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AVR1308: Using the XMEGA TWI 

Features 
• Introduction to TWI and the XMEGA™ TWI module 
• Setup and use of the XMEGA TWI module 
• Implementation of module drivers 

• Master 
• Slave 

• Code examples for master and slave 

1 Introduction 
This application note describes how to set up and use the TWI module in the 
XMEGA. C code drivers and examples are included for both master and slave 
applications. 

The TWI (Two Wire Interface) is compatible with the Philips® Inter-IC, or I2C bus. 
TWI is used in communication between control devices like microcontrollers, and 
peripheral devices like LCD drivers, I/O expanders, memories and much more.  

 
Figure 1-1. TWI bus topology. 
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2 The TWI bus 
The TWI bus consists of two active lines, SDA (Serial DAta) and SCL (Serial CLock), 
in addition to ground. The two active lines are bidirectional open collector lines with 
pull-up resistors. 

The devices connected to the bus have unique addresses, and can be receivers or 
transmitters depending on operation. A DTMF tone generator can be example of a 
receiver only, while a memory device obviously can be both receiver and transmitter. 
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Figure 2-1. Start and stop conditions. 

2.2 Address 
After the START condition, a 7 bit ADDRESS (A) followed by a READ/WRITE 

2.1 Start and stop conditions 
On an idle bus, both SDA and SCL are high. A device can initiate a transaction by 
first pulling SDA low, then SCL. This is called a START condition (S). The transaction 
is completed by first releasing SCL, then SDA. This is called a STOP condition (P). 
As the SDA beyond that is only allowed to toggle while SCL is low, the START and 
STOP conditions are unique and secure ways to indicate the start or end of the 
transaction. The device that initiates a transaction by the START condition becomes 
MASTER, and all other connected devices are at this point considered SLAVEs until 
a STOP condition is issued. 

Instead of sending a STOP to end the transaction, the MASTER can send a new 
START condition. This is called a REPEATED START, and leaves no possibilities for 
other masters to start a transaction as they could after a STOP. 
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( WR / ) bit is sent. The MASTER transmits the SLAVE address of the device it is 
a ng. The ccessi WR /  bit is transmitted as the last bit and specifies the direction of 
the transaction. A SLAVE recognizing its ADDRESS will respond by pulling the data 
line low the next SCL cycle (ACKNOWLEDGE), while all other slaves should keep the 
TWI lines released, and wait for the next START and ADDRESS. 
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2.3 Data transfer 
If the WR / bit is low, it indicates a MASTER WRITE transaction, and the MASTER 
will transmit its data after the slave has acknowledged its address. Figure 2-2 shows 
a typical MASTER WRITE transaction. Note that there can be an arbitrary number of 
DATA packets within one transaction. 

 

Table 2-1. Notations used in following protocol diagrams. 
Notation Description 

S START condition 

Sr REPEATED START condition 

R R/W bit high, indicating master read transaction 

W  R/W bit low, indicating master write transaction 

A Acknowledge (ACK) 

A  Not acknowledge (NACK) 

P STOP condition 

 Gray background indicating data direction from master to slave 

 White background indicating data direction from slave to master 

 Diagonals indicating data direction set by last WR / bit 
 
Figure 2-2. Master write transaction. 
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A high WR / bit indicates a MASTER READ. The master continues to generate the 
clock, while the SLAVE outputs its data on SDA, one bit at a time. When a bit is 
available for the MASTER to read, the SLAVE releases SCL so the master can 
provide the clock signal. Figure 2-3 shows a typical MASTER READ transaction. 

 
Figure 2-3. Master read transaction. 
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A transaction can also be combined as illustrated in Figure 2-4. Instead of sending a 
STOP to end the first part of the transaction, the MASTER sends a REPEATED 
START and ADDRESS including the WR / bit. This allows the MASTER to change 
the direction of the transaction. 

 

Figure 2-4. Combined transaction. 
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2.4 Clock stretching 
The clock is always controlled by the MASTER, but can be held low any time by any 
device on the bus. In this way, a SLAVE device can hold back a transaction, e.g. if it 
needs more time to process data. Due to the bus topology, the master cannot 
continue clocking if SCL is held low. A slave pulling the SCL line low after the 
MASTER has released it is said to perform “clock stretching”. 

2.5 Arbitration 
As the TWI bus is a multi master bus, it’s possible that two devices initiate a transfer 
at the exact same time. Arbitration is carried out through the next stages of the 
transaction, and the first device attempting to transmit a logical ‘1’ while another 
device transmits ‘0’ will lose arbitration. This can due to the physical characteristics of 
the bus easily be detected. If one device pulls a line low, the others cannot transmit 
high. When a device has lost arbitration, it must stop transmitting and wait until the 
next STOP condition before trying to take control of the bus again. 

3 The XMEGA TWI module 
The XMEGA TWI module is separated into a master and a slave module, and the two 
modules can be enabled separately. 

The master and slave have one common configuration register. TWI Control Register 
(TWIx.CTRL) holds one bit selecting external driver interface, two and four wire 
mode. Other than this, all control and status bits are found in separate registers for 
the two modules. 

3.1 Bus state logic 
In addition to the master and slave modules, there is a bus state logic monitoring 
activity on the bus. Information from this logic is used by hardware to determine the 
bus state (“unknown”, “idle”, “owner”, or “busy”), detecting START/Repeated START 
(S/Sr) and STOP (P) conditions, detecting bus collision, and to identify bus errors. 
The bus state logic is designed to operate in all sleep modes including power down 
mode. 
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Figure 3-1. Bus state diagram. 
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The bus state machine is active when the master is enabled. Important to consider, is 
how the initial state of the TWI bus is set. After reset or enabling the TWI module, the 
state is unknown, but will be changed to idle after a stop condition or a defined time 
out period.  As I2C (unlike SMBus™) does not specify a time out period, the 
application can force the state to idle. Care must be taken in a multi master system. 
However, the error detection capabilities (arbitration) will bring the TWI to a known 
state e.g. after interference with an ongoing transaction. 

3.2 Master 
The TWI master module consists of the baud rate generator, status and control logic 
with supporting registers listed in the Table 3-1. 

Table 3-1. Master module registers. 
Register name Symbolic name 

TWI Master Control Register A TWIx.MASTER.CTRLA 

TWI Master Control Register B TWIx.MASTER.CTRLB 

TWI Master Control Register C TWIx.MASTER.CTRLC  

TWI Master Status Register TWIx.MASTER.STATUS 

TWI Master Baud Rate Register TWIx.MASTER.BAUD  

TWI Master Transmit Address Register TWIx.MASTER.ADDR 

TWI Master Data Register TWIx.MASTER.DATA 
 

3.2.1 Interrupts 

Interrupt-controlled software is recommended for a TWI system, but in a single 
master system with relaxed timing requirements, polling can be acceptable. The TWI 
master driver included in this application note is interrupt-based. 

TWI master interrupts are separated in two main occurrences, master read and 
master write. The read interrupt flag is set whenever a master read operation is 
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successfully completed, not losing arbitration or bus errors detected, and will if 
enabled trigger a master read interrupt. The write interrupt flag is set on completion of 
a master write operation. In addition to the arbitration lost or bus error flag, it is also 
set to signal these errors, also during a master read operation. If enabled, a master 
write interrupt is triggered. 

Note that even if master read and master write interrupts are individually enabled, 
they share the same interrupt vector. 

3.2.2 Master operation 

An overview of master operation is illustrated in Figure 3-2. It indicates the flow in a 
master write and/or read transaction. For further details, please refer to the code 
included in this application note. 
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Figure 3-2. Master operation. 
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3.3 Slave 
The TWI slave module consists of status and control logic with supporting registers 
listed in Table 3-2. As only the master can generate the clock signal, the slave does 
not include a baud rate generator.  

Table 3-2. Slave module registers. 
Register name Symbolic name 

TWI Slave Control Register A TWIx.SLAVE.CTRLA 

TWI Slave Control Register B TWIx.SLAVE.CTRLB 

TWI Slave Status Register TWIx.SLAVE.STATUS 

TWI Slave Transmit Address Register TWIx.SLAVE.ADDR 

TWI Slave Data Register TWIx.SLAVE.DATA 
 

3.3.1 Interrupts 

As for the master, interrupt-controlled software is also recommended for the slave 
module. There are two main sources for interrupts, slave address recognition and 
slave data reception or transmission. 

Slave address or stop interrupt is triggered when the address recognition logic 
detects a valid address. In addition, this interrupt is also triggered on a transmit 
collision or stop condition. The stop condition triggering is individually enabled 
through a separate control bit. Slave data interrupt is triggered when a slave byte 
transmit or receive is successfully completed, without any bus error or transmit 
collision. 

The logic detecting bus errors is shared between the master and slave modules, and 
detection depends on the master module being enabled and the peripheral clock 
being at least 4 x the SCL frequency. Without bus error detection, the SLAVE can 
operate at any peripheral frequency. 

Note that even if the slave address and data interrupts are individually enabled, they 
share the same interrupt vector. 

3.3.2 Slave operation 

An overview of slave operation is illustrated in Figure 3-3. It illustrates the flow in a 
slave read and/or write transaction. For further details, please refer to the code 
included in this application note. 



 AVR1308
 

Figure 3-3. Slave operation. 
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4 Driver Implementation 
This application note includes a source code package with basic interrupt-driven 
drivers for the TWI master and slave implemented in C. An example using a TWI 
master module to communicate with a TWI slave module using the drivers is 
included. It is written for the IAR Embedded Workbench® compiler. 

Note that this TWI driver is not intended for use with high-performance code. It is 
designed as a library to get started with the TWI. For timing and code space critical 
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application development, you should access the TWI registers directly. Please refer to 
the driver source code and device datasheet for more details. 

4.1 Files 
The source code package consists of the following files: 

• twi_example.c  – example code using the TWI drivers 
• twi_master_driver.c  – master driver source file 
• twi_master_driver.h  – master driver header file 
• twi_slave_driver.c  – slave driver source file 
• twi_slave_driver.h  – slave driver header file 
 
For a complete overview of the available driver interface functions and their use, 
please refer to the source code documentation. 

4.2 Doxygen Documentation 
All source code is prepared for automatic documentation generation using Doxygen. 
Doxygen is a tool for generating documentation from source code by analyzing the 
source code and using special keywords. For more details about Doxygen please visit 
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with 
the source code accompanying this application note, available from the readme.html 
file in the source code folder. 

http://www.doxygen.org/
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