupt service routine, toggle PC1.

In this configuration, the CNT[H:L] register will contain the number of times a switch
connected to PC0 has been pressed. After 5 presses, an overflow interrupt service
handler will be triggered, toggling PC1 while CNT[H:L] wraps around to 0.

 AVR1306

 15

8045A-AVR-02/08

6.6 Setting up a 32-bit Timer/Counter With Input Capture
Task: Configure TCC0 and TCC1 as one 32-bit TC with input capture channel A
triggered by a falling edge on PC0. Event channel 0 is used for overflow propagation,
while the input capture signal from PC0 is routed through event channel 1.

1. Configure PC0 for input, triggered on falling edge.
2. Select PC0 as multiplexer input for event channel 1.
3. Select TCC0 overflow as multiplexer input for event channel 0.
4. Configure TCC0 and TCC1 for input capture with event channel 1 as trigger.
5. Enable event delay on TCC1. (This will delay the input capture event by one clock

cycle to allow the overflow from TCC0 to propagate to TCC1 before the input
capture happens.)

6. Enable Input Capture Channel A on TCC0 and TCC1.
7. Select event channel 0 as clock source for TCC1 (CLKSEL in CTRLA).
8. Start the TCC0 by selecting system clock as clock source (CLKSEL in CTRLA).
9. Wait for TCC0 (or TCC1) input capture interrupt flag A in INTFLAGS to be set.
10. Read low word input capture value from the TCC0.CCA[H:L] register.
11. Read high word input capture value from the TCC1.CCA[H:L] register.
12. Combine low word and high word to a 32-bit input capture value.
13. Go to step 9.

7 Advanced Features
In this application note, the Timer/Counter modules have been used as standalone
modules. There are some advanced features on the XMEGA that can be used as
“glue” between modules to reduce the amount of code needed and automate parts of
the application.

7.1 DMA Controller
Instead of using polling or interrupt handlers to read input capture values, it is
possible to use the XMEGA DMA controller to move data from one or more registers
to memory buffers or other peripheral modules. This moving of data is done without
CPU intervention and leaves the CPU ready for other tasks; even without executing
interrupt handlers.

For more information, please refer to the device datasheet or the application note
AVR1304.

7.2 Event Generation
The event system has been used in this application note as triggering and clock
sources. The XMEGA TCs can be also be used as event sources for other parts of
the system. The TC modules can generate the following events

• Timer overflow.

• Timer error. (Input capture data lost because input capture buffer is full).

• Separate events for compare or capture on all channels.

16 AVR1306
8045A-AVR-02/08

This allows for complex interaction between different parts of the system,
independent of any code running. The event system is covered more in-depth in the
application note AVR1001.

7.3 Timer/Counter Extension Modules
The Timer/Counter functionality can be extended through Timer/Counter extension
modules, such as the Advanced Waveform eXtension (AWeX) and High-Resolution
(Hi-Res) extension. The extension modules are not covered in this document. Please
refer to application note AVR1311 for more information.

8 Driver Implementation
The included driver has functions that control all the major features of the
Timer/Counter modules (including waveform generation). All functions take a pointer
to a Timer/Counter module as its first argument, so the same functions can be reused
for all Timer/Counter modules on one XMEGA. The driver is written in ANSI® C, and
should compile on all compilers with XMEGA support.

Note that this driver is not written with high performance in mind. It is designed as a
library to get started with the XMEGA Timer/Counters and an easy-to-use framework
for rapid prototyping. For time and code space critical application development,
consider replacing function calls with macros or direct access to registers.

8.1 Files
The driver package consists of the following files:

• tc_driver.c – Timer/Counter driver source file
• tc_driver.h – Timer/Counter driver header file
• tc_example.c – Examples using the Timer/Counter driver.

8.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

http://www.doxygen.org/

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8045A-AVR-02/08

	1 Introduction
	2 Definitions
	3 Module Overview
	3.1 Timer/Counter Variants
	3.2 Clock Sources
	3.3 Interrupts
	3.4 Period Setting
	3.5 Capture or Compare Channels
	3.6 Event Input Selection
	3.7 Double Buffered Registers
	3.8 Modes of Operation
	3.8.1 Normal Mode
	3.8.2 Frequency Generation Mode
	3.8.3 Single Slope PWM Mode
	3.8.4 Dual Slope PWM Modes

	3.9 Timer/Counter Commands
	3.9.1 Force Update
	3.9.2 Force Restart
	3.9.3 Force Hard Reset

	4 Accessing 16-bit Registers
	4.1 16-bit Read
	4.2 16-bit Write
	4.3 Implications of Having a Shared TEMP Register
	4.4 16-bit Access in On-Chip Debug Stopped Mode

	5 Using two 16-bit Timer/Counters as one 32-bit Timer/Counter
	5.1 Cascading two 16-bit Timer/Counter Modules
	5.2 Accessing the 32-bit Value
	5.3 Using 32-bit Input Capture

	6 Getting Started
	6.1 Basic Timer/Counter Operation
	6.2 Using the Input Capture Functionality
	6.3 Using Input Capture to Calculate Frequency and Duty Cycle of a Signal
	6.4 Using a Timer/Counter for PWM Generation
	6.5 Event Counting
	6.6 Setting up a 32-bit Timer/Counter With Input Capture

	7 Advanced Features
	7.1 DMA Controller
	7.2 Event Generation
	7.3 Timer/Counter Extension Modules

	8 Driver Implementation
	8.1 Files
	8.2 Doxygen Documentation

