
STM32 Ecosystem workshop
T.O.M.A.S Team

Now it is a right time for some theory – this time we will present basic

information about a Low Layer Libraries bundled into Cube library

packages

2

Goal of this part
Gain knowledge about complete ST software offer for STM32 microcontrollers

Gain knowledge about Low Layer Library concepts: unitary and init

Practice Low Layer Library concept on previously generated HAL based project

Gain knowledge about differences between HAL and LL concepts.

4

Low Layer Library concept and usage

HAL and LL libraries coexistence
general points

• The Low Layer (LL) drivers can be mixed without any constraints with all the HAL drivers not based

on objects handle concept (RCC, Cortex, common HAL, Flash and GPIO)

• To mix the HAL with the LL, user has to be aware about some HAL concepts/constraints:

• The LL drivers does not support the peripheral handle model

• The LL drivers are intended to be used in an expert mode (need deep knowledge of hardware aspects).

• The HAL drivers are just opposite to LL - they use a high abstraction level based on standalone

processes, therefore a deep knowledge of the hardware is not mandatory anymore.

• Due to the different data structures used, LL can overwrite registers being mirrored in the HAL

handles. Therefore the LL drivers cannot be automatically used with the HAL for the same

peripheral instance: mainly can’t run concurrent process on the same IP using both APIs, however

sequential use is allowed if done carefully.

6

HAL and LL libraries coexistence
mixing HAL operation APIs with the LL

• The HAL I/O operations APIs are generally given in three models:

• Blocking model (Polling)

• Interrupt Model (IT)

• DMA model

• If API of any of the HAL models gets replaced by the LL, it is not necessary to replace other

models API.

• For DMA and IT API models - when customized by the LL, the HAL associated callbacks cannot be

used for the addressed instance anymore.

• The processes customized should avoid dependencies with other processes ex: customize

Transmit APIs with the LL and keep the Receive with the HAL

7

LL drivers scope 8

STM32

snippets

Init

functions

Unitary

functions

LL

Drivers

Standard

peripheral

library

HAL

Drivers

• Common services (portability)

• High level state machine based processes

• Init services

• Hardware basic services

• Atomic register access

• Compliancy with the HAL drivers

• Low memory footprint

LL library - introduction
9

• HAL library brings high-level, functionally oriented and highly portable APIs masking product/IPs complexity to the

end user

• Low Layer (LL) library offers low-level APIs operating at registers level, w/ better optimization but less portability

and requiring deeper knowledge of the product/IPs specification

• LL library is offering the following services:

• Unitary functions for direct register access

(provided in stm32yyxx_ll_ppp.h files)

• One-shot operations that can be used by HAL drivers or from application level.

• Independent from HAL - can be used as standalone (w/o HAL drivers)

• Full features coverage of supported IP

• Init functions (provided in stm32yyxx_ll_ppp.c files)

• Conceptually compatible with Standard Peripheral Library (SPL)

Application

stm32yyxx_ll_ppp.h

LL

stm32yyxx_ll_ppp.c

stm32yyxx.hstm32yynnnxx.h

http://www.iconarchive.com/show/leaf-mimes-icons-by-untergunter/text-x-c-icon.html
http://www.iconarchive.com/show/leaf-mimes-icons-by-untergunter/text-x-c-icon.html
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764
http://www.iconarchive.com/show/leaf-mimes-icons-by-untergunter/text-x-c-icon.html
http://www.iconarchive.com/show/leaf-mimes-icons-by-untergunter/text-x-c-icon.html
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764

Role of some LL header files

• Most of ppp peripherals have their own pairs of stm32xxxx_ll_ppp.c and .h files

• Some peripherals and buses are grouped within .c/.h files described below:

10

.h file Serviced peripherals

stm32xxxx_ll_bus.h • APB1, APB2, IOP, AHB registers

stm32xxxx_ll_cortex.h • SYSTICK registers

• Low power mode configuration (SCB register of Cortex-MCU)

• MPU API

• API to access to MCU info (CPUID register)

stm32xxxx_ll_system.h • Some of the FLASH features (accelerator, latency, power down modes)

• DBGCMU registers

• SYSCFG registers (including remap and EXTI)

stm32xxxx_ll_utils.h • Device electronic signature

• Timing functions

• PLL configuration functions

11

Low Layer library
naming convention

return_value LL_PPP_Operation ()

LL prefix

indicating type

of the library (in

contrary to

Hardware

Abstraction

Layer (HAL)

libraries

PPP –

peripheral

name.

Type of the operation

on the peripheral, much

more detailed like in

HAL , i.e. “SetPinMode”

or “EnableDMAReq”

Hint: to find proper function for the peripheral, please type LL_PPP_ and press Ctrl+Space

LL drivers scope
unitary functions

12

STM32

snippets

Init

functions

Unitary

functions

LL

Drivers

Standard

peripheral

library

HAL

Drivers

• Common services (portability)

• High level state machine based processes

• Init services

• Hardware basic services

• Atomic register access

• Compliancy with the HAL drivers

• Low memory footprint

Unitary LL drivers APIs
Each LL peripheral driver provides the following three APIs levels:

• Low level : Basic registers write and read

LL_PPP_WriteReg(I2C1,CR1,0x20001000);

LL_PPP_ReadReg (I2C1,CR1);

• Middle level : one-shot operation APIs (atomic) with elementary LL_PPP_SetItem() and

LL_PPP_Action() functions: set directly one bit field in register for a single feature

LL_ADC_Enable();

LL_TIM_EnableCounter(TIM_TypeDef * TIMx);

LL_TIM_SetAutoReload(TIM_TypeDef * TIMx, uint32_t AutoReload);

• High level : global configuration and initialization functions that cover full standalone operations

on related peripheral registers

LL_RCC_PLL_ConfigDomain_SYS(LL_RCC_PLLSOURCE_HSI, LL_RCC_PLLM_DIV_1, 10, LL_RCC_PLLR_DIV_2);

LL_DAC_SetTriggerSource(DAC1, LL_DAC_CHANNEL_1, LL_DAC_TRIG_EXT_TIM2_TRGO);

LL_TIM_OC_SetMode(TIM2, LL_TIM_CHANNEL_CH2, LL_TIM_OCMODE_TOGGLE);

13

s
tm

3
2

y
y
x

x
_

ll
_

p
p

p
.h

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764

Unitary LL Typical Usage

Ex : System Clock Configuration

14

The LL services have to be called following the programming model of the reference

manual document by calling the elementary LL drivers services

Ex : Use GPIO to toggle LED continuously

DMA Init Example
using HAL DMA Driver

15

DMA Init Example
using LL DMA Driver

16

LL drivers scope
init functions

17

STM32

snippets

Init

functions

Unitary

functions

LL

Drivers

Standard

peripheral

library

HAL

Drivers

• Common services (portability)

• High level state machine based processes

• Init services

• Hardware basic services

• Atomic register access

• Compliancy with the HAL drivers

• Low memory footprint

stm32yyxx_ll_gpio.h

stm32yyxx_ll_gpio.c

Init functions LL drivers APIs
• The init LL functions are based on the same concept as Standard Peripherals Library:

• Series of data structures defined in corresponding header file (stm32l4xx_ll_gpio.h)

• Initialization functions for:

• data structures (setting all data fields to default values) and

• peripherals or their functional part (copying data from structure fields to physical registers of selected peripheral).

All these functions are defined in related source files (i.e. stm32l4xx_ll_gpio.c)

LL_GPIO_InitTypeDef GPIO_InitStruct;

void GPIO_LL_configuration(void)

{

LL_AHB2_GRP1_EnableClock(LL_AHB2_GRP1_PERIPH_GPIOA); //enable clock to the GPIOA peripheral

LL_GPIO_StructInit(&GPIO_InitStruct);

GPIO_InitStruct.Pin= GPIO_PIN_1 | GPIO_PIN_4; //set pin 1 (ADC_IN6), 4 (DAC_OUT1)

GPIO_InitStruct.Mode= LL_GPIO_MODE_ANALOG; //set GPIO as analog mode

GPIO_InitStruct.Pull= LL_GPIO_PULL_NO; //no pull up or pull down

LL_GPIO_Init(GPIOA,&GPIO_InitStruct); //initialize GPIOA, pins 1 and 4

}

18

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764
http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=cL1etMsmWwS_KM&tbnid=qSqZAV695aOKNM:&ved=0CAUQjRw&url=http://www.fileinfo.com/extension/pch&ei=b10fUsz_K4TJsgb-nYDoBw&bvm=bv.51495398,d.ZGU&psig=AFQjCNHwFdzIlBtVkkiw17FnBG4gIH6Udg&ust=1377873616458764
http://www.iconarchive.com/show/leaf-mimes-icons-by-untergunter/text-x-c-icon.html
http://www.iconarchive.com/show/leaf-mimes-icons-by-untergunter/text-x-c-icon.html

LL library - init functions
architecture 19

• The init LL functions are considered as complementary services to the LL unitary ones and the HAL.

• There are no init LL functions for Core, PWR and system drivers, they are provided in header file only.

• Usage of init functions requires:

• Definition of USE_FULL_LL_DRIVER in the user code

• Inclusion all LL library .c files for each used ppp peripheral (i.e. stm32l4xx_ll_gpio.c)

HAL

LL unitary services (.h)

Init LL functionsAPIs (.c)

What have we learnt?
Gain knowledge about complete ST software offer for STM32 microcontrollers

Gain knowledge about Low Layer Library concepts: unitary and init

Practice Low Layer Library concept on previously generated HAL based project

Gain knowledge about differences between HAL and LL concepts.

21

Further reading 22

More information can be found in the following documents:

• UM1860 - Getting started with STM32CubeL4 for STM32L4 Series, available on the web:

http://www.st.com/resource/en/user_manual/dm00157440.pdf

• UM1884 - Description of STM32L4 HAL and Low-layer drivers, available on the web:

http://www.st.com/resource/en/user_manual/dm00173145.pdf

• Doxygen based html manual: STM32L486xx_User_Manual.chm, available within STM32L4xx

Cube library in the path:

\STM32Cube_FW_L4_V1.5.0\Drivers\STM32L4xx_HAL_Driver\

http://www.st.com/resource/en/user_manual/dm00157440.pdf
http://www.st.com/resource/en/user_manual/dm00173145.pdf

Enjoy!

www.st.com/mcu

/STM32 @ST_World st.com/e2e

http://www.st.com/stm32l4

