

8-bit
Microcontrollers

Application Note

Rev. 8054A-AVR-02/08

AVR1308: Using the XMEGA TWI

Features
• Introduction to TWI and the XMEGA™ TWI module
• Setup and use of the XMEGA TWI module
• Implementation of module drivers

• Master
• Slave

• Code examples for master and slave

1 Introduction
This application note describes how to set up and use the TWI module in the
XMEGA. C code drivers and examples are included for both master and slave
applications.

The TWI (Two Wire Interface) is compatible with the Philips® Inter-IC, or I2C bus.
TWI is used in communication between control devices like microcontrollers, and
peripheral devices like LCD drivers, I/O expanders, memories and much more.

Figure 1-1. TWI bus topology.

TWI
DEVICE #1

RP RP

RS RS

SDA

SCL

VCC

TWI
DEVICE #2

RS RS

TWI
DEVICE #N

RS RS

Note: RS is optional

2 AVR1308

2 The TWI bus
The TWI bus consists of two active lines, SDA (Serial DAta) and SCL (Serial CLock),
in addition to ground. The two active lines are bidirectional open collector lines with
pull-up resistors.

The devices connected to the bus have unique addresses, and can be receivers or
transmitters depending on operation. A DTMF tone generator can be example of a
receiver only, while a memory device obviously can be both receiver and transmitter.

8054A-AVR-02/08

Figure 2-1. Start and stop conditions.

2.2 Address
After the START condition, a 7 bit ADDRESS (A) followed by a READ/WRITE

2.1 Start and stop conditions
On an idle bus, both SDA and SCL are high. A device can initiate a transaction by
first pulling SDA low, then SCL. This is called a START condition (S). The transaction
is completed by first releasing SCL, then SDA. This is called a STOP condition (P).
As the SDA beyond that is only allowed to toggle while SCL is low, the START and
STOP conditions are unique and secure ways to indicate the start or end of the
transaction. The device that initiates a transaction by the START condition becomes
MASTER, and all other connected devices are at this point considered SLAVEs until
a STOP condition is issued.

Instead of sending a STOP to end the transaction, the MASTER can send a new
START condition. This is called a REPEATED START, and leaves no possibilities for
other masters to start a transaction as they could after a STOP.

SDA

SCL

START
Condition

STOP
Condition

S P

(WR /) bit is sent. The MASTER transmits the SLAVE address of the device it is
a ng. The ccessi WR / bit is transmitted as the last bit and specifies the direction of
the transaction. A SLAVE recognizing its ADDRESS will respond by pulling the data
line low the next SCL cycle (ACKNOWLEDGE), while all other slaves should keep the
TWI lines released, and wait for the next START and ADDRESS.

 AVR1308

2.3 Data transfer
If the WR / bit is low, it indicates a MASTER WRITE transaction, and the MASTER
will transmit its data after the slave has acknowledged its address. Figure 2-2 shows
a typical MASTER WRITE transaction. Note that there can be an arbitrary number of
DATA packets within one transaction.

Table 2-1. Notations used in following protocol diagrams.
Notation Description

S START condition

Sr REPEATED START condition

R R/W bit high, indicating master read transaction

W R/W bit low, indicating master write transaction

A Acknowledge (ACK)

A Not acknowledge (NACK)

P STOP condition

 Gray background indicating data direction from master to slave

 White background indicating data direction from slave to master

 Diagonals indicating data direction set by last WR / bit

Figure 2-2. Master write transaction.

S A A A/A PWADDRESS DATA DATA

Address Packet Data Packet
Transaction

N data packets

A high WR / bit indicates a MASTER READ. The master continues to generate the
clock, while the SLAVE outputs its data on SDA, one bit at a time. When a bit is
available for the MASTER to read, the SLAVE releases SCL so the master can
provide the clock signal. Figure 2-3 shows a typical MASTER READ transaction.

Figure 2-3. Master read transaction.

S R A A AADDRESS DATA DATA P

Transaction
Address Packet Data Packet

N data packets

 3

8054A-AVR-02/08

4 AVR1308

A transaction can also be combined as illustrated in Figure 2-4. Instead of sending a
STOP to end the first part of the transaction, the MASTER sends a REPEATED
START and ADDRESS including the WR / bit. This allows the MASTER to change
the direction of the transaction.

Figure 2-4. Combined transaction.

S A SrA/AR/W DATA A/A PADDRESS DATA R/WADDRESS

Transaction
Address Packet #1 N Data Packets M Data PacketsAddress Packet #2

Direction Direction

A

2.4 Clock stretching
The clock is always controlled by the MASTER, but can be held low any time by any
device on the bus. In this way, a SLAVE device can hold back a transaction, e.g. if it
needs more time to process data. Due to the bus topology, the master cannot
continue clocking if SCL is held low. A slave pulling the SCL line low after the
MASTER has released it is said to perform “clock stretching”.

2.5 Arbitration
As the TWI bus is a multi master bus, it’s possible that two devices initiate a transfer
at the exact same time. Arbitration is carried out through the next stages of the
transaction, and the first device attempting to transmit a logical ‘1’ while another
device transmits ‘0’ will lose arbitration. This can due to the physical characteristics of
the bus easily be detected. If one device pulls a line low, the others cannot transmit
high. When a device has lost arbitration, it must stop transmitting and wait until the
next STOP condition before trying to take control of the bus again.

3 The XMEGA TWI module
The XMEGA TWI module is separated into a master and a slave module, and the two
modules can be enabled separately.

The master and slave have one common configuration register. TWI Control Register
(TWIx.CTRL) holds one bit selecting external driver interface, two and four wire
mode. Other than this, all control and status bits are found in separate registers for
the two modules.

3.1 Bus state logic
In addition to the master and slave modules, there is a bus state logic monitoring
activity on the bus. Information from this logic is used by hardware to determine the
bus state (“unknown”, “idle”, “owner”, or “busy”), detecting START/Repeated START
(S/Sr) and STOP (P) conditions, detecting bus collision, and to identify bus errors.
The bus state logic is designed to operate in all sleep modes including power down
mode.

8054A-AVR-02/08

 AVR1308

Figure 3-1. Bus state diagram.

IDLE
(0b01)

S BUSY
(0b11)P + Timeout

UNKNOW
N

(0b00)

P + Timeout

OWNER
(0b10)

Arbitration
Lost

RESET

P

Sr

Sr

S

The bus state machine is active when the master is enabled. Important to consider, is
how the initial state of the TWI bus is set. After reset or enabling the TWI module, the
state is unknown, but will be changed to idle after a stop condition or a defined time
out period. As I2C (unlike SMBus™) does not specify a time out period, the
application can force the state to idle. Care must be taken in a multi master system.
However, the error detection capabilities (arbitration) will bring the TWI to a known
state e.g. after interference with an ongoing transaction.

3.2 Master
The TWI master module consists of the baud rate generator, status and control logic
with supporting registers listed in the Table 3-1.

Table 3-1. Master module registers.
Register name Symbolic name

TWI Master Control Register A TWIx.MASTER.CTRLA

TWI Master Control Register B TWIx.MASTER.CTRLB

TWI Master Control Register C TWIx.MASTER.CTRLC

TWI Master Status Register TWIx.MASTER.STATUS

TWI Master Baud Rate Register TWIx.MASTER.BAUD

TWI Master Transmit Address Register TWIx.MASTER.ADDR

TWI Master Data Register TWIx.MASTER.DATA

3.2.1 Interrupts

Interrupt-controlled software is recommended for a TWI system, but in a single
master system with relaxed timing requirements, polling can be acceptable. The TWI
master driver included in this application note is interrupt-based.

TWI master interrupts are separated in two main occurrences, master read and
master write. The read interrupt flag is set whenever a master read operation is

 5

8054A-AVR-02/08

6 AVR1308
8054A-AVR-02/08

successfully completed, not losing arbitration or bus errors detected, and will if
enabled trigger a master read interrupt. The write interrupt flag is set on completion of
a master write operation. In addition to the arbitration lost or bus error flag, it is also
set to signal these errors, also during a master read operation. If enabled, a master
write interrupt is triggered.

Note that even if master read and master write interrupts are individually enabled,
they share the same interrupt vector.

3.2.2 Master operation

An overview of master operation is illustrated in Figure 3-2. It indicates the flow in a
master write and/or read transaction. For further details, please refer to the code
included in this application note.

 AVR1308

Figure 3-2. Master operation.

Start / repeated
start condition

+ Addr. + R/W bit

Initialize master

Bus idle?

Yes

Yes

Slave ACK?

No

Operation

Master write

Write data register
Receive one byte

More data?

Yes

Yes

More data?

Data to read?

Slave ACK?

Yes

Write ctrl. reg. C

No

Write ctrl. reg. C

No

Write ctrl. reg. C

Yes

Start
transaction? No

Write address
register

Transmit one byte

Data to write?Yes

Stop condition

Master ACK

Master read

Entering:
Start condition

Master NACK

No

Read data register

Yes

No

Re-entering:
Repeated start

Write ctrl. reg. C

Stop condition

No

No

Slave (N)ACK

Slave (N)ACK

Hardware / bus
action

Software action

Legend

 7

8054A-AVR-02/08

8 AVR1308
8054A-AVR-02/08

3.3 Slave
The TWI slave module consists of status and control logic with supporting registers
listed in Table 3-2. As only the master can generate the clock signal, the slave does
not include a baud rate generator.

Table 3-2. Slave module registers.
Register name Symbolic name

TWI Slave Control Register A TWIx.SLAVE.CTRLA

TWI Slave Control Register B TWIx.SLAVE.CTRLB

TWI Slave Status Register TWIx.SLAVE.STATUS

TWI Slave Transmit Address Register TWIx.SLAVE.ADDR

TWI Slave Data Register TWIx.SLAVE.DATA

3.3.1 Interrupts

As for the master, interrupt-controlled software is also recommended for the slave
module. There are two main sources for interrupts, slave address recognition and
slave data reception or transmission.

Slave address or stop interrupt is triggered when the address recognition logic
detects a valid address. In addition, this interrupt is also triggered on a transmit
collision or stop condition. The stop condition triggering is individually enabled
through a separate control bit. Slave data interrupt is triggered when a slave byte
transmit or receive is successfully completed, without any bus error or transmit
collision.

The logic detecting bus errors is shared between the master and slave modules, and
detection depends on the master module being enabled and the peripheral clock
being at least 4 x the SCL frequency. Without bus error detection, the SLAVE can
operate at any peripheral frequency.

Note that even if the slave address and data interrupts are individually enabled, they
share the same interrupt vector.

3.3.2 Slave operation

An overview of slave operation is illustrated in Figure 3-3. It illustrates the flow in a
slave read and/or write transaction. For further details, please refer to the code
included in this application note.

 AVR1308

Figure 3-3. Slave operation.
Initialize slave

Start
condition?

Yes

No

Transmit

Slave ACK

Receive

Transmit data

Master ACK?

Address
recognized?

Yes

Yes

No

No

Write ctrl. reg. B

Operation

Write data register
Read data register

Slave NACK

Write ctrl. reg. B

Receive

Data

StopRepeated
start

Receive StopRepeated start

Hardware / bus
action

Software action

Legend

Address
+ R/W bit

Master (N)ACK

Need to
signal error?

No

Slave NACK

Write ctrl. reg. BYes

Need to
signal error?

Yes

Slave ACK

Write ctrl. reg. B No

4 Driver Implementation
This application note includes a source code package with basic interrupt-driven
drivers for the TWI master and slave implemented in C. An example using a TWI
master module to communicate with a TWI slave module using the drivers is
included. It is written for the IAR Embedded Workbench® compiler.

Note that this TWI driver is not intended for use with high-performance code. It is
designed as a library to get started with the TWI. For timing and code space critical

 9

8054A-AVR-02/08

10 AVR1308
8054A-AVR-02/08

application development, you should access the TWI registers directly. Please refer to
the driver source code and device datasheet for more details.

4.1 Files
The source code package consists of the following files:

• twi_example.c – example code using the TWI drivers
• twi_master_driver.c – master driver source file
• twi_master_driver.h – master driver header file
• twi_slave_driver.c – slave driver source file
• twi_slave_driver.h – slave driver header file

For a complete overview of the available driver interface functions and their use,
please refer to the source code documentation.

4.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

http://www.doxygen.org/

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8054A-AVR-02/08

	1 Introduction
	2 The TWI bus
	2.1 Start and stop conditions
	2.2 Address
	2.3 Data transfer
	2.4 Clock stretching
	2.5 Arbitration

	3 The XMEGA TWI module
	3.1 Bus state logic
	3.2 Master
	3.2.1 Interrupts
	3.2.2 Master operation

	3.3 Slave
	3.3.1 Interrupts
	3.3.2 Slave operation

	4 Driver Implementation
	4.1 Files
	4.2 Doxygen Documentation

