STM32 Ecosystem workshop

T.0.M.A.S Team

o

[' l life.augmented

e will continue a bit more with software activities.
* Let’s try to rewrite our L4 _DAC_ADC application to use Low Layer libraries.

* In this step we will create an empty STM32CubeMX template and then, we will
try to write complete application (except clock configuration) using only Low
Layer library. Then we will compare the code size.

» There are two ways to complete this task:

» Use of unitary init functions requiring good knowledge of the peripherals
(following reference manual configuration steps)

» Use of init functions (similar method to Standard Peripherals Library)
- Let’s try the first option, then we can compare the code size of the projects
- What would be the difference?

Goal of this part

v'Gain knowledge about complete ST software offer for STM32 microcontrollers
v'Gain knowledge about Low Layer Library concepts: unitary and init
_IPractice Low Layer Library concept on previously generated HAL based project

1Gain knowledge about differences between HAL and LL concepts.

Creating the L4 DAC _ADC project with full

usage of LL library

life.al

©» STM32CubeMX Unti

New project creation

RER &85 2p

T
o' New Project X
* Open STM32CubeMX u ——
MCU Selector | Board Selector]|
. MCU Filt
¢ Select NeW PrOJ eCt Series I: - Lines : Package :
STM32L4 v STM32L4x6 v LQFP&4 v [More Filters =]
° M en u é FI Ie é N eW prOJeCt Peripheral Selection MCUs List: 4 tems
Peripherals Nb Max MCU . Lines Package Flash Ram Eeprom 0
@|ADC 12-bit 0 ~ -
- Select STM32L4 etz e T et i
; : Eg’:ﬂp g STM32L476RGTX
e« STM32L4x6 New Project @bAC 2Bt T 0 STM32L486RGTx
o (&
. @|DFSDM F r - =
Load Project ¢ STM32CubeMX Untitled: STM32L476RGTx (=]
® LQFP64 paCkage : :: F File Project Pinout Window Help
. STM32L476RGTx el e et |
) T Finout | Clock Conﬁgurationl Conﬁgurationl Power Ct ption Calculator
o F bé)nﬁguraﬁon -
. J (8 E --I\n!iddleWam (Tl
* Do not select any peripherals S ; S mams
Y - % FREERTOS
(will be added manually later on) SR
@|LPUART] & Peripherals
@|0PAMP 0 - & Ancl =
@|QUADSFI T B¢ ADC2
@ RTC = H-© ADC3
@[SAI 0 Ml @ e cam
> 1 -- % COMP1
@|SDMMC] - & comMP2
4 [T il & cre L
@|SPI 0 % DACL
FIENE [T h -- % DFSDM1
-- % 12C1
r @ B 1202 STM32L476RGTx
B¢ 123 LQFP64
life.augmented | : :u[fr[\m

b Template project generation

« Go to Clock Configuration Tab

-+ Set clocks to 80MHz (based on 16MHz HSI*PLL)
- Save projectas LL L4 DAC_ADC
+ Generate the C project for SW4STM32

Import new project into the SW4STM32 workspace used in previous exercises
[o suazcubennx s srv2uorer I T [project Settings S

File Project Clock Configuration Window Help
BEoeBUE &40 cqE000: 20 Project | CodeGeneratorlAduance-d Settings

Pinout | Clock Configuration | Configuration | Power Consumption Calquator|

Project Settings

RTC/LCD Source Mux Project Name
.,

s HsE RTC J‘_bn,mo(mz; LL_L4_DAC_ADC |
=)

Input frequancy

LSE

-

32,768 g LsE | : - —I-TD RTC (KHz) - Project Location
1-1000 KHz ﬁ s | ; |C:_Work_Seminar\ || Browse l
- p B
o [e Toolchain Folder Location

ble G33 |

—————»| R |ToIWDG(KK) |C:_Work_Seminar\LL_L4_DAC_ADC), |

System Clock Mux

Toolchain [/ IDE

MSI | ™,
> © SWASTM32 v | [7] Generate Under Root
HSL | | SYsaK (M)
HSI; A 0 }—
PLL Source Mux I PLLOLK |
HSI < | PLLCLK
PLLM

1 - | || Enablecss |
. CLK48 Clock Musx

PLLSAILG ™
Pusatig] 5 [& o

« Generate the code with new features added
* Open newly generated project in SW4STM32

LL L4 DAC ADC

using unitary functions —

« Common services (portability)
» High level state machine based processes

* Init services

. AL
« Hardware basic services
Unitary . | |* Atomic register access
functions I'l |+ Compliancy with the HAL drivers

* Low memory footprint

N

LL
Drivers

life.augmented

Copy LL library files into the project __

* From repository STM32CubeMX 22Menu 22Help 2*Updater Settings get repository path (marked .\
below)

* From \STM32Cube FW_L4 Vx.x.x\Drivers\STM32L4xx_HAL_Driver\inc COpY:

stm3214xx 11 adc.
stm3214xx 11 bus.
stm3214xx 11 dac.
stm3214xx 11 dma.
stm3214xx 11 gpio.h
stm3214xx 11 rcc.h
stm3214xx 11 tim.h

~$PROJ DIR\Drivers\STM32L4xx_HAL_Driver\Inc\

'.ZTD*D*DA|

* Refresh (F5) the project source files — now, new files will become visible

Lys

life.augmented

ﬁ Writing the code
— LL L4 DAC_ADC project - tasks

Withinmain. ¢ file perform the following actions

Include necessary LL header files.
Declare data buffers for DAC and ADC.
Initialize peripherals one by one (mind to connect the clock to the peripheral first ©).

A

Start the peripheral using LL functions.

As a reference please use already copied header and source files for LL part of
the library.

Lys

life.augmented

L Replacing HAL functions with unitary LL
E 1-LL L4 DAC_ADC project - includes

- All used peripherals (ppp) need dedicated low layer header file stm3214xx 11 ppp.h
- We have to include them in main. c file in USER CODE section.
+ Please try to find and declare proper ones:

/* USER CODE BEGIN Includes */
#include "stm3214xx 11 ?°??.h"

/* USER CODE END Includes */

Lys

life.augmented

I Replacing HAL functions with unitary LL
E 1-LL L4 DAC_ADC project - includes

+ All used peripherals (ppp) need dedicated low layer header file stm3214xx 11 ppp.h
* We have to include them in main. c file iIn USER CODE section.

/* USER CODE BEGIN Includes */
#include "stm3214xx 11 adc.h"
#include "stm3214xx 11 dac.h"
#include "stm3214xx 11 dma.h"
#include "stm3214xx 11 gpio.h"
#include "stm3214xx 11 rcc.h"
#include "stm3214xx 11 tim.h"
#include "stm3214xx 11 bus.h"
/* USER CODE END Includes */

Lys

life.augmented

l_ Replacing HAL functions with unitary LL
E 2-LL L4 DAC _ADC project — data buffers declaration

* Itis necessary to define the source buffer for DAC (dacbuf[]) and destination buffer for ADC to store the
measured data (adcbuf[]). Size for both can be 32.

/* USER CODE BEGIN PV */

/* Private variables —-—-—--—-—--—-—---—---——--— */

/* USER CODE END PV */

Lys

life.augmented

i

Replacing HAL functions with unitary LL

2 -LL_L4 DAC_ADC project — data buffers declaration

It is necessary to define the source buffer for DAC (dacbuf[]) and destination buffer for ADC to store the
measured data (adcbuff]). Size for both can be 32.

/* USER CODE BEGIN PV */

/* Private variables —-—-—--—-—--—-—---—---——--— */
#define ADCBUFSIZE 32

#define DACBUFSIZE 32

const uintlé_ t dacbuf[DACBUFSIZE] = ({

uint16_t adcbuf [ADCBUFSIZE] ;
/* USER CODE END PV */

2047, 2447, 2831, 3185, 3498, 3750, 3939, 4056, 4095, 4056,
3939, 3750, 3495, 3185, 2831, 2447, 2047, 1647, 1263, 909,
599, 344, 155, 38, 0, 38, 155, 344, 599, 909, 1263, 1647};

Lys

life.augmented

l_ Replacing HAL functions with unitary LL
E 3-LL L4 DAC_ADC project — GPIO configuration
The task is to configure 2 analog pins (PA1 — ADC1 Channel6 and PA4 — DAC1 outputl)

1. Before PPP configuration it is necessary to connect the clock to the PPP peripheral.
To do this we can use dedicated function: LL_AHB2_GRP1_EnableClock()

2. Configure GPIOA, pinl into analog mode using LL_GPIO_SetPinMode()

3. Perform step 2 for GPIOA, pind
4. Connect GPIO analog switch to ADC1 input for PA1 using LL_GPIO_EnablePinAnalogControl()

/* USER CODE BEGIN 2 */
/* GPIO LL configuration */

life.augmented Use stm32l4xx_Il_gpio.h as a reference

l_ Replacing HAL functions with unitary LL
E 3-LL L4 DAC_ADC project — GPIO configuration

The task is to configure 2 analog pins (PA1 — ADC1 Channel6 and PA4 — DAC1 outputl)

1. Before PPP configuration it is necessary to connect the clock to the PPP peripheral.
To do this we can use dedicated function: LL_AHB2_GRP1_EnableClock()

2. Configure GPIOA, pinl into analog mode using LL_GPIO_SetPinMode()
3. Perform step 2 for GPIOA, pind
4. Connect GPIO analog switch to ADC1 input for PA1 using LL_GPIO_EnablePinAnalogControl()

/* USER CODE BEGIN 2 */
/* GPIO LL configuration */
LL AHB2 GRP1 EnableClock (LL AHB2 GRP1 PERIPH GPIOA); //enable clock to the GPIOA peripheral
LL GPIO SetPinMode (GPIOA, LL GPIO PIN 1, LL GPIO MODE ANALOG) ;
LL_GPIO SetPinMode (GPIOA, LL GPIO PIN 4, LL GPIO MODE_ANALOG) ;
LL GPIO_EnablePinAnalogControl (GPIOA, LL GPIO PIN 1);

Lys

life.augmented

Time for homework ;) _

Let’s stop at this point — you can find full description of further steps in
the presentation.

Please merge code:
» from template_src.c file (lines 138,139 and 159-260)
* Into main.c file after LL_GPIO_ EnablePinAnalogControl() function.

Compile the code and compare the code size between HAL and LL
version of the same application.

Lys

life.augmented

l_ Replacing HAL functions with unitary LL
E 3-LL L4 DAC_ADC project — DAC configuration

The task is to configure DAC1, Channell to work with output buffer, triggered by Timer2 TRGO signal,
without triangle nor noise wave generation

1. Before PPP configuration it is necessary to connect the clock to the PPP peripheral.
To do this we can use dedicated macro: LL_APB1 GRP1 EnableClock()

2. Select trigger source (TRGO signal from TIM2) using LL_DAC_SetTriggerSource()

3. Configure DACL1 output for Channell in normal mode (no sample and hold usage) with buffer enable and
connection to GPIO (PA4 in our case) using LL_DAC_ConfigOutput()

4. Enable DMA requests for DAC1, channell using LL_DAC_EnableDMAReq()

/* USER CODE BEGIN 2 */
/* DAC LL configuration */

life.augmented Use stm32l4xx_Il_dac.h as a reference

l_ Replacing HAL functions with unitary LL
ﬁ 3-LL_L4 DAC_ADC project — DAC configuration

The task is to configure DAC1, Channell to work with output buffer, triggered by Timer2 TRGO signal,
without triangle nor noise wave generation

1. Before PPP configuration it is necessary to connect the clock to the PPP peripheral.
To do this we can use dedicated macro: LL_APB1 GRP1 EnableClock()

2. Select trigger source (TRGO signal from TIM2) using LL_DAC_SetTriggerSource()

3. Configure DACL1 output for Channell in normal mode (no sample and hold usage) with buffer enable and
connection to GPIO (PA4 in our case) using LL_DAC_ConfigOutput()

4. Enable DMA requests for DAC1, channell using LL_DAC_EnableDMAReq()

/* USER CODE BEGIN 2 */
/* DAC LL configuration */
LL APB1 GRP1l EnableClock (LL APB1 GRP1 PERIPH DACl); //enable clock
LL DAC_SetTriggerSource (DAC1l, LL DAC CHANNEL 1, LL DAC TRIG EXT TIM2 TRGO) ;
LL DAC ConfigOutput (DAC1l, LL DAC CHANNEL 1, LL DAC OUTPUT MODE NORMAL,
LL _DAC_OUTPUT BUFFER ENABLE, LL DAC OUTPUT CONNECT GPIO) ;
LL DAC EnableDMAReq(DAC1l, LL DAC CHANNEL 1);

Lys

life.augmented

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC ADC proiect - ADC confiauration tasks

The task is to configure ADC1, Channel 6 (PAl) to work in regular single mode with DMA support, triggered by Timer2
Output Compare event on channel2, with sampling time 12.5 ADC clk cycles. ADC should be clocked by PCLK/2
synchronous clock (40MHz in our case).

1. At the beginning we should select system clock as clock source for ADC (system clock — synchronous mode or HSI clock —
asynchronous mode). Point 6.3.3 in reference manual.

Before PPP configuration it is necessary to connect the clock to the PPP peripheral.

In the next step we need to configure the input clock for ADC (PCLK/2 synchronous mode)

The Next step is to select trigger source for ADC1 regular conversions (capture compare channel2 in timer2)
Further we need to configure the trigger signal edge (rising in our case)

Further we need to configure single conversion per trigger event

Further we need to configure DMA data transfer to unlimited mode

eor el o il R S

In the next steps we need to configure ADC sequencer for selected channel: point 16.3.11 and further in reference manual.
a. Configure length of regular sequence (1 in our case)
b. Configure sequencer ranks for each channel (channel6 only in our case)
c. Configure sampling time for each channel (channel6 only in our case)

9. After the reset ADC is in deep power down mode. It is necessary to disable this mode. Point 16.3.6 in reference manual.

10. Further we need to enable ADC internal voltage regulator and wait for its stabilization (20us). Point 6.3.17 (table 63) in datasheet

life.augmented

Reference manual and Datasheet are present in Documentation folder within User_Material.zip file

l_ Replacing HAL functions with unitary LL
3-LL_L4 DAC_ADC project - ADC configuration tasks 1/2

The task is to configure ADC1, Channel 6 (PAl) to work in regular single mode with DMA support, triggered by Timer2 Output Compare
event on channel2, with sampling time 12.5 ADC clk cycles. ADC should be clocked by PCLK/2 synchronous clock (40MHz in our case).

1. At the beginning we should select system clock as clock source for ADC using LL_RCC_SetADCClockSource() function

2. Before PPP configuration it is necessary to connect the clock to the PPP peripheral.
To do this we can use dedicated macro: LL_AHB2 GRP1 EnableClock()

3. Inthe next step we need to configure the input clock for ADC (PCLK/2 synchronous mode) using
LL _ADC_SetCommonClock() function

4. The Next step is to select trigger source for ADC1 regular conversions (capture compare channel2 in timer2) using
LL ADC_ REG_SetTriggerSource() function

5. Further we need to configure the trigger signal edge (rising in our case) using LL_ ADC_REG_SetTriggerEdge() function

Further we need to configure single conversion per trigger event using LL_ ADC_REG_SetContinuousMode() function

/* ADC LL configuration */

l_ Replacing HAL functions with unitary LL

3-LL L4 DAC_ADC project - ADC configuration tasks 1/2

The task is to configure ADC1, Channel 6 (PAl) to work in regular single mode with DMA support, triggered by Timer2 Output Compare
event on channel2, with sampling time 12.5 ADC clk cycles. ADC should be clocked by PCLK/2 synchronous clock (40MHz in our case).

1.
2.

o O

At the beginning we should select system clock as clock source for ADC using LL_RCC_SetADCClockSource() function

Before PPP configuration it is necessary to connect the clock to the PPP peripheral.
To do this we can use dedicated macro: LL_AHB2 GRP1 EnableClock()

In the next step we need to configure the input clock for ADC (PCLK/2 synchronous mode) using
LL _ADC_SetCommonClock() function

The Next step is to select trigger source for ADCL1 regular conversions (capture compare channel2 in timer2) using
LL ADC_ REG_SetTriggerSource() function

Further we need to configure the trigger signal edge (rising in our case) using LL_ADC_ REG_SetTriggerEdge() function

Further we need to configure single conversion per trigger event using LL_ ADC_REG_SetContinuousMode() function

/* ADC LL configuration */

LL RCC_SetADCClockSource (LL _RCC_ADC CLKSOURCE_SYSCLK) ;

LL AHB2 GRP1l _EnableClock(LL AHB2 GRP1 PERIPH ADC);//enable clock

LL ADC_SetCommonClock (_LL ADC_COMMON INSTANCE (ADC1l), LL ADC_CLOCK SYNC PCLK DIV2);
LL ADC REG_SetTriggerSource (ADC1l, LL ADC_REG _TRIG_EXT TIM2 CC2);

LL ADC_REG SetTriggerEdge (ADC1, LL ADC REG TRIG_EXT RISING) ;

LL ADC REG_SetContinuousMode (ADC1l, LL ADC REG_CONV_SINGLE) ;

l_ Replacing HAL functions with unitary LL
3-LL_L4 DAC_ADC project - ADC configuration tasks 2/2

The task is to configure ADC1, Channel 6 (PAl) to work in regular single mode with DMA support, triggered by Timer2 Output Compare
event on channel2, with sampling time 12.5 ADC clk cycles. ADC should be clocked by PCLK/2 synchronous clock (40MHz in our case).

7. Further we need to configure DMA data transfer to unlimited mode using LL_ADC REG_SetDMATransfer() function
8. Further we need to configure ADC sequencer for regular conversions:
a. set ADC group regular sequencer length and scan direction using LL_ADC_REG_SetSequencerLength() function

b. set ADC group regular sequence: channel on the selected sequence rank using LL_ADC_REG_SetSequencerRanks() function

c. configure sampling time for given ADC channel using LL_ADC_SetChannelSamplingTime() function

9. After the reset ADC is in deep power down mode. It is necessary to disable this mode using
LL ADC_ DisableDeepPowerDown() function

10. Further we need to enable ADC internal voltage regulator using LL_ADC_EnablelnternalRegulator() function and wait for it
stabilization (implement your own delay() function)

life.augmented

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - ADC configuration tasks 2/2

The task is to configure ADC1, Channel 6 (PAl) to work in regular single mode with DMA support, triggered by Timer2 Output Compare
event on channel2, with sampling time 12.5 ADC clk cycles. ADC should be clocked by PCLK/2 synchronous clock (40MHz in our case).

7. Further we need to configure DMA data transfer to unlimited mode using LL_ADC REG_SetDMATransfer() function
8. Further we need to configure ADC sequencer for regular conversions:

a. set ADC group regular sequencer length and scan direction using LL_ADC_REG_SetSequencerLength() function
b. set ADC group regular sequence: channel on the selected sequence rank using LL_ADC_REG_SetSequencerRanks() function

c. configure sampling time for given ADC channel using LL_ADC_SetChannelSamplingTime() function

9. After the reset ADC is in deep power down mode. It is necessary to disable this mode using
LL ADC_ DisableDeepPowerDown() function

10. Further we need to enable ADC internal voltage regulator using LL_ADC_EnablelnternalRegulator() function and wait for it
stabilization (implement your own delay() function)

LL ADC REG SetDMATransfer (ADC1, LL ADC REG DMA TRANSFER UNLIMITED) ;

LL ADC REG_SetSequencerLength (ADC1l, LL ADC REG SEQ SCAN DISABLE) ;

b LL ADC REG_SetSequencerRanks (ADC1l, LL ADC REG RANK 1, LL ADC CHANNEL 6);

C LL ADC SetChannelSamplingTime (ADC1l, LL ADC CHANNEL 6, LL ADC SAMPLINGTIME 12CYCLES 5);
LL ADC DisableDeepPowerDown (ADC1) ;

LL ADC EnablelInternalRegulator (ADC1) ;

//wait 20us for internal regulator stabilization

l_ Replacing HAL functions with unitary LL
W 3-LL L4 DAC_ADC project - DAC_DMA configuration

The task is to configure Channel 3in DMAL to work with channel 1 in DAC1 in the following way:
« Continuously read data from internal buffer (dacbuf[DACBUFSIZE]) in halfwords, with pointer incrementation

« Continuously write data (in halfwords, without pointer incrementation) to DAC1 data register for channell (12bits, right
alignment)*.

Before configuration we should connect clock to the DMA1 peripheral.
To do this we can use dedicated macro: _ HAL RCC_PPP_CLK_ENABLE()

After configuration we should enable the Channel3 in DMAL using LL_DMA_EnableChannel() function

e-augmented *) Hint: To get the proper address we can use function LL_DAC_DMA_GetRegAddr ()

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - DAC_DMA configuration

The task is to configure Channel 3 in DMA1 to work with DAC1, channell in continuous (circular) mode.

1. First step should be connection of the bus clock to DMA1 peripheral.
We can use previously used macro or dedicated function LL_AHB1_GRP1_EnableClock()
2. Further we need to configure DMA1, channel3 (using LL_DMA_ConfigTransfer() function) in the following way:
a. DMA transfer in circular mode to match with DAC1 configuration: DMA unlimited requests.
b. DMA transfer from memory with address increment.
c. DMA transfer to DAC1 without address increment by half-word to match with DAC1 configuration: DACL1 resolution 12 bits.
d. DMA transfer from memory by half-word to match with DAC1 conversion data buffer variable type: half-word.

3. Further we should assign channel3 of DMA1 to DAC1 request (point 10.4.7, table 39 in reference manual) using LL_DMA_SetPeriphRequest()
function.

/* DAC DMA LL configuration */

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - DAC_DMA configuration

The task is to configure Channel 3 in DMA1 to work with DAC1, channell in continuous (circular) mode.

1. First step should be connection of the bus clock to DMA1 peripheral.
We can use previously used macro or dedicated function LL_AHB1 GRP1_EnableClock()

2. Further we need to configure DMA1, channel3 (using LL_DMA_ConfigTransfer() function) in the following way:
a. DMA transfer in circular mode to match with DAC1 configuration: DMA unlimited requests.
b. DMA transfer from memory with address increment.
c. DMA transfer to DAC1 without address increment by half-word to match with DAC1 configuration: DACL1 resolution 12 bits.
d. DMA transfer from memory by half-word to match with DAC1 conversion data buffer variable type: half-word

3. Further we should assign channel3 of DMA1 to DAC1 request (point 10.4.7, table 39 in reference manual) using LL_DMA_SetPeriphRequest()
function.

/* DAC DMA LL configuration */

LL AHBl1 GRP1l EnableClock (LL AHBl1 GRP1 PERIPH DMAl); //enable clock
LL DMA ConfigTransfer (DMA1,
LL DMA CHANNEL 3,
LL DMA DIRECTION MEMORY TO PERIPH |
LL DMA MODE CIRCULAR |
LL DMA PERIPH NOINCREMENT |
LL DMA MEMORY INCREMENT |
I
I

LL DMA PDATAALIGN HALFWORD

LL_DMA MDATAALIGN HALFWORD

LL DMA PRIORITY HIGH) ;

a LL DMA SetPeriphRequest (DMAl, LL DMA CHANNEL 3, LL DMA REQUEST 6) ;

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - DAC_DMA configuration

The task is to configure Channel 3 in DMA1 to work with DAC1, channell in continuous (circular) mode.

4. Inthe next step we should configure DMA transfer addresses of source (dacbuf[] buffer) and destination (DACL1 data register for 12bit data
aligned to right) using LL_DMA_ConfigAddresses() function *).

5. Further we need to configure DMA transfer size (size of the dacbuf[]) using LL_DMA_SetDatalLength() function
6. At the end we should enable channel3 in DMA1 using LL_DMA_EnableChannel() function

1 augmented *) Hint: To get the proper address we can use function LL_DAC_DMA_GetRegAddr ()

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - DAC_DMA configuration

The task is to configure Channel 3 in DMA1 to work with DAC1, channell in continuous (circular) mode.

4. Inthe next step we should configure DMA transfer addresses of source (dacbuf[] buffer) and destination (DACL1 data register for 12bit data
aligned to right) using LL_DMA_ConfigAddresses() function *).

Further we need to configure DMA transfer size (size of the dacbuf[]) using LL_DMA_SetDatalLength() function
At the end we should enable channel3 in DMAL using LL_DMA_EnableChannel() function

LL DMA ConfigAddresses (DMA1l,
LL DMA CHANNEL 3,
(uint32_t) &dacbuf,
LL DAC DMA GetRegAddr (DAC1,LL DAC_CHANNEL 1,LL DAC DMA REG DATA 12BITS RIGHT ALIGNED),
LL DMA DIRECTION MEMORY TO PERIPH) ;

LL DMA SetDatalLength(DMAl, LL DMA CHANNEL 3, DACBUFSIZE) ;
LL DMA EnableChannel (DMAl, LL DMA CHANNEL 3) ;

6 o

lite.augmented *) Hint: To get the proper address we can use function LL_DAC _DMA_ GetRegAddr()

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - ADC_DMA configuration

The task is to configure Channel 1 in DMAL to work with channel 6 in ADCL1 in the following way:

« Continuously read data (in halfwords, without pointer incrementation) from ADC1 data register for regular channels (12bits)*.
« Continuously write data to internal buffer (adcbuffADCBUFSIZE]) in halfwords, with pointer incrementation

Before the configuration we should connect the clock to the DMA1 peripheral. To do this we can use there dedicated macro:
__HAL _RCC PPP_CLK_ENABLE()

After the configuration we should enable the Channell in DMA1 using LL_DMA_EnableChannel() function

Lys

life.augmented

*) Hint: To get the proper address we can use function LL_ADC DMA_ GetRegAddr()

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - ADC_DMA configuration

The task is to configure Channel 1 in DMA1 to work with ADC1, channel6 in continuous (circular) mode.

1. First step should be connection of the bus clock to DMA1 peripheral. We can use previously used macro or dedicated function
LL AHB1 GRP1 EnableClock()
2. Further we need to configure DMAL, channell (using LL_DMA_ConfigTransfer() function) in the following way:
a. DMA transfer in circular mode to match with ADC1 configuration: DMA unlimited requests.
b. DMA transfer from ADC1 data register for regular conversions without address increment by half-word to match with ADC1 configuration: ADC1 resolution 12 bits.
c. DMA transfer to memory with address increment.
d. DMA transfer to memory by half-word to match with ADC1 conversion data buffer variable type: half-word.

3. Further we should assign channell of DMA1 to ADC1 request (point 10.4.7, table 39 in reference manual) using LL_DMA_SetPeriphRequest() function.

/* ADC DMA LL configuration */

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - ADC_DMA configuration

The task is to configure Channel 1 in DMA1 to work with ADC1, channel6 in continuous (circular) mode.

1. First step should be connection of the bus clock to DMA1 peripheral. We can use previously used macro or dedicated function
LL_AHB1 GRP1 EnableClock()

2. Further we need to configure DMA1, channell (using LL_DMA_ConfigTransfer() function) in the following way:

a. DMA transfer in circular mode to match with ADC1 configuration: DMA unlimited requests.
b. DMA transfer from ADC1 data register for regular conversions without address increment by half-word to match with ADC1 configuration: ADC1 resolution 12 bits.
c. DMA transfer to memory with address increment.

d. DMA transfer to memory by half-word to match with ADC1 conversion data buffer variable type: half-word.

3. Further we should assign channell of DMA1 to ADC1 request (point 10.4.7, table 39 in reference manual) using LL_DMA_SetPeriphRequest() function.

/* ADC DMA LL configuration */

LL AHBl1 GRP1l EnableClock (LL AHBl1 GRP1 PERIPH DMAl); //enable clock
LL DMA ConfigTransfer (DMA1,
LL DMA CHANNEL 1,
LL DMA DIRECTION PERIPH TO MEMORY |
LL DMA MODE CIRCULAR |
LL DMA PERIPH NOINCREMENT |
LL DMA MEMORY INCREMENT |
I
I

LL DMA PDATAALIGN HALFWORD

LL_DMA MDATAALIGN HALFWORD

LL DMA PRIORITY HIGH) ;

a LL DMA SetPeriphRequest (DMAl, LL DMA CHANNEL 1, LL DMA REQUEST 0);

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - ADC_DMA configuration

The task is to configure Channel 1 in DMA1 to work with ADC1, channel6 in continuous (circular) mode.

4. Inthe next step we should configure DMA transfer addresses of source (ADC1 data register for 12bit data) and destination (adcbuf[] buffer)
using LL_DMA_ConfigAddresses() function *).

5. Further we need to configure DMA transfer size (size of the adcbuf[]) using LL_DMA_SetDatalLength() function
6. At the end we should enable channell in DMA1 using LL_DMA_EnableChannel() function

1 augmented *) Hint: To get the proper address we can use function LL_ADC_DMA_GetRegAddr ()

l_ Replacing HAL functions with unitary LL
3-LL L4 DAC_ADC project - ADC_DMA configuration

The task is to configure Channel 1 in DMA1 to work with ADC1, channel6 in continuous (circular) mode.

4. Inthe next step we should configure DMA transfer addresses of source (ADC1 data register for 12bit data) and destination (adcbuf[] buffer)
using LL_DMA_ConfigAddresses() function *).

5. Further we need to configure DMA transfer size (size of the adcbuf[]) using LL_DMA_SetDatalLength() function
6. At the end we should enable channell in DMA1 using LL_DMA_EnableChannel() function

4

LL DMA ConfigAddresses (DMA1l,
LL DMA CHANNEL 1,
LL ADC DMA GetRegAddr (ADC1, LL ADC DMA REG REGULAR DATA),
(uint32_t) &adcbuf,
LL DMA DIRECTION PERIPH TO MEMORY) ;

LL DMA SetDatalength(DMAl, LL DMA CHANNEL 1, ADCBUFSIZE) ;
LL DMA EnableChannel (DMAl, LL DMA CHANNEL 1);

6

e-augmented *) Hint: To get the proper address we can use function LL_ADC_DMA_GetRegAddr ()

l_ Replacing HAL functions with unitary LL

3-LL_L4 DAC_ADC project — TIM2 configuration

The task is to configure Timer2 (TIM2) to work in up-counting mode with the following parameters/options:

Its output compare Channel2 should be configured in toggle mode with output compare parameters: frequency 5Hz, duty cycle 50%.
There is no need to output Channel2 to the pin.

TRGO signal of Timer2 should be configured on update to trigger DAC conversions

Compare event on Channel2 will be used to trigger the ADC conversions.

Source clock for the timer is APB clock = 80MHz

Z
— = LL_TIM_SetAutoReload timebase
80MHz, | -TM_ 0
LL_TIM_SetRepetitionCounter() * ClockDivision ?

. — ' Prescaler 7
\L oK Prescaler ?
SHz | JautoRelosdiREGH— i Counterntode 7
Juuruoruruuuoorururururorororurunar

. CounterMode
+/- 32-Bit Counter

v, Autoreload (Period) N
@ LL_TIM_CC_EnableChannel() CompareValue Parameter for channel 2

CompareValue ?

Autoreload ?

[]>@ Capture Compare []
[]*l Capture Compare M cH2
[]»@ Capture Compare b cH3

LL_TIM_OC_SetMode()

‘ []»§ Capture Compare |:] CH4
” LL_TIM_OC_SetPolarity()

OCMode ?

5Hz/50%

|
v -
life. ted —_
cuaments LL_TIM_OC_SetCompareCH2() CC2 —trigger for ADC

l_ Replacing HAL functions with unitary LL
3-LL_L4 DAC_ADC project — TIM2 timebase configuration

The task is to configure Timer2 to work in OC toggle mode on channel2 (f=5Hz, 50%) without connection
to the pin and with TRGO signal configured to update event.

1. First step should be connecting clock to Timer2 (TIM2) using macro _ HAL_RCC_TIM2_CLK_ENABLE() or dedicated function
LL_APB1 GRP1 _EnableClock()

Further we should set prescaler for timer2 using LL_TIM_SetPrescaler() function
Further we should configure autoreload (period value) using LL_TIM_SetAutoReload() function

Further we should configure counter mode to up-counting using LL_TIM_SetCounterMode() function

a k~ WD

Further we should disable repetition counter by writing O to this counter using LL_TIM_SetRepetitionCounter() function

Lys

life.augmented

l_ Replacing HAL functions with unitary LL
3-LL_L4 DAC_ADC project — TIM2 timebase configuration

The task is to configure Timer2 to work in OC toggle mode on channel2 (f=5Hz, 50%) without connection
to the pin and with TRGO signal configured to update event.

1. First step should be connecting clock to Timer2 (TIM2) using macro _ HAL _RCC_TIM2_CLK_ENABLE() or dedicated function
LL_APB1 GRP1 _EnableClock()

Further we should set prescaler for timer2 using LL_TIM_SetPrescaler() function
Further we should configure autoreload (period value) using LL_TIM_SetAutoReload() function

Further we should configure counter mode to up-counting using LL_TIM_SetCounterMode() function

a k~ WD

Further we should disable repetition counter by writing O to this counter using LL_TIM_SetRepetitionCounter() function

/* TIM2 LL configuration */

LL APBl1 GRP1 EnableClock (LL APBl1 GRP1 PERIPH TIM2);
LL TIM SetPrescaler (TIM2, 39999);

LL TIM SetAutoReload(TIM2, 399);

LL TIM SetCounterMode (TIM2, LL TIM COUNTERMODE UP) ;
LL TIM SetRepetitionCounter (TIM2, 0);

Lys

life.augmented

l_ Replacing HAL functions with unitary LL
3-LL_L4 DAC_ADC project — TIM2 OC2 configuration

The task is to configure Timer2 to work in OC toggle mode on channel2 (f=5Hz, 50%) without connection
to the pin and with TRGO signal configured to update event.

1. Our next step should be configuration of trigger output (TRGO) to be connected to update event.
We can use LL_TIM_SetTriggerOutput() function

2. Further we should configure channel2 into output compare mode using the following procedure:
a. Set output compare mode to TOGGLE using LL_TIM_OC_SetMode() function
b. Set output channel polarity to OC active high using LL_TIM_OC_SetPolarity() function
c. Setpulse value using LL_TIM_OC_SetCompareCH2() function

3. Further we should enable channel2 in timer2 using LL_TIM_CC_EnableChannel() function

Lys

life.augmented

l_ Replacing HAL functions with unitary LL
3-LL_L4 DAC_ADC project — TIM2 OC2 configuration

The task is to configure Timer2 to work in OC toggle mode on channel2 (f=5Hz, 50%) without connection
to the pin and with TRGO signal configured to update event.

1. Our next step should be configuration of trigger output (TRGO) to be connected to update event.
We can use LL_TIM_SetTriggerOutput() function

2. Further we should configure channel2 into output compare mode using the following procedure:
a. Set output compare mode to TOGGLE using LL_TIM_OC_SetMode() function
b. Set output channel polarity to OC active high using LL_TIM_OC_SetPolarity() function
c. Setpulse value using LL_TIM_OC_SetCompareCH2() function

Further we should enable channel2 in timer2 using LL_TIM_CC_EnableChannel() function

3.
9 LL TIM SetTriggerOutput (TIM2, LL TIM TRGO UPDATE) ;
LL TIM OC_SetMode (TIM2, LL TIM CHANNEL CH2, LL TIM OCMODE TOGGLE) ;
@ LL TIM OC_SetPolarity(TIM2, LL TIM CHANNEL CH2, LL TIM OCPOLARITY HIGH) ;
LL TIM OC_SetCompareCH2 (TIM2, 200);
@ LL TIM CC_EnableChannel (TIM2, LL TIM CHANNEL CH2);

Lys

life.augmented

l_ Replacing HAL functions with unitary LL
4 -LL_ L4 DAC_ADC project — starting the peripherals

Start already configured peripherals:

1. Enable DMA for Channell of DAC1 using
LL DAC_EnableDMAReq() function

2. Enable trigger for Channell of DAC1 using
LL _DAC _EnableTrigger() function

3. Enable Channell of DAC1 using LL_DAC_Enable()
function

/* DAC activation */

4. Start calibration of ADC1 (for single ended conversions)
using function LL_ADC_StartCalibration().

5. Add necessary 116 ADC clk delay after calibration
start

6. Enable ADC1 using LL_ADC_Enable() function

7. Start regular conversion (ADC1 will start conversion after
next HW trigger) using LL_ADC_REG_StartConversion()
function

/* ADC activation */

8. Activate timer2 using LL_TIM_EnableCounter() function

Lys

life.augmented

/* TIM2 activation */

i
]

Start already configured peripherals:

Enable DMA for Channell of DAC1 using
LL DAC_EnableDMAReq() function

Enable trigger for Channell of DACL1 using

1.

LL _DAC _EnableTrigger() function
Enable Channell of DAC1 using LL_DAC_Enable() 1

function

Start calibration of ADC1 (for single ended conversions) 2
using function LL_ADC_StartCalibration(). 3 LL DAC Enable (DAC1l, LL DAC CHANNEL 1) ;

Add necessary 116 ADC clk delay after calibration

start

Enable ADC1 using LL_ADC_Enable() function

Start regular conversion (ADC1 will start conversion after
next HW trigger) using LL_ADC_REG_StartConversion() 5

function

Activate timer2 using LL_TIM_EnableCounter() function 7 LL ADC REG StartConversion (ADC1) ;

Lys

life.augmented

Replacing HAL functions with unitary LL
4 - LL_L4 DAC_ADC project — starting the peripherals

/* DAC activation */
LL_DAC_EnableDMAReq(DAC1, LL DAC_CHANNEL 1) ;
LL_DAC_EnableTrigger (DAC1, LL DAC CHANNEL 1) ;

/* ADC activation */

) LL ADC_StartCalibration(ADC1, LL_ADC_SINGLE_ENDED) ;
//necessary 116 ADC clk delay

LL ADC Enable (ADC1) ;

6

/* TIM2 activation */
8 LL TIM EnableCounter (TIM2) ;

HAL vs. LL libraries

What have we learnt?

v'Gain knowledge about complete ST software offer for STM32 microcontrollers
v'Gain knowledge about Low Layer Library concepts: unitary and init
v'Practice Low Layer Library concept on previously generated HAL based project

v'Gain knowledge about differences between HAL and LL concepts.

Further reading

More information can be found in the following documents:
+ UM1860 - Getting started with STM32CubelL4 for STM32L4 Series, available on the web:

http://www.st.com/resource/en/user manual/dm00157440.pdf

- UM1884 - Description of STM32L4 HAL and Low-layer drivers, available on the web:

http://www.st.com/resource/en/user manual/dm00173145.pdf

« Doxygen based html manual: STM32L486xx_User_Manual.chm, available within STM32L4xx
Cube library in the path:

\STM32Cube FW L4 V1.5.0\Drivers\STM32L4xx_HAL_Driver\

Lys

life.augmented

http://www.st.com/resource/en/user_manual/dm00157440.pdf
http://www.st.com/resource/en/user_manual/dm00173145.pdf

[§ @sT_world

WwWw.st.com/mcu

http://www.st.com/stm32l4

