Errata

Title & Document Type: 8654B Signal Generator Operating and Service Manual

Manual Part Number: 08654-90025

Revision Date: March 1977

About this Manual

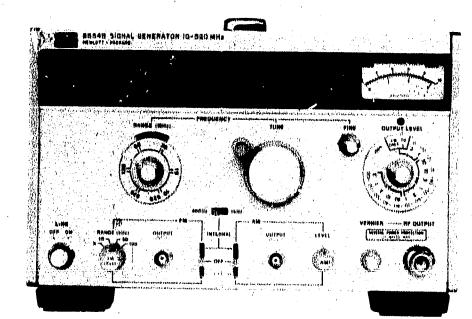
We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, life sciences, and chemical analysis businesses are now part of Agilent Technologies. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A. We have made no changes to this manual copy.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:


www.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

O 11P 8654B G AN D S N Ε С Μ Ε U

8654B SIGNAL GENERATOR

HP 8654B

HEWLETT D PACKARD

CERTIFICATION

The Hewlett-Packard Company certifies that this instrument met its published specifications at the time of shipment from the factory. Hewlett-Packard Company further certifies that its calibration measurements are traceable to the United States National Bureau of Standards, to the extent allowed by the Bureau's calibration facility, and to the calibration facilities of other International Standards Organization members.

WARRANTY AND ASSISTANCE

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of one year from the date of shipment. Hewlett-Packard will, at its option, repair or replace products which prove to be defective during the warranty period provided they are returned to Hewlett-Packard, and provided the preventive maintenance procedures in the manual are followed. Repairs necessitated by misuse of the product are not covered by this warranty. NO OTHER WARRANTIES ARE EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTIC-ULAR PURPOSE. HEWLETT-PACKARD IS NOT LIABLE FOR CON-SEQUENTIAL DAMAGES.

Service contracts or customer assistance agreements are available for Hewlett-Packard products.

For any assistance, contact your nearest Hewlett-Packard Sales and Service Office. Addresses are provided at the back of this manual.

 b_1

OPERATING AND SERVICE MANUAL

8654B SIGNAL GENERATOR

(Including Option 003)

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1710A.

For additional important information about serial numbers, see INSTRUMENTS COVERED BY MANUAL in Section I.

With changes described in Section VII, this manual also applies to instruments with serial numbers prefixed 1512A, 1521A, 1529A, 1531A, 1532A, 1550A, 1612A, 1633A, 1638A, and 1647A.

© HEWLETT-PACKARD COMPANY 1975, 1977 1501 PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S. A.

MANUAL PART NO. 08654-90025 Microfiche Part No. 08654-90026 Operating Supplement Part No. 08654-90027

Printed MARCH 1977

CONTENTS

7-3.

7-6.

ii

 ι^{*}

an ta a

	Secti	ion				N. C.			Dago
	Secu				-				Page
	I	G	ENER	AL INF	ORMA	FION	••••		. 1-1
н 4	1-1.	In	trodu	ction.					. 1-1
	1-6.	Sp	pecific	ations.				· · · · · ·	. 1-1
	1-8.								
	1-13								
								• • • • • •	
	1-19	• . •.	Comp	lement	ary Equ	ipment.	• • • • •		. 1-2
	1-24.	•	Acces	sories.			• • • • •		. 1-2
	1-30.	. Se	rvice a	nd User	Aids.				1-2
	1-34.	. Wa	arranty			• • • • •			. 1-3
a as gl				•	1997 - 1997 1997 - 1997				
	П								
	2-1.	Int	troduc	tion. 🖂	• • • • • •	• • • • •		•••••	. 2-1
	2-3.	Ini	itial In	spection	1	• • • • •	• • • • • •		. 2-1
	2-5.	Pre	eparati	on for l	Jse				. 2-1
٨	2-6.		Power	Requir	ements				. 2-1
/!\	2-8.		Line	/oltage	Selectio	n		• • • • • •	. 2-1
A	2-10.		Power	· Cable .					. 2-2
	2-12.		Opera	ting Env	<i>ironme</i>	nt		· • • • • •	. 2-2
	2-14.								
	2-16.								
	2-19.								
	2-20.							••••	
	2-22.							• • • • •	
	Ш	OP	ERAT	ION	• • • • •				. 3-1
	3-1.	Int	roduct	ion					. 3-1
	3-3.	Pan	oel Fea	itures .	••••		• • • • • •		. 3-1
	3-5.	Op	erator ^s	's Check	s				. 3-1
. :	3-7.	Opa	erating	g Instruc	ctions .				. 3-1 🔬
	3-9.		Auxili	ary Out	put			• • • • •	. 3-1
	3-11.								
								,	
	IV	PEI	RFOR	MANCE	E TEST'S	5			. 4-1
								• • • • • •	
	4-5.	Tes	t Reco	ord	• • • • • •				4-1
	4-7.	Per	formai	nce Test	s ,	• • • • • •	• • • • •		4-1
	4-13.	Fre	quenc	y Accur	acy Test		• • • • •		4-2
	4-15,	Res	idual A	AM Test		19. j. 19 . s. s. s. s .		• • • • • •	44
	4-17.	Out	iput Le	evel Acc	uracy T	est	• • • • •		4-7
	4-18.	Out	put Le	evel Flat	ness Te	st			4-10
	4-19.	Out	put Le	eakage 'I	'est	• • • • •			4-12
	4-20.]	Inte	ernal M	lodulati	on Rate	Accura	cy Test		4-14
	4-21.	AM	Bandy	width Te	est	• • • • •			4-14
e a	4-22.	AM	Sensit	ivity an	d Indica	ted Acc	uracy T	est	4-15
, ,	4-23.	AM	Distor	tion Te	st		-		4-17

4-24. FM Bandwidth Test. 4-18 4-25. FM Distortion Test 4-20 4-26. FM Sensitivity and Meter Accuracy Test 4-22 V ADJUSTMENTS 5-1 5-1. Introduction 5-1 5-4. Safety Considerations. 5-1 5-6. Equipment Required 5-1 5-7. Solder Tuning Tools 5-2 5-10. Blade Tuning Tools 5-2 5-11. Factory-Selected Components 5-2 5-12. Post Repair Tests and Adjustments 5-2 5-13. Factory-Selected Components 5-2 5-14. Power Supply Adjustment 5-6 5-15. Post Repair Tests and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-10 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustment 5-15 5-24. <td< th=""><th>Section</th><th>on</th><th>Page</th></td<>	Section	on	Page
4-25. FM Distortion Test 4-20 4-26. FM Sensitivity and Meter Accuracy Test 4-22 V ADJUSTMENTS 5-1 5-1. Introduction 5-1 5-4. Safety Considerations 5-1 5-6. Equipment Required 5-1 5-7. Safety Considerations 5-2 5-10. Blade Tuning Tools 5-2 5-13. Factory-Selected Components 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-10 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-25. FM Deviation Adjustment 5-33 5-26. Output Impedance	4-24.	FM Bandwidth Test.	4-18
4-26. FM Sensitivity and Meter Accuracy Test 4-22 V ADJUSTMENTS 5-1 5-1. Introduction 5-1 5-4. Safety Considerations 5-1 5-6. Equipment Required 5-1 5-7. Safety Considerations 5-1 5-6. Equipment Required 5-1 5-7. Safety Considerations 5-2 5-10. Blade Tuning Tools 5-2 5-13. Factory-Selected Components 5-2 5-15. Post Repair Tests and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustment 5-13 5-24. FM Deviation Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-26. Output Impedance A	\ 4 -25.		
VADJUSTMENTS5-15-1Introduction5-15-4Safety Considerations5-15-6Equipment Required5-15-75-8Pozidriv Screwdrivers5-25-10Blade Tuning Tools5-25-13Factory-Selected Components5-25-15Post Repair Tests and Adjustments5-25-17Power Supply Adjustment5-65-18Detector Bias and AM Distortion Adjustment5-65-19AM Sensitivity Adjustment5-85-20Meter Adjustments5-95-21Tuning Capacitor Pulley Adjustment5-105-22Frequency and Range Adjustment5-105-23Preliminary FM Adjustment5-155-25FM Deviation Adjustment5-185-26. Output Impedance Adjustment5-335-27. Reverse Power Level Sense Adjustment(Option 003 only)5-385-27. Reverse Power Level Sense Adjustment6-16-1Introduction6-16-3Exchange Assemblies6-16-46-16-16-5Abbreviations6-16-7Replaceable Parts List6-16-7Replaceable Parts List6-16-74Illustrated Parts Breakdowns6-16-74Illustrated Parts Breakdowns6-16-74Illustrated Parts Breakdowns6-1		er n	
5-1.Introduction.5-15-4.Safety Considerations.5-15-6.Equipment Required5-15-7.Dozidriv Screwdrivers.5-25-10.Blade Tuning Tools.5-25-13.Factory-Selected Components.5-25-15.Post Repair Tests and Adjustments.5-65-18.Detector Bias and AM Distortion Adjustment.5-65-19.AM Sensitivity Adjustment.5-65-19.AM Sensitivity Adjustment.5-75-20.Meter Adjustments.5-95-21.Tuning Capacitor Pulley Adjustment.5-105-22.Frequency and Range Adjustment.5-125-23.Preliminary FM Adjustments.5-145-24.FM Distortion Adjustment.5-155-25.FM Deviation Adjustment.5-185-254.FM Deviation Adjustment5-335-26.Output Impedance Adjustment5-335-27.Reverse Power Level Sense Adjustment6-16-11.Introduction.6-16-3.Exchange Assemblies.6-16-5.Abbreviations.6-16-7.Replaceable Parts List6-16-7.Replaceable Parts List6-16-7.Replaceable Parts Breakdowns6-16-14.Illustrated Parts Breakdowns6-16-14.Illustrated Parts Breakdowns6-1			
5-1. Introduction. 5-1 5-4. Safety Considerations. 5-1 5-6. Equipment Required 5-1 5-7. Description Screwdrivers. 5-2 5-10. Blade Tuning Tools 5-2 5-13. Factory-Selected Components 5-2 5-15. Post Repair Tests and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustment 5-13 5-24. FM Distortion Adjustment 5-18 5-25. FM Deviation Adjustment 5-18 5-26. Output Impedance Adjustment 5-33 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 6-13. Introduction. 6-1 6-14. Introduction. 6-1 6-5.	V	ADJUSTMENTS	5-1
5-4. Safety Considerations. 5-1 5-6. Equipment Required 5-1 5-8. Pozidriv Screwdrivers. 5-2 5-10. Blade Tuning Tools 5-2 5-13. Factory-Selected Components 5-2 5-15. Post Repair Tests and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-10 5-23. Preliminary FM Adjustment 5-13 5-24. FM Distortion Adjustment 5-16 5-25. FM Deviation Adjustment 5-18 5-26. Output Impedance Adjustment 5-33 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-39 VII REPLACEABLE PARTS 6-1 6-1 Int	5-1.	Introduction.	. 5-1
5-6. Equipment Required 5-1 5-8. Pozidriv Screwdrivers 5-2 5-10. Blade Tuning Tools 5-2 5-13. Factory-Selected Components 5-2 5-15. Post Repair Tests and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-10 5-23. Preliminary FM Adjustments 5-12 5-25. FM Deviation Adjustment 5-18 5-26. FM Deviation Adjustment 5-18 5-25. FM Deviation Adjustment 5-33 5-26. Output Impedance Adjustment 5-33 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-39 VII REPLACEABLE PARTS 6-1 6-1 I	5-4.		
5-8. Pozidriv Screwdrivers. 5-2 5-10. Blade Tuning Tools 5-2 5-13. Factory-Selected Components 5-2 5-15. Post Repair Tests and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-10 5-23. Preliminary FM Adjustments 5-12 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-26. Output Impedance Adjustment 5-33 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-39 VII REPLACEABLE PARTS 6-1 6-1 6-3. Exchange Assemblies 6-1 6-1 6-5. Abbreviations 6-1 6-1	5-6.		
5-10. Blade Tuning Tools 5-2 5-13. Factory-Selected Components 5-2 5-15. Post Repair Tests and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustments 5-12 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-26. Output Impedance Adjustment 5-33 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment 6-1 6-1. Introduction 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-7. Replaceable Parts List 6-1	5-8.		
5-13. Factory-Selected Components 5-2 5-15. Post Repair Tests and Adjustments 5-2 5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustments 5-14 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-26. Output Impedance Adjustment (Option 003 only) 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-27. Reverse Power Level Sense Adjustment 6-1 6-1. Introduction 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-12. Parts Frovisioning 6-1	5-10.		
5-15. Post Repair Tests and Adjustments. 5-2 5-17. Power Supply Adjustment. 5-6 5-18. Detector Bias and AM Distortion Adjustment. 5-6 5-19. AM Sensitivity Adjustment. 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment. 5-10 5-22. Frequency and Range Adjustment. 5-12 5-23. Preliminary FM Adjustments 5-12 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-26. Output Impedance Adjustment (Option 003 only) 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-39 VII REPLACEABLE PARTS 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-12. P	5-13.		
5-17. Power Supply Adjustment 5-6 5-18. Detector Bias and AM Distortion Adjustment 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustments 5-14 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-25. FM Deviation Adjustment (Alternate) 5-33 5-26. Output Impedance Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-39 VII REPLACEABLE PARTS 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-12. Parts Frovisioning 6-1 6-14. Illustrated Parts Breakdowns<	5-15.		
5-18. Detector Bias and AM Distortion Adjustment. 5-6 5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustments 5-12 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-25. FM Deviation Adjustment (Alternate) 5-33 5-26. Output Impedance Adjustment (Option 003 only) 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-27. Reverse Power Level Sense Adjustment 6-1 6-1 Introduction 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-12. Parts Frovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1 6-14. Illustrated Parts Breakdowns 6-1	5-17.	Power Supply Adjustment	5-6
5-19. AM Sensitivity Adjustment 5-8 5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustments 5-12 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-25. FM Deviation Adjustment (Alternate) 5-33 5-26. Output Impedance Adjustment (Option 003 only) 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) .5-39 VII REPLACEABLE PARTS 6-1 6-1 Introduction 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-12. Parts Frovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1 6-14. Illustr	5-18.	Detector Bias and AM Distortion Adjustment	5-6
5-20. Meter Adjustments 5-9 5-21. Tuning Capacitor Pulley Adjustment 5-10 5-22. Frequency and Range Adjustment 5-12 5-23. Preliminary FM Adjustments 5-12 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment 5-18 5-25. FM Deviation Adjustment (Alternate) 5-33 5-26. Output Impedance Adjustment (Option 003 only) 5-26. Output Impedance Adjustment (Option 003 only) 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-39 5-27. Reverse Power Level Sense Adjustment (Option 003 only) .5-39 VII REPLACEABLE PARTS 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-14. Illustrated Parts Breakdowns 6-1 <td>5-19.</td> <td></td> <td></td>	5-19.		
5-21. Tuning Capacitor Pulley Adjustment. .5-10 5-22. Frequency and Range Adjustment. .5-12 5-23. Preliminary FM Adjustments. .5-14 5-24. FM Distortion Adjustment .5-15 5-25. FM Deviation Adjustment. .5-18 5-25. FM Deviation Adjustment (Alternate) .5-33 5-26. Output Impedance Adjustment .5-38 5-27. Reverse Power Level Sense Adjustment .5-39 VII REPLACEABLE PARTS 6-1 6-1. Introduction. .6-1 6-3. Exchange Assemblies .6-1 6-5. Abbreviations. .6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information. .6-1 6-12. Parts Frovisioning .6-1 6-14. Illustrated Parts Breakdowns .6-1	5-20.		
5-22. Frequency and Range Adjustment. .5-12 5-23. Preliminary FM Adjustments. .5-14 5-24. FM Distortion Adjustment .5-15 5-25. FM Deviation Adjustment. .5-18 5-25.4. FM Deviation Adjustment (Alternate) .5-33 5-26. Output Impedance Adjustment (Option 003 only) . . .5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 	5-21.		
5-23. Preliminary FM Adjustments. 5-14 5-24. FM Distortion Adjustment 5-15 5-25. FM Deviation Adjustment. 5-18 5-25A. FM Deviation Adjustment (Alternate) 5-33 5-26. Output Impedance Adjustment (Option 003 only) 5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) 5-39 VII REPLACEABLE PARTS 6-1 6-1. Introduction. 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-12. Parts Frovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1	5-22.		
5-24. FM Distortion Adjustment .5-15 5-25. FM Deviation Adjustment. .5-18 5-25A. FM Deviation Adjustment (Alternate) .5-33 5-26. Output Impedance Adjustment (Option 003 only) .5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) .5-39 VII REPLACEABLE PARTS 6-1 6-1. Introduction 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-12. Parts Frovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1 VII MANUAL CHANGES 7-1	5-23.		
5-25. FM Deviation Adjustment. .5-18 5-25A. FM Deviation Adjustment (Alternate) .5-35 5-26. Output Impedance Adjustment (Option 003 only) .5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) .5-39 VII REPLACEABLE PARTS 6-1 6-1. Introduction. 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-12. Parts Frovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1 VII MANUAL CHANGES 7-1	5-24.	FM Distortion Adjustment	5-15
5-25A. FM Deviation Adjustment (Alternate) .5-33 5-26. Output Impedance Adjustment (Option 003 only) .5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) .5-39 VII REPLACEABLE PARTS 6-1 6-1. Introduction 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-12. Parts Frovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1 VII MANUAL CHANGES 7-1	5-25.	FM Deviation Adjustment.	5-18
5-26. Output Impedance Adjustment (Option 003 only) .5-38 5-27. Reverse Power Level Sense Adjustment (Option 003 only) .5-39 VII REPLACEABLE PARTS 6-1 6-1. Introduction 6-1 6-3. Exchange Assemblies 6-1 6-5. Abbreviations 6-1 6-7. Replaceable Parts List 6-1 6-14. Hlustrated Parts Breakdowns 6-1 VII MANUAL CHANGES 7-1	5-25A		
(Option 003 only).5-385-27. Reverse Power Level Sense Adjustment (Option 003 only).5-39VIIREPLACEABLE PARTS6-16-1.Introduction6-16-3.Exchange Assemblies6-16-5.Abbreviations6-16-7.Replaceable Parts List6-16-9.Ordering Information6-16-12.Parts Frovisioning6-16-14.Illustrated Parts Breakdowns6-1			
5-27. Reverse Power Level Sense Adjustment (Option 003 only)			5-38
VIIREPLACEABLE PARTS6-16-1.Introduction.6-16-3.Exchange Assemblies6-16-5.Abbreviations6-16-7.Replaceable Parts List6-16-9.Ordering Information6-16-12.Parts Erovisioning6-16-14.Illustrated Parts Breakdowns6-1VIIMANUAL CHANGES7-1	5-27.	Reverse Power Level Sense Adjustment	
VIIREPLACEABLE PARTS6-16-1.Introduction.6-16-3.Exchange Assemblies6-16-5.Abbreviations6-16-7.Replaceable Parts List6-16-9.Ordering Information6-16-12.Parts Erovisioning6-16-14.Illustrated Parts Breakdowns6-1VIIMANUAL CHANGES7-1		(Option 003 only)	5-39
6-1.Introduction.6-16-3.Exchange Assemblies6-16-5.Abbreviations6-16-7.Replaceable Parts List6-16-9.Ordering Information6-16-12.Parts Frovisioning6-16-14.Illustrated Parts Breakdowns6-1VIIMANUAL CHANGES '			
6-1.Introduction.6-16-3.Exchange Assemblies6-16-5.Abbreviations6-16-7.Replaceable Parts List6-16-9.Ordering Information6-16-12.Parts Frovisioning6-16-14.Illustrated Parts Breakdowns6-1VIIMANUAL CHANGES '			
6-1.Introduction.6-16-3.Exchange Assemblies6-16-5.Abbreviations6-16-7.Replaceable Parts List6-16-9.Ordering Information6-16-12.Parts Frovisioning6-16-14.Illustrated Parts Breakdowns6-1VIIMANUAL CHANGES '	VII	REPLACEABLE PARTS	. 6-1
6-3.Exchange Assemblies6-16-5.Abbreviations6-16-7.Replaceable Parts List6-16-9.Ordering Information6-16-12.Parts Frovisioning6-16-14.Illustrated Parts Breakdowns6-1VIIMANUAL CHANGES7-1	6-1.		
6-5.Abbreviations6-16-7.Replaceable Parts List6-16-9.Ordering Information6-16-12.Parts Frovisioning6-16-14.Illustrated Parts Breakdowns6-1VIIMANUAL CHANGES7-1	6-3.		
6-7. Replaceable Parts List 6-1 6-9. Ordering Information 6-1 6-12. Parts Ecovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1 VII MANUAL CHANGES '	6-5.	Abbreviations	6.1
6-9. Ordering Information. 6-1 6-12. Parts Frovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1 VII MANUAL CHANGES '	6-7.	Replaceable Parts List	. 6-1
6-12. Parts Erovisioning 6-1 6-14. Illustrated Parts Breakdowns 6-1 VII MANUAL CHANGES '	6-9.		
6-14. Illustrated Parts Breakdowns 6-1 VII MANUAL CHANGES '	6-12.		
VII MANUAL CHANGES	6-14.		
	•		− τ nut ditu
	VII	MANUAL CHANGES	7.1

.

	7-7.	Instrument Improvement Modifications
	7-9.	Frequency Tune Potentiometer A1R2,
		Bracket A1MP70 or Pulley A1MP75
		Replacement (Serial Numbers 1638A00935
		and Below)
/1	7-11.	Preliminary FM Adjustment D Adjustment
		Range Improvement (Serial Prefixes 1633A
		and Below)
	7-13.	+52.1V Regulator Stability Improvement
		(Serial Prefixes 1633A and Below)

11

1

Contents

G	
Sectior	Page
VII	MANUAL CHANGES (cont'd)
7-15.	Frequency Modulation Level Vernier
	Improvement (Serial Prefixes 1612A
$\frac{1}{2}$	and Below)
7-17.	-10V Regulator Stability Improvement
	(Serial Prefixes 1550A and Below)
7-19.	Meter Switch Coupler Shaft Bushing
1	Bracket Improvement (Serial Prefixes
	1531A and Below)
VIII	SERVICE
8-1.	Introduction. 8.1

CONTENTS (Cont'd)

Section Page Safety Considerations. 8-1 8-5. 8-7. 8-9. 8-13. Recommended Test Equipment 8-2 8-15. 8-22. 8-23. Factory-Selected Components 8-2 8-25. 8-27. 8-29. Illustrated Parts Breakdowns 8-4 8-36. Basic Circuit Theory 8-4 8-38.

SERVICE SHEETS

Serv	ice Sheet Page	Service Sheet	
1	Troubleshooting Block Diagram	6	P/O A5 Assembly (FM D
2	RF Oscillator, FM Modulator	7	Power Supplies
3	RF Amplifier/ALC Assembly	А	RF Section Assembly Illu
3 A			Breakdown.
· 4.	P/O A3 Assembly (Control) 	В	Top and Bottom Internal
5.	P/O A5 Assembly (FM Control)		(Option 003 Shown)

ser	rvice Sheet	Page
5	P/O A5 Assembly (FM Driver)	3-23
7	Power Supplies	
A	RF Section Assembly Illustrated Parts Breakdown	
B	Top and Bottom Internal Views (Option 003 Shown)	

ILLUSTRATIONS

Figure	Page
1-1. HP Model 8654B Signal Generator with	
Option 003 and Power Cable	1-0
2-1. Line Voltage Selection	2-1
2-2. Power Cables Available	
3-1. Lamp Replacement	3-2
3-2. Front Panel Controls, Connectors, and	
Indicators	3-3
3-3. Rear Panel Features	3-6
3-4. Operator's Checks	
3-5. Operating Instructions	
4-1. Residual AM Test Setup	4-4
4-2. Residual FM Test Setup	4-6
4-3. Output Level Accuracy Test Setup	4-8
4-4. Output Leakage Test Setup	4-12
4-5. AM Bandwidth Test Setup	4-14
4-6. AM Sensitivity and Indicated Accuracy	
Test Setup	4-16
4-7. AM Distortion Test Setup	4-17
4-8. FM Bandwidth Test Setup	4-18
4-9. FM Distortion Test Setup	4-20
4-10. FM Sensitivity and Meter Accuracy	
Test Setup	

Figu	re Page
5-1.	Detector Bias and AM Distortion
	Adjustment Setup
5-2,	AM Sensitivity Adjustment Setup
5-3.	Meter Adjustments Setup
5-4,	Proper Capacitor Tuning Characteristics
5-5.	A1A4L6 Turret Inductor Adjustment
	(270—520 MHz Range)
5-6.	FM Distortion Adjustment Setup
5-7.	FM Deviation vs. Carrier Frequency for
	Various Stages of FM Deviation Calibration 5-19
5-8.	FM Deviation Adjustment Setup
5-9.	Counter Readings, FM Deviation vs.
	Carrier Frequency
5-10.	FM Deviation Adjustment (Alternate) Setup5-34
5-11.	Output Impedance Adjustment Setup
s	(Option 003)
6-1.	Cabinet Parts Exploded View
6-2.	Front Panel Mechanical Parts
7-1.	A1A1 RF Amplifier/ALC Assembly Compo-
	nent Locations Backdating (Change I) 7-1
7-2.	RF Amplifier/ALC Assembly Schematic
	Backdating (Change A)

iii

Contents

Model 8654B

ILLUSTRATIONS (Cont'd)

Figu	re	Page
7-3.	P/O A5 FM Driver Board Assembly Compo- nent Locations Backdating (Change D)	7-7
8-1.	Signal Generator With Circuit Board	
	on Extender	. 8-3
8-2.		
8-3.	Operational Amplifier	
8-4.	Comparator	
8-5.		
8-6.		
	Component Locations	.8-13
8-7.	A1A4 Turret Assembly Component Locations	.8-13
8-8.	A1A2 FM Modulator Board Assembly	
	Component Locations	.8-13
8-9.	RF Oscillator, FM Modulator	
	Schematic Diagram	.8-13
8-10.	A1A1 RF Amplifier/ALC Board Assembly	
<i>.</i>	Component Locations	.8-15
8-11.	RF Amplifier/ALC Assembly	
6	Schematic Diagram	.8-15
8-12.	A6A1 Reverse Power Protection Board	,
	Assembly, Component Locations	.8-17
8-13.	Reverse Power Protection (Option 003)	
	Assembly Schematic Diagram.	.8-17

Figure	Page
8-14. P/O A3 Control/Power Supply	Board
Assembly Component Location	
8-15. F/O A3 Assembly (Control) Sc	
Diagram	
8-16. Mathematical Block Diagram of	
Driver Assembly	
8-17. P/O A5 FM Driver Board Assen	nbly
Component Locations	
8-18. P/O A5 Assembly (FM Control	
Schematic Diagram 8-19. P/O A5 FM Driver Board Assen	nbly Magazin
Component Locations	
8-20. P/O A5 Assembly (FM Driver)	
Schematic Diagram	
8-21. P/O A3 Control/Power Supply	Board Assembly
Component Locations	
8-22. P/O A5 FM Driver Board Assem	bly
Component Locations	
8-23. Power Supplies Schematic Diagr	am
8-24. RF Section Assembly Illustrated	l Parts
Breakdown	
8-25. Model 8654B Dial Stringing Pro-	cedure
8-26. Top Internal View	
8-27. Bottom Internal View	
(Option 003 Shown)	

TABLES

e Page
Specifications
Recommended Test Equipment 1-5
Performance Test Record
Factory-Selected Components
Post Repair Tests and Adjustments 5-4
Resistor Selection Record
Standard Value Resistors (±1%, 1/8W, Metal Film)

Tabl	e Page
6-1.	Reference Designations and Abbreviations 6-2
6-2.	Replaceable Parts 6-4
6-3.	Code List of Manufacturers
7-1.	Manual Changes by Serial Number
7-2.	A1A1 Replaceable Parts Backdating (Change A)
8-1.	Etched Circuit Soldering Equipment
8-2.	Schematic Diagram Notes 8-8

iv

Safety Considerations

SAFETY CONSIDERATIONS

GENERAL

Model 8654B

This product and related documentation must be reviewed for familiarization with safety markings and instructions before operation. This product has been designed and tested in accordance with international standards.

SAFETY SYMBOLS

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual (refer to Section II of this manual.

Indicates hazardous voltages.

Indicates earth (ground) terminal.

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, or the like, which, if not correctly performed or adhered to, could result in personal injury. Do not proceed beyond a WARNING sign until the indicated conditions are fully understood and met.

CAUTION

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product. Do not proceed beyond a CAU-TION sign until the indicated conditions are fully understood and met.

SAFETY EARTH GROUND

This is a Safety Class I product (provided with a protective earthing terminal). An uninterruptible safety earth ground must be provided from the main power source to the product input wiring terminals, power cord, or supplied power cord set. Whenever it is likely that the protection has been impaired, the product must be made inoperative and be secured against any unintended operation.

BEFORE APPLYING POWER

Verify that the product is configured to match the available main power source per the input power configuration instructions provided in this manual.

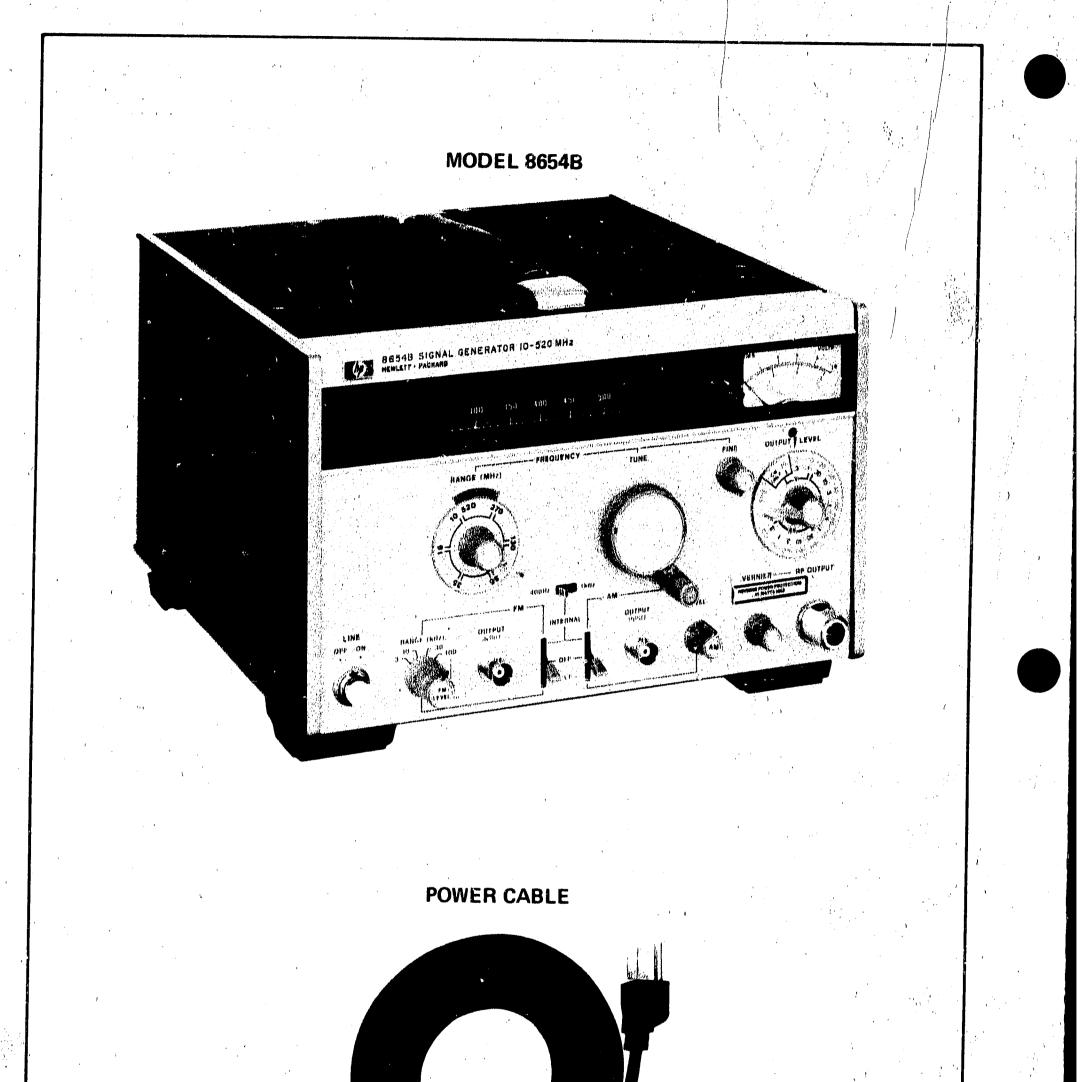
If this product is to be energized via an auto-transformer make sure the common terminal is connected to the neutral (grounded side of mains supply).

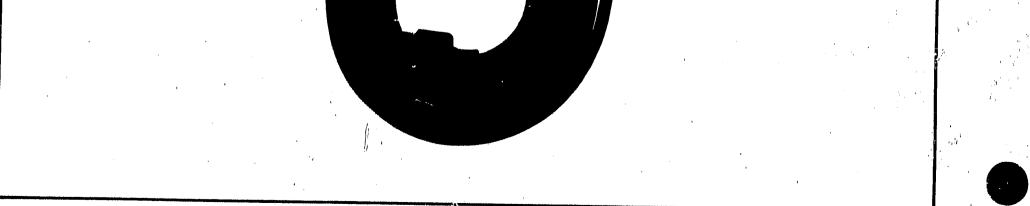
SERVICING

WARNINGS

Any servicing, adjustment, maintenance, for repair of this product must be performed only by qualified personnel.

Adjustments described in this manual may be performed with power supplied to the product while protective covers are removed. Energy available at many points may, if contacted, result in personal injury.


Capacitors inside this product may still be charged even when disconnected from its power source.


To avoid a fire hazard, only fuses with the required current rating and of the specified type (normal blow, time delay, etc.) are to be used for replacement.

General Information

[°]1-0

Model 8654B

Figure 1-1. HP Model 8654B Signal Generator with Option 003 and Power Cable

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains information pertaining to installation, operation, testing, adjustment, and maintenance of the Model 8654B Signal Generator. Figure 1-1 shows the Hewlett-Packard Model 8654B Signal Generator with Reverse Power Protection, Option 003, and the instrument power cable.

1-3. The information in this manual is divided into sections as shown below:

Section I, GENERAL INFORMATION, describes the instruments documented by this manual and covers instrument identification, description, accessories, specifications, and other basic information.

Section II, INSTALLATION, provides information about incoming inspection, power requirements, mounting, storage, and shipping of the instrument.

Section III, OPERATION, provides information about panel features, and gives operating checks, instructions, and maintenance information.

Section IV, PERFORMANCE TESTS, provides information required to ascertain that the instrument is performing in accordance with published specifications.

Section V, ADJUSTMENTS, provides information required to properly adjust and align the instrument after repairs are made.

Section VI, REPLACEABLE PARTS, provides ordering information for replaceable parts and assemblies.

Section VII, MANUAL CHANGES, provides man-

the first three sections of this manual. Additional copies of the Operating Information Supplement may be ordered separately through your nearest Hewlett-Packard office. The part number is listed on the title page of this manual.

1-5. Also listed on the title page of this manual, below the manual part number, is a "Microfiche" part number. This number may be used to order 10 x 15 cm (4 x 6-inch) microfilm transparencies of the manual. Each microfiche contains up to 96 photo duplicates of the manual pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-6. SPECIFICATIONS

1-7. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument may be tested.

1-8. INSTRUMENTS COVERED BY MANUAL

1-9. This instrument has a two-part serial number. The first four digits and the letter constitute the serial number prefix, which denotes the instrument's configuration. The last five digits form the suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix as listed under SERIAL NUMBERS on the title page.

1-10. An instrument manufactured after the printing of this manual may have a serial number that is not listed on the title page. This unlisted serial number prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a Man-

ual change information necessary to document all prefixes listed on the title page. In addition, this section also contains recommended modifications for the earlier instrument configurations.

Section VIII, SERVICE, includes information required to troubleshoot and repair the instrument.

1-4. Packaged with this manual is an Operating Information Supplement. This is simply a copy of ual Changes supplement that contains change information that documents the differences.

1-11. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's

General Information

Instruments Covered by Manual (Cont'd) print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-12. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-13. DESCRIPTION

1-14. The HP 8654B Signal Generator is a portable, solid-state RF source providing calibrated and leveled signals from 10 to 520 MHz, and from +10 to -130 dBm (+8 to -130 dBm with Option 003). An internal oscillator provides calibrated amplitude and frequency modulation at 400 and 1000 Hz. Calibrated modulation from an external source is also possible. A front-panel meter indicates output level, percent AM, or FM peak frequency deviation.

1-15. OPTIONS

.

;••,

٢ŋ

1-2

1-16. Option 003 adds internal reverse power protection for the Signal Generator's output circuitry (guaranteed to protect against reverse power up to 25 watts). The protection circuit uses a limiter and relay to prevent damage to the output circuitry and to automatically restore generator operation when reverse power is removed. Option 003 also protects the instrument when the LINE switch is off.

1-17. EQUIPMENT AVAILABLE

1-18. Information may be obtained on the accessories and equipment, or they may be ordered by contacting your nearest Hewlett-Packard office. Refer to the HP model number.

1-19. Complementary Equipment

1-20. Modulation Oscillator. The HP Model 651B Test Oscillator is fully compatible for external modulation of the Signal Generator.

1-23. Synchronizer/Counter. The HP Model 8655A Synchronizer/Counter is designed to monitor and phase lock the output frequency of the Signal Generator. Maximum counter resolution over the generator's frequency range is 100 Hz. Maximum counter resolution when phase locked to the 8654B is 500 Hz.

1-24. Accessories

1-25. Termination. The HP Model 11507A Output Termination may be used to match the Signal Generator's 50-ohm output to low impedance circuits (5 ohms minimum), or to allow the generator to drive high impedance circuits at frequencies to 65 MHz. The termination may also be used as a dummy antenna for receiver measurements.

1-26. 75-Ohm Adapter. The HP Model 11687A 50 to 75-ohm Adapter may be used to match the Signal Generator output to 'a 75-ohm load. The OUT-PUT LEVEL dial and meter scale remain calibrated in volts, but a correction factor is necessary to read output calibrated in dBm.

1-27. Frequency Doubler. The HP Model 11690A Frequency Doubler extends the usable range of signal sources to 1 GHz. Conversion loss is <13 dB.

1-28. Mixer. The HP Model 10514A Double Balanced Mixer may be used as a current controlled attenuator, an amplitude, pulse, or square-wave modulator, or a phase detector.

1-29. Transit Case. A transit case is available to protect the Signal Generator while transporting it from location to location. The case meets the requirements of MIL-C-4150 and may be ordered by specifying HP part number 9211-1895.

1-30. SERVICE AND USER AIDS

1-31. Video Tapes. Video tapes' covering instrument use, application, and service are available. Contact the nearest Hewlett-Packard Sales and Service office for a list of presently available tapes.

1-21. Output Amplifier. The HP Model 8447C Power Amplifier is suitable, for increasing the output level of the Signal Generator to >+17 dBm. Typical gain is 30 dB. Typical 3-dB bandwidth is 10-400 MHz.

1-22. Output Amplifier. The HP Model 8447E Power Amplifier is suitable for increasing the output level of the Signal Generator to >+15 dBm. Typical gain is 22 dB. Typical 3-dB bandwidth is 0.05 to 1400 MHz.

1-32. Application Noies. Informative notes concerning the use of signal generators are also available from the nearest Hewlett-Packard Sales and Service office.

1-33. Service Notes. Hewlett-Packard makes design improvements to its current line of instruments on a continuing basis. Many of these improvements can be incorporated into earlier produced instru-

General Information

Model 8654B

Service and User Aids (Cont'd)

ments. Modification and general service information is passed on in the form of Service Notes. To obtain the Service Notes contact the nearest Hewlett-Packard Sales and Service office.

1-34. WARRANTY

1-35. The Signal Generator is warranted and certified as indicated on the inner front cover of this manual. For further information, contact the nearest Hewlett-Packard Sales and Service office; addresses are provided at the back of this manual.

1-36. RECOMMENDED TEST EQUIPMENT

1-37. The equipment recommended for performance testing, adjustments, and troubleshooting is listed in Table 1-2. Only equipment that meets or exceeds the critical specifications should be used in place of that shown in the table.

NOTE

The 8654B is a safety class I instrument. It has been manufactured and tested in accordance with international standards. This instrument and all related documentation must be reviewed for familiarization with safety markings and instructions before operation. Refer to the Safety Considerations page found at the beginning of this manual for a summary of the safety information. Safety information pertinent to the task at hand (installation, operation, performance testing, adjustments, or service) is found throughout this manual.

Table 1-1. Specifications (1 of 2)

SPECIFICATIONS

Specifications apply from 10 to 520 MHz for output power \leq +10 dBm and over the top 10 dB of output level vernier range unless otherwise specified.

FREQUENCY CHARACTERISTICS

Range: 10 to 520 MHz in 6 ranges:

10 to 19 MHz 19 to 35 MHz 35 to 66 MHz 66 to 130 MEz 130 to 270 MHz 270 to 520 MHz

Accuracy: $\pm 3\%$ after 2-hour warm-up.

Settability: Settable to within 5 ppm of the desired frequency with an external indicator after 1-hour warm-up.

Stability (after 2-hour warm-up and 15 min. after frequency change): <(1 kHz plus 20 ppm)/5 min.

SPECTRAL PURITY

Harmonic Distortion (output power ≤+3 dBm): >20 dB below carrier (dBc).

OUTPUT CHARACTERISTICS

Range: 10 dB steps and a 13 dB vernier provide power setting: from +10 dBm to --130 dBm (0.7V to 0.07 μ V) into 5002. For Option 003, maximum output level is +8 dBm (0.56V).

Impedance: 50Ω ac coupled. SWR <1.3 on 0.1V range or lower. With Option 003, SWR <1.5 on 0.1V range or lower.

Level Accuracy:

Using To	p 10 dB c	of Vernie	r Range	ф. "ú	Using Full Vernier Range
Output Level (dBm)	+10* to -7	7 to 57	57 to -97	—97 to —127	+10* to 130
Total Accuracy as Indicated on Level Mater (dB)	±1.5	±2.0	±2.5	±3.0	Add ±0.5

Option 003: >15 dBc.

Subharmonics and Non-harmonic Spurious (excluding line related): >100 dBc.

Residual AM (average rms): >55 dBc in a 50 Hz to 15 kHz post-detection noise bandwidth.

Residual FM on CW (averaged rms deviation): <0.3 ppm in a 0.3 to 3 kHz post-detection noise bandwidth. <0.5 ppm in a 50 Hz to 15 kHz postdetection noise bandwidth. Note: Level Accuracy error consists of allowances for meter accuracy, detector linearity, temperature, flatness, attenuator accuracy, and twice the measurement error. All but the attenuator accuracy and the measurement error can be calibrated out with a power moter at a fixed frequency and a fixed vernier setting.

*For Option 003, maximum output level is +8 dBm (0.56V).

1-3

Level Flatness: ± 1 dB referenced to the output at 250 MHz for output levels > -7 dBm.

Table 1-1. Specifications (2 of 2)

SPECIFICATIONS

OUTPUT CHARACTERISTICS (cont'd)

Auxiliary RF Output: > -7 dBm (100 mV) into 50 Ω .

Leakage (with all RF outputs terminated properly): Leakage limits are below those specified in MIL-I-6181D. Furthermore, with an output level <0.01V, less than $0.5 \mu V$ is induced in a 2-turn, 25 mm (1-inch) diameter loop 25 mm (1 inch) away from any surface and measured into a 50 Ω receiver.

Reverse Power Damage Level:

75 Vdc maximum. Output Range 1V and 0.3V: 250 mW (+24 dBm). All other output ranges: 500 mW (+27 dBm).

Reverse Power Protection (Option 003): Protects signal generator from accidental applications of up to 25W (+44 dBm) of RF power (between 10 and 520 MHz) into generator output.

MODULATION CHARACTERISTICS

Amplitude Modulation: Specifications apply for output power <+3 dBm.¹

Depth: 0 to 90%.

Modulation Rate:

1-4

Internal, 400 and 1000 Hz $\pm 10\%$. External 3 dB bandwidth, dc-coupled to >20 kHz.

External AM Sensitivity:² (0.1 ± 0.01) % AM/mVpk into 600 Ω , with AM LEVEL vernior at fully cw position.

Indicated AM Accuracy:² \pm (5% of reading +5% of full scale).

Peak Incidental Frequency Deviation (30% AM)².

Frequency Modulation: fully calibrated.

Peak Deviation: 0 to 30 kHz from 10 to 520 MHz. 0 to 100 kHz from 80 to 520 MHz.

Deviation Ranges: 0 to 3 kHz, 0 to 10 kHz, 0 to 30 kHz, 0 to 100 kHz.

Modulation Rate:

Internal, 400 to 1000 Hz $\pm 10\%$. External 3 dB bandwidth, dc coupled to >25 kHz.

FM Distortion:² <2% for deviations up to 30 kHz, <3% for deviations up to 100 kHz.

External FM Sensitivity:² 1 volt peak yields maximum deviation indicated on peak deviation meter with FM LEVEL vernier at fully cw position.

Sensitivity Accuracy $(15^{\circ} \text{ to } 35^{\circ}\text{C})^2$: ±12%. For 100 kHz deviation range above 130 MHz, ±15%.

Indicated FM Accuracy $(15^{\circ} \text{ to } 35^{\circ}\text{C})^2$: $\pm(12\% \text{ of} \text{ reading } +3\% \text{ of full scale})$. For 100 kHz deviation range above 130 MHz, add 3% of reading.

Incidental AM:² < 1% AM at 30 kHz deviation.

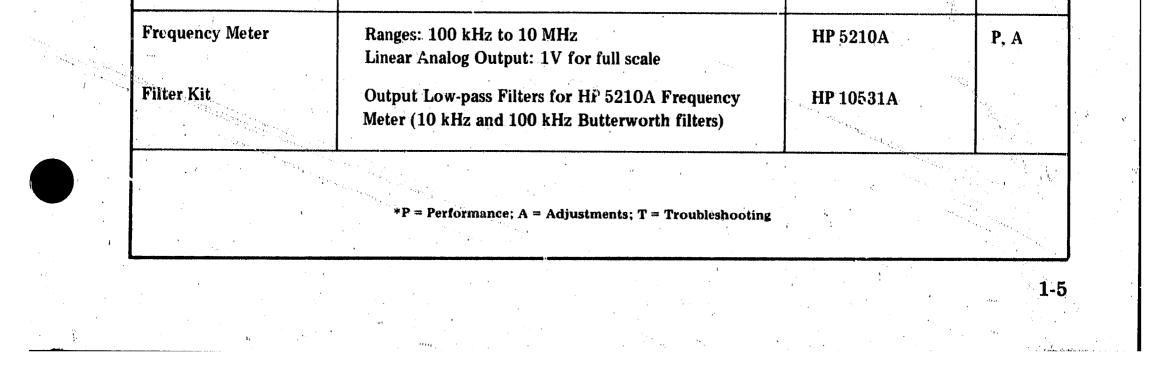
GENERAL CHARACTERISTICS

Power: 100, 120, 220, or 240 volts +5%, -10%, 48 to 440 Hz; 25VA maximum, 2.29 m (7½ ft) power cable furnished with mains plugs to match destination requirements.

Weight: Net, 7.9 kg (17 lb, 6 oz).

Dimensions:³ 266 mm wide x 178 mm high x 305 mm deep $(10\frac{1}{2}" \times 7" \times 12")$.

less than 200 Hz.


Envelope Distortion:² <3%, 0 to 70% modulation; <5%, 70 to 90% modulation.

¹ AM is possible above +3 dBm as long as the combination of the AM depth plus carrier output level does not exceed +9 dBm. ²400 and 1000 Hz modulation rates.

³Dimensions are for general information only. If dimensions are required for building special enclosures, contact your HP office.

Instrument Type	Critical Specifications	Suggested Model	Use*
20 dB Amplifier	Range: 10-520 MHz	HP 8447A	Р
1*	Gain: 20 to 25 dB	$\frac{1}{2}$	
1	Flatness over Range: ±2 dB	θ	
	Impedance: 50Ω	·	
	Noise Figure: <5 dB		
20 dB Amplifier	Range: 400–1200 MHz	HP 8447B	Р
	Gain: $>20 \text{ dB}$		
	Flatness: ±2 dB	(*	
	Impedance: 50Ω		
	Noise Figure: <5 dB to 1 GHz		
40 dB Amplifier	Range: 5 Hz to 50 kHz	HP 465A	Р
-	Gain: 20 and 40 dB ± 1 dB		
	Input Impedance: $>5k\Omega$		
	Output Impedance: 50Ω		
	Noise: $<25 \mu$ Vrms referred to input		
	Output: >1 Vrms into 50Ω		1
One-Inch Loop Antenna	2-turn, 25 mm (1 inch) dia., 25 mm (1 inch) from end. To ensure measurement accuracy, no substitution is possible. Fabrication depends upon machining and assembling to close tolerances.	HP 08640-60501	Р
10 dB Step Attenuator	Attenuation: 0–50 dB in 10 dB steps Range: dc—520 MHz	HP 355D	P, A
	Accuracy: ±1.5 dB to 50 dB below 520 MHz		C ^a
10 dB Attenuator req'd for Opt. 003 only)	Accuracy: ±0.5 dB to 520 MHz	HP 8491A Opt. 010	, A
Digital Multimeter	Vc'tage Range: 1V or less	HP 34702A/34740A	Р, А, Т
	Display: 4½ digits or more		,
	DC Accuracy: ±(0.03% or reading +0.02% of range)		.'
	AC Accuracy: ±(0.25% of reading +0.05% of range)		4
	Ohms Range: to 1 MΩ		
Distortion Analyzer	Range: 20 Hz to 10 kHz	HP 331A	P, A
	Distortion Range: <0.1%		•
1	Minimum Input: <300 mVrms		

Table 1-2. Recommended Test Equipment (1 of 3)

i .

Instrument Type	Critical Specifications	Suggested Model	Use*
4 MHz Jow-pass Filter	4 MHz low-pass (3 pole) Impedance: 50Ω	CIR-Q-TEL** FLT/21B-4-3/ 50-3A/3B	P, A
15 kHz Low-pass Filter	15 kHz low-pass (7 pole) Impedance: 50Ω Ripple: <±0.2 dB	CIR-Q-TEL** FLT/21B-15K- 7/50-3A/3B	Р
Frequency Counter	Range: to 520 MHz Input Sensitivity: $<100 \text{ mV}$ Inputs: 50 Ω and high impedance (1 M Ω) Accuracy: $\pm 0.1\%$	HP 5383A	P, A, 1
Frequency Counter (If available, substitute for HP 5383A)	Range: to 520 MHz Input Sensitivity: <100 mV Inputs: 50Ω and high impedance (1 M Ω) Accuracy: $\pm 0.1\%$ Short Term Stability: <2 x 10 ⁻⁹ rms for 1 s. Must be able to display frequency difference measured sequentially between two channels and to produce an external gate pulse at start of each count.	HP 5345A/5354A (HP 5345A/5353A will also serve in this application)	A
Mixer	Double Balanced Range: 10–520 MHz	HP 10514A	P, A
Oscilloscope	50 MHz Real Time Sensitivity: 5 mV/division	HP 1820C/1801A/ 182C	P, T
Power Meter	Input Level: -20 to +20 dBm Accuracy: ±1% of reading	НР 435А	Р, А,Т
Power Sensor	Range: 10–530 MHz SWR: <1.2:1	HP 8481A	
RMS Voltmeter	Range: 10 Hz to 50 kHz Reading: True rms (ac only) Voltage Range: 1 mV to 10V full scale Accuracy: 1% of full scale 50 Hz to 50 kHz Scale: Voltage and dB	НР 3400А	Р
Signal Generator	Range: $10-520 \text{ MHz}$ Output: > +7 dBm into 5002	НР 8640А	P, A

 Table 1-2.
 Recommended
 Test
 Equipment
 (2 of 3)

Output: > +7 dBm into 5052 Drift: <20ppm/10 min Residual FM: <50 Hz rms in 20 Hz to 15 kHz post-detection noise bandwidth; <30 Hz rms in 0.3-3 kHz post detection noise bandwidth at 270-520 MHz.

*P = Performance; A = Adjustments; T = Troubleshooting **CIR-Q-TEL INC./10504 Wheatley/Kensington, MD 20795/Phone 301-946-1800.

150	

•

Έ.

Table 1-2. Recommended Test Equipment (3 of 3)

;

Spectrum Analyzer			
Speetrum Innuryzer	Range: 10–1200 MHz Input Impedance: 50Ω	HP 8558B/182C Opt. 807	P, A
	Amplitude Calibration: Display Accuracy: ±0.25 dB/dB but not more than 1.5 dB over 70 dB dynamic range		
	Flatness: ±1 dB		
	IF Gain Step Accuracy: ±0.2 dB		
	Vertical Reference Scale: 10 dB/division log, 2 dB/ division (or less) log, and linear display calibration.		
	Average Noise Level: <-102 dBm with 10 kHz IF bandwidth	н - с.	
	Spurious Resposnes: >60 dB down for inputs of -40 dBm or less	.e.	
	Maximum Bandwidth: ≥300 kHz		
	Span Width: 0–1 GHz Compatible with Tracking Generator		
Test Oscillator	Range: 10 Hz to 50 kHz	HP 651B	P, A
,	Output Impedance: 600Ω and 50Ω		
	Distortion: >40 dB down Output Level: >1 Vrms		
Tracking Generator	Output: to 0 dBm (50 Ω)		
(required for Opt. 003	Flatness: ±0.5 dB	HP 8444A Opt. 058	Α
only)	Compatilile with Spectrum Analyzer HP 8558B/182C		
SWR Bridge (required	Range: 10–520 MHz	Wiltron Model**	A
for Opt. 003 only)	Directivity: >40 dB Connectors: Type N	60N50	
FM Deviation Adjust- ment Board	Produces ±0.949V square wave triggered by an exter-	HP 08654-60084	A
Intent Board	nal counter. Resistance substitution circuit. No substitution is possible.		
50 Ω Load (2 req.)		HP 11593A	Р
50Ω Load (required for Opt. 003 only)	SWR <1.05 (dc—520 MHz)	HP 908A	A
Coaxial Short (Male Type N)	<u>)</u>	HP 11512A	А
Double Shielded Cable (BNC, Male, coaxial 2 required)		H P 08708-6033	P
*P = Performance: A **Wiltron Compan	A = Adjustments; T = Troubleshooting 030 E. Meadow Dr. /Palo Alto, CA 94303/TWX 9103731156/Phone	415-494-6666	<u>.</u>
			1-7

SECTION II INSTALLATION

2-1. INTRODUCTION

2-2. This section provides information about incoming inspection, selecting the input line voltage, operating environment, and information applicable to bench and rack mounting.

2-3. INITIAL INSPECTION

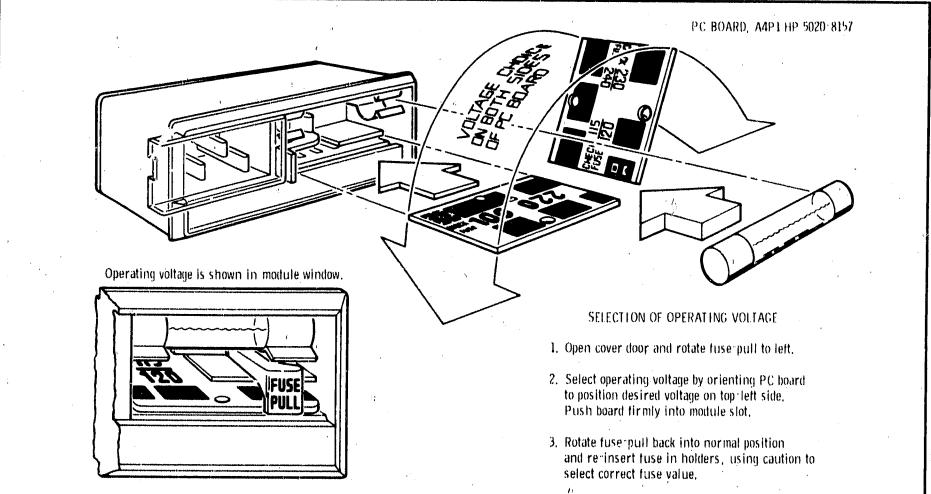
2-4. Inspect the shipping container for damage If the shipping container or cushioning material is damaged it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment are as shown in Figure 1-1, and the procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defects, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for the carrier's inspection. The HP office will arrange for repair or replacement without waiting for claim settlements.

2-5. PREPARATION FOR USE

2-6. Power Requirements

2-7. The 8654B Signal Generator requires a power source of 100, 120, 220 or 240 Vac +5% -10%, 48 to 440 Hz single phase. Power consumption is less than 25 VA.

2-8. Line Voltage Selection


2-9. Figure 2-1 provides instructions for line voltage and fuse selection. The line voltage for which the instrument is set is visible in the module window.

CAUTION To prevent damage to the instrument,

make the line voltage and fuse selection before connecting the power cable.

NOTE

The correct fuse rating for the line voltage is shown on the rear panel. Fuse part numbers are given in the Replaceable Parts Table in Section VI. (The reference designator is F1.)

2-1

Figure 2-1. Line Voltage Selection

Installation

2-10. Power Cable

2-11. In accordance with international safety standards, this instrument is equipped with a threewire power cable. When connected to an appropriate ac power receptacle, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to Figure 2-2 for the part numbers of the power cable plugs available.

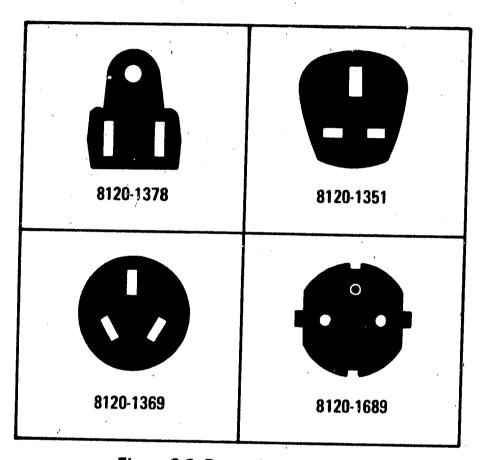
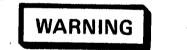



Figure 2-2. Power Cables Available

The protection provided by grounding the instrument may be lost if any power cable other than the three-pronged type supplied is used to couple the ac line voltage to the instrument.

2-12. Operating Environment

2-13. The operating environment should be within the following limitations:

11

tilt stands raise the front of the instrument for easier viewing of the control panel.

2-16. Rack Mounting

2-17. Rack Adapter Frames. Hewlett-Packard adapter frames are an economical means of rack mounting instruments that are narrower than full rack width. A set of spacer clamps, supplied with each adapter frame, permits instruments of different dimensions to be combined and rack mounted as a unit. Accessory blanks are available for filling unused spaces.

2-18. Combining Cases. Model 1051A and 1052A Combining Cases are metal enclosures that allow combinations of third- or half-rack width instruments to be assembled for use on a workbench or for mounting in a rack of 482.5 mm (standard 19inch) spacing. Each case includes a set of partitions for positioning and retaining instruments, and a rack mounting kit. No tools are required for installing the partitions. For bench use the cases have the same convenience features as full rack width instruments (i.e., foldaway tilt stands and speciallydesigned feet for easier instrument stacking). Accessories available for the combining cases include fan kits, blank filler panels, and snap-on full width control panel covers.

2-19. STORAGE AND SHIPMENT

2-20. Environment

2-21. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment.

Temperature	9		•	•	•		•	•		•										-4	0	t	o	• +	.7	5°	C	
Humidity		•		•		•	•	•			•				•	•			. <	<9	5	2	6	re	la	tiv	٠ <u>م</u>	
Altitude	•	•	•	•	•	•	•	•	.<	<	7	6(00)	m	e	tı	r	es	(2	5	()(00	f	ee	t)	

Temperature \ldots 0 to +55° C

2-14. Bench Operation

2-15. The instrument cabinet has plastic feet and foldaway tilt stands for convenience in bench operation. The plastic feet are shaped to ensure self-aligning of the instruments when stacked. The

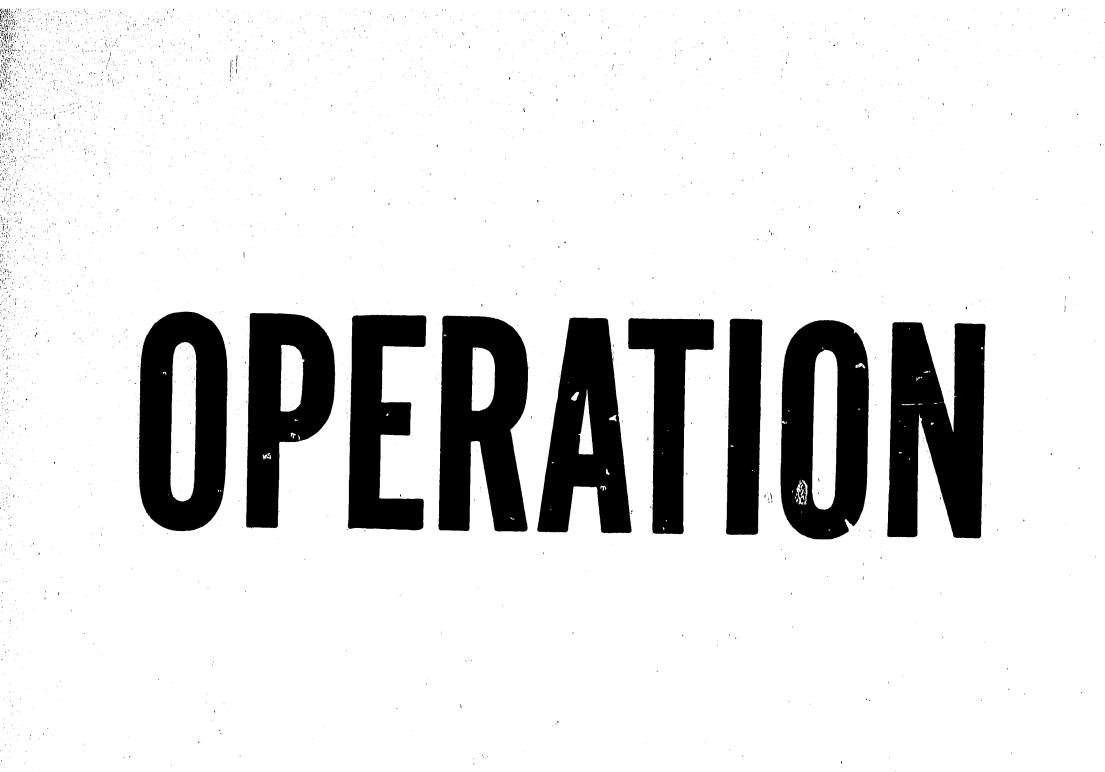
2-22. Packaging

31 11

2-23. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-24. Other Packaging. The following general instructions should be used for re-packaging with commercially available materials:

a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.)


b. Use a strong shipping container. A doublewall carton made of 2.4 MPa (350 psi) test material is adequate. Installation

c. Use enough shock-absorbing material (75-100 mm) around all sides of the instrument to provide a firm cushion and prevent movement inside the container. Protect the control panel with cardboard.

d. Seal the shipping container securely.

e. Mark the shipping container FRAGILE to assure careful handling.

2-3/2-4

OPERATION

3-1. INTRODUCTION

3-2. This section provides complete operating instructions for the HP 8654B Signal Generator. The instructions consist of panel features, operator's checks, operating instructions, and operator's maintenance.

WARNINGS

Before switching on the instrument, the protective earth terminals of the instrument must be connected to the protective conductor of the (mains) power cord. The mains plug shall only be inserted in a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord (power cable) without a protective conductor (grounding). Grounding one conductor of a two conductor outlet is not sufficient protection.

Ensure that all devices connected to this instrument are connected to the protective (earth) ground.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-ci suiting of fuse holders must be avoided.

the Signal Generator controls, indicators, and connectors.

3-5. OPERATOR'S CHECKS

3-6. Upon receipt of the instrument, or to check the Signal Generator for an indication of normal operation, perform the operational procedures listed in Figure 3-4. These procedures are designed to familiarize the operator with the Signal Generator and permit a determination of operating capabilities.

3-7. OPERATING INSTRUCTIONS

3-8. General operating instructions are contained in Figure 3-5. The instructions will familiarize the operator with basic operating functions of the Signal Generator.

3-9. Auxiliary Output

3-10. The isolation of the AUX RF OUT from the front panel RF OUTPUT is typically 30 dB. Any signal that is coupled into the AUX RF OUT jack may be transmitted to the front panel output. An example of this is an electronic counter used to monitor the RF output frequency. Subharmonic signals at the counter input may be coupled into the AUX RF OUT jack and from there to the front panel output where they are transmitted to the load.

3-11. OPERATOR'S MAINTENANCE

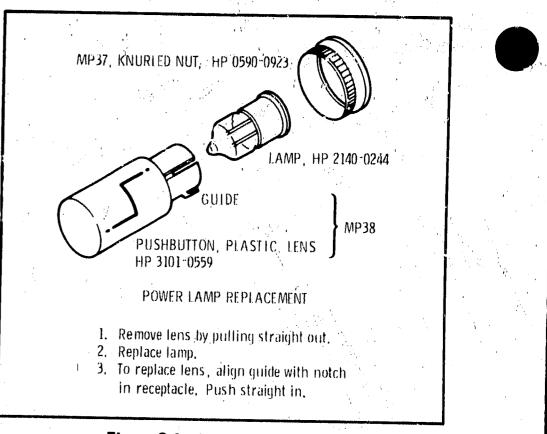
3-12. The maintenance responsibilities of the operator are replacing the primary fuse, the LINE switch lamp and zeroing the meter.

.....

Before switching on this instrument, make sure it is set to the proper line voltage.

3-3. PANEL FEATURES

3-4. Front and rear panel features of the 8654B Signal Generator are described in Figures 3-2 and 3-3. These figures contain a detailed description of **3-13.** Fuses. The fuse is located on the rear panel within the power module assembly (see Figure 3-3). Figure 2-1, steps 1 and 3, explain how to remove and install the fuse. Proper fuse ratings for selected line voltages are given on the rear panel. Fuse part numbers may be found in the Replaceable Parts Table in Section VI. Reference designator is F1.

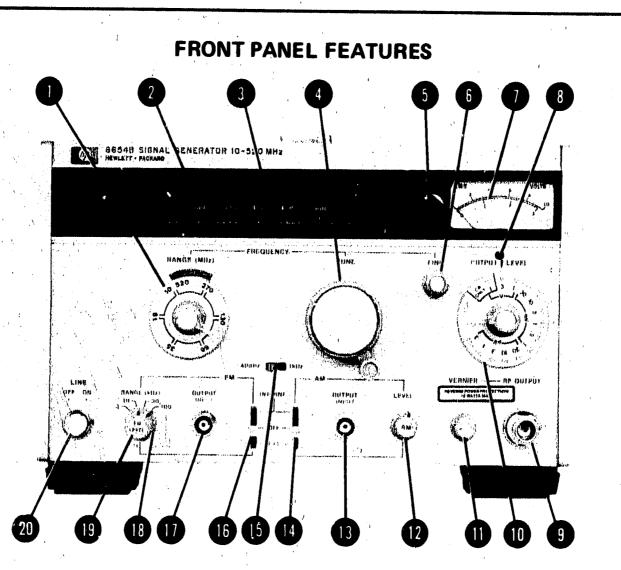

Operation

11

3-14. Line Switch Lamp Replacement. The lamp is contained in the white plastic lens which doubles for the pushbutton on the LINE switch. When the instrument is ON, the lamp should be illuminated.

3-15. Figure 3-1 shows the method of removing and installing the lamp. A replacement lamp, DS1, may be ordered under HP Part Number 2140-0244.

3-16. Meter Zeroing. With the power off the meter's pointer should be positioned directly over zero. If the pointer is not at zero, insert a screw-driver into the adjustment screw, (beneath meter), and align the pointer with zero on the meter scale. This adjustment should only be made when necessary. If a large adjustment is required, the meter calibration should be checked.



2

5

Operation

FREQUENCY RANGE (MHz). Selects the frequency range as indicated on the control skirt.

Frequency Scale. Shows the range of frequencies selected by the FREQUENCY RANGE (MHz) control.

Cursor. Indicates the output frequency; controlled by FREQUENCY TUNE control.

FREQUENCY TUNE Control. Tunes to the desired output frequency within the selected range.

METER Switch. Selects meter function. FM: peak frequency deviation. AM: percent AM. LEVEL: output level.

FREQUENCY FINE TUNE Control. Provides fine adjustment of output frequency.

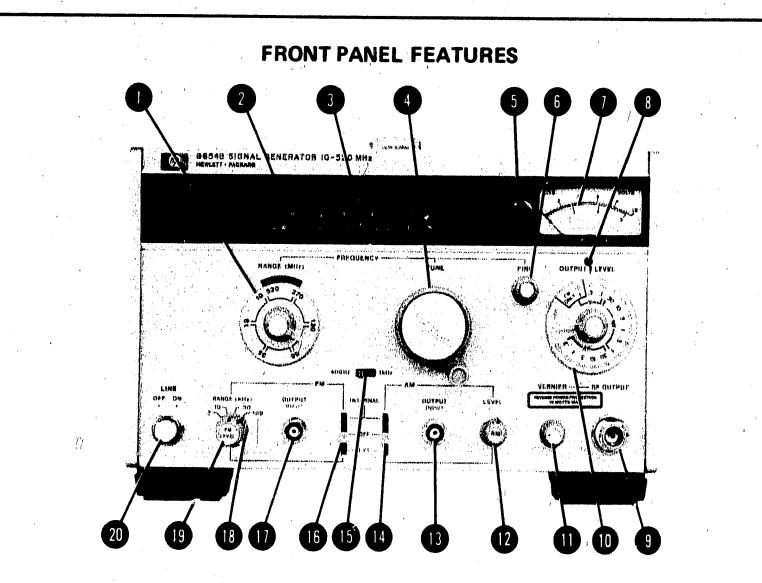
Meter. Function controlled by METER switch. FM (0-3 or 0-10 scale): read FM peak frequency deviation directly from meter within the range indicated by FM RANGE (kHz) knob. LEVEL (0-3 or 0-10 scale): read output level (volts) directly from meter on the scale indicated on OUTPUT LEVEL knob. OUTPUT LEVEL knob indicates output level for fullscale meter deflection.

Mechanical Zeroing Adjustment. Screwdriver adjustment used to align meter indicator on zero with power removed from the instrument (see procedure in Section III).

RF OUTPUT Connector. RF output through Type N female connector. For standard instruments, output level range is $\pm 10 \text{ dBm to} - 130 \text{ dBm}$ (0.7 Vrms to 0.07 μ Vrms) into a 50 Ω load. For Option 003, output level range is $\pm 8 \text{ dBm to}$ -130 dBm (0.56 Vrms to 0.07 μ Vrms into a 50 Ω load. AM is restricted above $\pm 3 \text{ dBm}$ output.

If Option 003 is not installed, application of >+24 dBm (250 mW) into the generator's output is likely to cause damage to the generator. Do not apply reverse power.

AM (0-10 scale): read value of percent AM within 0 and 100% directly from meter.
LEVEL (dBm 50Ω scale): determine output level (dBm) by adding values indicated on OUTPUT LEVEL knob and meter's scale.


NOTE

With Option 003 installed, the generator's output circuitry is protected against reverse power applications up to 25 watts (see label).

3-3

Figure 3-2. Front Panel Controls, Connectors, and Indicators (1 of 3)

Operation

15)

16

- 10 OUTPUT LEVEL Switch. Selects output range as shown on knob skirt, +10 to -120 dBm (1V to 0.3μ V).
 - **Output Level VERNIER.** Fine adjusts RF output level continuously within a 13 dB range as indicated by the meter.
- 12 AM LEVEL Control. Varies percent AM of RF signal (internal or external AM mode).
- **13** AM OUTPUT/INPUT Connector. Provides output for internal AM signal or input for external AM signals.
 - AM INTERNAL mode: open-circuit output level ~ 5 Vrms, output impedance 10 k Ω . AM EXT (external) mode: input impedance

NOTE

A mechanical interlock prevents simultaneous internal AM and FM. However, simultaneous AM and FM is possible if at least one source is external.

400 Hz/1 kHz Switch. Selects 400 Hz or 1 kHz internal modulation signal.

FM Source Switch. Selects frequency modulation source: INTERNAL, EXT (external), or OFF.

NOTE

A mechanical interlock prevents simplianeous internal AM and FM. However, simultaneous AM and FM is possible, if at least one source is external.

~600 Ω dc coupled. With AM LEVEL set fully cw, 1V peak input produces 100% AM and full-scale meter deflection (0-10 scale).

CAUTION

Applied voltages greater than 10V peak (ac + dc) can damage the AM circuitry.

14

3-4

AM Source Switch. Selects amplitude modulation source: INTERNAL, EXT (external), or OFF.

FM OUTPUT/INPUT Connector. Provides output for internal FM signal or input for external FM signals.

FM INTERNAL mode: open-circuit output level ~5 Vrms, output impedance ~10 k Ω . FM EXT (external) mode: input impedance ~600 Ω , dc coupled. With FM LEVEL set fully cw, 1V peak produces full-scale meter deflection and the maximum peak frequency deviation determined by FM RANGE (kHz). See Table below.

Figure 3-2. Front Panel Controls, Connectors, and Indicators (2 of 3)

,

Operation

3-5

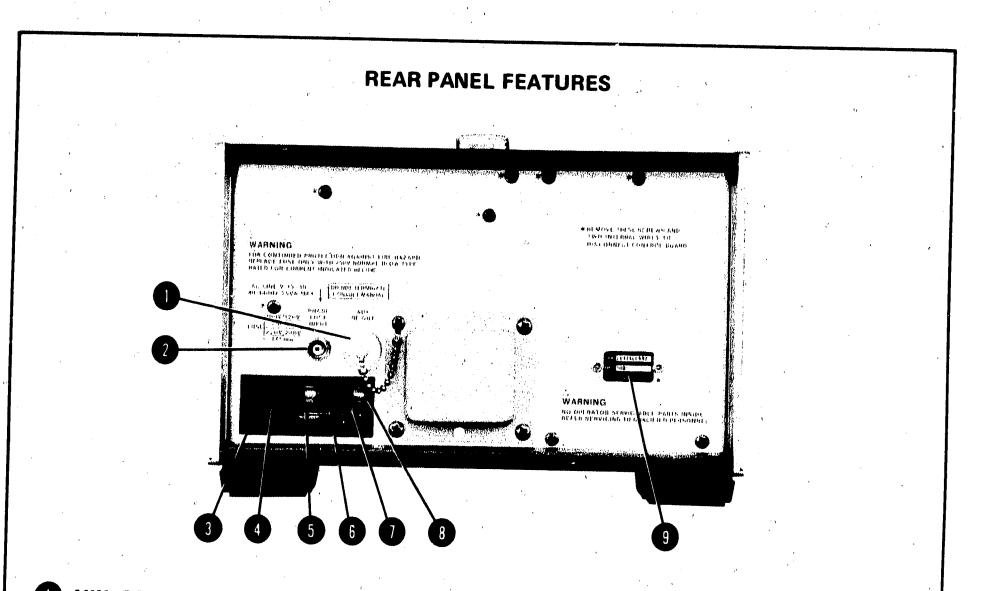

		FRONT PAN	EL FEATURES
FM RANGE (kHz)	Meter Scale	Full-Scale Devia- tion (kHz)	NOTES
3	0-3	3.16	FM is not specified on the 100 kHz range for RF signals less than 80 MHz.
10 30 100	0-10 0-3 0-10	10 31.6 100	For best FM performance, use lowest range which includes the peak deviation desired.
	CAUTIO	N	19 FM LEVEL Control. Varies peak frequency devia
Applied volta dc) can damag		han 10 Vpk (ac + cuitry.	tion (internal or external FM mode). Maximun peak deviation determined by FM RANGE (kHz setting.
<i>dc) can damag</i> FM Range (kHz) frequency deviat	ge the FM circ Switch. Sele on ranges: 0 —100 kHz. Pe	cuitry. ects one of four peak —3 kHz, 0—10 kHz, eak frequency devia-	peak deviation determined by FM RANGE (kHz
dc) can damag FM Range (kHz) frequency deviat 0—30 kHz, or 0	ge the FM circ Switch. Sele on ranges: 0 —100 kHz. Pe	cuitry. ects one of four peak —3 kHz, 0—10 kHz, eak frequency devia-	peak deviation determined by FM RANGE (kHz setting. 20 LINE OFF/ON Switch. Controls primary power
dc) can damag FM Range (kHz) frequency deviat 0—30 kHz, or 0	ge the FM circ Switch. Sele on ranges: 0 —100 kHz. Pe	cuitry. ects one of four peak —3 kHz, 0—10 kHz, eak frequency devia-	peak deviation determined by FM RANGE (kHz setting. 20 LINE OFF/ON Switch. Controls primary power
dc) can damag FM Range (kHz) frequency deviat 0—30 kHz, or 0	ge the FM circ Switch. Sele on ranges: 0 —100 kHz. Pe	cuitry. ects one of four peak —3 kHz, 0—10 kHz, eak frequency devia-	peak deviation determined by FM RANGE (kHz setting. 20 LINE OFF/ON Switch. Controls primary power
dc) can damag FM Range (kHz) frequency deviat 0—30 kHz, or 0	ge the FM circ Switch. Sele on ranges: 0 —100 kHz. Pe	cuitry. ects one of four peak —3 kHz, 0—10 kHz, eak frequency devia-	peak deviation determined by FM RANGE (kHz setting. 20 LINE OFF/ON Switch. Controls primary power
dc) can damag FM Range (kHz) frequency deviat 0—30 kHz, or 0	ge the FM circ Switch. Sele on ranges: 0 —100 kHz. Pe	cuitry. ects one of four peak —3 kHz, 0—10 kHz, eak frequency devia-	peak deviation determined by FM RANGE (kHz setting. 20 LINE OFF/ON Switch. Controls primary power

Figure 3-2. Front Panel Controls, Connectors, and Indicators (3 of 3)

Operation

Model 8654B

AUX RF OUT Connector. Provides RF signal, 10-520 MHz at > -7 dBm (fixed level) output into a 50 Ω load. Signal is unleveled and does not contain amplitude modulation but does contain calibrated frequency modulation.

NOTE

The isolation of the AUX RF OUT from the front panel RF OUTPUT is typically 30 dB. Any signal that is coupled into the AUX RF OUT may be transmitted to the generator's output. An example of this is an electronic counter used to monitor the RF output frequency. Subharmonic signals at the counter input are coupled into the AUX RF OUT and from there to the front panel output where they are transmitted to the load.

PHASE LOCK INPUT Connector. Couples output of an external phase lock synchronizer such as HP

NOTES

Use of a phase lock synchronizer will likely cause some degradation of FM sensitivity accuracy and indicated FM accuracy.

Do not use HP Model 8708A synchronizer or any low-impedance source to drive the PHASE LOCK INPUT port.

Line Module Assembly. Permits operation from 100, 120, 220 or 240 Vac. The number visible in window indicates nominal line voltage to which instrument must be connected (see Figure 2-1). Center conductor is safety earth ground.

WARNING

Any interruption of the protective (grounding) conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the instrument dangerous. Intentional interruption is prohibited. (See Section II.)

8655A to the electronic fine tuning circuit in the Signal Generator. Stability (drift) of generator is then determined primarily by stability of reference oscillator in the synchronizer. (The synchronizer's input can be connected to AUX RF OUT.)

Receptacle. To couple Line Power Cable to instrument.

Figure 3-3. Rear Panel Features (1 of 2)

5

Operation

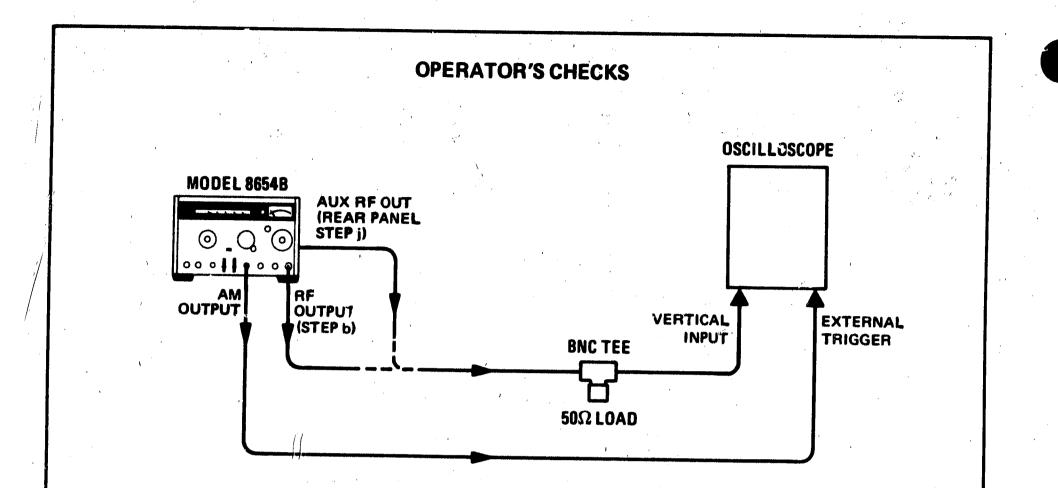
3-7

REAR PANEL FEATURES

8

9

Line Voltage Selection Card. Matches transformer primary to available line voltage.


Fuse. 250 mA (250V, Normal Blow for 100/ 120 Vac. 175 mA (250V, Normal Blow, for 220/240 Vac.

FUSE PULL Handle. Mechanical interlock to guarantee fuse has been removed before Line Voltage Selection Card can be removed.

Window. Safety interlock ensures fuse cannot be removed while power cable is coupled to the 8654B.

Serial Number Plate. First four numbers and letter constitute the prefix that denotes the instrument configuration. The last five digits form the suffix that is unique to each instrument. The Serial Number plate also indicates any options supplied with instrument.

Figure 3-3. Rear Panel Features (2 of 2)

INITIAL SETTINGS

- a. Verify that the power transformer primary is matched to the line voltage and that the correct fuse is installed within the rear panel Line Module Assembly. See Line Voltage Selection in Section II.
- b. Insert the power cable to the power outlet and Line Module receptacles. Set the LINE switch to OU; the lamp within the switch lens should be illuminated.
- c. Set the generator's controls as follows:

METER	•	••	• •	•						LEVEL
FREQUENCY	(R	AN	IGI	I) 3	ИΗ	7)			•	10—19 MHz
FREQUENCY	T	UN	IE	•		•				10.0 MHz
OUTPUT LEV	/EI	S	wit	ch	•		•			0.1 V
Output Level	VE	RN	JIE	R	•		•	•	• •	Full scale meter reading (0.1 Vrms)
AM	•	•	•	•	•	. •	•			OFF
FM	•	•	•	•	•	•	•	•	•	OFF
400 Hz/1 kHz		•	•	• .	•		•	•	•	1 kHz

RF OUTPUT

3-8

d. Connect the equipment as shown above and verify that the 10.0 MHz signal has an output level of ~ 0.3 Vp-p.

NOTES

AUCIES

The oscilloscope must have a bandwidth of >10 MHz to perform these checks.

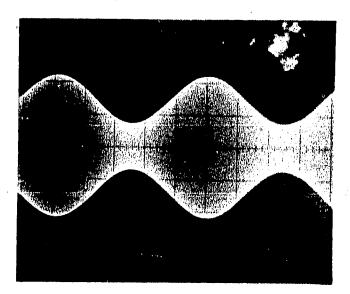

If the oscilloscope has a 50Ω input impedance, the BNC tee and 50Ω load should be omitted.

Figure 3-4. Operator's Checks (1 of 2)

OPERATOR'S CHECKS

AMPLITUDE MODULATION

- Set the 8654B AM Source to INTERNAL and set the oscilloscope time base trigger to external. e.
- Set METER Switch to AM and rotate AM LEVEL control cw until the meter indicates 50% modulation f. depth. Verify that the AM envelope display shows a peak-to-valley voltage difference of about 0.15V with a period of 1.0 ms.

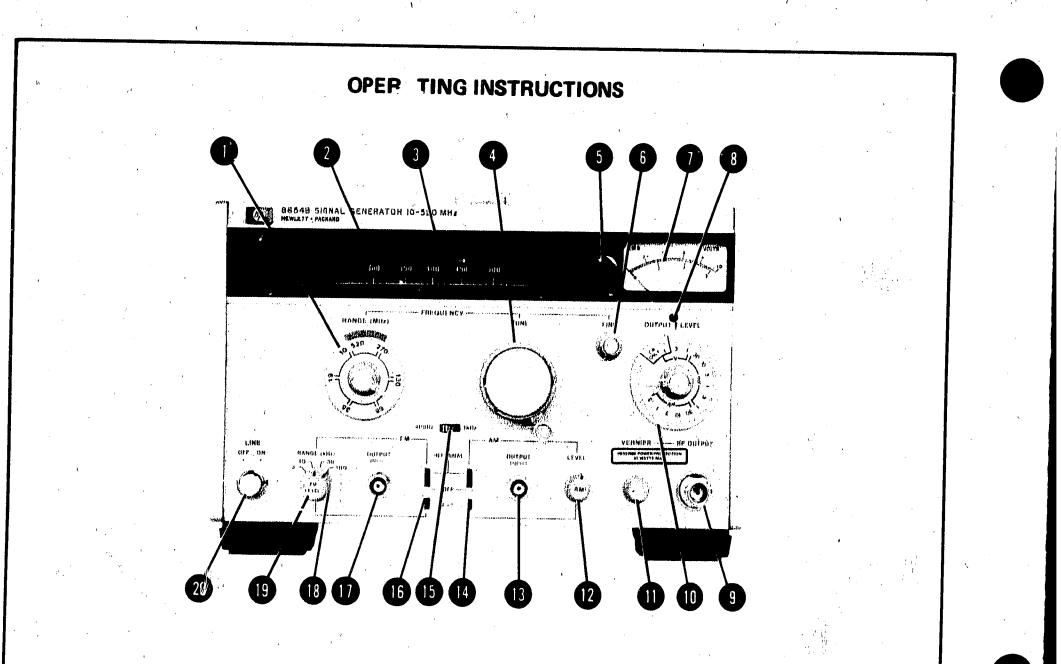
Typical AM Envelope

Typical FM Display with **CW** Display for Comparison

Set the 400 Hz/1 kHz switch to 400 Hz; verify the AM envelope period is 2.5 ms. g.

FREQUENCY MODULATION

- Set AM Source switch to OFF and set FM Source switch to INTERNAL. Set the oscilloscope time base h. trigger to internal.
- Set METER switch to FM and FM RANGE (kHz) to 30 kHz. Adjust FM LEVEL so that the meter i. indicates 30 kHz peak frequency deviation. Verify that the oscilloscope shows the typical FM display.


AUX RF OUT

Connect the generator's AUX RF OUT (rear panel) to the oscilloscope's vertical input and verify that j. a 10.0 MHz signal of > 0.3 Vp p is displayed.

Figure 3-4. Operator's Checks (2 of 2)

Operation

Model 8654B

TURN ON

- a. Verify that the power transformer primary is matched to the line voltage. See Line Voltage Selection in Section II.
- b. Check the fuse, which is contained in the Line Module Assembly, for the correct rating. The voltage and current ratings are given in a table on the rear panel. If necessary, change the fuse.
- c. Insert the power cable to the power outlet and the Line Module receptacles. Press the LINE switch and release. The switch should remain in, the lamp within the plastic lens should be illuminated, and the cursor on the curved portion of the button should indicate ON.

NOTE

To ensure the 8654B will perform to the standards set forth in the published specifications, let the instrument warm up for two hours before using.

FREQUENCY SELECTION

3-10

- d. Set FREQUENCY RANGE (MHz) to the range which includes the desired carrier frequency.
- e. Tune to the carrier frequency with the FREQUENCY TUNE control (4); FREQUENCY FINE TUNE 6 provides greater tuning resolution. The Cursor (3) indicates the carrier frequency.

Figure 3-5. Operating Instructions (1 of 5)

g.

Ĩ.

j.

Operation

3-11

OPERATING INSTRUCTIONS

OUTPUT LEVEL SELECTION

- f. Set METER switch 5 to LEVEL. Set the OUTPUT LEVEL control 10 and VERNIER 11 to the desired output level. For optimum AM performance and level meter accuracy, the VERNIER control should be set for a meter indication of -7 to +3 on the dBm scale (> 1/3 full scale). Amplitude modulation is restricted above +3 dBm.
 - Vary the VERNIER control (1) until the level indicated on the OUTPUT LEVEL range control (1) added to the Meter indication (1) equals the desired level. (For voltage, keep in mind that meter full-scale is equivalent to the voltage shown on the OUTPUT LEVEL range control skirt (10).)

AM - INTERNAL

h. Set AM Source [4] to INTERNAL.

Select 400 Hz or 1 kHz modulation rate with the 400 Hz/1 kHz frequency switch [5]

Set METER switch 5 to AM and vary AM LEVEL control 12 until the Meter 1 indicates the desired modulation depth. Use top scale (10 = 100%).

AM – EXTERNAL

Set METER switch 5. to AM, and AM Source 14 to EXT. Apply signal to the AM OUTPUT/INPUT connector 13 (600 ohm load impedance). The Signal Generator requires 1 Vpk (0.707 Vrms) for 100% modulation (AM is specified to 90%). Set percent AM using AM LEVEL 12 and Meter 1.

CAUTION

Damage to the generator's internal circuitry may occur if inputs greater than 10 Vpk (ac + dc) are coupled into the AM OUTPUT/INPUT connector.

NOTES

For more precise setting of %AM using an external source, set AM LEVEL 12 fully cw. Monitor the voltage at AM INPUT with an external voltmeter. With AM LEVEL set fully cw, 1 Vpk (0.707 Vrms) produces 100% AM (AM is specified to 90%).

Amplitude modulation is not recommended when the OUTPUT LEVEL control is set to +10 dBm. If AM is necessary, monitor the RF output with an oscilloscope to verify that the distortion is minimal. Frequency modulation is permissible on the +10 dBm range.

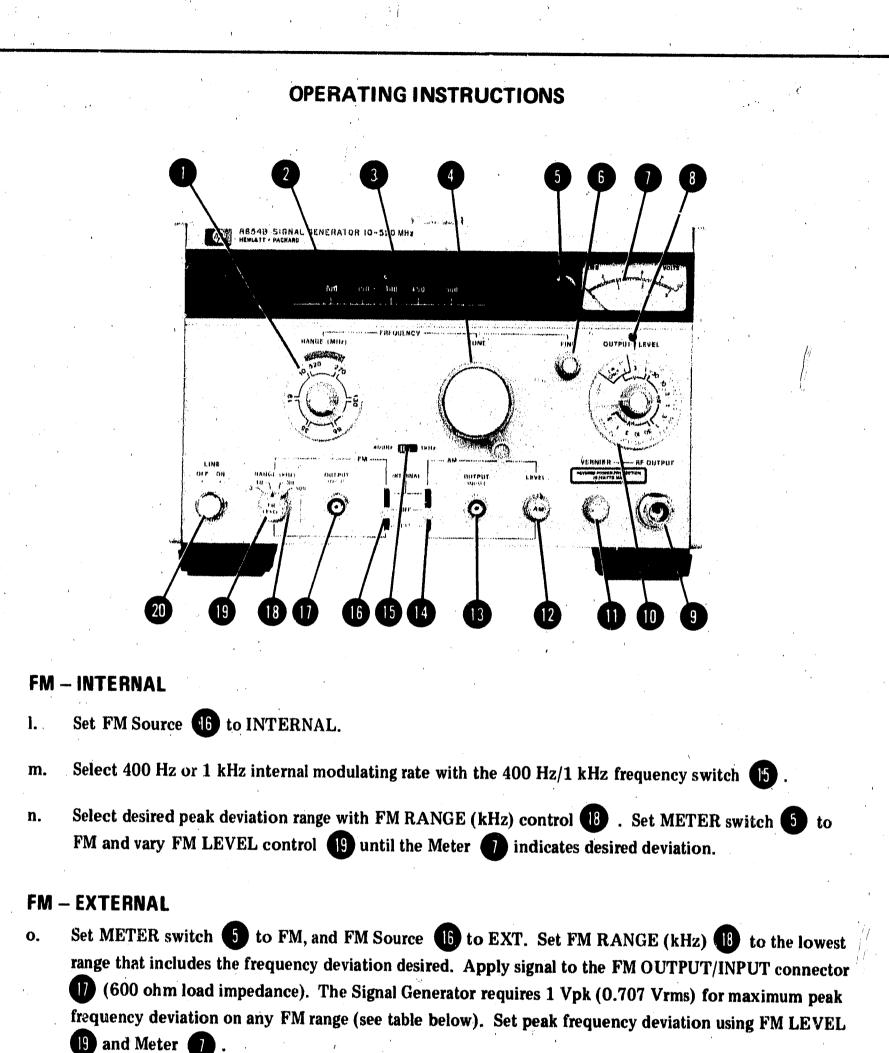

The AM meter responds to the positive peaks of the modulation signal. If the modulation signal waveform is asymmetrical or if it has a dc component, the meter reading will be in error.

Figure 3-5. Operating Instructions (2 of 5)

Operation

3-12

Model 8654B

Damage to the generator's internal circuitry may occur if inputs greater than 10 Vpk (ac + dc) are coupled into the FM OUTPUT/ INPUT connector.

Figure 3-5. Operating Instructions (3 of 5)

OPERATING INSTRUCTIONS

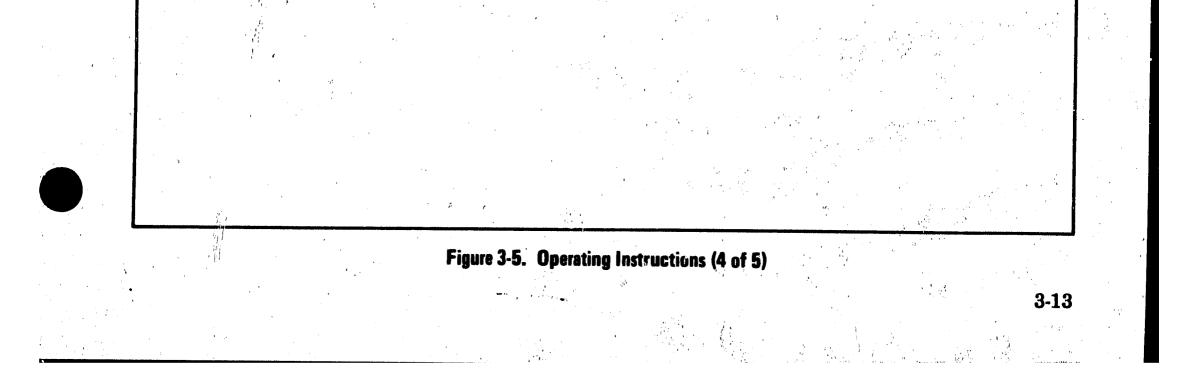
FM - EXTERNAL (Cont'd)

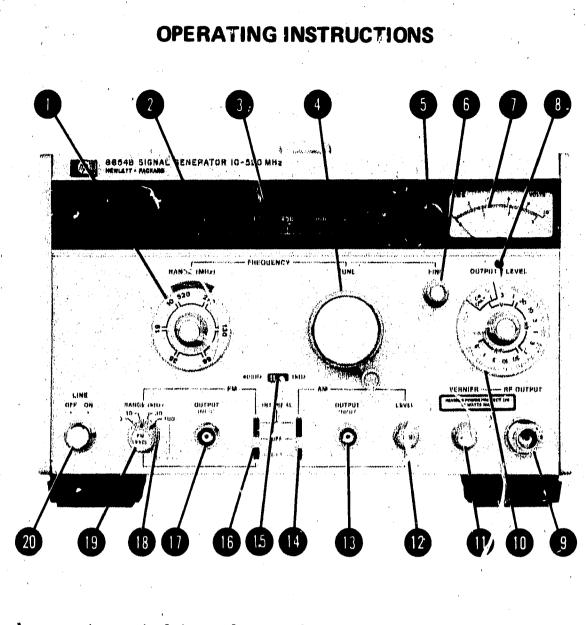
NOTES

For more precise setting of FM peak deviation using an external source, set FM LEVEL 19 fully cw. Monitor the voltage at FM INPUT with an external voltmeter. With FM LEVEL fully cw, 1 Vpk (0.'/07 Vrms) produces maximum deviation on any FM range (see table below).

0	
-3	3.16
-10	10
-3	31.6
-10	100
	-3 -10 -3 -10

FM is not specified on the 100 kHz range for RF signals less than 80 MHz.

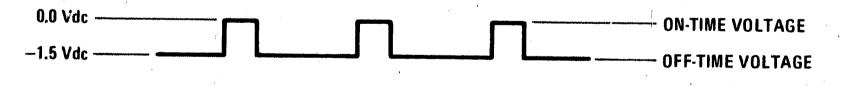

SIMULTANEOUS AM AND FM


p. Simultaneous AM and FM is possible if at least of the modulation sources is external. Follow the appropriate steps above for internal or external modulation.

PULSE MODULATION

- q. Set FREQUENCY RANGE (MHz) and FREQUENCY TUNE controls to the desired frequency, the AM and FM Source controls to OFF, and AM LEVEL fully cw.
- r. Set OUTPUT LEVEL and VERNIER controls to the desired output level. (This will be the output level during pulse on-time.)

s. Connect a pulse generator to the AM OUTPUT/INPUT connector.



Set the pulse generator controls to produce a pulse on-time voltage of 0.0 Vdc and an off-time voltage of -1.5 Vdc (see waveform below). Set other pertinent pulse generator controls.

CAUTION

Damage to the generator's input circuitry may occur if inputs greater than 10 Vpk (ac + dc) are coupled to the AM OUTPUT/INPUT connector.

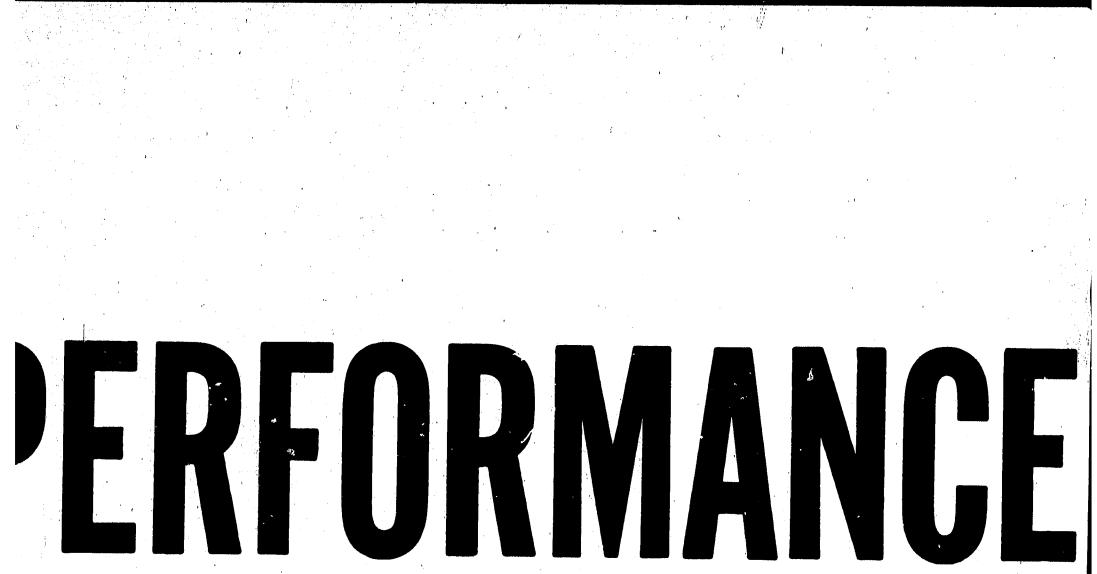
NOTES

The pulse-on time voltage must be 0.0 Vdc or the output level during the on-time will not be equal to the preset level.

The on-off ratio is typically >40 dB.

u. Set AM Source to EXT.

Operation


t.

3-14

NOTE

Rise time for pulse modulated output is typically 50 μ s.

Figure 3-5. Operating Instructions (5 of 5)

SECTION IV PERFORMANCE TESTS

)

4-1. INTRODUCTION

4-2. The procedures in this section test the electrical performance of the HP Model 8654B using the specifications of Table 1-1 as the performance standards. All tests can be performed without access to the interior of the instrument. A simpler operational test is included in Section III under Operator's Checks.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for the performance tests is listed in Table 1-2, Recommended Test Equipment, in Section I. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-5. TEST RECORD

4-6. Results of the performance tests may be tabulated on the Test Record at the end of the procedures. The Test Record lists all of the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance, troubleshootir.g, and after repairs or adjustments.

4-7. PERFORMANCE TESTS

4-8. The performance tests given in this section are suitable for incoming inspection, troubleshooting, or preventative maintenance. During any performance test, all shields and connecting hardware must be in place. The tests are designed to verify published instrument specifications. Perform the tests in the order given and record the data on the test card and/or in the data spaces provided throughout each procedure. Line voltage must be within +4%, -10%of nominal if the performance tests are to be considered valid.

4-9. The specifications are written as they appear in Table 1-1, Specifications. A description of the test and any special instructions or problem areas are included. Most tests that require test equipment have a setup drawing, and all have a list of the required equipment. The initial steps of each procedure give control settings required for that particular test.

4-10. TEST PROCEDURES

4-11. It is assumed that the person performing the following tests understands how to operate the specified test equipment. Equipment settings, other than those for the Model 8654B are stated in general terms. For example, a test might require that a spectrum analyzer's resolution bandwidth be set to 100 Hz; however, the time per division setting would not be specified and the operator would set that control so that the analyzer operates correctly.

4-12. It is also assumed that the person performing the tests will supply whatever cables, connectors, and adapters are necessary. Table 1-2, Recommended Test Equipment, in Section I lists the requirements for some of these items.

To avoid the possibility of damage to test equipment, read completely through each test before starting it. Make any preliminary control settings necessary for correct test equipment operation.

4-1

NOTES

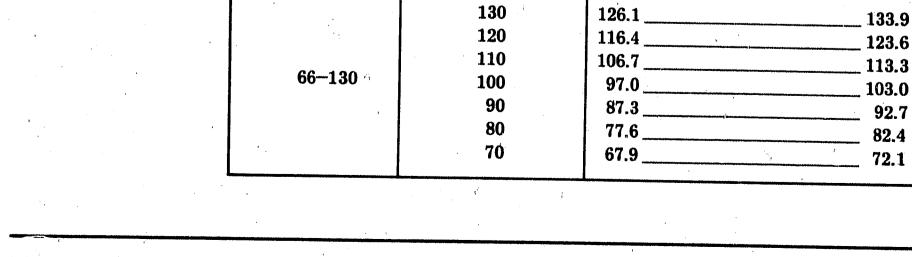
Unless otherwise specified, no warm-up period is required for these tests.

4-13. FREQUENCY ACCURACY TEST

1.

SPECIFICATION: Accuracy: ±3% after 2-hour warm-up.

DESCRIPTION: The frequency at several points on each range is measured with a counter.


PROCEDURE:

Connect Signal Generator RF OUTPUT to counter's high frequency input after setting controls as follows:

METER	LEVEL
FREQUENCY RANGE (MHz)	270–520 MHz
FREQUENCY TUNE	500 MHz
FINE TUNE	· · · Centered
OUTPUT LEVEL Switch	0 dBm
Output Level VERNIER	Fully cw
AM	OFF
FM	OFF

2. After a 2-hour warm-up, precisely set Signal Generator frequency to each point listed in the following table. Counter should read within $\pm 3\%$ of dial indication.

Generat	or Frequency	Counter					
RANGE (MHz)	Dial Indication (MHz)	Reading (MHz)					
270520	500 450 400 350 300	485.0 437.5 388.0 339.5 291.0	464.5 412.0 360.5				
130270	130 150 170 190 210 230 250 270	126.1 145.5 164.9 184.3 203.7 223.1 242.5 261.9	154.5 175.1 195.7 216.3 236.9 257.5				

4-2

- adusm

4-3

PERFORMANCE TESTS

4-13. FREQUENCY ACCURACY TEST (Cont'd)

Generate	or Frequency	Counter						
RANGE (MHz)	Dial Indication (MHz)	Reading (MHz)	f .					
	35	34.0	36.1					
	40	38.8						
	45	43.7	46.4					
35-66	50	48.5	51.5					
'	55	53.4						
1	60	58.2						
	65	63.1						
	35	33.95	36.05					
	30	29.10						
1935	25	24.25						
	20	19.40						
	10	9.70	10.30					
	12	9.70 11.64	12.36					
10-19	14	13.58	14.42					
	16	15.52	16.48					
	18	17.46						

4-14. HARMONIC DISTORTION TEST

SPECIFICATION: Harmonic Distortion (output power $\leq +3$ dBm): >20 dB below carrier (dBc). Option 003: >15 dBc.

DESCRIPTION: Harmonics are measured with a spectrum analyzer at a +3 dBm output from the Signal Generator as the frequency is tuned from 10 to 520 MHz.

PROCEDURE: 1. Connect Signal Generator RF OUTPUT to spectrum analyzer input after setting generator controls as follows:

METER LEVEL

Чц

PERFORMANCE TESTS

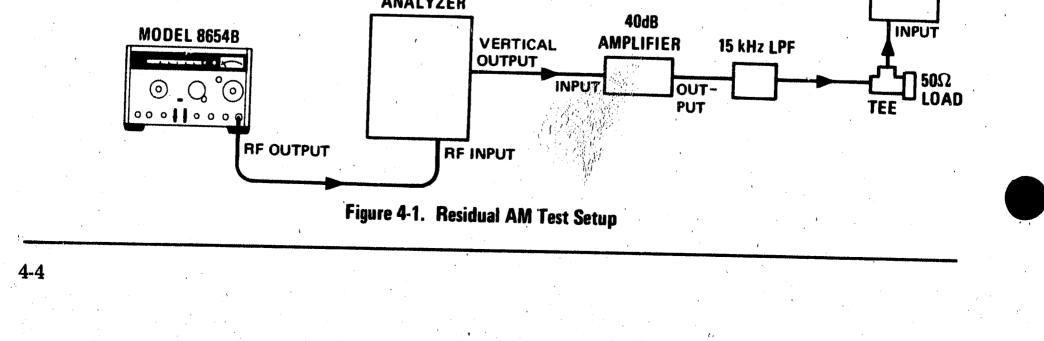
4-14. HARMONIC DISTORTION TEST (Cont'd)

2. Set spectrum analyzer resolution bandwidth to 300 kHz or greater, and optimum input level to 0 dBm (40 dB attenuation). Set analyzer frequency span and center frequency controls, and set Signal Generator FREQUENCY RANGE control as listed in the following table. For each FREQUENCY RANGE, tune generator across the range. Record minimum difference of harmonic levels with respect to fundamental. Harmonics should be more than 20 dB down from fundamental (more than 15 dB down for Option 003).

Spectrum Ar	nalyzer	Signal Generator	Harmonics (dB down from carrier)							
Frequency Span Per Division (MHz)	Center Frequency (MHz)	FREQUENCY RANGE (MHz)	Standard	Option 003						
100 100 100 50 20 10	700 600 500 250 100 50	270-520 130-270 66-130 35-66 19-35 10-19	20 20 20 20 20 20	15 15 15 15 15 15 15 15 15 15 15						

4-15. RESIDUAL AM TEST

SPECIFICATION:


Residual AM (average rms): >55 dBc in a 50 Hz to 15 kHz post-detection noise bandwidth.

DESCRIPTION:

To calibrate the system, the Signal Generator is internally amplitude modulated at at 10% depth. The AM is demodulated with a spectrum analyzer in a zero-frequency span mode. The demodulated AM is amplified and measured with a true rms voltmeter which becomes a reference of 20 dB down from the carrier. The AM is shut off and the amount of residual AM is measured relative to the 20 dB reference. A filter at the voltmeter input defines the measurement bandwidth.

> RMS V<u>OLTMETER</u>

SPECTRUM

PERFORMANCE TESTS

4-15. RESIDUAL AM TEST (Cont'd)

EQUIPMENT:

Spectrum Analyz	zer.	• '	•	•	•		•	•	•	•	HP 8558B/182C, Opt. 80'
40 dB Amplifier	•	• '	•	•	•				•	•	HP 465A
RMS Voltmeter	•	•	•			•	•	•	•		HP 3400A
15 kHz Low-Pass	Fi	lte	r	• .	•	•	•		•		CIR-Q-TEL 7 Pole
50 Ω Load		•	•	•	•	•				•	HP 11593A

PROCEDURE:

1. Connect equipment as shown in Figure 4-1 after setting Signal Generator controls as follows:

METER						•	•	LEVEL
FREQUENCY	' RA	NGI	E (M	Hz))	•		270–520 MHz
FREQUENCY	TU]	NE	• •	5 . •		•		500 MHz
OUTPUT LEV	EL S	Swit	ch.	•	•	•		-40 dBm
Output Level	VER	NIE	R .	•	•	•	•.	Meter reads 0 dB
AM								
AM LEVEL .		•		•	•	•	•	Fully ccw
FM								
400 Hz/1 kHz	• •		• •		• ,	•	•	1 kHz

2. Set spectrum analyzer resolution bandwidth to 300 kHz or greater, optimum input level to --40 dBm (0 dB attenuation), vertical scale to linear, display smoothing to minimum (off) and adjust frequency controls to center 500 MHz signal on display. Set frequency span to 0, fine adjust frequency controls to peak signal on display. Adjust vertical reference level controls to bring signal level to approximately the fifth graticule line from the bottom.

3. Set METER to AM and adjust AM LEVEL for a panel meter reading of 10%.

4. Readjust analyzer vertical scale control to a convenient reference on voltmeter's dB scale. This reference is 20 dB down from the carrier.

NOTE

If amplifier clipping is suspected, check the voltmeter input with an oscilloscope. If it is clipping, set the amplifier gain to 20 dB.

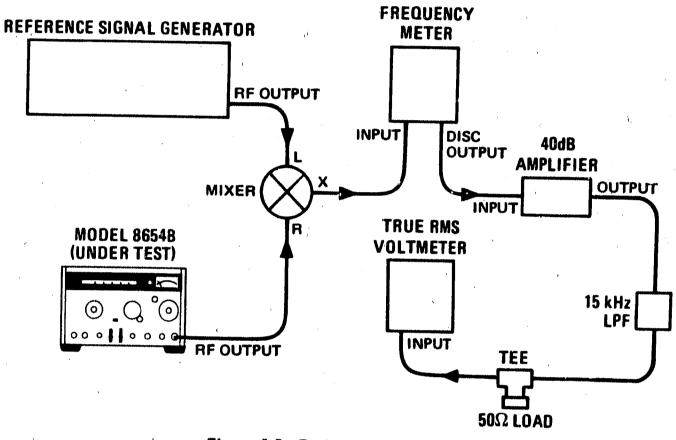
5. Set AM to OFF. Voltmeter average reading should drop more than 35 dB (i.e., more than 55 dB down from carrier).

35 dB

4-5

4-16. RESIDUAL FM TEST

SPECIFICATION: Residual FM on CW (averaged rms deviation): <0.3 ppm in a 0.3 to 3 kHz post-detection noise bandwidth. <0.5 ppm in a 50 Hz to 15 kHz post-detection noise bandwidth.


DESCRIPTION: 'The residual FM present on the Signal Generator output is demodulated by an FM frequency meter whose discriminator output is amplified and measured with a true rms voltmeter. A filter at the voltmeter input defines the measurement bandwidth. A ref-

4-16. RESIDUAL FM TEST (Cont'd)

erence generator and mixer convert the RF output of the test Signal Generator to within the range of the frequency meter.

NOTE

The residual FM of the reference generator should be less than 1/3 of that specified for the 8654B since the test measures the residual FM of both generators simultaneously. Also, both generators should be free from mechanical vibrations and loud noises for this test. Residual FM is measured for a 50 Hz to 15 kHz post-detection noise bandwidth only since any out-of-tolerance condition for it will also be out of tolerance for a 100 Hz to 3 kHz bandwidth.

Figure 4-2. Residual FM Test Setup

Frequency Meter. HP 5210A Filter Kit (for Frequency Meter) HP 10531A RMS Voltmeter HP 3400A 40 dB Amplifier HP 465A Reference Signal Generator HP 8640A Mixer HP 10514A 15 kHz Low-pass Filter • • • • • • • • • **CIR-Q-TEL 7** Pole 50 Ohm Load . HP 11593A • •

PROCEDURE:

EQUIPMENT:

1. Set test Signal Generator controls as follows:

	МЕТ	'EI	R	• '	•	•		•	•						-		LEVEL
	FRE	QI	JE	NC	Y	R	AN	١G	E	(M	Hz	Z)			-	<u>,</u>	270-520 MHz
	FRE	હા	JE	NC	Y	TU	JŅ	IE	•						-		500 MHz
'	OUT	Ρl	JT	LE	V]	EL	S	wi	tch).	•					-	10 dBm
	Outp	out	L	evel	V	(D)	RN	JII	ER	•				•			Meter reads 0 dB
	AM	•	•	• •	•	•	•	•	•	•		•		' #			OFF
	rw	•	•	• •	•	•	•	•	•	.•		•	•	•	•	•	OFF

4-6

Performance Tests

PERFORMANCE TESTS

4-16. RESIDUAL FM TEST (Cont'd)

- 2. Install shorting board in frequency meter and calibrate for 1 Vdc (at output jack) for a full-scale meter reading.
- Install 100 kHz Butterworth low-pass filter in frequency meter. 3.
- 4. Connect equipment as shown in Figure 4-2.
- 5. Set reference signal generator to +7 dBm at 501 MHz. Set frequency meter range to 1 MHz.
- Tune reference signal generator for a near full-scale reading on frequency meter. **6**.
- Average voltmeter reading should be less than 12.5 mVrms (250 Hz-rms, or 7. 0.5 ppm).

 $12.5 \mathrm{mVrms}$

4-7

NOTE

Test setup calibration can be checked by setting FM to INTER-NAL, FM RANGE to 3 kHz, and FM LEVEL for 1 kHz as read on panel FM meter. Voltmeter should read approximately 35.4 mVrms. (The actual gain of the amplifier is 34 dB when terminated with 50Ω .)

4-17. OUTPUT LEVEL ACCURACY TEST

SPECIFICATION: Range: 10 dB steps and a 13 dB vernier provide power settings from +10 dBm to -130 dBm (0.7V to 0.07 μ V) into 50 Ω . For Option 003, maximum output level is +8 dBm (0.56V).

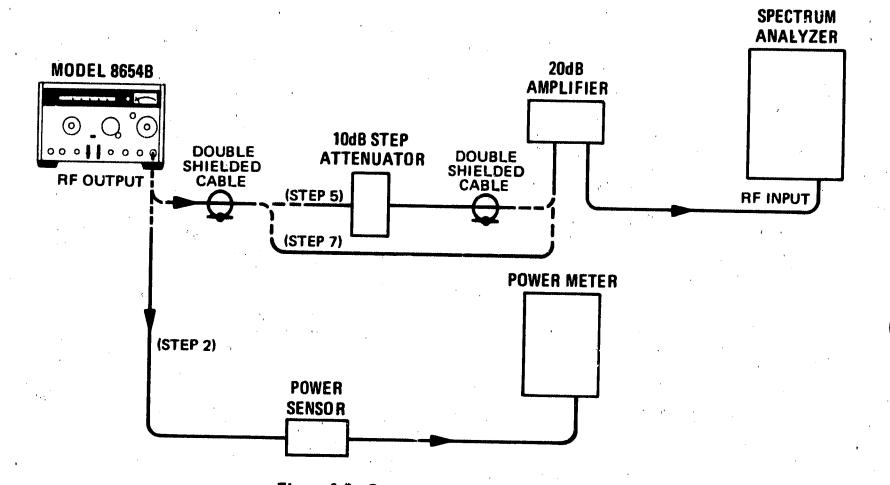
-	Usi	Using Full Vernier Range				
Output Level (dBm)	+10* to -7	-7 to -57	—57 to —97	-97 to -127	+10* to -130	
Total Accuracy as Indicated on Level Meter (dB)	± 1.5	±2.0	± 2.5	± 3.0	Add ± 0.5	

*For Option 003, maximum output level is +8 dBm (0.56V).

DESCRIPTION:

The RF level accuracy for the +10 and 0 dBm ranges is measured with a power meter. For the lower ranges, a reference signal is established on a spectrum analyzer display, the Signal Generator OUTPUT LEVEL switch and the spectrum analyzer vertical scale log reference level control are stepped together and any amplitude variations appear on the analyzer display. An RF attenuator and amplifier at the RF OUTPUT are adjusted for analyzer compatibility and best sensitivity.

Performance Tests


4-8

PERFORMANCE TESTS

4-17. OUTPUT LEVEL ACCURACY TEST (Cont'd)

NOTE

This measurement uses an IF substitution technique in which the spectrum analyzer IF is the standard. The IF step accuracy should be within ± 0.2 dB overall. The IF step accuracy can be checked using the above technique by comparing a lab calibrated attenuator (such as HP Model 355D Option H36) with the IF step control at the frequency of attenuator calibration (e.g., 3 MHz for the HP 355D Option H36).

Figure 4-3. Output Level Accuracy Test Setup

EQUIPMENT:	Spectrum Analyzer HP 8558B/182C
	Power Meter/Sensor HP 435A/8481A
	20 dB Amplifier
	10 dB Step Attenuator
•	Double Shielded Cables (2 required) HP 08708-6033
PROCEDURE:	1. Set Signal Generator controls as follows:

METER	, .	•	•		•	LEVEL
FREQUENCY RANGE (MHz)		•		•		270–520 MHz
FREQUENCY TUNE	•					520 MHz
OUTPUT LEVEL Switch						+10 dBm
Output Level VERNIER	•	•	•	•,	•	Meter reads 0 dB (Standard only)
AM						(-2 dB, Option 003 only)
	•	٠	•	•	•	OFF
FM	• •	•	•	٠		OFF

2. Set power meter controls to +15 dBm range (+10 dBm range for Option 003). Connect power sensor to Signal Generator RF OUTPUT.

PERFORMANCE TESTS

4-17. OUTPUT LEVEL ACCURACY TEST (Cont'd)

4.

Set Signal Generator RF OUTPUT level as shown in table below; verify that level 3. is within the specified tolerance.

Signal G	Signal Generator								
OUTPUT LEVEL Switch (dBm)	Panel Meter Reading(dBm)	Power Meter Reading (dBm)							
+10	0 (except Option 003)	+8.5	+11.5						
	-2 (Option 003 only)	+6.5	+9.5						
		+5.5 +1.5	+8.5						
	-10	-2.0	+2.0						
0	-10 -7	-12.0	8.0 5.5						
	3 0	-4.5	-1.5						
	+3	-1.5 +1.5	+1.5						

Set step attenuator to 50 dB. Set spectrum analyzer center frequency to 520 MHz, resolution bandwidth to 10 kHz, frequency span to 5 kHz per division, optimum input level to -40 dBm (attenuation, 0 dB), display smoothing to approximately 100 Hz, 1 dB per division vertical log display with -20 dBm reference level.

Connect attenuator, amplifier, and spectrum analyzer together as shown in Figure 5. 4-3, without disturbing generator controls. Center signal on display. Consider center horizontal scale equivalent to +3 dBm. With vertical reference level vernicr, set signal peak to be equal to last measured level on power meter.

NOTE

If, for example, the last power meter reading was +2.6 dBm, the vertical scale resolution is 1 dB/division, therefore, the signal peak should be 0.4 dB or 0.4 division below the center scale reference.

Set Signal Generator OUTPUT LEVEL control and analyzer vertical scale log con-**6**. trol as shown in the following table. Verify that amplitude falls within ± 2.0 dB (2 divisions) of center scale reference in each case.

el	
	Spectrum Analyzer
Signal Generator	

Display Amplitude Output Level Log Reference (dB) (dBm) (dB) 0 -20 Set Level -10 -2.0-20 -40 -2.0 -30 -50 -2.0 --40 -60 -2.0 -50 -70 -2.0 ___

+2.0

+2.0

+2.0

+2.0

+2.0

4-9

PERFORMANCE TESTS

4-17. OUTPUT LEVEL ACCURACY TEST (Cont'd)

8.

7. Set analyzer's vertical reference level to -20 dBm. Remove 10 dB step attenuator and connect Signal Generator's RF OUTPUT directly to amplifier input. With vertical reference level vernier set signal peak to same level, with respect to horizontal center scale reference, as last measurement recorded on preceding table.

Set Signal Generator OUTPUT LEVEL control and analyzer vertical reference level as shown in the following table. Verify that amplitude is within tolerance specified.

Signal Generator	Spectrum Analyzer										
Output Level (dBm)	Log Reference (dBm)	Display Amplitude (dB)									
50	-20	Set	Level								
-60	-30	-2.5	+2.5								
-70	-40	-2.5	+2.5								
-80	-50	-2.5	+2.5								
-90	-60	-2.5									
-1.00	-70	-3.0+									
-110	80	-3.0	+3.0								
-120	-90										

NOTE

For the last step, set analyzer vertical scale to 10 dB/division and verify that noise level is at least 10 dB below signal.

4-18. OUTPUT LEVEL FLATNESS TEST

4-10

SPECIFICATION: Level Flatness: ± 1 dB referenced to the output at 250 MHz for output levels >-7 dBm.

DESCRIPTION: An output level reference is established at 250 MHz and the maximum and minimum output levels are measured as the Signal Generator is tuned across each range. The test is performed at both maximum and minimum specified ALC reference levels.

PROCEDURE: 1. Set Signal Generator controls as follows:

METER . . LEVEL FREQUENCY RANGE (MHz) 130-270 MHz FREQUENCY TUNE 250 MHz OUTPUT LEVEL Switch. . . . +10 dBm Output Level VERNIER Fully ccw • • • OFF FM OFF .

Performance Tests

4-18. OUTPUT LEVEL FLATNESS TEST (Cont'd)

- 2. Set power meter range to +10 dBm. Connect power sensor to Signal Generator RF OUTPUT.
- 3. Adjust Signal Generator Output Level VERNIER control for power meter reading of +9 dBm at 250 MHz (+7 dBm for Option 003).
- 4. Slowly tune Generator across each range and note maximum and minimum power readings for each range. The maximum should not exceed +10 dBm and the minimum should not be less than +8 dBm. (For Option 003 the maximum should not exceed +8 dBm and the minimum should not be less than +6 dBm.)

	· · · · · · · · · · · · · · · · · · ·	Power Meter Reading														
Frequency	Stan	idard	Option 003													
Range (MHz)	Minimum (dBm)	Maximum (dBm)	Minimum (dBm)	Maximum (dBm)												
270-520	+8	+10	+6	+8												
130-270	+8	+10	+6	+8												
66-130	+8	+10	+6	+8												
35-66	+8	+10	+6	+8												
19-35	+8	+10	+6	+8												
10-19	+8	+10	+6	+8												

- 5. Set Signal Generator frequency to 250 MHz; set OUTPUT LEVEL to 0 dBm and adjust VERNIER for panel meter reading of -7 dB.
- 6. Set power meter range to -5 dBm and adjust Signal Generator VERNIER for power meter reading of -7 dBm.
- 7. Slowly tune generator across each range and note maximum and minimum power meter readings for each range. The maximum should not exceed -6 dBm and the minimum should not be less than -8 dBm.

Frequency	Power Met	er Reading
Range	Minimum	Maximum
(MHz)	(dBm)	(dBm)

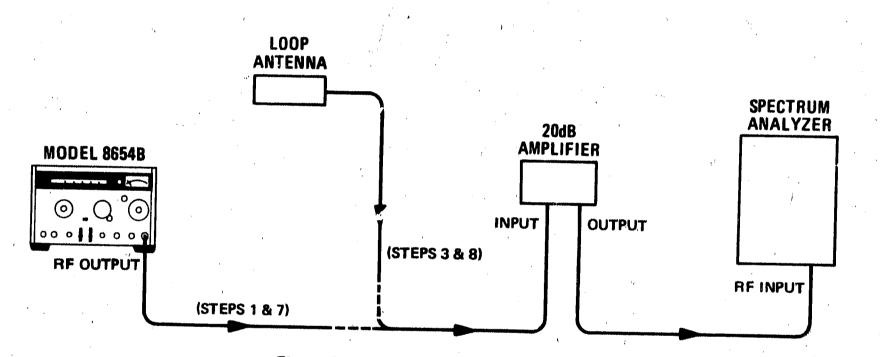
4-11

PERFORMANCE TESTS

4-19. OUTPUT LEAKAGE TEST

SPECIFICATION: Leakage (with all RF outputs terminated properly):

Leakage limits are below those specified in MIL-1-6181D. Furthermore, with an output level <0.01V, less than $0.5 \mu V$ is induced in a 2-turn 25 mm (1-inch) diameter loop 25 mm (1-inch) away from any surface and measured into a 50 Ω receiver.


DESCRIPTION:

A loop antenna is held one inch from all surfaces of the Signal Generator and any leakage monitored with a spectrum analyzer. The loop antenna is suspended in a molding so that when the molding is in contact with a surface, the loop antenna is 25 mm (1 inch) from the surface.

NOTES

The use of a screen room may be necessary to reduce interference from other sources.

Do not grasp the antenna near the loop end while performing test.

Figure 4-4. Output Leakage Test Setup

EQUIPMENT:

Loop Antenna	•	•	•	•		•		•		HP 08640-60501
20 dB Amplifier (0.1-400)	Mł	-Iz)								HD QAATA
20 dB Amplifier (400–120	0 1	ΗN	lz)	•	•	•	•	•	•	HP 8447B
Spectrum Analyzer	•	•			•		-			HP 8558B/189C
50 Ohm Load (2 required)	•	•	•	•	•	•	•	•	•	HP 11593A

PROCEDURE:

4-12

Connect equipment as shown in Figure 4-4 (with Signal Generator connected to 1. spectrum analyzer (through 0.1 to 400 MHz amplifier). Set generator controls as

follows: METER LEVEL

FREQUENCY RANGE (MHz) . . . 66-130 MHz 100 MHz OUTPUT LEVEL Switch -110 dBm Output Level VERNIER Meter reads -3 dB AM OFF FM OFF

PERFORMANCE TESTS

4-19. OUTPUT LEAKAGE TEST (Cont'd)

- 2. Set spectrum analyzer resolution bandwidth to 30 kHz, optimum input level to -40 dBm (0 dB attenuation), frequency span to 50 kHz per division, vertical scale to 10 dB per division log, display smoothing to approximately 100 Hz, and center frequency controls to locate 100 MHz signal. Use vertical reference level controls to set -113 dBm signal to -40 dB graticule line on display.
- 3. Disconnect generator from analyzer and connect 50 ohm loads to generator RF OUTPUT and rear panel AUX RF OUT connectors. Set analyzer frequency span to 20 MHz per division.

4. Connect loop antenna to analyzer through 0.1-400 MHz 20 dB amplifier. Hold the 25 mm (one-inch) side of loop antenna cylinder in contact with various surfaces of Signal Generator and observe display for the duration of a sweep. All signals and noise should be below -40 dB graticule line on display (i.e., less than -113 dBm or 0.5μ V) from 10 to 200 MHz.

5. Set analyzer center frequency control to 300 MHz and repeat step 4. All signals and noise should be below -40 dB graticule line on display (i.e., less than -113 dBm or 0.5μ V) from 200-400 MHz.

_____40 dB

-40 dB

 $40 \, \mathrm{dB}$

6. Replace amplifier with 400–1200 MHz 20 dB amplifier. Set analyzer center frequency controls to 500 MHz. Set generator FREQUENCY RANGE (MHz) to 270–520 MHz and FREQUENCY TUNE to 500 MHz.

7. Connect generator to analyzer and calibrate analyzer at 500 MHz as in step 2.

- 8. Re-terminate Signal Generator RF OUTPUT and connect loop antenna to amplifier. Set analyzer frequency span to 20 MHz per division.
- 9. Hold antenna in contact with various surfaces of Signal Generator and observe display. All signals and noise should be below -40 dB graticule line on display (i.e., less than -113 dBm or $0.5 \mu \text{V}$) from 400–600 MHz.
- 10. Set analyzer frequency to 700, 900, and 1100 MHz, and repeat step 9 at each setting. All signals and noise should be below -40 dB graticule line on display (i.e., less than -113 dBm or 0.5μ V).

 600-800 MHz:
 -40 dB

 800-1000 MHz:
 -40 dB

 1000-1200 MHz:
 -40 dB

 -40 dB
 -40 dB

 4.13

4-20. INTERNAL	MO	OULATION RATE ACCURACY TEST
SPECIFICATION:	Mo	dulation Rate: Internal, 400 and 1000 Hz $\pm 10\%$.
DESCRIPTION:	The a fr	equency counter.
EQUIPMENT:	Fre	quency Counter HP 5383A
PROCEDURE:	1.	Connect counter high impedance input to AM OUTPUT jack. Set AM to INTER- NAL and set 400 Hz/1 kHz switch to 400 Hz. Counter should read 400 \pm 40 Hz.
		360 440 Hz
	2.	Set 400 Hz/1 kHz switch to 1 kHz. Counter should read 1000 ± 100 Hz.
		900 1100 Hz
	3.	Connect counter to FM OUTPUT jack. Set FM to INTERNAL. Counter should read 1000 ± 100 Hz.
ана стануата стануата. На стануата стануата По стануата с		900 1100 Hz
	4.	Set 400 Hz/1 kHz switch to 400 Hz. Counter should read 400 \pm 40 Hz.
		360 440 Hz

4-21. AM BANDWIDTH TEST

SPECIFICATION: External 3 dB bandwidth, dc coupled to >20 kHz.

DESCRIPTION: The Signal Generator is externally amplitude modulated by a test oscillator. The AM is demodulated with a spectrum analyzer in a zero span mode. The AM is observed directly on the display and any change in AM depth is observed as the modulation rate is increased.

TEST OSC	ILLATOR	ı	
-	······		

MODEL	8654 B	ł			
			,		
0_0	ૢૢ૾૾ૺૺ૽			¢	
00.01	000				
AM INPUT		RF	OU.	TPU	T

SPECTRU	
RE INPLIT	

Figure 4-5. AM Bandwidth Test Setup

EQUIPMENT:

4-14

PERFORMANCE TESTS

4-21. AM BANDWIDTH TEST (Cont'd)

1.

PROCEDURE:

Connect equipment as shown in Figure 4-5 after setting Signal Generator controls as follows:

METER	•	•				_	LEVEL
FREQUENCY RANGE (MI	Hz)			-	270-520 MHz
FREQUENCY TUNE .	•	•				-	520 MHz
OUTPUT LEVEL Switch	•						-40 dBm
Output Level VERNIER	•	•	•	•	•	•	Meter reads +3 dB
	•	•	•	•	•	•	INTERNAL
AM LEVEL	•	•,	•	•	•	•	Fully ccw
FM	•	•	•	•	•	•	OFF

2. Set spectrum analyzer resolution bandwidth to 300 kHz or greater, optimum input level to -40 dBm (0 dB attenuation), vertical scale to linear, display smoothing to minimum (off), and adjust center frequency controls to center 520 MHz signal on display. Set frequency span to 0; fine adjust frequency controls to peak signal on display. Adjust vertical reference level controls to bring signal level to fourth graticule line from bottom of display.

3. Set test oscillator to 1 kHz and approximately 1 Vrms into 600Ω .

4. Increase AM LEVEL until 4 divisions peak-to-peak of vertical deflection are obtained on display. (Internally trigger spectrum analyzer.)

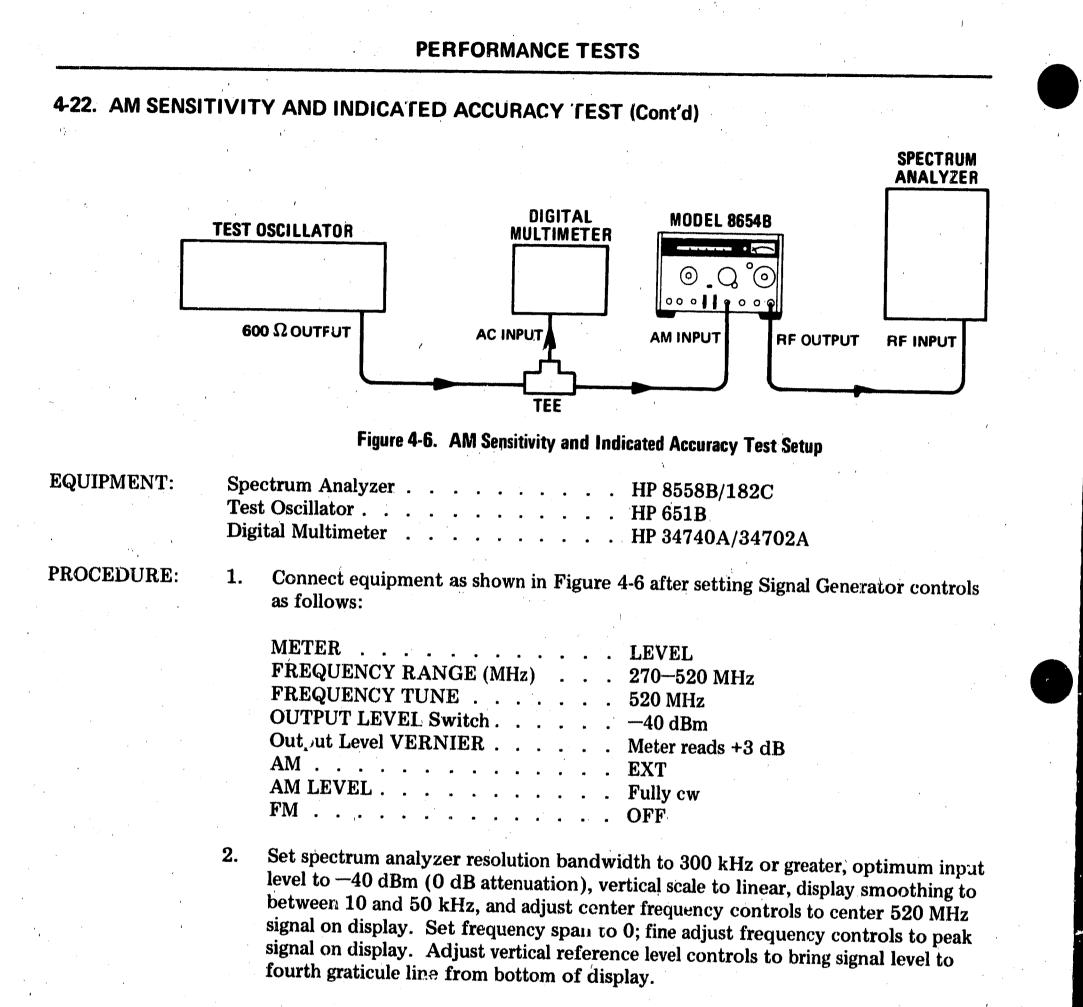
5. Increase frequency of test oscillator to 20 kHz without changing its level. Peakto-peak deflection on display should remain greater than 2.8 divisions for frequencies up to 20 kHz (i.e., >3 dB).

2.8 divisions

4-22. AM SENSITIVITY AND INDICATED ACCURACY TEST

SPECIFICATION: External AM Sensitivity (400 and 1000 Hz modulation rates): (0.10 ± 0.01)% AM/mVpk into 600Ω with AM LEVEL vernier at fully cw position. Indicated AM Accuracy (400 and 1000 Hz modulation rates): ± (5% of reading +5% of full scale).

DESCRIPTION:


The Signal Generator is externally amplitude modulated by a test oscillator with a level set to give 50% AM. The AM is demodulated with a spectrum analyzer in a zero span mode. The AM depth is measured directly on the display and is compared with the panel meter reading.

4-15

4-16

Model 8654B

4.4 divisions

3. Set test oscillator to 1 kHz and 0.353 Vrms (0.5 Vpk) as read on ac voltmeter.

4. Peak-to-peak deflection on display should be between 3.6 and 4.4 divisions (corresponding to $50 \pm 5\%$ AM).

NOTE

3.6

Check spectrum analyzer base line position by removing RF input. Base line should be exactly on bottom graticule line.

5. Adjust both test oscillator level and spectrum analyzer vertical level as needed for signal to span the second and sixth graticule lines from the bottom of display.

4-17

PERFORMANCE TESTS

4-22. AM SENSITIVITY AND INDICATED ACCURACY TEST (Cont'd)

6. Set METER to AM. Meter should read between 42.5% and 57.5% (i.e., $50.0 \pm 7.5\%$ AM).

42.5% _____ 57.5%

4-23. AM DISTORTION TEST

SPECIFICATION: Envelope Distortion (400 and 1000 Hz modulation rates): <3%, 0 to 70% modulation; <5%, 70 to 90% modulation.

DESCRIPTION: The Signal Generator is internally amplitude modulated. The AM is demodulated with a spectrum analyzer in a zero-frequency span mode. The distortion of the demodulated signal (present at the vertical oupput of the spectrum analyzer) is measured with a distortion analyzer. The measurement is made at a low ALC reference level where AM distortion is typically greatest.

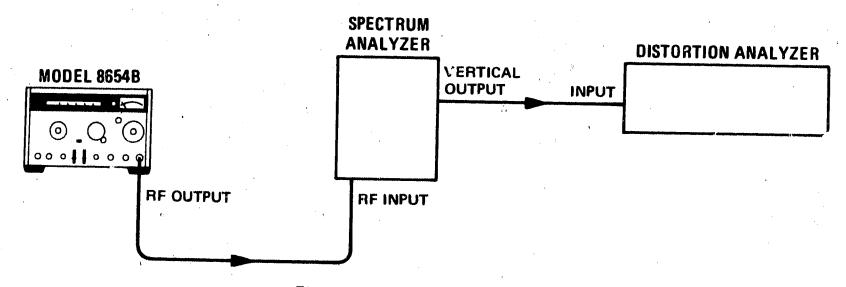


Figure 4-7. AM Distortion Test Setup

EQUIPMENT:	Spectrum Analyzer .	•	•	• '	•	•	·•		•	ŗ		HP 8558B/182C Opt. 807
	Distortion Analyzer	•	•	•	•		•	•	. •	•		HP 331A

PROCEDURE:

1. Connect equipment as shown in Figure 4-7 after setting Signal Generator controls as follows:

	METER	-	_				LEVEL
	FREQUENCY RANGE (MHz)	-	•	•	*	۳,	
;	EDEOLIENON MUNT	•.	•	•	•	•	270-520 MHz
	FREQUENCY TUNE	•			•	•	520 MHz
	OUTPUT LEVEL Switch	· .		-	_		$-30 \mathrm{dBm}$
	Output Level VERNIER	٠	•		•	•	Meter reads -7 dB

 AM
 INTERNAL

 AM LEVEL
 Fully ccw

 FM
 OFF

 400 Hz/1 kHz switch
 I kHz

2. Set spectrum analyzer resolution bandwidth to 300 kHz or greater, optimum input level to -40 dBm (0 dB attenuation), vertical scale to linear, and adjust center frequency controls to center 520 MHz signal on display. Set frequency span to 0;

Performance Tests

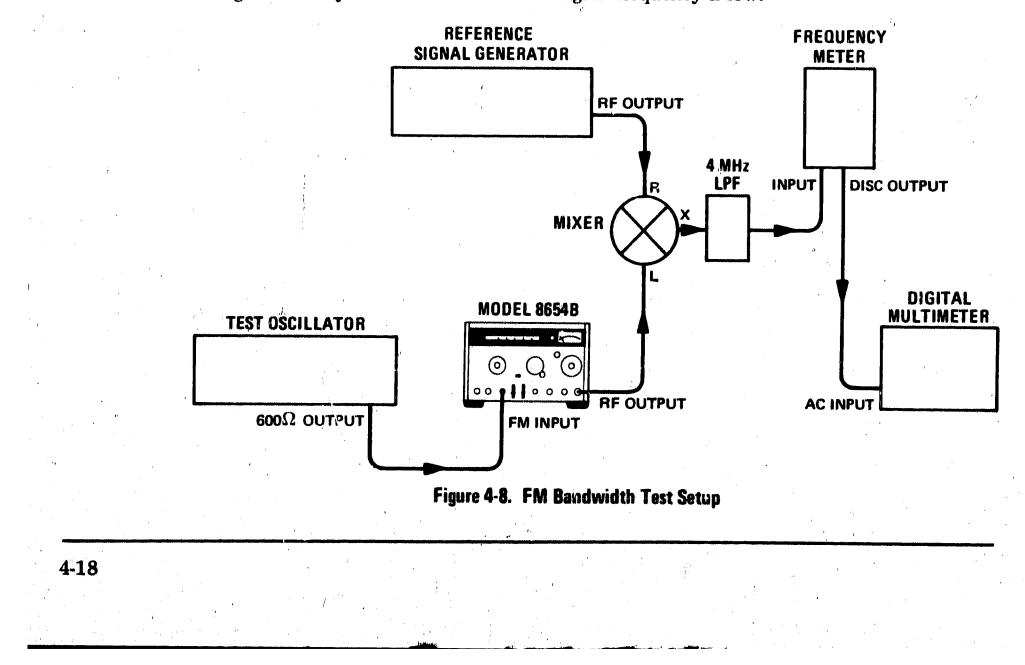
Model 8654B

3%

5%

PERFORMANCE TESTS

4-23. AM DISTORTION TEST (Cont'd)


fine adjust frequency controls to peak signal on display. Adjust vertical reference level controls to center signal on display. Set display smoothing to between 10 and 50 kHz.

- 3. Adjust AM LEVEL for front panel meter reading of 70% AM when METER is set to AM.
- 4. Calibrate distortion analyzer to measure distortion which should be less than 3%.
- 5. Increase AM LEVEL to 90% as read on panel meter.
- 6. Recalibrate distortion analyzer. Distortion should be less than 5%.

4-24. FM BANDWIDTH TEST

SPECIFICATION: External 3 dB bandwidth, dc coupled to >25 kHz.

DESCRIPTION: The Signal Generator is frequency modulated by an external signal. The FM signal is demodulated by a frequency meter whose discriminator output is measured with a voltmeter. A reference level is set at a 1 kHz rate. The rate is then increased to 25 kHz and the level rechecked. A reference generator and mixer convert the RF output of the test Signal Generator to within the range of the frequency meter. A low-pass filter at the mixer output prevents the frequency meter from mistriggering on the upper sideband generated by the mixer when the RF signal frequency is low.

PERFORMANCE TESTS

4-24. FM BANDWIDTH TEST (Cont'd)

EQUIPMENT:	Frequency Meter HP 5210A
	Filter Kit (for Frequency Meter) HP 10531A
	Digital Multimeter HP 34702A/34740A
	Signal Generator (reference) HP 8640A
·	Test Oscillator HP 651B
	Mixer
	4 MHz Low-Pass Filter CIR-Q-TEL 3 Pole

PROCEDURE:

1. Install a 100 kHz Butterworth low-pass filter in frequency meter.

2. Connect equipment as shown in Figure 4-8 after setting test Signal Generator controls as follows:

METER	LEVEL
FREQUENCY RANGE (MHz)	10–19 MHz
FREQUENCY TUNE	10 MHz
OUTPUT LEVEL Switch	
Output Level VERNIER	Meter reads -3 dB
AM	OFF
FM	
FM RANGE (kHz)	30 kHz
FM LEVEL	Fully cw

3. Set reference signal generator for a -7 dBm signal at 11 MHz.

4. Set frequency meter to trigger on input signal; set frequency range to 1 MHz. Fine tune reference signal generator for an on-scale frequency meter reading of approximately 0.8 MHz.

NOTE

If any readings appear to be highly erroneous, check the triggering on the frequency meter. The discriminator output should also be monitored on an oscilloscope and should appear as a pure sinewave.

5. Set test oscillator for a 1 kHz signal and adjust level for voltmeter reading of 20 mVrms (corresponding to 28.2 kHz frequency deviation).

6. Set test oscillator to 25 kHz. Voltmeter should read greater than 14.1 mVrms (less than 3 dB down from reference).

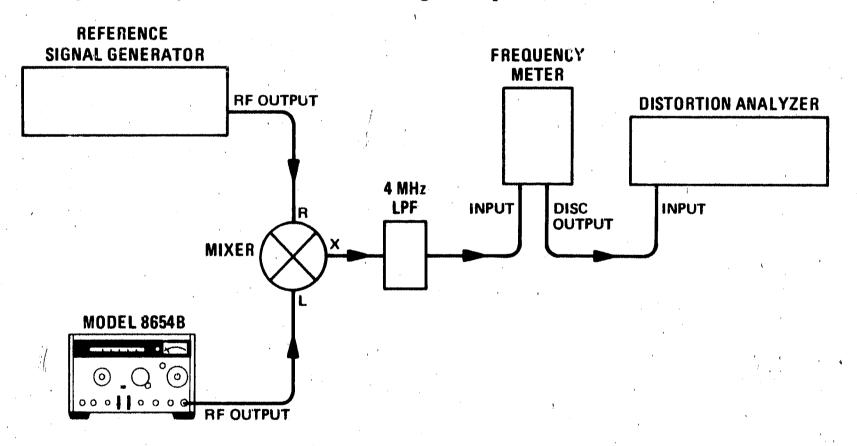
14.1 mVrms ____

4-19

7. Set test Signal Generator frequency to 80 MHz; set FM RANGE (kHz) to 100 kHz. Set reference signal generator frequency to 81 MHz; fine tune for a frequency meter reading of approximately 0.8 MHz.

PERFORMANCE TESTS

4-24. FM BANDWIDTH TEST (Cont'd)


- 8. Set test oscillator for a 1 kHz signal and adjust level for a voltmeter reading of 70.7 mVrms (corresponding to 100 kHz frequency deviation).
- 9. Set test oscillator to 25 kHz. Voltmeter should read greater than 50 mVrms (less than 3 dB down from reference).

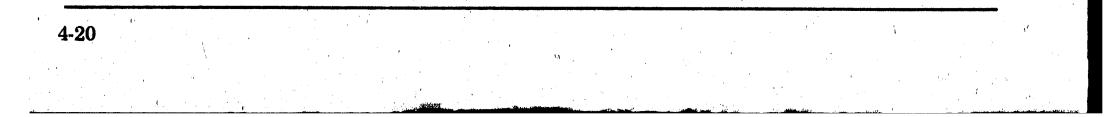
50 mVrms_____

4-25. FM DISTORTION TEST

SPECIFICATION: **FM Distortion** (400 and 1000 Hz modulation rates): <2% for deviations up to 30 kHz, <3% for deviations up to 100 kHz.

DESCRIPTION: The Signal Generator is frequency modulated internally at a 1 kHz rate. The FM signal is demodulated by a frequency meter whose discriminator output is checked with a distortion analyzer. A reference generator and mixer convert the RF output of the test Signal Generator to within the range of the frequency meter. A low-pass filter at the mixer output prevents the frequency meter from mistriggering on the upper sideband generated by the mixer when the RF signal frequency is low.

Figure 4-9. FM Distortion Test Setup


				•
TOO	1 11	'T) 7 /	IEN	rm.
M . L .				
1.2				
•	,			

PROCEDURE:

	lacuo	J -	100	$\gamma \star j$	•	•	•		•	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
Distortion Analyze										
Signal Generator (r	efere	nce	;)	•		•	•	•		HP 8640A
Mixer	• •	•	•	•			•	•	•	HP 10514A
4 MHz Low-Pass Fi	lter	••	•	•		•			•	CIR-Q-TEL 3 Pole

1. Install a 10 kHz Butterworth low-pass filter in frequency meter.

2. Connect equipment as shown in Figure 4-9 after setting test Signal Generator controls as follows:

PERFORMANCE TESTS

4-25. FM DISTORTION TEST (Cont'd)

METER		•	•	•		•	•	LEVEL
FREQUENCY RANC								
FREQUENCY TUNE								
OUTPUT LEVEL .								
AM								
FM								
FM RANGE (kHz) .	•	•	•	•	•	•	-	30 kHz
FM LEVEL	•	•	•	•	•	•/	•	Fully ccw
400 Hz/1 kHz switch	•	•	•	•	• /		•	1 kHz

3. Set reference signal generator for a - 7 dBm signal at 11 MHz.

4. Set METER to FM and FM LEVEL for a panel meter reading of 30 kHz.

5. Set frequency meter to trigger on input signal; set frequency range to 1 MHz. Fine tune reference signal generator for an on-scale frequency meter reading of approximately 0.8 MHz.

Set test and reference generators to the following frequencies. For each setting, fine tune reference generator to obtain frequency meter reading of approximately 0.8 MHz. Calibrate distortion analyzer for 1 kHz signal and measure distortion which should be less than 2%.

NOTES

The set level on the distortion analyzer will need to be set to a low range because of the low level of the discriminator output. This level becomes the 100% level. Also, this calibration need be re-checked only if the reading is suspect.

If any reading appears to be highly erroneous, check the triggering on the frequency meter. The discriminator output should also be monitored on an oscilloscope and should appear as a pure sinewave.

If a frequency meter filter greater than 10 kHz is used, the noise in the system may add to the distortion analyzer reading.

RANGE (MHz)	FREQUENCY Tune	Ref. Gen. Frequency	Distortion
1019	10 MHz 14 MHz 19 MHz	11 MHz 15 MHz 20 MHz	2% 2% 2%
19—35	19 MHz 27 MHz 35 MHz	20 MHz 28 MHz 36 MHz	2% 2% 2%
35—66	35 MHz 50 MHz 66 MHz	36 MHz 51 MHz 67 MHz	2% 2% 2%
66—130	66 MHz	67 MHz	2%
(

4-25. FM DISTORTION TEST (Cont'd)

Set FM RANGE (kHz) to 100 kHz and adjust FM LEVEL for a panel meter read-7. ing of 100 kHz. Recalibrate distortion analyzer for 1 kHz and continue using settings listed below. Distortion should be less than 3%.

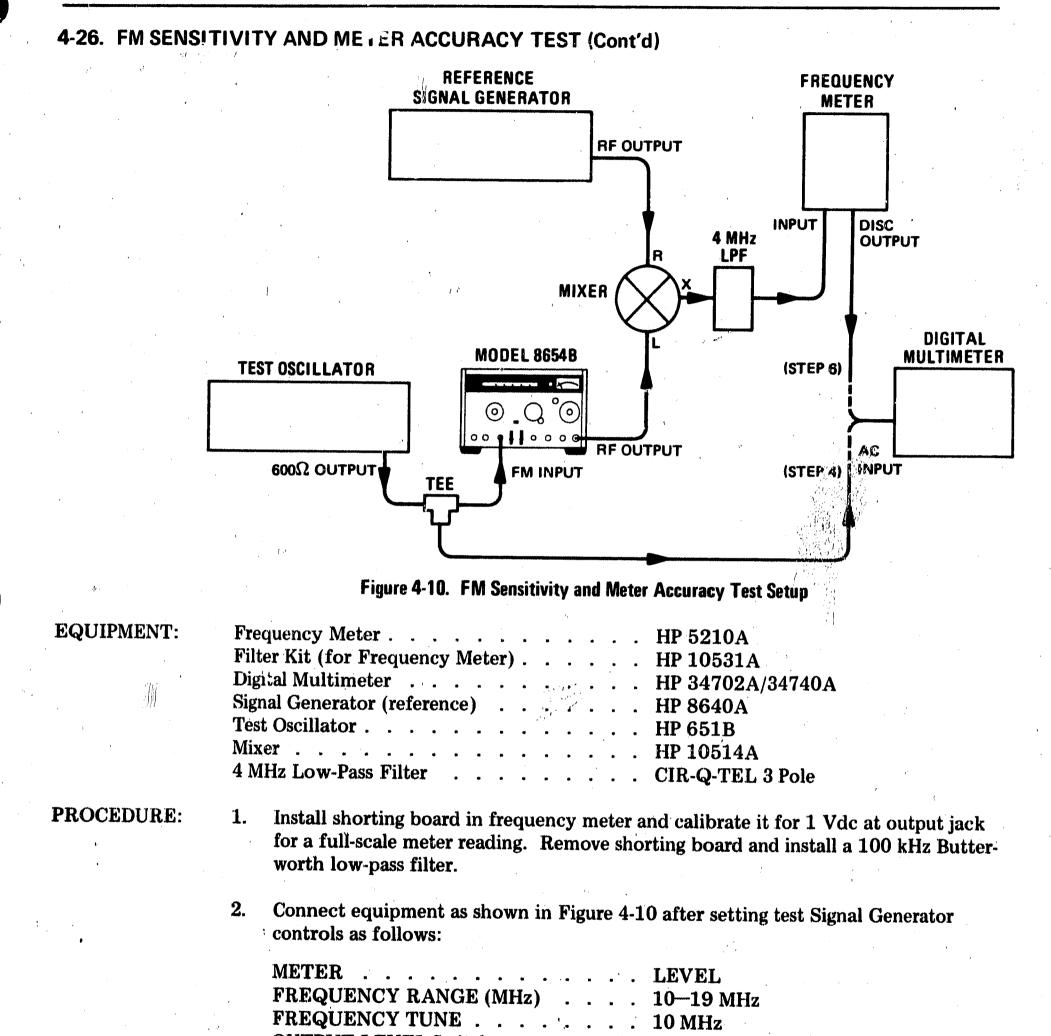
RANGE	FREQUENCY	Ref. Gen.	Distortion
(MHz)	TUNE	Frequency	
66-130	80 MHz	79 MHz	39
	130 MHz	129 MHz	39
130-270	130 MHz	129 MHz	39
	190 MHz	189 MHz	39
	270 MHz	269 MHz	39
270—520	270 MHz	269 MHz	3%
	400 MHz	399 MHz	3%
	520 MHz	519 MHz	3%

4-26. FM SENSITIVITY AND METER ACCURACY TEST

SPECIFICATION: External FM Sensitivity (400 and 1000 Hz modulation rates): 1 volt peak yields maximum deviation indicated on peak deviation meter with FM LEVEL vernier at fully cw position.

> Sensitivity Accuracy (15° to 35°C, 400 and 1000 Hz modulation rates): ±12%. For 100 kHz deviation above 130 MHz, ±15%.

> Indicated FM Accuracy (15° to 35° C, 400 and 1000 Hz modulation rates): ±12% of reading +3% of full scale). For 100 kHz deviation above 130 MHz add 3% of reading.


DESCRIPTION:

The Signal Generator is frequency modulated by an externally applied 1 Vpk signal. The FM signal is demodulated by a frequency meter whose discriminator output is measured with a voltmeter. A reference generator and mixer convert the RF output of the test Signal Genrator to within the range of the frequency meter. A low-pass filter at the mixer output prevents the frequency meter from mistriggering on the upper sideband generated by the mixer when the RF signal frequency is low.

4-22

4-23

PERFORMANCE TESTS

OUTPUT LEVEL Switch. +10 dBm Output Level VERNIER . . . Meter reads -3 dB OFF -FM • • • • • • • • • EXT FM RANGE (kHz) 30 kHz . Fully cw 400 Hz/1 kHz switch $1 \, \mathrm{kHz}$ -.

. .

Performance Tests

8.

4-24

Model 8654B

PERFORMANCE TESTS

4-26. FM SENSITIVITY AND METER ACCURACY TEST (Cont'd)

3. Set reference signal generator for a -7 dBm signal at 11 MHz.

- 4. Set test oscillator for a 1 kHz signal and adjust level for voltmeter reading of 0.707 Vrms (1 Vpk).
- 5. Set frequency meter to trigger on input signal; set frequency range to 1 MHz. Fine tune reference signal generator for an on-scale frequency meter reading of approximately 0.8 MHz.

6. Connect voltmeter to discriminator output of frequency meter.

7. Set test and reference generators to frequencies listed below. For each setting, fine tune reference generator to obtain frequency meter reading of approximately 0.8 MHz. Voltmeter should read between 19.7 and 25.0 mVrms (31.6 mVpk \pm 12% which corresponds to 31.6 kHz \pm 12% frequency deviation).

NOTE

If any readings appear to be highly erroneous, check the triggering on the frequency meter. The discriminator output should also be monitored on an oscilloscope and should appear as a pure sinewave.

RANGE (MHz)	FREQUENCY TUNE	Ref. Gen. Frequency	Voltmeter Limits (mVrms)
10 10	10 MHz	11 MHz	19.7 25.0
10-19	14 MHz	15 MHz	19.7 25.0
	19 MHz	20 MHz	19.7 25.0
	19 MHz	20 MHz	19.7 25.0
19 —35	27 MHz	28 MHz	19.7 25.0
· · · · · · · · · · · · · · · · · · ·	35 MHz	36 MHz	19.7 25.0
	35 MHz	36 MHz	19.7 25.0
35-66	50 MHz	51 MHz	19.7 25.0
5 19	66 MHz	67 MHz	19.7 25.0
66—130	66 MHz	67 MHz	19.7 25.0

Set FM RANGE to 100 kHz and continue using the settings listed below. For frequencies below 130 MHz the voltmeter should read between 62.2 and 79.2 mVrms (100 mVpk $\pm 12\%$ which corresponds to 100 kHz $\pm 12\%$ frequency deviation). For frequencies above 130 MHz, the voltmeter should read between 60.1 and 81.3 mVrms (100 mVpk $\pm 15\%$ which corresponds to 100 kHz $\pm 15\%$ frequency deviation).

||

4-25

Model 8654B

PERFORMANCE TESTS

RANGE (MHz)	FREQUENCY Tune	Ref. Gen. Frequency	Voltmeter Limits (mVrms)
66—130	80 MHz	79 MHz	62.2 79.2
	130 MHz	129 MHz	62.2 79.2
	130 MHz	129 MHz	60.1 81.3
130-270	190 MHz	189 MHz	60.1 81.3
	270 MHz.	269 MHz	60.1 81.3
	270 MHz	269 MHz	60.1 81.3
270-520	400 MHz	399 MHz	60.1 81.3
	520 MHz	519 MHz	60.1 81.3

4-26. FM SENSITIVITY AND METER ACCURACY TEST (Cont'd)

н.

9. Set METER to FM and FM to INTERNAL at 1 kHz. Adjust FM LEVEL for a reading of 10 (100 kHz) on test Signal Generator panel meter.

10. Continue as before using the following settings. For frequencies above 130 MHz, the voltmeter should read between 58.0 and 83.4 mVrms (100 mVpk $\pm 18\%$ which corresponds to 100 kHz $\pm 18\%$ frequency deviation). For frequencies below 130 MHz, the voltmeter should read between 60.1 and 81.3 mVrms (100 mVpk $\pm 15\%$ which corresponds to 100 kHz $\pm 15\%$ deviation).

RANGE (MHz)	FREQUENCY TUNE	Ref. Gen. Frequency	Voltmeter Limits (mVrms)	
	520 MHz	519 MHz	58.0 83.4	
270-520	400 MHz	399 MHz	58.0 83.4	
	270 MHz	269 MHz	58.0 83.4	
	270 MHz	269 MHz	58.0 83.4	
130-270	190 MHz	189 MHz	58.0 83.4	
	130 MHz	129 MHz	58.0 83.4	
66-130	130 MHz	129 MHz	60.1 81.3	
	80 MHz	79 MHz	60.1 81.3	

11. Set FM RANGE (kHz) to 30 kHz. If necessary adjust FM LEVEL to maintain a panel meter reading of 10 on the 10 scale which corresponds to 31.6 kHz deviation as read on 3 scale. Continue using settings listed below. Voltmeter should read between 19.0 and 25.7 mVrms (31.6 mVpk $\pm 15\%$ which corresponds to 31.6 kHz $\pm 15\%$ frequency deviation).

PERFORMANCE TESTS

RANGE (MHz)	FREQUENCY Tune	Ref. Gen. Frequency	Voltmeter Limits (mVrms)
66-130	66 MHz	67 MHz	19.0 25.7
05 00	66 MHz	67 MHz	19.0 25.7
35-66	50 MHz	51 MHz	19.0 25.7
	35 MHz	36 MHz	19.0 25.7
 10 05	35 MHz	36 MHz	19.0 25.7
1 9 —35	• 27 MHz	28 MHz	19.0 25.7
	19 MHz	20 MHz	19.0 25.7
	19 MHz	20 MHz	19.0 25.7
10-19	14 MHz	15 MHz	19.0 25.7
	10 MHz	11 MHz	19.0 25.7

4-26. FM SENSITIVITY AND METER ACCURACY TEST (Cont'd)

4-26

٢,

. '

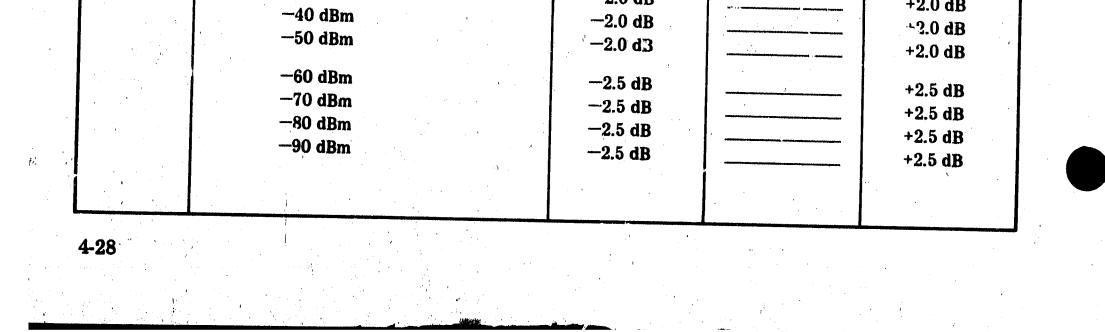
ŕ

Performance Tests

.

3 · · ·

	Hewlett-l Model 86			Tested By		
	Signal Ge					
'n	-	.:		Date		
				Date		
	Para. No.	Test Desc	ription	0	Results	
		×		Min.	Actual	Max.
	4-13.	Frequency Accuracy T	est			
		Frequency Range	Dial Indication			
j		270-520 MHz	500	485.0 MHz		515 O MIL-
			450	437.5 MHz		515.0 MHz
· ·]			400	437.5 MHz 388.0 MHz		464.5 MHz
		·	350	339.5 MHz		412.0 MHz
			300	291.0 MHz		360.5 MHz
	х		000	231.U MINZ		309.0 MHz
		130–270 MHz	130	126.1 MHz		133.9 MHz
			150	145.5 MHz	······································	154.5 MHz
	1	, · · ·	170	164.9 MHz		175.1 MHz
			190	184.3 MHz		195.7 MHz
		· · · ·	210	203.7 MHz	· ·	216.3 MHz
	e i		230	223.1 MHz		236.9 MHz
			250	242.5 MHz		257.5 MHz
		i Iz	270	261.9 MHz		278.1 MHz
		66—130 MHz	130	126.1 MHz	() ()	133.9 MHz
			120	116.4 MHz	······	123.6 MHz
			110	106.7 MHz	and an international statements of the second statements of	113.3 MHz
			100	97.0 MHz		103.0 MHz
	a.,		90	87.3 MHz		92.7 MHz
			80	77.6 MHz		92.7 MHz 82.4 MHz
			70	67.9 MHz		
						72.1 MHz
		35-66 MHz	35	34.0 MHz		96 1 MIT-
			40	38.8 MHz		36.1 MHz
, 1			45	43.7 MHz		41.2 MHz
		•	50	43.7 MHz 48.5 MHz		46.4 MHz
	x		55	48.5 MHz 53.4 MHz		51.5 MHz
		х 	60	58.2 MHz		56.7 MHz
			65			61.8 MHz
4.000		, ,		63.1 MHz	· · · · · · · · · · · · · · · · · · ·	67.0 MHz
		19-35 MHz	35	33.95 MHz		96 OF 1811
	<i>4</i> 	•	30	29.10 MHz		36.05 MHz
		÷	25	24.25 MHz		30.90 MHz
			20	19.40 MHz		25.75 MHz
	· · · · · · · · · · · · · · · ·			TO MULIZ		20.60 MHz
		10-19 MHz	10	9.70 MHz		10 90 NAXY-
		· · · · · · · · · · · · · · · · · · ·	12	11.64 MHz		10.30 MHz
			14	13.58 MHz		12.36 MHz
		a secondaria de la composición de la co	16	15.52 MHz		14.42 MHz
			18	17.46 MHz		16.48 MHz
				TITZ		18.54 MHz


Performance Tests

Model 8654B

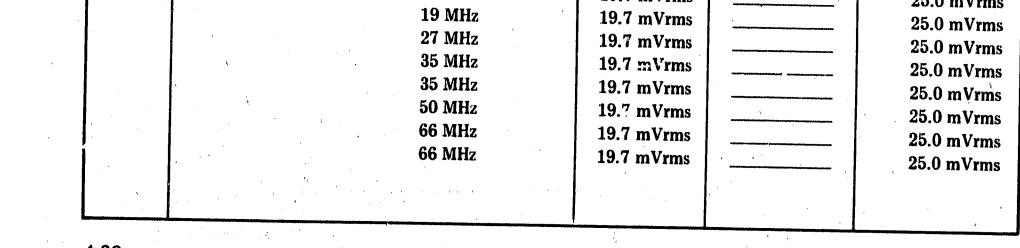
-1

Para. No.	Test Description			
		Min.	Actual	Max.
4-14.	Harmonic Distortion Test Standard:			
	Frequency Range			
	270-520 MHz	20 dB		
	130-270 MHz	20 dB	······································	
	66–130 MHz	20 dB		
	35-66 MHz			
	19–35 MHz	20 dB	·	
	10–19 MHz	20 dB	·	
	Option 003:	20 dB		
	270-520 MHz	15 dB	<i>.</i> *	
ι.	130-270 MHz	15 dB		
· · ·	66–130 MHz	15 dB		
	35-66 MHz	15 dB	·	· · · ·
. · · · · ·	19-35 MHz	15 dB		
	10-19 MHz			
		15 dB		
4-15.	Residual AM Test	35 dB		
4-16.	Residual FM Test		······································	
	50 Hz—15 kHz Noise BW			12.5 mVrms
4-17.	Output Level Accuracy Test			
	Output Level Switch Meter			
	+10 dBm 0 dB	10 5		
		+8.5 dBm		+11.5 dBm
۰	(except Opt. 003) —2 dB			
н.		+6.5 dBm		∽9.5 dBm
	(Opt. 003 only)			
	3 dB	+5.5 dBm	12	+8.5 dBm
	-7 dB	~1.5 dBm		+4.5 dBm
	—10 dB	-2.0 dBm		+2.0 dBm
	0 dBm -10 dB	-12.0 dBm		8.0 dBm
	—7 dB	-8.5 dBm		
	—3 dB	-4.5 dBm		5.5 dBm
	0 dB		,	-1.5 dBm
	+3 dB	+1.5 dBm		+1.5 dBm
		· · · ·		+4.5 dBm
	-10 dBm	-2.0 dB		+2.0 dB
	-20 dBm	-2.0 dB		+2.0 dB
	-30 dBm	-2.0 dB	h ⁴	+2.0 dB
1			and the second design of the s	

Table 4-1. Performance Test Record (2 of 5)

Performance Tests

Para.	Description			Results		
No.		- •	Min.	Actual	Max.	
4-17.	Output Level Accura	icy Test (Cont'd)				
(cont'd)	Output Level Swi					
	-100 dBm					
	-110 dBm		-3.0 dB		+3.0 d	
	-120 dBm		-3.0 dB		+3.0 d	
			-3.0 dB		+3.0 d	
4-18.	Output Level Flatnes	s Test				
	Output Level	Frequency Range				
	+9 dBm	270-520 MHz	+8 dBm		.10.11	
	(except Opt. 003)		+8 dBm	······································	+10 dl +10 dl	
		66-130 MHz	+8 dBm		+10 dl	
1		35-66 MHz	+8 dBm		+10 di +10 di	
		19-35 MHz	+8 dBm		+10 df	
· ·		10-19 MHz	+8 dBm		+10 dF	
		н - С		· · · · · · · · · · · · · · · · · · ·	10 UI	
•	+7 dBm	270-520 MHz	+6 dBm	•	+8 dBr	
	(Opt. 303 only)	130-270 MHz	+6 dBm		+8 dBr	
		66-130 MHz	+6 dBm		+8 dBr	
		35-66 MHz	+6 dBm		+8 dBr	
		19-35 MHz	+6 dBm		+8 dBr	
		10-19 MHz	+6 dBm		+8 dBn	
	−7 dBm	270–520 MHz	-8 dBm			
	(All instruments)	130–270 MHz	-8 dBm		-6 dBr	
		66-130 MHz	-8 dBm		-6 dBr	
	,	35-66 MHz	-8 dBm		6 dBr	
		19-35 MHz	$-8 \mathrm{dBm}_{\mathrm{V}}$		-6 dBr	
		10-19 MHz	-8 dBm		-6 dBr -6 dBr	
4-19.	0				UUDI	
4-13.	Outp. '.eakage Test	10.000 100				
		10-200 MHz		****	-40 dB	
		200–400 MHz			—40 dB	
		400-600 MHz			—40 dB	
		600-800 MHz			-40 dB	
	,	800-1000 MHz			—40 dB	
		1000-1200 MHz		r" 	40 dB	
4-20.	Internal Modulation Ra	te Accuracy Test		1		
	<i>n</i> .	AM 400 Hz	3C0 Hz	1	· · · · · · · · · · · · · · · · · · ·	
		AM 1 kHz	900 Hz		440 Hz	
					1100 H ₂	
	· · ·	FM 1 kHz	900 Hz		1100 Hz	
		FM 400 Hz	360 Hz		440 Hz	
4-21.			+			
T61.	AM Bandwidth Test		2.8 div.			
-	۹ ¹					
	$\frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} - \frac{1}{2} \right) \left(\frac{1}{2}$				· · · · · ·	
		e	•	· .		


Table 4-1. Performance Test Record (3 of 5)

Performance Tests

Model 8654B

Para.	Description		Results		
No.			[•] Min.	Actual	Max.
4-22.	AM Sensitivity and	Indicated Accuracy Test Sensitivity Meter Accuracy	3.6 div. 42.5%		4.4 div. 57.5%
4-23.	AM Distortion Test	0—70% AM 70—90% AM	· · ·		3% 5%
4-24.	FM Bandwidth Test	FM Range 30 kHz 100 kHz	14.1 in Vrms 50 'n Vrms		
4-25.	FM Distortion Test FM Range 30 kHz	Frequency Tune 10 MHz			001
t		14 MHz 19 MHz	ĸ		2% 2%
		19 MHz 27 MHz			2% 2% 2%
		35 MHz 35 MHz			2% 2%
		50 MHz 66 MHz			2% 2%
	100 kHz	66 MHz 80 MHz		-	2%
		130 MHz 130 MHz	<i>,</i>		3% 3% 3%
		190 MHz 270 MHz			3% 3%
		270 MHz 400 MHz 520 MHz			3% 3% 3%
1-26.	FM Sensitivity and M	eter Accuracy Test			
	FM FM Range	Frequency Tune			
	EXT 30 kHz	10 MHz	19.7 mVrms		25.0 mVrms
		14 MHz 19 MHz	19.7 mVrms 19.7 mVrms		25.0 mVrms
		19 MHz	19.7 mVrms		25.0 mVrms 25.0 mVrms

 Table 4-1.
 Performance Test Record (4 of 5)

4-30

and the second second

. . .

Para.	Description		Results		
No.				Actual	Max.
4-26.	FM Sensitivity and I	Meter Accuracy Test (cont'd)			
	FM FM Range	Frequency Tune			
•	EXT 100 kHz	80 MHz	62.2 mVrms	n A	79.2 mVrm
		130 MHz	62.2 mVrms		79.2 mVrm
,		130 MHz	60.1 mVrms		81.3 mVrm
		190 MHz	60.1 mVrms		81.3 mVrm
		270 MHz	60.1 mVrms	······································	81.3 mVrm
		270 MHz	60.1 mVrms	· · · · · · · · · · · · · · · · · · ·	81.3 mVrm
		400 MHz	60.1 mVrms	1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -	81.3 mVrm
	1	520 MHz	60.1 mVrms		81.3 mVrms
	INTER-				01.5 m v m;
	NAL 100 kHz	520 MHz	58.0 mVrms		83.4 mVrms
		400 MHz	58.0 mVrms	-	83.4 mVrms
. `		270 MHz	58.0 mVrms	ĺ	83.4 mVrms
		270 MHz	58.0 mVrms		83.4 mVrms
		190 MHz	58.0 mVrms		83.4 mVrms
	1	130 MHz	58.0 mVrms		83.4 mVrms
		130 MHz	60.1 mVrms		81.3 mVrms
		80 MHz	60.1 mVrms		81.3 mVrms
	30 kHz	66 MHz	19.0 mVrms	· .	95 7 - 17
		66 MHz	19.0 mVrms		25.7 mVrms
		50 MHz	19.0 mVrms		25.7 mVrms
		35 MHz	19.0 mVrms		25.7 mVrms
		35 MHz	19.0 mVrms		25.7 mVrms
		27 MHz	19.0 mVrms		25.7 mVrms
		19 MH z	19.0 mVrms	1	25.7 mVrms
· · · · · · · · · · · · · · · · · · ·		19 MHz	19.0 mVrms		25.7 mVrms
		14 MHz	19.0 mVrms		25.7 mVrms
		10 MHz	19.0 mVrms		25.7 mVrms 25.7 mVrms

 Table 4-1.
 Performance Test Record (5 of 5)

4-31/4-32

ADJUSTMENTS

· ·

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section describes the adjustments which will return the HP Model 8654B to peak operating conditions. The adjustments are to be performed whenever the performance test results are out of tolerance. This may occur over a period of time because of aging of components within the instrument or because of repair or replacement of certain components, parts, or assemblies. Table 5-2 contains information pertaining to assemblies or parts repaired or replaced, the performance tests which verify the Signal Cenerator is performing to its maximum capability, and the adjustments to be made if its performance is out of specification. Information is also provided in this section about the equipment required to perform the tests, instructions for locating the adjustable components, and factory-selected components.

5-3. All adjustment procedures include references to service sheets where the adjustable components are shown, a description of the test including any problem areas or special instructions, a test equipment setup diagram, where necessary, the test equipment recommended for the adjustment, and a step-by-step procedure for performing the adjustments. Removal and replacement procedures are given on the alphabetic service sheets (after the schematics in Section VIII). If an adjustable component is mounted on a printed circuit board, it will be shown on the component location diagram which accompanies each schematic.

5-4. SAFETY CONSIDERATIONS

5-5. Although this instrument has been designed in accordance with international safety standards, this manual cortains information and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition (see Safety Considerations page in the front of the the instrument or disconnection of the protective earth terminal is likely to make the apparatus dangerous. Intentional interruption is prohibited.

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Removal of the top cover makes accessible hazardous voltage in the region of connector XA5 (~53 Vrms) and on the A5 FM Driver Board (~50 Vdc). Removal of the bottom cover makes accessible hazardous voltage at connector XA3 (~53 Vrms). Removal of the protective cover on the A4 Line Module exposes hazardous voltage (line voltage) at the module's terminals.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

manual). Service and adjustments should be performed only by qualified service personnel.

Any interruption of the protective (grounding) conductor inside or outside

5.6. EQUIPMENT REQUIRED

5-7. The test equipment required for the adjustment procedures is listed in Table 1-2, Recommended Test Equipment. The critical specifications of substitute test instruments must meet or exceed the standards listed in the table if the performance of the generator is to meet the standards set forth in Table 1-1, Specifications.

5-1

Model 86543

Adjustments

 $\mathcal{A}_{\mathcal{A}}$

5-8. Pozidriv Screwdrivers

5-9. Many screws in the instrument appear to be Phillips, but are not. To avoid damage to the screw slots, Pozidriv screwdrivers should be used.

5-10. Blade Tuning Tools

5-11. For adjustments requiring a non-metallic metal-blade tuning tool, use the J.F.D. Model No. 5284 (HP 8710-1010). In situations not requiring non-metallic tuning tools, an ordinary small screwdriver or other suitable tool is sufficient. No matter what tool is used, never try to force any adjustment control in the generator. This is especially critical when tuning variable slug-tuned inductors, and variable capacitors.

5-12. Extender Board. An extender board (HP 08640-60036) is available which can be used to extend the A3 Control/Power Supply Board Assembly for service.

5-13. FACTORY-SELECTED COMPONENTS

5-14. Factory-selected components are identified on the schematics and parts list by an asterisk (*) which follows the reference designator. The nominal value of the components is normally shown. The manual change sheets will provide updated information pertaining to the selected components. Table 5-1 lists the reference designator, the criterion used for selecting a particular value, the normal value range, and the service sheet where the component part is shown.

5-15. POST REPAIR TESTS AND ADJUSTMENTS

5-16. The adjustments in this section should be performed when troubleshooting or performance tests indicate that an adjustable circuit is not operating correctly. Perform the adjustments *after* repairing or replacing the circuit. After making the adjustments, repeat the performance tests (found in Section IV) specified in the table. In general, if the RF Section casting was opened (or any RF connectors removed) during a repair, the Output Leakage Test should be performed. Performance test: should also be made for any assembly that had a component changed, even if the changed component was not defective. The power supplies should be checked whenever an assembly has been repaired.

NOTE

Table 5-2 can also be used for troubleshooting. If the generator failed one or more performance tests, cross-referenceing to the associated assembly or circuitry will often indicate the source of the failure.

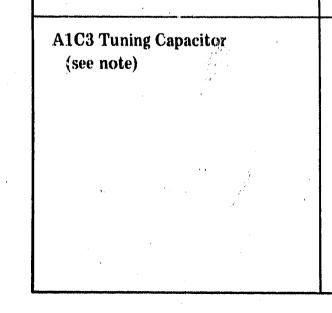
Reference Designator	Basis of Selection	Normal Value Range	Service Sheet
R6	Selected for a meter reading of \leq -10 dB with the output level VERNIER set fully ccw. The Meter Adjustments (paragraph 5-20) should be performed before resistor selection.	909—1000\$2	4
A1A1C4	(See A1A3C6 selection). If removing A1A3C6 does not solve the RF output flatness/harmonic problem, remove A1A1C4. Perform Harmonic Distortion Test (paragraph 4-14) and Output Level Flatness Test (paragraph 4-18).	0 or 6.8 pF	3
A1A1R1	Selected for harmonic levels within published specifications. After resistor selec- tion, verify that RF output power is greater than +10 dBm (+8 dBm, Opt. 003).	133-14752	3
A1A1R15	Selected for harmonic levels within published specifications. After resistor selec- tion, verify that RF output power is greater than +10 dBm (+8 dBm, Opt. 003).	61.9-133\$2	3
A1A1R28	Selected for harmonic levels within published specifications. After resistor selec- tion, verify that RF output power is greater than +10 dBm (+8 dBm, Opt. 003).	147-21552	3
A1A1R31	Selected for output level flatness within specification on the 270–520 MHz range. If frequency response peaks out of specification on the high end of range, decrease value of the resistor.	9 0.9121Ω	3

Table 5-1. Factory-Selected Components (1 of 2)

5-2

ł

Reference Designator	·· Basis of Selection	Normal Value Range	Servic Sheet
A1A3C6 (see note)	Selected for output level flatness and carrier harmonics within specifications (on the 270-520 MHz range). Normally, when the capacitor is removed, flatness is improved but harmonic content is increased. (See also A1A1C4 selection.) Perform Harmonic Distortion Test (paragraph 4-14) and Output	0 or 4.3 pF	2
, ,	Level Flatness Test (paragraph 4-18).	ν.	
A1A3C13 (see note)	Selected to provide A1A3C2 adequate adjustment range to lower maximum output frequency on 270-520 MHz range.	0—1.0 pF	2
A3C23	Selected for flattest response to external AM input frequencies on the top 10 dB of the output level VERNIER and for all settings of the MODULA- TION LEVEL control. Perform AM Bandwidth Test (paragraph 4-21).	10—200 рF	4
A3R53	Selected to provide correct meter reading in the +10 dBm OUTPUT LEVEL range. Perform Meter Adjustments (paragraph 5-20).	13301470\$2	4
A5R2	Breakpoint, slope and exponent network resistors. Perform Preliminary		5
A5R4	FM Adjustments (paragraph 5-23), FM Distortion Adjustment (paragraph		
A5R6	5-24) and FM Deviation Adjustment (paragraph 5-25).		
A5R8 A5R10			
A5R12			
A5R14			
A5R22-25 A5R28-30			
A5R33			
A5R35			
A5R38			
A5R40			
A5R44		(
A5R48			
(see note)			
A5R66	Exponent network, 100 kHz, 3 kHz, and 10 kHz resistors. Perform Prelim-	e about .	6
A5R68	inary FM Adjustments (paragraph 5-23), FM Distortion Adjustments (5-24),		
A5R70	and FM Deviation Adjustment (paragraph 5-25).		
A5R72			
A5R74 A5R76			
A5R76			}
A5R89			· ·
A5R91			
(see note)			
(500		-	
	NOTE		
• • •	Replacing these components may require FM adjustments. FM		
	adjustments are complex and time consuming and require speci	al	
	test equipment.		· .
mikory dist		· · · · · · · · · · · · · · · · · · ·	,
1			


Table 5-1. Factory-Selected Components (2 of 2)

3 8 1

Adjustments

Assembly, Circuit, or Part Repaired	Performance Test (After Repair Completed)	Adjustment Procedure (If Necessary)
All electrical repairs		Power Supply Adjustment (para- graph 5-17)
A1A1 RF Amplifier/ALC Board Assembly	Output Level Accuracy Test (paragraph 4-17) Output Level Flatness Test (paragraph 4-18) AM Sensitivity and Indicated Accuracy Test (paragraph 4-22) AM Distortion Test (paragraph 4-23)	Detector Bias and AM Distortion Adjustment (paragraph 5-18) AM Sensitivity Adjustment (paragraph 5-19) Meter Adjustments (para- graph 5-20)
A1A2 FM Modulator Board Assembly (see note)	Frequency Accuracy Test (paragraph 4-13) FM Distortion Test (paragraph 4-25) FM Sensitivity and Meter Accuracy Test (paragraph 4-26)	Tuning Capacitor and Pulley Adjustment (paragraph 5-21) Frequency Adjustment (para- graph 5-22) Preliminary FM Adjustments (paragraph 5-23) FM Distortion Adjustment (paragraph 5-24) FM Deviation Adjustment (paragraph 5-25)
A1A3 RF Oscillator Board Assembly (see note)	Frequency Accuracy Test (paragraph 4-13) FM Distortion Test (paragraph 4-25) FM Sensitivity and Meter Accuracy Test (paragraph 4-26)	Frequency Adjustment (paragraph 5-22) Preliminary FM Adjustments (paragraph 5-23) FM Distortion Adjustment (paragraph 5-24) FM Deviation Adjustment (paragraph 5-25)
A1A4 Turret Assembly (see note)	Frequency Accuracy Test (paragraph 4-13) FM Distortion Test (paragraph 4-25) FM Sensitivity and Meter Accuracy Test (paragraph 4-26)	Frequency Adjustment (para- graph 5-22) Preliminary FM Adjustments (paragraph 5-23) FM Distortion Adjustment (paragraph 5-24) FM Deviation Adjustment (paragraph 5-25)

Table 5-2. Post Repair Tests and Adjustments (1 of 2)

Frequency Accuracy Test (paragraph 4-13) FM Distortion Test (paragraph 4-25) FM Sensitivity and Meter Accuracy Test (paragraph 4-26) Tuning Capacitor and Pulley Adjustment (paragraph 5-21) Frequency Adjustment (paragraph 5-22) Preliminary FM Adjustments (paragraph 5-23) FM Distortion Adjustment (paragraph 5-24) FM Deviation Adjustment (paragraph 5-25)

5-4

Adjustments

5-5

Assembly, Circuit, or Part Repaired	Performance Test (After Repair Completed)	Adjustment Procedure (If Necessary)	
Dial Stringing (see note)	Frequency Accuracy Test (paragraph 4-13)	Tuning Capacitor and Pulley Adjust- ment (paragraph 5-21) Frequency Adjustment (paragraph 5-22)	
		Preliminary FM Adjustments (para- graph 5-23) FM Distortion Adjustment (paragraph 5-24) FM Deviation Adjustment	
A3 Assembly (Shaping	Output Level Accuracy Test (paragraph 4-17)	(paragraph 5-25) Detector Bias and AM Distortion	
Amplifier only)	AM Sensitivity and Indicated Accuracy Test (paragraph 4-22) AM Distortion Test (paragraph 4-23)	Adjustment (paragraph 5-18) Meter Adjustments (paragraph 5-20)	
A3 Assembly (Audio Detector and Meter Driver only)	AM Sensitivity and Indicated Accuracy Test (paragraph 4-22)	Meter Adjustments (paragraph 5-20)	
A5 FM Driver Board Assembly (see note)	FM Distortion Test (paragraph 4-25) FM Sensitivity and Meter Accuracy Test (paragraph 4-26)	Preliminary FM Adjustments (paragraph 5-23) FM Distortion Adjustment (para- graph 5-24) FM Deviation Adjustment (para- graph 5-25)	
A6A1 Reverse Power Pro- tection Board Assembly (Option 003 only)		Output Impedance Adjustment (Option 003 only, paragraph 5-26) Reverse Power Level Sense Adjust- ment (Option 003 only, para- graph 5-27)	
M1 Meter	AM Sensitivity and Indicated Accuracy Test (paragraph 4-22)	Meter Adjustments (paragraph 5-20)	

Table 5-2. Post Repair Tests and Adjustments (2 of 2)

NOTE

· •

.

Repairs to these assemblies may require FM adjustments. FM adjust-

ments are complex, time consuming, and require special test equipment.

5-17. POWER SU	PPLY ADJUSTMENT
REFERENCE :	Service Sheet 7.
DESCRIPTION:	A dc voltmeter is used to monitor the +20V supply voltage as it is adjusted.
EQUIPMENT:	Digital Multimeter HP 34702A/34740A
PROCEDURE:	1. Set Signal Generator LINE switch to ON. Connect voltmeter to A3TP7. Adjust $+20V$ Adjust control A3R5 for voltmeter reading of $+20.0 \pm 0.2$ Vdc.
	2. Connect DVM to A3TP6. The voltage should read -10.0 ± 0.5 Vdc.

5-18. DETECTOR BIAS AND AM DISTORTION ADJUSTMENT

REFERENCE: Service Sheets 3 and 4.

DESCRIPTION: The RF Detector Bias is adjusted so the RF output voltage tracks the ALC dc reference voltage which is set by the VERNIER control. The Distortion Null is adjusted so the RF envelope accurately represents the audio AM drive signal at low ALC reference levels. Since the two adjustments interact, the adjustments may need to be repeated. A spectrum analyzer is used to measure the RF output level and detect the AM signal. The ALC reference is monitored with a dc voltmeter.

EQUIPMENT:Spectrum AnalyzerHP 8558B/182CDigital MultimeterHP 34702A/34740A10 dB Step AttenuatorHP 355D

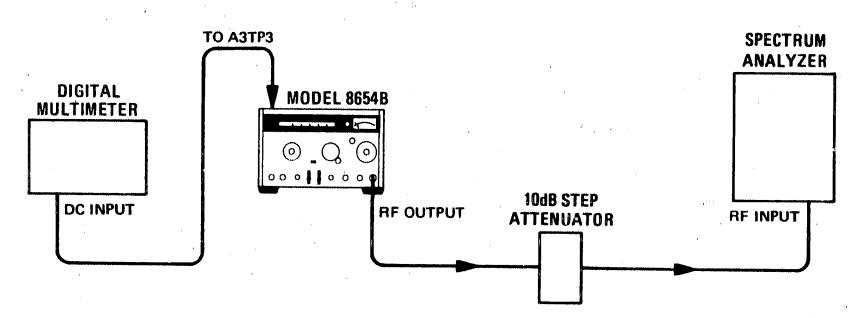


Figure 5-1. Detector Bias and AM Distortion Adjustment Setup

PROCEDURE:

5-6

1.

If A1 RF Section Assembly cover has not been removed, remove detector bias access plug on bottom side of assembly.

2. Center Detector Bias potentiometer A1A1R39 (Service Sheet 3) and Distortion Adjust potentiometer A3R52 (Service Sheet 4).

5-18. DETECTOR BIAS AND AM DISTORTION ADJUSTMENT (Cont'd)

3. Connect equipment as shown in Figure 5-1 after setting Signal Generator controls as follows:

METER	/		•	LEVEL
FREQUENCY I	RANGE (MI	Hz)		35—66 MHz
FREQUENCY	TUNE		•	50 MHz
OUTPUT LEVE	L Switch.		•	+10 dBm
AM				INTERNAL
AM LEVEL	• • • •		. •	Fully cew
FM	•, • • •			OFF
400 Hz/1 kHz S	witch	• . • • • •	•	400 Hz

- 4. Set step attenuator to 20 dB.
- 5. Set Signal Generator output level VERNIER for voltmeter reading of -2.00 Vdc at A3TP3.
- 6. Set spectrum analyzer resolution bandwidth to 300 kHz or greater, optimum input level to 0 dBm (40 dB attenuation), vertical scale to linear, display smoothing to between 10 and 50 kHz, and adjust frequency controls to center 50 MHz signal on display. Set frequency span to 0 and fine adjust frequency controls to peak signal on display. Adjust vertical reference level controls to bring signal to fifth graticule line from bottom of display.

NOTE

Check spectrum analyzer baseline position by removing RF input. Baseline should be exactly on bottom graticule line.

- 7. Set Signal Generator OUTPUT LEVEL switch to 0 dBm, and adjust VERNIER for voltmeter reading of -0.20 Vdc.
- 8. Set step attenuator to 0 dB. Use non-metallic tool to adjust Detector Bias control A1A1R39 to bring signal to same reference level (fifth line from bottom).
- 9. Repeat steps 4 to 8 until RF signal level viewed on the spectrum analyzer is same
- for both -2.00 Vdc and -0.20 Vdc ALC reference levels.
- 10. Set -0.20 Vdc at A3TP3 and adjust AM LEVEL control so that upper peak of sine wave is at eighth graticule line from bottom of display (set analyzer to trigger internally).
- 11. Adjust Distortion Adjust control A3R52 so that lower peak of sine wave is at second graticule line.
- 12. Set AM LEVEL fully ccw. If level has shifted more than 0.2 division from fifth graticule line, set OUTPUT LEVEL to +10 dBm and repeat steps 4 to 12.
- 13. Perform AM Sensitivity Adjustment (paragraph 5-19), AM Sensitivity and Indicated Accuracy Test (paragraph 4-22), and AM Distortion Test (paragraph 4-23).

SPECTRUM

ADJUSTMENTS

5-19. AM SENSITIVITY ADJUSTMENT

REFERENCE: Service Sheet 4.

DESCRIPTION:

Adjustments

The Signal Generator is externally amplitude modulated by a test oscillator with a level set to give 60% AM. The AM is demodulated with a spectrum analyzer in a zero span mode. The AM depth is measured directly on the display and is compared with the panel meter reading.

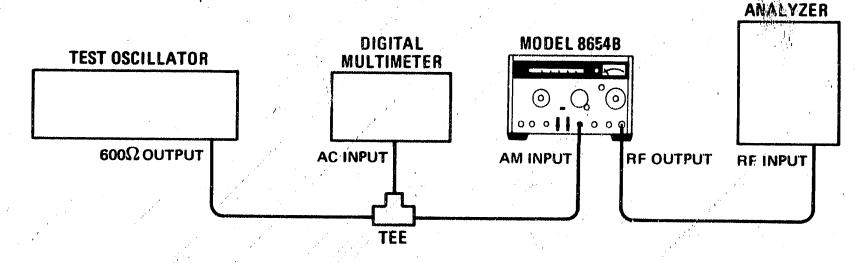


Figure 5-2. AM Sensitivity Adjustment Setup

EQUIPMENT:	Spectrum Analyzer HP 8558B/182C
·	Test Oscillator
	Digital Multimeter HP 34702A/34740A
PROCEDURE.	1 Connect convirus and an all some in Tilling F. C. C. Lit. Ct. 1.C.

PROCEDURE:

5-8

Connect equipment as shown in Figure 5-2, after setting Signal Generator controls as follows:

METER LEVEL FREQUENCY RANGE (MHz) 35–66 MHz	
FREQUENCY TUNE 50 MHz	'
OUTPUT LEVEL Switch40 dBm	
Output Level VERNIER Meter reads +3 dB	3
AM EXT	
AM LEVEL Fully cw	
FM OFF	

Set spectrum analyzer resolution bandwidth to 300 kHz or greater, optimum input 2. level to -40 dBm (0 dB attenuation), vertical scale to linear, display smoothing to between 10 and 50 kHz, and adjust center frequency controls to center 50 MHz signal on display. Adjust vertical reference level controls to bring signal level to fifth graticule line from bottom of display.

- Set test oscillator to 1 kHz and adjust level for 0.424 Vrms (0.6 Vpk) as read on ac 3. voltmeter.
- Adjust AM Gain potentiometer A3R34 for peak-to-peak deflection of 6 divisions 4. on display (corresponding to 60% AM).

NOTE

Check spectrum analyzer base line position by removing RF input. Base line should be exactly on bottom graticule line.

Model 8654B

Adjustments

5-9

ADJUSTMENTS

5-20. METER ADJUSTMENTS

REFERENCE: Service Sheet 4.

DESCRIPTION:

The meter is set mechanically to zero. Then the meter amplifier gain and zero controls are adjusted so the meter tracks the actual RF output as monitored with a power meter. Finally, the audio detector gain is adjusted.

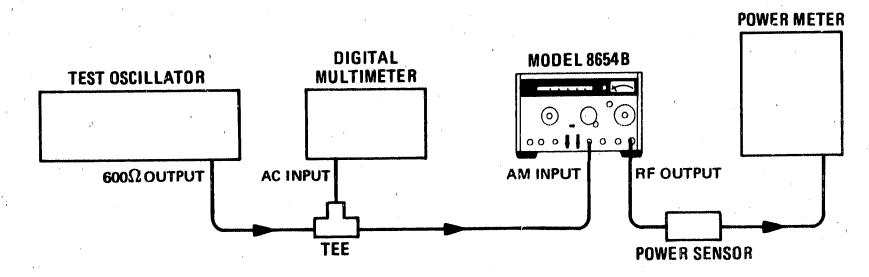


Figure 5-3. Meter Adjustments Setup

EQUIPMENT:	Power Meter and Sensor	•		•	•		HP 435A/8481A
- -	Digital Multimeter			•	•	•	HP 34702A/34740A
	Test Oscillator	J	•		•	•	HP 651B

PROCEDURE:

1. Set Signal Generator LINE switch to OFF. Allow time for meter to fall to rest. Adjust mechanical zero adjustment screw on panel meter cw for a zero meter reading. Then turn screw slightly ccw to free mechanism from adjusting peg.

2. Set LINE switch to ON. Connect equipment as shown in Figure 5-3 after setting Signal Generator controls as follows:

METER	•	÷	•		LEVEL
FREQUENCY RANGE (MHz)	•	•		•	35-66 MHz
FREQUENCY TUNE		•	•	•	50 MHz
OUTPUT LEVEL Switch	•	•			+10 dBm
Output Level VERNIER					Fully ccw
AM	•	•	•		OFF
AM LEVEL	•		•		Fully cw

FM

. . . . OFF

- 3. Allow at least a 5-minute warmup. Set power meter range to measure +10 dBm.
- 4. Adjust output level VERNIER for power meter reading of +10 dBm (+8 dBm for Option 003). Adjust Meter Gain control A3R57 for 0 dB (-2 dB for Option 003) as read on Signal Generator panel meter.
- 5. Set OUTPUT LEVEL switch to 0 dBm and adjust VERNIER for power meter reading of -7 dBm. Adjust Meter Zero control A3R54 for -7 dB as read on panel meter.

5-20. METER ADJUSTMENTS (Cont'd)

6. Adjust output level VERNIER for power meter reading 0 dBm. If panel meter does not read within ± 0.2 dB of 0 dBm, slightly readjust Meter Gain A3R57 for proper reading.

7. Repeat steps 4 to 6, adjusting Meter Gain A3R57 and Meter Zero A3R54 as needed until panel meter reads within ± 0.2 dB of power meter reading for levels of ± 10 , (+8 for Option 003), 0, and ± 7 dBm.

NOTE

If it is not possible to attain meter readings within $\pm 0.2 \, dB$ of power meter reading for levels of ± 10 (± 8 for Option 003) and 0 dBm, select a different value of resistance for A3R53 ($\pm 1330-1470\Omega$). Decreasing resistance increases the meter indication at 0 dBm but does not directly affect the $\pm 10 \, dBm$ range.

8. Set OUTPUT LEVEL to approximately 0 dBm, AM to EXT (with AM LEVEL fully cw), and METER to AM.

9. Set test oscillator for 1 kHz and adjust level for 0.707 Vrms as read on ac voltmeter.

10. Adjust Detector Gain control A3R45 for panel meter reading of 10.

NOTE

Check that Meter jumper (connected to A3C27) is in N (normal) position.

5-21. TUNING CAPACITOR PULLEY ADJUSTMENT

REFERENCE: Service Sheet 2.

5-10

DESCRIPTION: The position of the capacitor pulley on the capacitor shaft is se for the full tuning range of the capacitor as the frequency is tuned from stop to stop. The pulley is correctly adjusted when the frequency can be tuned through minimum at the low frequency end of the dial and through the maximum at the high end (refer to Figure 5-4).

NOTE

Performing the Tuning Capacitor Pulley Adjustment will require that FM adjustments also be performed. FM adjustments are complex, time consuming, and require special test equipment.

PROCEDURE: 1. Remove the RF Section Assembly cover as described on Service Sheet A.

2. Connect the counter's high frequency low impedance input to RF Amplifier output connector A1A1J3. Set Signal Generator controls as follows:

FREQUENCY RANGE (MHz)......10-19 MHzFREQUENCY TUNE......Fully ccw to stop

Model 8654B

5-11

ADJUSTMENTS

5-21. TUNING CAPACITOR PULLEY ADJUSTMENT (Cont'd)

4.

5.

OUI	PI	JT	\mathbf{L}	EV	Έl	្រុន	Swi	\mathbf{tc}	h	•		•	• '	0 dBm
Out	out	: L	eve	el '	VE	RI	NIE	ER	•	•	•	•	•	Fully cw
AM	•		•		•	•	•		•		•	•		OFF
														OFF

3. Check that the FREQUENCY TUNE control is against the counterclockwise (low frequency) stop.

Loosen the two setscrews on the capacitor pulley.

Insert a non-metallic tuning tool into the slotted end of the tuning ca₁ acitor shaft (C3) and adjust the low frequency foldback as read on the counter, from 5 to 10 kHz beyond the frequency minimum. The frequency will be approximately 9.5 MHz and the capacitor blades will be almost fully meshed (refer to Figure 5-4).



Figure 5-4. Proper Capacitor Tuning Characteristics

6. Tighten the pulley setscrews.

CAUTION

Verify that the pulley does not rub against the oscillator cables or chassis parts, and that the dial cord does not rub against the casting as it passes through the holes.

7. Tune the frequency up a few turns and then back to the counterclockwise stop. Check that the frequency tunes from 5 to 10 kHz beyond the minimum.

Some frequency foldback is also normal at the high end of the frequency range.

8. Perform the Frequency Range Adjustment (paragraph 5-22), Preliminary FM Adjustments (paragraph 5-23), FM Distortion Adjustment (paragraph 5-24), and FM Deviation Adjustment (paragraph 5-25).

5-22. FREQUENCY AND RANGE ADJUSTMENT

Power Meter

REFERENCE: Service Sheets 2 and 3.

DESCRIPTION: The cover of the RF Section Assembly is removed and both the range inductors and the tuning range capacitor are adjusted.

Frequency Counter HP 5383A

NOTE

Performing the Frequency and Range Adjustment will require that the FM adjustments also be performed. FM adjustments are complex, time consuming, and require special test equipment.

EQUIPMENT:

PROCEDURE:

NOTE

. . . HP 435A/8481A

Before performing this adjustment, check the bias voltages on the FM Modulator varactor diodes. With RANGE set to 270-520 MHz, the voltage at A5TP8 (Service Sheet 6) should be 0.0 ± 0.1 Vdc. The voltage at J2 pin 4 (Service Sheet 6) should be $+48.5 \pm 1.0$ Vdc.

1. Remove the RF Section Assembly and RF Section Assembly cover as described on Service Sheets A and B.

NOTE

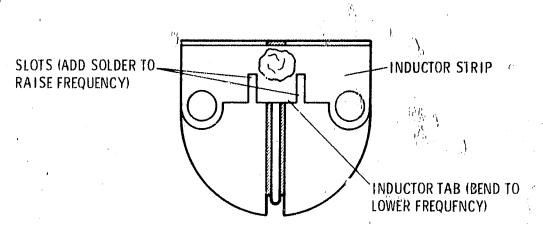
If adjustment is necessary only to correct a consistent cursor position error (indication consistently high or low on all ranges), the dial drum may be moved slightly to the right or left after loosening the dial drum setscrew. Do not allow dial drum to bind against the base plate casting. This adjustment does not require FM recalibration.

2. Connect the counter's high frequency, low impedance input to RF Amplifier output connector A1A1J3. Set Signal Generator's controls as follows:

FREQUENCY RANGE (MHz) .	2	70–520 MHz
FREQUENCY TUNE	2	70 MHz
OUTPUT LEVEL Switch	0	dBm
Output Level VERNIER	F	'ully cw
AM	C	OFF
FM	C)FF

3. Adjust the 270–520 MHz turret inductor A1A4L6 for a counter reading of 270 ±2.7 MHz.

To prevent damage to the +14 Vdc power supply, set LINE to OFF before making these adjustments.



5-22. FREQUENCY AND RANGE ADJUSTMENT (Cont'd)

7.

NOTE

To increase frequency, add equal amounts of solder to two slots in the inductor strip. To lower frequency bend the inductor tab.

Figure 5-5. A1A4L6 Turret Inductor Adjustment (270–520 MHz Range)

4. Set FREQUENCY TUNE to 520 MHz and adjust Tuning Range capacitor A1A3C2 for a reading of 520 ± 5.2 MHz.

NOTE

If 520 MHz is not attainable, see the selection procedure for capacitor A1A3C12 in Table 5-1.

- 5. Check at least four FREQUENCY TUNE settings on the range to ensure $\pm 2\%$ accuracy for each setting.
- 6. Set FREQUENCY TUNE to any convenient location on each of the other five ranges. Adjust the turret inductors for counter readings within 2% of the dial indication.

CAUTION

To prevent damage to the +14 Vdc power supply, set LINE to OFF before making adjustments to the 130-270 MHz range inductor.

NOTE

On the 130–270 MHz range, the inductor is adjusted by spreading or pinching the inductor loops. On the 10–130 MHz ranges adjustment is accomplished with a tuning slug in the inductor.

Check at least four FREQUENCY TUNE settings on each range/to ensure $\pm 2\%$ accuracy for each setting. Readjust the turret inductors as necessary to attain this overall accuracy.

ADJUSTMENTS 5-22. FREQUENCY AND RANGE ADJUSTMENT (Cont'd) Connect the power meter's sensor to RF Oscillator output connector A1A3J1. 8. Output power should be greater than +3 dBm at all FREQUENCY RANGE (MHz) and FREQUENCY TUNE settings. Replace RF Section Assembly cover and install the RF Section Assembly in the 9. instrument. 10. Perform the Preliminary FM Adjustments (paragraph 5-23), FM Distortion Adjustment (paragraph 5-24), and FM Deviation Adjustment (paragraph 5-25). 5-23. PRELIMINARY FM ADJUSTMENTS **REFERENCE**: Service Sheets 5, 6, and 7. Various dc voltages and voltage nulls on the A5 FM Driver Assembly are adjusted. DESCRIPTION: ---**EQUIPMENT:** Frequency Counter HP 5383A **PROCEDURE**: **Remove** instrument top cover. 1. 2. Connect a jumper wire between A5TP8 (Service Sheet 6) and A5TP12, GND, (Service Sheet 7). 3. Connect frequency counter to rear panel AUX RF OUT after setting Signal Generator controls as follows: FREQUENCY RANGE (MHz) . . 19-35 MHz FREQUENCY TUNE 35 MHz FINE TUNE centered OFF AM FM OFF Connect dc voltmeter to A5TP3 (Service Sheet 5). Use testpoint A5TP12 (Service 4. Sheet 7) as common ground for all preliminary adjustments. Set FREQUENCY TUNE for 35.0 MHz as read on counter.

- Adjust ADJ A A5R16 (Service Sheet 5) for voltmeter reading of +10.00 Vdc.
- **6**. Set FREQUENCY TUNE for 19.0 MHz as read on counter.
- Adjust ADJ B A5R18 (Service Sheet 5) for voltmeter reading of +5.40 Vdc. 7.
- Repeat steps 3 through 6 until voltages are within ± 0.10 Vdc of those specified at 8. 19.0 and 35.0 MHz.
- Connect dc voltmeter to A5TP5 (Service Sheet 5). Set FREQUENCY TUNE for 9. 25.0 MHz as read on counter.

5-15

ADJUSTMENTS

5-23. PRELIMINARY FM ADJUSTMENTS (Cont'd)

- 11. Adjust ADJ C A5R42 (Service Sheet 5) for voltmeter reading of 0.60 ± 0.20 Vdc.
- 12. Connect dc voltmeter to A5TP6 (Service Sheet 6).
- 13. Adjust ADJ F A5R122 (Service Sheet 6) for 0.00 ± 0.20 Vdc.
- 14. Connect dc voltmeter to A5TP8 (Service Sheet 6).
- 15. Connect a jumper wire between A5TP10 (Service Sheet 6) and ground (A5TP12).
- 16. Adjust ADJ E A5R63 (Service Sheet 6) so that voltage at A5TP8 remains constant within ± 0.20V as frequency is tuned between 19 and 35 MHz.

NOTE

The voltage will be approximately 0 Vdc but need not be exactly 0 Vdc; however, it must be constant as the frequency is tuned.

- 17. Remove jumper wire between A5TP10 and TP12. Connect jumper wire between A5TP8 and ground (A5TP12).
- 18. Connect dc voltmeter to A5TP10.

觏

- 19. Adjust ADJ D A5R104 (Service Sheet 6) for voltmeter reading of 0.0 ± 0.1 mVdc.
- 20. Remove jumper wire between A5TP8 and TP12.
- 21. Connect dc voltmeter to A5TP5. Set FREQUENCY TUNE to 25.0 MHz (on frequency counter).
- 22. Adjust ADJ C A5R42 for a voltmeter reading of 0.60 ± 0.01 Vdc.
- 23. Perform FM Distortion Adjustment (paragraph 5-24) and FM Deviation Adjustment (paragraph 5-25).

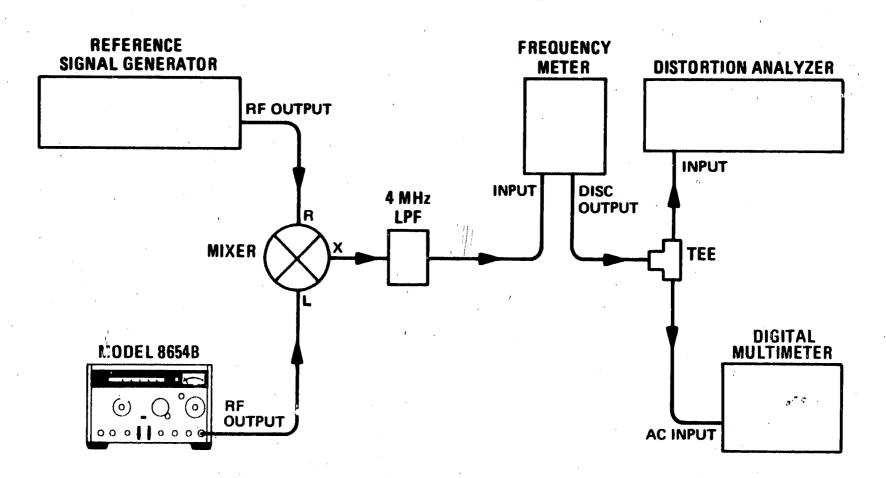
5-24. FM DISTORTION ADJUSTMENT

REFERENCE: Service Sheet 6.

DESCRIPTION:

The Signal Generator is frequency modulated internally at a 1 kHz rate. The FM signal is demodulated by a frequency meter. The deviation level is measured at the discrimin-

ator output, and set to 30.0 kHz. The distortion is ther measured and adjusted to be minimum. A reference generator and a mixer convert the RF output of the test Signal Generator to within the range of the frequency meter. A low-pass filter at the mixer output prevents the frequency meter from mis-triggering on the upper sideband generated by the mixer when the RF is low in frequency.


Adjustments

Model 8654B

ADJUSTMENTS

5-24. FM DISTORTION ADJUSTMENT (Cont'd)

Figure 5-6. FM Distortion Adjustment Setup

Frequency Meter	•	•	•	`•	•	•	•	HP 5210A
Filter Kit (for Frequency	Me	ter).				•	HP 10531A
Distortion Analyzer .								
Signal Generator (referen								
Digital Multimeter		•	•			• • • •		HP 34702A/34740A
Mixer	\• •	•	•		•	•		HP 10514A
4 MHz Low pass Filter								

PROCEDURE:

Ч́.)

EQUIPMENT:

- 1. Install shorting board in frequency meter and calibrate it for 1 Vdc at output jack for a full-scale meter reading. Remove shorting board and install a 10 kHz Butter-worth low-pass filter.
- 2. Connect equipment as shown in Figure 5-6 after setting test Signal Generator controls as follows:

METER: . . LEVEL FREQUENCY RANGE (MHz) 10-19 MHz . FREQUENCY TUNE 10 MHz OUTPUT LEVEL Switch. . . . +10 dBm Output Level VERNIER Meter reads -- 3 dB OFF 4 FM INT . FM RANGE (kHz) **30 kHz** . FM LEVEL . Fully ccw 400 Hz/1 kHz 1 kHz. . . .

5-24. FM DISTORTION ADJUSTMENT (Cont'd)

- 3. Set reference signal generator for a -7 dBm signal at 11 MHz.
- 4. Set frequency meter to trigger on input signal; set frequency range to 1 MHz. Fine tune reference signal generator for an on-scale frequency meter reading of approximately 0.8 MHz.
- 5. Set METER switch to FM. Adjust FM LEVEL of test Signal Generator for a voltmeter reading of 21.2 mVrms (or 30.0 mVpk which corresponds to 30.0 kHz frequency deviation).
- 6. Calibrate distortion analyzer for 1 kHz signal and measure distortion. Adjust DIST potentiometer A5R107 for minimum distortion.
- 7. Recheck voltmeter reading. If it changed significantly, reset FM LEVEL for a voltmeter reading of 21.2 mVdc and readjust A5R107 for minimum distortion. Distortion should be less than 1.5%.
- 8. Repeat steps 2 through 7 at 35 MHz (35-66 MHz range). Tune reference signal generator to 36 MHz at -7 dBm.
- 9. Minimum distortion for 35 MHz might occur at a slightly different adjustment than at 10 MHz. Note where A5R107 is set for both frequencies and set it midway between those positions. Distortion must be less than 1.5% for both frequencies.

NOTES

The set level on the distortion analyzer must be set to a lower range because of the low level of the discriminator output. This lower level becomes the 100% level.

If distortion is excessive, check discriminator output with an oscilloscope. If the signal is clipped, reduce FM LEVEL slightly until clipping ceases; adjust DIST potentiometer A5R107 for minimum distortion; then repeat with proper FM LEVEL.

If a frequency meter filter greater than 10 kHz is used, the noise in the system may contribute to the level of distortion read on the meter.

10. Perform FM Deviation Adjustment (paragraph 5-25).

5-17

10/05/14

5-25. FM DEVIATION ADJUSTMENT

REFERENCE: Service Sheets 5 and 6.

DESCRIPTION:

The following procedure calibrates the FM deviation for each frequency range. This is done by selecting resistors that set the breakpoint, slope, exponent, and gain of the FM driving circuits. (These are parameters that affect the FM deviation vs. frequency tuning and range.) The FM meter and deviation ranges are also calibrated.

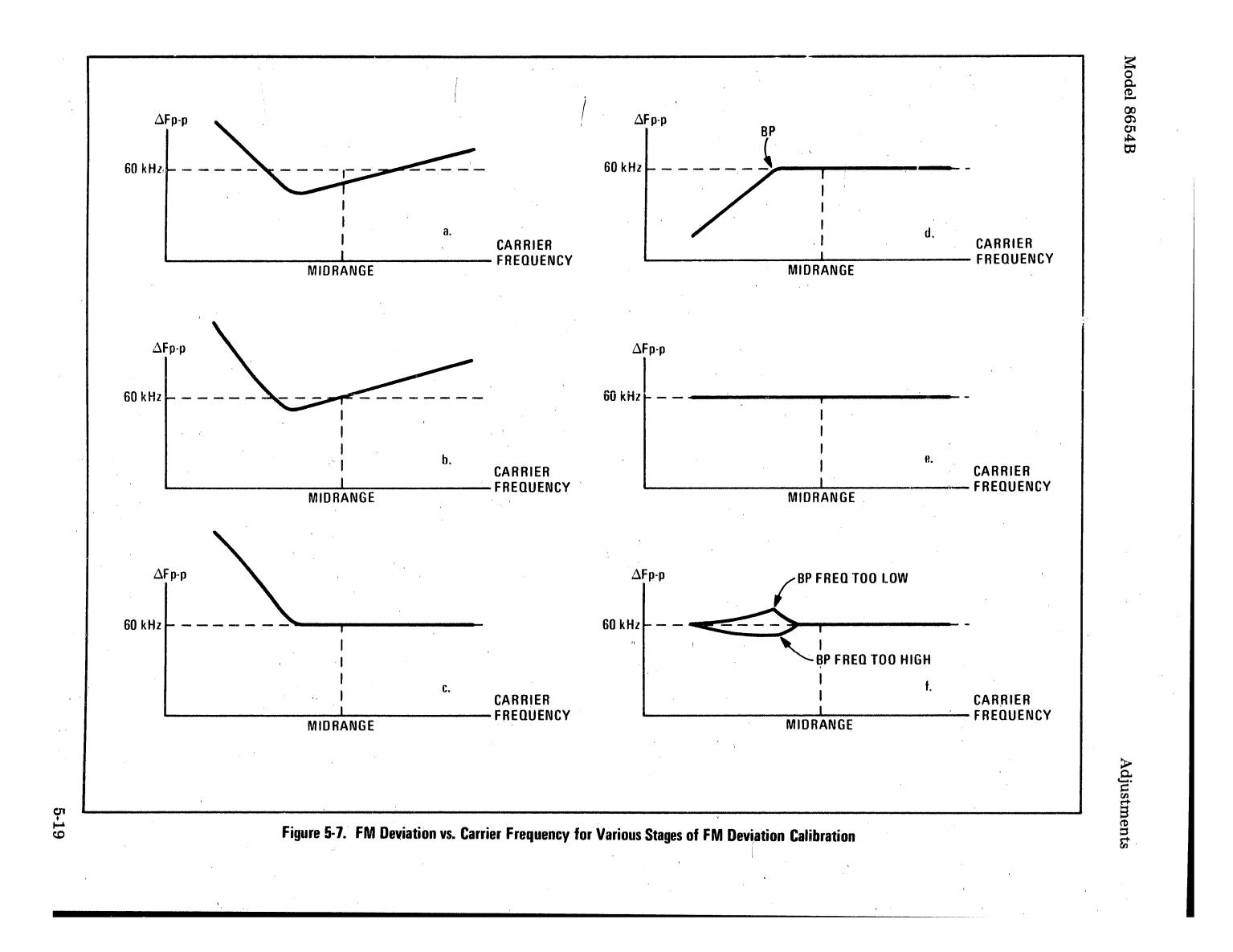
A special test accessory (HP 08654-60084 FM Deviation Adjustment Board) is required. It has a built-in square wave generator and a set of switches and potentiometers which substitute for the resistors to be selected during the calibration. After calibration of a given frequency range, the potentiometers are switched to an ohmmeter for ease of measurement. Also required is a frequency counter with frequency difference measurement capability (HP Model 5345A/5354A or 5345A/5353A; see note below). The counter permits rapid characterization of deviation vs. carrier frequency without having to be tuned.

The adjustment is made by frequency modulating the generator with an accurate $\pm 0.949V$ square wave. The frequency of the generator is measured during each half of the square wave cycle and the difference between the two frequencies is displayed. This is the peak-to-peak FM deviation. Each half cycle of the square wave is triggered by the counter gate which also allows adequate time for the square wave to settle before initiating the count.

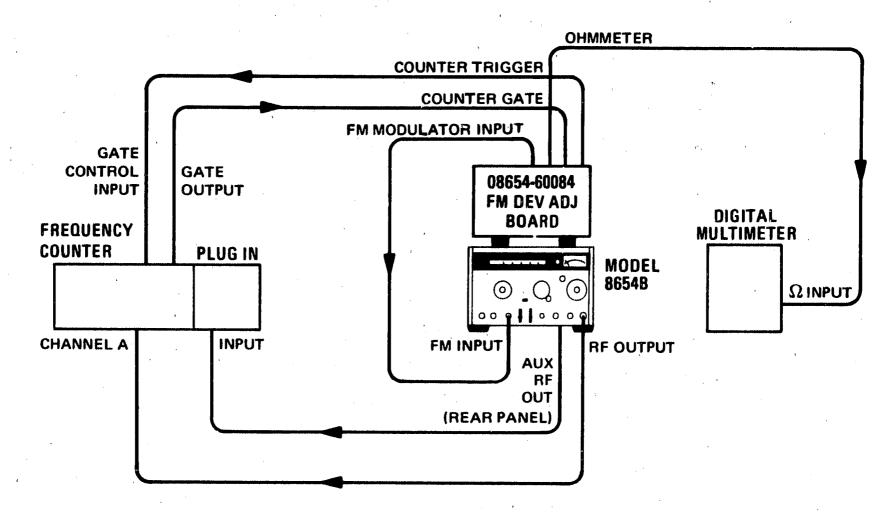
With the test accessory controls at the initial settings, the FM deviation for a typical frequency range is as shown in Figure 5-7. First the generator is tuned to a nominal midrange frequency. The FM gain is then adjusted for 60 kHz peak-to-peak deviation (30 kHz peak) as in Figure 5-7b. The generator is then tuned to the maximum nominal frequency on the range and the FM exponent is adjusted for a deviation of 60 kHz peak-to-peak as in Figure 5-7c.

Now the generator is tuned down in frequency until the deviation begins to increase and the FM breakpoint is adjusted to bring the deviation back to 60 kHz peak-to-peak. This, however, is done with maximum correction or FM slope and the result is as in Figure 5-7d. The generator is then tuned to the minimum nominal frequency and the FM slope is adjusted for 60 kHz peak-to-peak deviation.

Figure 5-7e shows a properly adjusted generator. The frequency range should be carefully checked for constant deviation. Figure 5-7f shows the deviation response of a range with an improper breakpoint adjustment.


The 270-520 MHz FREQUENCY RANGE has two FM breakpoint and slope adjustments. The adjustment of this range, however, follows the same principles as for the other ranges. Finally, the FM gain for the 3, 10, and 100 kHz deviation ranges is adjusted.

To aid in visualizing FM deviation flatness, throughout theis procedure, plot counter readings on the graphs in Figure 5-9.


Before performing this adjustment, perform Preliminary FM Adjustments (paragraph 5-23) and FM Distortion Adjustment (paragraph 5-24).

NOTE

Paragraph 5-25A gives a procedure for using an HP-IB programmable counter and digital-to-analog converter in place of the HP 5345A.

5-25. FM DEVIATION ADJUSTMENT (cont'd)

Figure 5-8. FM Deviation Adjustment Setup

EQUIPMENT:	Frequency Counter HP 5345A/5354A
	Digital Multimeter HP 34702A/34740A
,	FM Deviation Adjustment Board HP 08654-60084

PROCEDURE:

5-20

NOTE

Due to the complex nature of this adjustment, it is extremely important that you read and understand the information presented under DESCRIPTION.

Initial Setup

- **1.** Remove instrument top cover.
- 2. Mount FM Deviation Adjustment Board to rear panel (use two screws from top cover).
- **3.** Interconnect instruments as shown in Figure 5-8.
- 4. Remove two ribbon cables from A5 FM Driver Board Assembly and connect to corresponding connector jacks J1 and J2 on Adjustment Board. Connect three ribbon cables from Adjustment Board to corresponding connector jacks A5J1, J2, and J3 on A5 FM Driver Board Assembly.

5-21

ADJUSTMENTS

5-25. FM DEVIATION ADJUSTMENT (Cont'd)

5. Set Signal Generator controls as follows:

METER .	•		•		•	•	•		•			•	LEVEL
FREQUENC	ĊŶ	RA	AN	[G]	Ė (M	Hz)	•			•	19–35 MHz
FREQUENC	ĊŶ	Τ	JN	Έ	•	•		•			•	•	19 MHz
FINE TUNE	2		•		•	•				•	•	•	Centered
OUTPUT LI	EV	EL	S	wit	tch	۱.			•				0 dBm
													Meter reads +3 dB
AM		•		•	•	•				•	• .		OFF
FM		•	•	• '				•		•	• ·		EXT
FM RANGE		•	•	• ·	•	•		•	•				30 kHz
FM LEVEL	•	•	•	•	•	•	•		•	•	•	•	Fully cw
,													

6. Set Adjustment Board controls as follows:

BP Switch .	•	•	•	•	•		•		•		•	Down
SL Switch .		•	•			•			•	•	•	Down
E Switch	•	•	•		•			•	•	•	<	Down
G Switch	•			•	•	•			•	•		Down
BP7 Switch .			•	•								Down
SL7 Switch .								•	•			Down
BP Potentiom												
SL Potentiom	etei	r [`]		•	•		•	•				Fully cw
E Potentiomet												
G Potentiome												
BP7 Potention												-
SL7 Potention												
() · · ·							,					

7. Set frequency counter controls as follows:

Addition

FUNCTION	••••				•	•	•	•	FREQ A
GATE TIME									
DISPLAY POS									
CHANNEL A	LEVEL		•			•			PRESET
	Impedance	e				•	•		50Ω
	ATTEN	•				•			x1
	Mode .	•		•		•	•	•	SEP
PLUG IN	• • • •			•			•		AUTO; CONT. WAVE
GATE CONTR									

NOTES

The Adjustment Board must have been preadjusted to give a ± 0.949 $\pm 0.003V$ square wave at the Signal Generator FM INPUT. If it does not, disconnect the input to the counter gate and check the FM drive (out of the coaxial cable) with a dc voltmeter. The toggle switch can be used to reverse the level of the drive voltage. See Service Note P-08654-60084.

In the following procedure the counter reads the peak-to-peak FM deviation. The peak deviation (indicated on generator's panel meter) is one-half of this reading.

5-25. FM DEVIATION ADJUSTMENT (Cont'd)

19–35 MHz Range Adjustment

- Set METER to FM. Tune FREQUENCY TUNE between 19 and 35 MHz stopping 8. at each turn of the knob to check counter. Counter should read 60.0 ± 3.6 kHz for all frequencies.
- If frequency deviation was correct, proceed to step 25. 9.
- 10. If frequency deviation was uniformly too high or low, adjust GAIN A5R59 (Service Sheet 6) and check that frequency deviation is 60.0 ± 3.6 kHz across range. Proceed to step 25.
- 11. If frequency deviation was incorrect, unsolder and lift one end of resistors A5R4 (2B), R23 (2S), and R44 (2E) shown on Service Sheet 5.
- 12. Set BP, SL, and E switches on Adjustment Board up.
- 13. Tune frequency 5 25 MHz. Adjust GAIN A5R59 for counter reading of 60.0 \pm 0.2 kHz.
- 14. Tune frequency to 35 MHz. Adjust E potentiometer on Adjustment Board for counter reading of 60.0 ± 0.6 kHz.
- 15. Tune back to 25 MHz stopping at each turn of knob to check counter. To aid in visualizing deviation flatness, plot counter readings on Figure 5-9. Counter should read 60.0 ± 3.6 kHz for these frequencies.
- 16. If frequency deviation was incorrect, readjust GAIN A5R59 and E on Adjustment Board for best compromise.
- 17. Tune down in frequency below 25 MHz until deviation increases 1 kHz above deviation at 25 MHz. Adjust BP potentiometer on Adjustment Board for counter reading of 60.0 ± 0.2 kHz.
- 18. Tune frequency to 19 MHz. Adjust SL potentiometer on Adjustment Board for counter reading of 60.0 ± 0.6 kHz.
- 19. Tune back to 25 MHz stopping at each turn of knob to check counter. If desired, plot counter readings on Figure 5-9. Counter should read 60.0 ± 3.6 kHz for these frequencies.
- If frequency deviation was incorrect, readjust BP and SL on Adjustment Board for best compromise.
- 21. Recheck deviation from 19 to 35 MHz. If deviation is not 60.0 ± 3.6 kHz, readjust GAIN A5R59 and BP, SL, and E on Adjustment Board for best compromise.
- 22. Set G, BP7, and SL7 switches up. Measure resistance of BP, SL, and E potentiometers by setting each corresponding switch down. Note resistance on Table 5-3, Resistor Selection Record, and return switch up.

5-22

5-23

ADJUSTMENTS

5-25. FM DEVIATION ADJUSTMENT (Cont'd)

- 23. Select nearest standard value resistors to those resistances measured in step 22 and solder them in place of A5R4 (2B), R23 (2S), and R44 (2E). Enter values in Table 5-3. A listing of standard value resistors (±1% tolerance) and corresponding HP part numbers is found in Table 5-4.
- 24. Reconnect DIP plugs A1A5P1 and P2 to the A5 FM Driver Board Assembly. (Do not disconnect the test cable from A5J3. However, check that all slide switches on the adjustment board are down.) Tune across the range noting FM deviation as indicated on counter. Counter readings should be 60.0 ± 3.6 kHz.

NOTES

If counter reading is not within tolerance, the error may be due to test cable and contact resistances in the FM Deviation Adjustment Board. Replace resistors with the next higher standard value resistors and measure again.

Allow time for resistors to cool before making measurement.

10–19, 35–66, 66–130, 130–270 MHz Range Adjustments

NOTE

Perform steps 25 through 42 one range at a time and return to step 25 after each range.

- 25. Connect FM Deviation Adjustment Board (step 4) and set controls as in step 6.
- 26. Set FREQUENCY RANGE as listed below and tune across nominal range stopping at each turn of knob to check counter. Counter should read 60.0 ± 3.6 kHz for all frequencies.

10 10
10-19
35-66
66-130
130-270

27. If frequency deviation was correct, proceed to next frequency range and repeat step 26.

NOTE

If frequency deviation was uniformly too high or low, proceed with the following steps but remove only the resistor related to the "G" adjustment and adjust only G on the Adjustment Board (BP, SL, and E switches down).

5-25. FM DEVIATION ADJUSTMENT (Cont'd)

28. If frequency deviation was incorrect, unsolder and lift one end of resistors listed below.

FREQUENCY RANGE	Resistors											
(MHz)	BP	SL	E	G								
10—19	A5R2 (1B)	A5R22 (1S)	A5R48 (1E)	A5R66 (1G)								
35-66	A5R6 (3B)	A5R24 (3S)	A5R40 (3E)	A5R70 (3G)								
66-130	A5R8 (4B)	A5R25 (4S)	A5R38 (4E)	A5R72 (4G)								
130-270	A5R10 (5B)	A5R28 (5S)	A5R35 (5E)	A5R74 (5G)								

- 29. Set BP, SL, E, and G switches on Adjustment board up.
- 30. Tune to frequency listed below. Adjust G potentiometer on Adjustment Board for counter reading of 60.0 ± 0.2 kHz.

FREQUENCY RANGE (MHz)	Frequency Set (MHz)
10-19	13.3
35-66	47
66-130	91
130-270	180

31. Tune to frequency listed below. Adjust E potentiometer on Adjustment Board for counter reading of 60.0 ± 0.6 kHz.

FREQUENCY RANGE (MHz)	Frequency Set (MHz)
10—19	19
35—66	66
66—130	130
130—270	270

- $= \frac{q_{r_1}}{q_{r_2}} \sum_{i=1}^{r_1} \frac{1}{q_{r_2}} \sum_{i=1}^{r_2} \frac{1}{q_{r_2}} \sum_{i=1$
- 32 Tune back to frequency of step 30 stopping at each turn of knob to check counter. To aid in visualizing deviation flatness, plot counter readings on Figure 5-9. Counter should read 60.0 ± 3.6 kHz for these frequencies.

33. If frequency deviation was incorrect, readjust potentiometers G and E on Adjustment Board for best compromise.

34. Tune down in frequency below that of step 30 until deviation increases 1 kHz above deviation at frequency of step 30. Adjust BP potentiometer on Adjustment Board for counter reading of 60.0 ± 0.2 kHz.

5 - 25

ADJUSTMENTS

5-25. FM DEVIATION ADJUSTMENT (Cont'd)

35. Tune to frequency listed below. Adjust SL potentiometer on Adjustment Board for counter reading of 60.0 ± 0.6 kHz.

EQUENCY RANGE (MHz) 10-19 35-66 66-130 130-270	Frequency Set (MHz)							
10-19	, . <i>I</i> .	10						
3566	х - т	35						
66-130		66						
130-270		130						

- 36. Tune back to frequency of step 30 stopping at each turn of knob to check counter. If desired, plot counter readings on Figure 5-9. Counter should read 60.0 ± 3.6 kHz for all these frequencies.
- 37. If frequency deviation was incorrect, readjust BP and SL on Adjustment board for best compromise.
- 38. Recheck deviation across entire range. If deviation is not 60.0 ± 3.6 kHz, readjust BP, SL, E, and G potentiometers on Adjustment Board for best compromise.
- 39. Measure resistance of BP, SL, E, and G potentiometers by setting each corresponding switch down, noting resistance in Table 5-3, Resistor Selection Record, and returning switch up.
- 40. Select nearest standard value resistors to those resistances measured in step 39 and solder them in place of the resistors listed in step 28. Enter these values in Table 5-3. A listing of standard value resistors ($\pm 1\%$ tolerance) and corresponding HP part number is found in Table 5-4.
- 41. Reconnect DIP plugs A1A5P1 and P2 to the A5 FM Driver Board Assembly. (Do not disconnect the test cable from A5J3. However, check that all slide switches on adjustment board are down.) Tune across range noting deviation as indicated on the counter. Counter readings should be 60.0 ± 3.6 kHz.

NOTES

If counter reading is not within tolerance, the error may be due to test cable and contact resistances in the FM Deviation Adjustment Board. Replace resistors with the next higher standard value resistors and measure again.

Allow enough time for resistors to cool before making measurements.

42. If all ranges listed in step 25 have been adjusted, proceed to step 43; if not, proceed to next range and begin at step 25.

5-26

5-25. FM DEVIATION ADJUSTMENT (Con't)

270-520 MHz Range Adjustment

- 43. Connect FM Deviation Adjustment Board (step 4) and set controls as in step 6.
- 44. Set FREQUENCY RANGE to 270-520 MHz and tune between 270 and 520 MHz stopping at each turn of knob to check counter. Counter should read 60.0±3.6 kHz for all frequencies.

45. If frequency deviation was correct, proceed to step 64.

NOTE

If frequency deviation was uniformly too high or low, proceed with the following steps but remove only resistor A5R76 (6G) and adjust only potentiometer G on the Adjustment Board (BP, SL, E, BP7, and SL7 switches down).

46. If frequency deviation was incorrect, unsolder and lift one end of resistors A5R12 (6B), R14 (7B), R29 (6S), R30 (7S), R33 (6E), and R76 (6G).

47. Set BP, SL, E, G, BP7, and SL7 switches on Adjustment Board up.

- 48. Tune frequency to 370 MHz. Adjust G potentiometer on Adjustment Board for counter reading of 60.0 ± 0.2 kHz.
- 49. Tune frequency to 520 MHz. Adjust E potentiometer on Adjustment Board for counter reading of 60.0 ± 0.6 kHz.
- 50. Tune back to 370 MHz stopping at each turn of the knob to check counter. To aid in visualizing deviation flatness, plot counter readings on Figure 5-9. Counter should read 60.0 ± 3.6 kHz for these frequencies.
- 51. If frequency deviation was incorrect, readjust potentiometers G and E on Adjustment Board for best compromise.
- 52. Tune down in frequency below 370 MHz until deviation increases 2 kHz above deviation at 370 MHz. Adjust BP potentiometer on Adjustment Board for counter reading of 60.0 ± 0.2 kHz. Note carrier frequency.
- 53. Continue tuning down in frequency to 50 MHz below frequency noted in step 52. Note this frequency. Adjust SL potentiometer on Adjustment Board for counter reading of 60.0 ± 0.6 kHz.
- 54. Tune back to frequency noted in step 52 stopping at each turn of knob to check counter. If desired, plot counter readings on Figure 5-9. Counter should read 60.0 ± 3.6 kHz.
- 55. If frequency deviation was incorrect, readjust potentiometers BP and SL on Adjustment Board for best compromise for frequencies between 370 MHz and that noted in step 53.

5-25. FM DEVIATION ADJUSTMENT (Cont'd)

- 56. Continue tuning down in frequency until deviation increases to 61.5 kHz. Adjust BP7 potentiometer on Adjustment Board for counter reading of 60.0 ± 0.2 kHz.
- 57. Tune frequency to 270 MHz. Adjust SL7 potentiometer on Adjustment board for counter reading of $60.0 \pm C.6$ kHz.
- 58. Tune back to frequency noted in step 53 stopping at each turn of knob to check counter. If desired, plot counter readings on Figure 5-9. Counter should read 60.0 ± 3.6 kHz.
- 59. If frequency deviation was incorrect, readjust potentiometers BP7 and SL7 on Adjustment Board for best compromise.
- 60. Recheck deviation from 270 to 520 MHz. If deviation is not 60.0 ± 3.6 kHz, readjust potentiometers BP, SL, E, BP7, and SL7 on Adjustment Board for best compromise.

NOTE

On this range all adjustments are interactive. Before readjusting any control, consider its effect as shown in Figure 5-7, then make only a slight adjustment of the control and note its effect. Adjustment to much better than 60.0 ± 3.6 kHz is not recommended.

- 61. Measure resistance of BP, SL, E, G, BP2, and SL2 potentiometers by setting each corresponding switch down, noting resistance, and returning switch up.
- 62. Select nearest standard value resistors to those resistances measured in step 61 and solder them in place of A5R12 (6B), R14 (7B), R29 (6S), R30 (7S), R33 (6E) and R76 (6G). Enter values in Table 5-3. A listing of standard value resistors (±1% tolerance) and corresponding HP part numbers is found in Table 5-4.
- 63. Reconnect DIP plugs A1A5P1 and P2 to the A5 FM Driver Board Assembly. (Do not disconnect the test cable from A5J3. However, ensure that all slide switches on adjustment board are down.) Counter reading should be 60.0 ± 3.6 kHz.

If counter reading is not within tolerance, the error may be due to test cable and contact resistance in the FM Deviation Adjustment Board. Replace resistors with next higher standard value resistors and measure again.

Allow enough time for resistors to cool before making measurements.

FM Range Adjustment

64. Connect FM Deviation Adjustment Board (step 4) and set controls as in steps 5 and 6. (If alternate procedure of paragraph 5-25A is being used, set OUTPUT LEVEL switch to -20 dBm.) Set BP, SL, E and G switches down. Set FREQUENCY RANGE on Signal Generator to 19-35 MHz.

5-25. FM DEVIATION ADJUSTMENT (Cont'd)

- 65. Tune frequency until counter reading of 60.0 ± 0.2 kHz is noted. Set FM RANGE to 3 kHz.
- 66. Set counter GATE TIME to 100 ms. (If the alternate procedure of paragraph 5-25A is being used, consult step 9 of that procedure.)
- 67. Counter should read 6.00 \pm 0.06 kHz. If it does not, insert (but do not solder) a resistor of a value that gives correct deviation in place of A5R80 (3 kHz) - try 1100 Ω first. Then solder resistor in place.
- 68. Set FM RANGE to 30 kHz. Tune frequency until counter reading of 60.0 ± 2.0 kHz is noted.
- 69. Set FM RANGE to 10 kHz. Counter should read 18.97 ± 0.19 kHz. If it does not, insert (but do not solder) a resistor of a value that gives correct deviation in place of A5R91 (10 kHz) – try 1470 Ω first. Then solder resistor in place.
- 70. Set FM RANGE to 30 kHz. Set FREQUENCY RANGE to 66-130 MHz. Adjust FREQUENCY TUNE above 80 MHz until counter indicates 60.0 ± 0.2 kHz.
- 71. Set FM RANGE to 100 kHz. Counter should read 189.7 ± 1.9 kHz. If it does not, insert (but do not solder) a resistor of a value that gives correct deviation in place of A5R84 (100 kHz) – try 34.8 k Ω first. Then solder resistor in place.
- 72. Remove Adjustment Board, reconnect ribbon cables and replace instrument top cover.

Adjustments Model 8654B ۲. • ٩ **65** - 4F pp (KHz) 55 35 20 25 30 (19-35 MHz) CARRIER FREQUENCY ۱ 65 · |} ∆F p-p (kHz) ΰO 55 12 18 16 10 14 • . q^2 (10-19 MHz) CARRIER FREQUENCY 65 ţ,

5-29

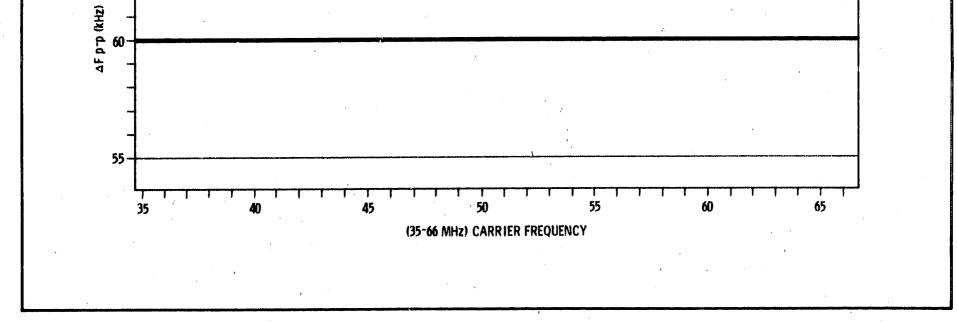
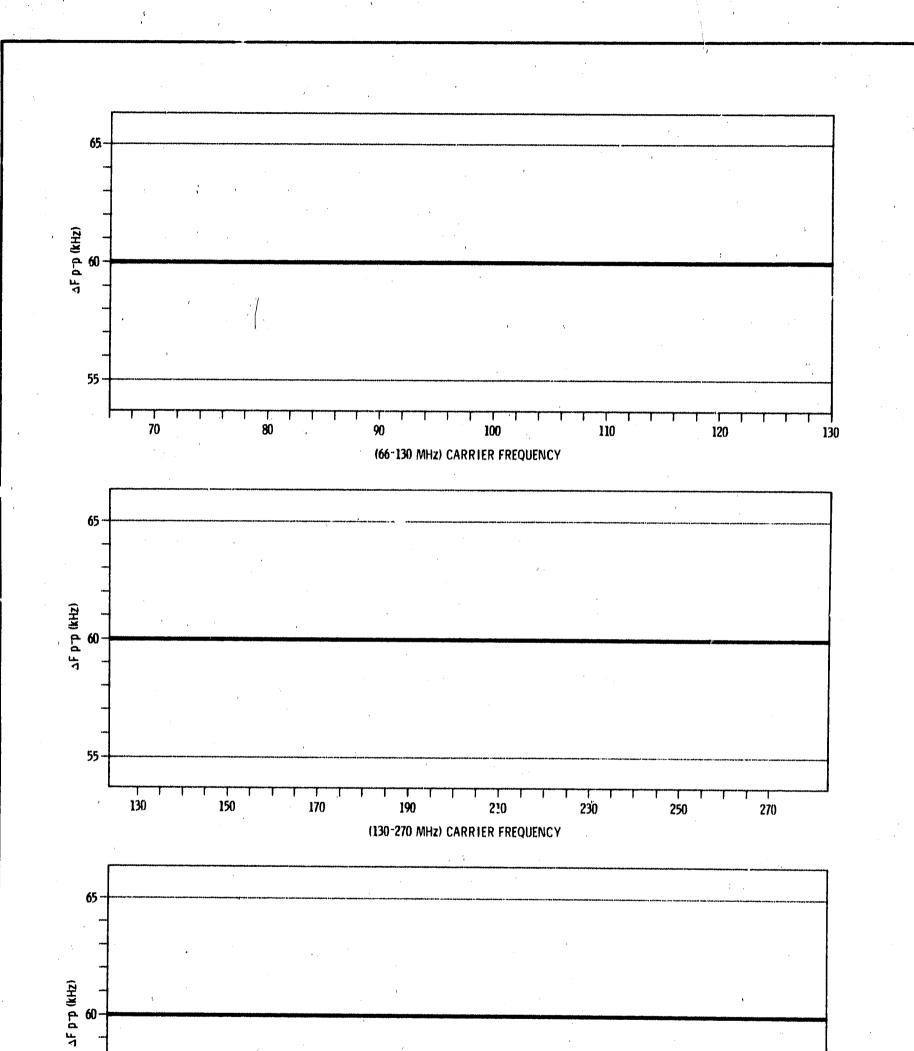



Figure 5-9. Counter Readings, FM Deviation vs. Carrier Frequency (1 of 2)

Adjustments

Model 8654B

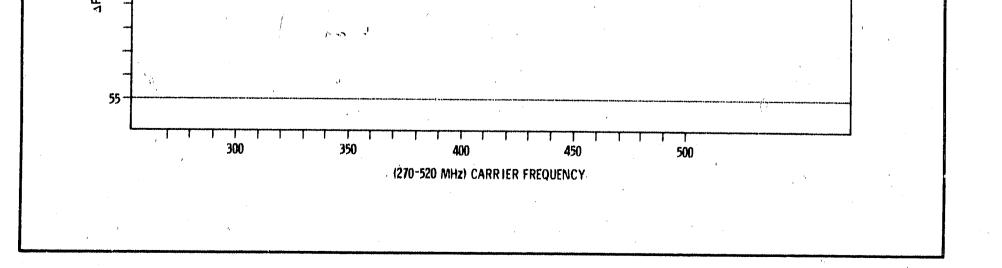


Figure 5-9. Counter Readings, FM Deviation vs. Carrier Frequency (2 of 2)

14

ADJUSTMENTS

FREQUENCY RANGE	Adjustment	Mnemonic	Reference Designator A5	Measured Resistance	Selected Resistance
	BP	1B	R2		
	SL	18	R22		
10–19 MHz	E	1E	R48	n Herrichten der Sternen der	
۰ ۱	G	1G	R66		······································
94	BP	2B	R4		
19-35 MHz	SL	28	R23		
	E	2E	R44		
	BP	3B	R6		
	SL	38	R24		
35—66 MHz	E	3E	R40	, ,	
	E G	3G	R70		
	ВР	4B	R8		,
	SL	4S	R25	···	
66—130 MHz	E	4E	R38		
	G	4 G	R72		
, <u>, , , , , , , , , , , , , , , , , , </u>	BP	5B	R10		
130-270 MHz	SL	58	R28		
	Е	5E	R35		,
۰.	G	5G	R74	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	BP	6B	R12		
	SL	6 S	R29		
270-520 MHz	E	6E	R33		
	G	6 G	R76	T BERNARD DE LA DESERTE AND AND AND AND AND AND	
	BP2	7B	R14		1.000-0-000-000-000-000-000-000-000-000-
	SL2	75	R 30		

Table 5-3. Resistor Selection Record

5-31

harve the state and the state

Adjustments

Ohms	HP Part Number	Ohms	HP Part Number				
51.1	0757-0394	4.64K	0698-3155				
56.2	0757-0395	5.11K	0757-0438				
		5.62K	0757-0200				
61.9	0757-0276						
68.1	0757-0397	6.19K	0757-0290				
75.0	0757-0398	6.81K	0757-0439				
82.5	0757-0399	7.50K	0757-0440				
		8.25K	0757-0441				
90.9	0757-0400	9.09K	0757-0288				
100	0757-0401						
110	0757-0402	10.0K	0757-0442				
		11.0K	0757-0443				
121	0757-0403	12.1K	0757-0444				
133	0698-3437	13.3K	0757-0289				
		14.7K	0698-3156				
·, 147	0698-3438	1					
162	0757-0405	16.2K	0757-0447				
178	0698-3439	17.8K	0698-3136				
196	0698-3440	19.6K	0698-3157				
215	0698-3441		0757.0100				
	0698-3442	21.5K	0757-0199				
237	0050-0442	23.7K	0698-3158				
		26.1K	0698-3159				
261	0698-3132	28.7K	0698-3449				
287	0698-3443	31.6K	0698-3160				
316	0698-3444	34.8K	0757-0123				
348	0698-3445	38.3K	0698-3161				
383	0698-3446	00.0K	0000-0101				
		42.2K	0698-3450				
422	0698-3447	46.4K	0698-3162				
	0698-0082	51.1K	0757-0458				
464		- F					
511	0757-0416	56.2K	0757-0459				
562	0757-0417	61.9K	0757-0460				
619	0757-0418	68.1K	0757-0461				
		75.0K	0757-0462				
681	0757-0419	82.5K	0757-0463				
750	0757-0420						
825	0757-0421	90.9K	0757-0464				
		100K					
909	0757-0422		0757-0465				
1.0K	0757-0280	110K	0757-0466				
, 1		121K	0757-0467				
1.1K	0757-0424	133K	0698-3451				
1.21K	0757-0274		t.				
1.33K	0757-0317	147K	0698-3452				
1.47K	0757-1094	162K	0757-0470				
. ▲ 6 ″ Ⅱ ▮ ₩ ₩		178K	0698-3243				
1 6017	A7E7 A400	196K					
1.62K	0757-0428	1301	0698-3453				
1.78K	0757-0278						
1.96K	0698-0083	215K	0698-3454				
2.15K	0698-0084	237K	0698-3266				
1		261K	0698-3455				
2.37K	0698-315	287K	0698-3456				
2.61K	0698-008						
2.87K	0698-3151	316K	0698-3457				
3.16K	0757-0279	348K	0698-3458				
3.48K	0698-3152	383K	0698-3459				
0.0017	0000 0150	422K	0698-3460				
3.83K	0698-3153	464K	0698-3260				
4.22K	0698-3154						

 Table 5-4.
 Standard Value Resistors (±1%, 1/8W, Metal Film)

5-32

.463.97

en de la constante de la consta

5-25A. FM DEVIATION ADJUSTMENT (Alternate)

DESCRIPTION:

If a 5345A/5354A or similar counter is not available, the FM Deviation Adjustment can also be performed with a computing controller (calculator) based counting system and a digital-to-analog converter. This procedure describes only the initial setup of the system. The remaining procedure is the same as in paragraph 5-25, steps 8 through 72. The description of paragraph 5-25 also applies. The special FM Deviation Adjustment Board is still used because the substitution potentiometers are required. The square wave circuitry on it is not used since its function is performed by the digital-to-analog converter.

- The controller program sequences as follows:
- 1. The digital-to-analog converter is set to +0.95 Vdc, and its output is checked by a digital voltmeter.
- 2. The above step is repeated for -0.95 Vdc.
- 3. The digital-to-analog converter is set to +0.95 Vdc. (This voltage is applied to the generator's FM input.)
- 4. The counter is triggered and takes a frequency reading. The reading is subtracted from the previous reading (which initially is zero), and the absolute value of the difference frequency is displayed.
- 5. The digital-to-analog converter is set to -0.95 Vdc.
- 6. The counter is triggered and takes a frequency reading. The reading is subtracted from the previous reading, and the absolute value of the difference frequency is displayed.
- 7. Steps 3 through 6 above are repeated indefinitely.

NOTE

The counter displays the approximate carrier frequency. The controller displays the peak-to-peak FM deviation in kHz.

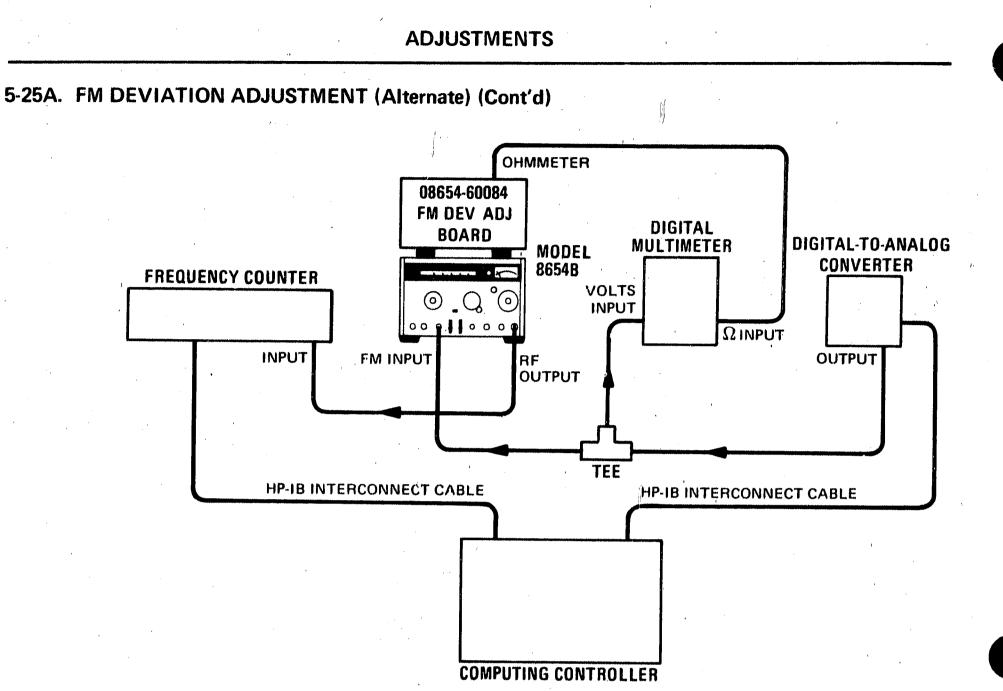


Figure 5-10. FM Deviation Adjustment (Alternate) Setup

EQUIPMENT:

Computing Controller	•	٠	•		•	•	· _		HP 9825A or 9830A
Frequency Counter	•	•	•			•	۰.	•	HP 5340A
Digital-to-Analog Converter	•		•	•	•		•	•	HP 59303A
Digital Multimeter		•			•				HP 34702A/34740A
FM Deviation Adjustment Boa	ard	l	•	•	•	•		•	HP 08654-60084

NOTE

The use of substitute equipment for the computing controller, frequency counter, or digital-to-analog converter will necessitate a change in software. The frequency counter should have a 520 MHz frequency range.

5-35

ADJUSTMENTS

5-25A. FM DEVIATION ADJUSTMENT (Alternate) (Cont'd)

PROCEDURE:

NOTE

Due to the complex nature of this adjustment, it is extremely important that you read and understand the information presented under DESCRIPTION of paragraph 5-25.

Initial Setup

- **1.** Remove instrument top cover.
- 2. Mount FM Deviation Adjustment Board to rear panel (use two screws from top cover).
- 3. Interconnect instruments as shown in Figure 5-10.

NOTE

Check instrument interface bus addresses. The programs given below must be altered if the equipment uses ASCII addresses other than the following:

Instrume	nt	Talk Address	Listen Address				
HP 9825A or 9	830A	U	5				
HP 5340A		R	2				
HP 59303A P	rogram		9				
D	ata		8				

- 4. Remove two ribbon cables from A5 FM Driver Board Assembly and connect to corresponding connector jacks J1 and J2 on Adjustment Board. Connect three ribbon cables from Adjustment Board to corresponding connector jacks A5J1, J2, and J3 on A5 FM Driver Board Assembly.
- 5. Set Signal Generator controls as follows:

METER	• • •	•			•	LEVEL	
FREQUENCY RANGE (MHz)	•	•	•		19-35 MHz	
FREQUENCY TUNE							,
						Class Assessed 1	. '

FINE TUNE Centered -20 dBm**OUTPUT LEVEL Switch** . **Output Level VERNIER** . Meter reads +3 dB OFF AM . . . -EXT FM 30 kHz FM RANGE Fully cw FM LEVEL .

Adjustments

ADJUSTMENTS

5-25A. FM DEVIATION ADJUSTMENT (Alternate) (Cont'd)

6. Set Adjustment Board controls as follows:

BP Switch	•	•	• •	•	•	•		•			-	Down
SL Switch	•	•	• •	•		•	•					Down
E Switch .	•	•										Down
G Switch .											-	Down
BP7 Switch	• .		· •						-	-	-	Down
SL7 Switch					_		-	, •	•	•	•	Down
BP Potention	me	ter.		-	•	-	•	•	•	•	•	
ST Potentio	mo	+	•	•	•	•	•	•	•	•	, •	
SL Potentio	me	ret .	•	•	•	•	•	•	•	٠	•	Fully CW
E Potentiom	iete	er.		•	•	•		•	• '	•		Fully cew
G Potention	nete	er.				•						Fully ccw
BP7 Potentie	om	etei	ſ.				•		•••			
SL7 Potentie												Fully cw
					-	2	2	2	2	-	-	

7. Program the calculator as follows:

9825A

0: fxd 1	Sets counter controls.
1: dev "d/ap",525,"d/ad",524,"ctr",518 2: wrt "ctr","2P@KMOH"	Sets d/a converter controls; sets d/a converter to +0,95 Vdc.
3: wrt "d/ap","E0";fmt 1,f5.0;wrt "d/ad.1"	,95 Check voltmeter reading, then press CONTINUE.
4: dsp "Check d/a out: 946 to 952 mV.";stp	F Sets d/a converter to -0.95 Vdc.
5: wrt "d/ad.1",-95	Check voltmeter reading then prove
6: dsp "Check d/a out: -946 to -952 mV.";s	tp ;0+B- CONTINUE.
7: wrt "d/ad. 1",95	Sets d/a converter to +0.95 Vdc.
8: wrt "ctr", "I"; fmt 2,3x,e12.0	Triggers counter.
9: red "ctr.2", A;dsp abs(A-B)/1000	Displays peak-to-peak deviation.
10: wrt "d/ad.1",-95	Sets d/a converter to -0.95 Vdc.
11: wrt "ctr", "I"	Triggers counter.
12: red "ctr.2", B;dsp abs(A-B)/1000	Displays peak-to-peak deviation.
13: gto 7	Displays peak to peak the visition,
14: end	
*19966	

5-25A. FM DEVIATION ADJUSTMENT (Alternate) (Cont'd)

9830A

10 FIXED 1	
20 FORMAT 65.0 30 Format 38,E12.0	. ,
	- Sets counter controls. (@ is a SHIFT RESULT.)
40 CMD "?U2","2P0KM0H"	- Sets d/a converter controls.
60 OUTPUT (13,20)95	- Sets d/a converter to +0.95 Vdc.
- 70 DISP "CHECK DZA OUT: 946 TO 952 MV" 80 stop	- Check voltmeter reading, then press CONTEXECUTE.
90 OUTPUT (13,20)-95	- Sets d/a converter to0.95 Vdc.
- 100 DISP "CHECK DZA OUT: -946/10 -952 MV"-	- Check voltmeter reading, then press CONT EXECUTE.
110 STOP	
120 B=0 130 CMD "2U8"	
140 OUTPUT (13,20)95	- Sets d/a converter to +0.95 Vdc.
140 OUTPUT (10,20)95 150 CND "?U2",:1","?R5"	- Triggers counter.
160 ENTER (13,30)A	
170 DISP ABS(9-8)/1000 180 CMD "208"	- Displays peak-to-peak deviation.
190 OUTPUT (13,20)-95	- Sets d/a converter to -0.95 V/c.
. 200 CMD ///////////////////////////////////	- Triggers counter.
210 ENTER (13:30)8 1	
228 DISP ABS(A-B)/1000	- Displays peak-to-peak deviation.
230 GOTO 122 240 END	
Non t'oy' too tfdg'	$A = \frac{1}{2} \int dx $

Set multimeter to read 1 Vdc. Run program. The program stops with the output 8. of the digital-to-analog converter set to +0.95 Vdc. Confirm this voltage by observing the multimeter display. Press continue. Confirm -0.95 Vdc at digital-toanalog converter output. Press continue.

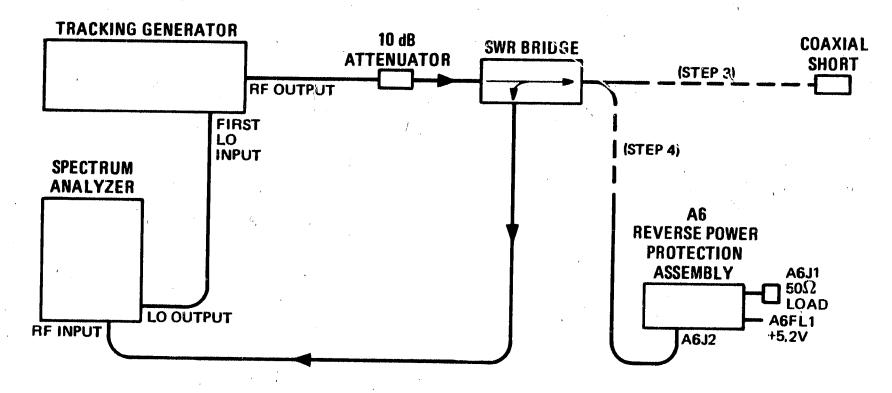
Switch the digital multimeter to read ohms. Continue on with step 8 of paragraph **9**. · 5-25. During the procedure, read the peak-to-peak deviation from the controller display.

10. In place of step 66 of paragraph 5-25, change the following controller program steps as indicated below:

9825A

0: fxd 2 2: wrt "ctr", "lP@KMOH"

9830A


10 FINED 2 40 CMD "?U2","1P0KMOH"

5-26. OUTPUT IMPEDANCE ADJUSTMENT (Option 003 only)

REFERENCE: Service Sheet 3A.

DESCRIPTION:

A tracking generator is used as an external 50Ω signal source to feed an SWR bridge. The output connector of the bridge is connected to a spectrum analyzer. The through connector of the bridge is connected to a short circuit to establish a reference, then to the output of A6 Reverse Power Protection Assembly. Return loss versus frequency is displayed on the spectrum analyzer.

EQUIPMENT:	Tracking Generator					•		•			•				HP 8444A, Opt. 058
	Spectrum Analyzer					•	•	•				•			HP 8558B/182C
• •	SWR Bridge	•	•	•	•	•		•	٠						Wiltron 60N50
	Coaxial Short	•	•	•	•	•	•	•	•	•	٠	٠	•	•	HP 11512A
	10 dB Attenuator	•	•	•	•	•	•	•	•	•	•	•	•	•	HP 8491A Opt 10
	5012 Load	•	٠	٠	•	•		•	•	• .	•	•	•	٠	HP 908A

PROCEDURE:

5-38

1. Remove bottom RF Section Assembly support bar (see Service Sheet B for location).

- 2. Remove cables and screws securing A6 Reverse Power Protection Assembly. Orient assembly so that circuit components are accessible and the +5.2V supply and ground (if needed) are connected.
- 3. Connect equipment as shown in Figure 5-11.
- 4. Set spectrum analyzer resolution bandwidth to 300 kHz or greater, optimum input level to -20 dBm (20 dB attenuation), and frequency controls for a frequency span of 0 to 500 MHz. Set tracking generator output for 0 dBm.
- 5. To establish a reference level, set LINE to OFF and connect coaxial short to bridge output jack. Use the spectrum analyzer's vertical reference level controls to set

5-26. OUTPUT IMPEDANCE ADJUSTMENT (Option 003 only) (Cont'd)

swept signal display to top graticule line of display with 10 dB per division log vertical scale.

6. Remove coaxial short and connect bridge output to output jack A6J2.

7. Set Signal Generator LINE to ON.

8. The level now shown on the spectrum analyzer should be greater than 18 dB down from the reference level set in step 5. If not, adjust FLATNESS ADJ, A6A1C9, or A6A1L1 and L2 for minimum level (i.e., maximum return loss). A6A1L1 and L2 can be adjusted by bending them, or raising and lowering them after they are desoldered.

NOTE

If adjustment seems necessary, check the return loss of the 50Ω load alone by connecting it to the bridge output. Return loss should be greater than 30 dB.

5-27. REVERSE POWER LEVEL SENSE ADJUSTMENT (Option 003 only)

REFERENCE: Service Sheet 3A.

DESCRIPTION: The output jack, A6J2 of Reverse Power Protection Assembly (A6) is driven by a 1 MHz source. Input jack A6J1 is monitored by a high impedance ac voltmeter. The LEVEL SENSE ADJ is set to trip the Level Sensor at a signal level of 1.8 Vrms.

NOTE

This procedure is also useful for verifying the operation of the reverse power protection without endangering the generator output circuitry.

EQUIPMENT:		t Oscillator HP 651B tal Voltmeter
PROCEDURE:	1.	Remove bottom RF Section Assembly support bar (see Service Sheet B for location.
	2.	Remove cables and screws securing A6 Reverse Power Protection Assembly. Orient assembly so that circuit components are accessible and the +5.2V supply and ground (if needed) are connected.

0 0 A standard to the standard in most include AG II

- 3. Connect voltmeter to input jack Abj1.
- 4. Connect 50Ω output of test oscillator to output jack A6J1. Set test oscillator frequency to 1 MHz at approximately 3 Vrms into an open circuit.
- 5. Set Signal Generator LINE to ON.

5-39

Adjustments

ADJUSTMENTS

5-27. REVERSE POWER LEVEL SENSE ADJUSTMENT (Option 003 only) (Cont'd)

6. Slowly increase test oscillator level until the reading on the voltmeter switches to zero. Note the signal level at which this occurs. The signal level should be between 1.7 and 1.9 Vrms. If the signal level is incorrect, adjust A6A1R2, LEVEL SENSE ADJ., until switching occurs within the correct limits.

NOTE

Always approach switching point from a lower level. The Level Sensor has a small amount of hysteresis causing the switching point to be lower for a decreasing signal level than for an increasing level.

CAUTION

Avoid setting the switching point below the stated limits. The Signal Generator's own output can trip the Level Sensor (particularly during low frequency, open-circuit operation). This condition can cause relay contact chatter and reduce contact life.

5-40

Shennen i U

PA RTJ

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-1 lists abbreviations used in the parts list and throughout the manual. Table 6-2 lists all replaceable parts in reference designation order. Table 6-3 contains the names and addresses that correspond with the manufacturers' code numbers.

6-3. EXCHANGE ASSEMBLIES

6-4. Certain assemblies within the instrument may be replaced on an exchange basis, thus affording a considerable cost saving. Exchange, factoryrepaired, and tested assemblies are available only on a trade-in basis; therefore, the defective assemblies must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new assembly part number. Listings for exchange assemblies (if available) may be found directly following the corresponding new assembly listing in Table 6-2.

6-5. ABBREVIATIONS

6-6. Table 6-1 lists abbreviations used in the parts list, schematics and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-7. REPLACEABLE PARTS LIST

6-8. Table 6-2 is the list of replaceable parts and is organized as follows:

a. Electrical assemblies and their componnents in alpha-numerical order by reference b. The total quantity (Qty) used in the instrument.

c. The description of the part.

d. A typical manufacturer of the part in a five-digit code.

e. The manufacturer's number for the part.

The total quantity for each part is given only once at the first appearance of the part number in the list. Total quantities for optional assemblies are totaled by assembly and not integrated into the standard list.

6-9. ORDERING INFORMATION

6-10. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.

6-11. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, description and function of the part, and number of parts required. Address the order to the nearest Hewlett-Packard office.

6-12. PARTS PROVISIONING

6-13. Stocking spare parts for an instrument is often done to ensure quick return to service after a malfunction occurs. Hewlett-Packard has a "Spare Parts Kit" available for this purpose. The kit consits of selected replaceable assemblies and components for this instrument. The contents of the kit and the "Recommended Spares" list are based on failure reports and repair data and provides parts support for one year. A complimentary "Recommended Spares" list for this instrument

designation.

b. Chassis-mounted parts in alpha-numerical order by reference designation.

c. Miscellaneous parts.

The information given for each part consists of the following:

a. The Hewlett-Packard part number.

may be obtained on request and the "Spare Parts Kit" may be ordered through your nearest Hewlett-Packard office.

6-14. ILLUSTRATED PARTS BREAKDOWNS

6-15. An illustrated parts breakdown of the A1 RF Section Assembly is given on Service Sheet A located after the numerical foldouts in Section VIII. In addition cabinet and front panel mechanical parts breakdowns appear in this section.

Table 6-2. Reference Designations and Abbreviations (1 of 2)

R	E	FE	R	E	NC	E)	D	ES	IG	N	Α	T	10)NS)

Α.			assembly
АТ		•	attenuator; isolator;
			termination
В.	•		fan; motor
BT			battery
С.			capacitor
CP			coupler
CR			diode; diode
•	•		thyristor; varactor
DC			directional coupler
DL	•	• •	delay line
DS	•		annunciator;
03	•	• •	signaling device
			(audible or visual);
			lamp; LED

Ε.	•'		miscellaneous	5
		ì	electrical part	'
F.			fuse	ę
FL			filter	r
Н.			hardware	
HY			circulator	C
J.	•		electrical connector	
			(stationary portion) jack	;
к.		•	relay	r

						anidal part
MP		_				miscellaneous
Μ.				•		meter
L.			٠		÷	coil: inductor

P	•	• ,	•		(1	n	0		ical connector ble portion);
					p				
Q	•							tı	ransistor: SCR ;
-									thyristor
R									resistor
RI	7			•					thermistor
S									switch
Т									. transformer
ТB	1								terminal board
TC									thermocouple
TP							•	,	test point

;
e
:
1
t
-
)
i
۰.

ABBREVIATIONS

A ampere
ac alternating current
ACCESS accessory
ADJ adjustment
A/D analog-to-digital
AF audio frequency
AFC automatic
fréquency control
AGC automatic gain
control
AL
ALC automatic level
control
AM amplitude modula-
tion
AMPL amplifier
APC automatic phase
control
ASSY assembly
ASSY assembly AUX auxiliary
ave average
avg average AWG American wire
gauge '
BAL balance
BCD binary coded
decimal
BD board
BE CU beryllium
copper
BFO beat frequency
oscillator
BH binder head
BKDN breakdown
BPF bandpass filter

A ampere	COEF coefficient	EDP electronic data	INT internal
ac alternating current	COM common	processing	kg kilogram
ACCESS accessory	COMP composition	ELECT electrolytic	kHz kilohertz
ADJ adjustment	COMPL complete	ENCAP encapsulated	k Ω , , , , , , , , , , , , , , , kilohm
A/D analog-to-digital	CONN connector	EXT external	kV kilovolt
AF audio frequency	CP cadmium plate	Ffarad	lbpound
AFC automatic	CRT cathode-ray tube	FET field-effect	LC inductance-
frèquency control	CTL complementary	transistor	capacitance
AGC automatic gain	transistor logic	F/F flip-flop	LED light-emitting diode
control	CW continuous wave	FH flat head	LF low frequency
	cw clockwise	FIL H fillister head	LG long
AL	cm centimeter	FM., frequency modulation	LH left hand
ALC automatic level			LIM limit
control	D/A digital-to-analog	FP front panel	LIN linear taper (used
AM amplitude modula-	dB decibel	FREG frequency	
tion	dBc , , decibels below carrier	FXD fixed	in parts list)
AMPL amplifier	dBm decibel referred	🛢 gram	lin linear
APC automatic phase	to 1 mW	GE germanium	LK WASH lock washer
control	dc direct current	GHz gigahertz	LO low; local oscillator
ASSY assembly	deg degree (temperature	GL glass	LOG logarithmic taper
AUX auxiliary	interval or differ-	GRD , ground(ed)	(used in parts list)
avg average	o ence)	H henry	log , logrithm(ie)
AWG American wire	degree (plane	h hour	LPF low pass filter
gauge	angle)	HET heterodyne	LV low voltage
BAL balance	C degree Celsius	HEX hexagonal	m meter (distance)
BCD binary coded	(centigrade)	HD head	mA , milliampere
decimal	0	HDW hardware	MAX maximum
BD board	F., degree Fahrenheit	HF high frequency	$M\Omega$
	K degree Kelvin	HG mercury	MEG mcg (10^6) (used
BE CU beryllium	DEPC deposited carbon		in parts list)
copper	DET detector	HIhigh	
BFO beat frequency	diam diameter	HP Hewlett-Packard	MET FLM motal film
oscillator	DIA diameter (used in	HPF high pass filter	MET OX metallic oxide
BH binder head	parts list)	HR hour (used in	MF medium frequency;
BKDN breakdown	DIFF AMPL differential	parts list)	microfarad (used in
BP bandpass	amplifier	HV high voltage	parts list)
BPF bandpass filter	div division	Hz Hertz	MFR manufacturer
BRS brass	DPDT double-pole,	IC integrated circuit	, mg milligram
BWO backward-wave	double-throw	ID inside diameter	MH2 megahertz
oscillator	DR drive	IF intermediate	mH millihenry
CAL	DSB double sideband	frequency	mho mho
cew counter-clockwise	DTL diode transistor	IMPG impregnated	MIN minimum
CER ceramic	logic	in inch	min minute (time)
CHAN		INCD incandescent	' minute (plane,
	DVM digital voltmeter	INCL include(s)	angle)
cm centimeter	ECL emitter coupled	INP	MINAT miniature
CMO cabinet mount only	logic	INS insulation	mm
COAX coaxial	EMF electromotive force		
•			
· · · · · · · · · · · · · · · · · · ·			
	NOT		· · · · · · · · · · · · · · · · · · ·
• • • • • • • • • • • • • • • • • • •	All abbreviations in the parts	list will be in upper-case.	
8			
\cdot		$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right)$. •
$\sim 10^{-1}$			

A ampere	COEF coefficient	EDP electronic data	INT interna
ac alternating current	COM common	processing	kg kilogram
ACCESS accessory	COMP composition	ELECT electrolytic	kHz kilohertz
ADJ adjustment	COMPL complete	ENCAP encapsulated	$\mathbf{k}\Omega$
A/D analog-to-digital	CONN connector	EXT external	kV kilovoli
AF audio frequency	CP cadmium plate	F farad	lbpound
AFC automatic	CRT cathode-ray tube	FET field-effect	LC inductance
frequency control	CTL complementary	transistor	capacitance
		F/F flip-flop	LED light-emitting diode
AGC automatic gain	transistor logic	FH flat head	LF low frequency
control	CW continuous wave		
AL	cw clockwise	FIL H fillister head	
ALC automatic level	cm centimeter	FM., frequency modulation	LH
control	D/A digital-to-analog	FP front panel	LIM limit
AM amplitude modula-	dB decibel	FREG frequency	LIN linear taper (used
tion	dBc decibels below carrier	FXD fixed	in parts list)
AMPL amplifier	dBm decibel referred	g gram	🖢 lin linear
APC automatic phase	to 1 mW	GE germanium	LK WASH lock washer
control	dc direct current	GHz gigahertz	LO low; local oscillator
ASSY assembly		GL glass	LOG logarithmic tape
	deg degree (temperature	GRD ground(ed)	(used in parts list)
AUX auxiliary	interval or differ-		• • •
avg average	o ence)	H henry	log , logrithm(ie)
AWG American wire	degree (plane	h hour	LPF low pass filter
gauge	o angle)	HET heterodyne	LV low voltage
BAL balance	C degree Celsius	HEX hexagonal	m., meter (distance)
BCD binary coded	(contigrada)	HD head	mA milliampere
decimal	F degree Fahrenheit	HDW hardware	MAX maximum
BD board	K degree Kelvin	HF high frequency	MΩ megohen
BE CU beryllium	DEPC deposited carbon	HG mercury	MEG mcg (10 ⁶) (used
		HI high	in parts list)
copper DEC best from one	DET detector	HP Hewlett-Packard	MET FLM metal film
BFO beat frequency	diam diameter		
oscillator	DIA diameter (used in	HPF high pass filter	MET OX metallie oxide
BH binder head	parts list)	HR hour (used in	MF medium frequency
BKDN breakdown	DIFF AMPL differential	parts list)	microfarad (used ir
BP bandpass	amplifier	HV high voltage	parts list)
BPF bandpass filter	div division	Hz Hertz	MFR manufacture
BRS brass	DPDT double-pole,	IC integrated circuit	mg milligram
BWO backward-wave	double-throw	ID inside diameter	MH2 megaberts
oscillator	DR drive	IF intermediate	mH millihenry
		frequency	mho mho
CAL calibrate	DSB double sideband		MIN minimum
cew counter-clockwise	DTL diode transistor	IMPG impregnated	
CER ceramic	logic	in inch	min minute (time)
CHAN channel	DVM digital voltmeter	INCD incandescent	' ' minute (plane
cm centimeter	ECL emitter coupled	INCL include(s)	angle)
CMO cabinet mount only	logic	INP input	MINAT miniature
COAX coaxial	EMF electromotive force	INS insulation	mm millimeter
	NOTI		
			·.
		list will be in unstan anon	
• • • ·	All abbreviations in the parts	use with by in upper-case,	
	All abbreviations in the parts	nst will be in upper-case.	
	All abbreviations in the parts	nst win by in upper-case.	
	All abbreviations in the parts	nst win by in upper-case.	

INT internal
kg kilogram
kHz kilohertz k Ω kilohem
$\mathbf{k}\Omega$ kilohm
kV kilovolt
lbpound
LC inductance-
capacitance
LED light-emitting diode
LF low frequency
LG long
LG long LH left hand
LIM limit
LIN linear taper (used
in parts list)
lin linear LK WASH lock washer
LK WASH lock washer
LO low; local oscillator
LOG logarithmic taper
(used in parts list)
log logrithm(ie) LPF low pass filter
log logrithm(ie) LPF low pass filter
loglogrithm(ic)LPFlow pass filterLVlow voltagemmeter (distance)
loglogrithm(ic)LPFlow pass filterLVlow voltagemmeter (distance)
loglogrithm(ic)LPFlow pass filterLVlow voltagemmeter (distance)mAmaximum
loglogrithm(ic)LPFlow pass filterLVlow voltagemmeter (distance)mAmaximum
loglogrithm(ic)LPFlow pass filterLVlow voltagemmeter (distance)mAmilliampereMAXmaximumMS2meg (10 ⁶) (used
log logrithm(ic) LPF low pass filter LV low voltage m meter (distance) mA milliampere MAX maximum MQ2 megohm MEG meg (10 ⁶) (used in parts list)
log logrithm(ic) LPF low pass filter LV low voltage m meter (distance) mA milliampere MAX maximum MS2 metg (10 ⁶) (used in parts list) MET FLM
log logrithm(ie) LPF low pass filter LV low voltage m meter (distance) mA milliampere MAX maximum MS2 meter (10 ⁶) (used in parts list) MET FLM MET GX metal film
log logrithm(ic) LPF low pass filter LV low voltage m meter (distance) mA milliampere MAX maximum MS2 metg (10 ⁶) (used in parts list) MET FLM
log logrithm(ie) LPF low pass filter LV low voltage m meter (distance) mA milliampere MAX maximum MS2 meter (10 ⁶) (used in parts list) MET FLM MET GX metal film
log logrithm(ic) LPF low pass filter LV low voltage m meter (distance) mA meter (distance) mA milliampere MAX maximum MS2 meter (distance) MEG metalliampere MET FLM metal film MET GX metallic oxide MF medium frequency; microfarad (used in parts list)
log logrithm(ic) LPF low pass filter LV low voltage m meter (distance) mA milliampere MAX maximum MQ meter (distance) MAX maximum MQ meter (distance) MEG meter (distance) MEG meter (distance) MEG metalliampere MET FLM metal film MET GX metallic oxide MF metallic oxide MF metallic oxide

 Table 6-2.
 Reference Designations and Abbreviations (2 of 2)

· · · ·	
MOD modulator	
MOM momentary	
MOS metal-oxide	
semiconductor	
ms millisecond	
MTG mounting	
MTR meter (indicating	
device)	
mV millivolt mVac millivolt, ac mVdc millivolt, dc	
mVac millivolt, ac	
mVdc millivolt, dc	
mypk munvoit, peak	
mVp-p millivolt, peak-	
to-peak	
mVrms millivolt, rms	
mW milliwatt	
MUX multiplex	
MY mylar	
μA microampere	
μF microfarad	
μH microhenry	
µmho micromho	
Us microsecond	
μV microvolt μVac microvolt, ac	
µVac microvolt, ac	ł
UVdc microvolt, dc	
µVpk microvolt, peak	
µVp-p microvolt, peak-	
to-peak	
μ Vrms microvolt, rms	
μW microwatt	
nA nanoampere NC no connection	
NC no connection	
N/C normally closed	
NE neon	
NEG negative	
nF nanofarad	
NI PL nickel plate	
N/O normally open	'
NOM nominal	
NORM normal	
NPN negative-positive-	
negative	
NPO negative-positive	
zero (zero tempera-	
ture coefficient)	
NRFR not recommended	
for field replace-	
ment	
NSR not separately	
replaceable	
ns nanosecond	
nW nanowatt	
OBD order by descrip-	
tion	
· · ·	

OD outside diameter
OH oval head
OH oval head OP AMPL operational
amplifier
OPT
OSC
OSC
OZ
$\tilde{\Omega}$
Ω peak (use?' is
list)
PAM pulse-amplitude
modulation
PC printed circuit PCM pulse-code modula-
tion; pulse-count
modulation
PDM pulse-duration
modulation
pF picofarad PH BRZ phosphor bronze
PHL Phillips
PIN positive-intrinsic-
negative
PIV peak inverse
voltage
pk peak
PL phase lock
PLO phase lock
oscillator
PM phase modulation PNP positive-negative-
PNP positive-negative-
positive
P/O part of
POLY polystyrene
PORC porcelaim
POS positive; position(s)
(used in parts list)
POSN position
POT potentiometer
p-p peak-to-peak
PP peak-to-peak (used
in parts list)
PPM pulse-position
modulation
PREAMPL preamplifier
PRF pulse-repetition
frequency
PRR pulse repetition
rate
ps picosecond
PT point
PTM pulse-time
modulation
PWM pulse-width
modulation

PWV peak working
voltage RC resistance-
capacitance
RECT rectifier
REF reference
REG regulated REPL replaceable
RF radio frequency
RFI radio frequency
interference
RH round head; right
hand
RLC resistance-
inductance-
capacitance
RMO rack mount only
rms root-mean-square
RND round
ROM read-only memory
R&P rack and panel
RWV reverse working
voltage
S scattering parameter
s second (time)
'' . second (plane angle) S-B slow-blow (fuse)
(used in parts list)
SCR silicon controlled
rectifier; screw
SE selenium
SECT sections
SECT sections SEMICON semicon-
ductor
SHF superhigh fre-
quency
SI giligon
SI Sincon
SI silicon SIL silver
SIL silver
SIL silver SL
SIL
SIL
SIL
SIL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw SPG spring SR split ring
SIL silver SL silver SNR signal-to-noise ratio SPDT single-pole, double-throw SPG spring SR split ring SPST single-pole,
SIL silver SL silver SNR signal-to-noise ratio SPDT single-pole, double-throw SPG spring SR split ring SPST single-pole, single-throw
SIL silver SL silver SNR signal-to-noise ratio SPDT single-pole, double-throw SPG spring SR split ring SPST single-pole, single-throw SSB single sideband
SIL silver SL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw spring SPG split ring SPST single-pole, single-throw split ring SSB single-throw SST single sideband SST stainless steel
SIL silver SL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw spring SPG split ring SPST single-pole, single-throw split ring SSB single-throw SST single sideband SST stainless steel
SIL silver SL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw spring SPG spring SR split ring SPST single-pole, single-throw SSB SSB single sideband SST stainless steel STL steel SQ square
SIL silver SL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw spring SR split ring SPST single-pole, single-throw SSB SSB single sideband SST stainless steel STL stainless steel SVR standing-wave ratio
SIL silver SL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw spring SR spring SR single-pole, single-throw spring SPST single-pole, single-throw SSB SSB single sideband SST stainless steel STL stainless steel SVR standing-wave ratio SYNC synchronize
SIL silver SL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw spring SR split ring SPST single-pole, single-throw SSB SSB single sideband SST stainless steel STL steel SQ square SWR standing-wave ratio SYNC synchronize T timed (slow-blow fuse)
SIL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw SPG spring SR split ring SPST single-pole, single-throw SSB single-pole, STL stainless steel STL stainless steel STL stainless steel SVR standing-wave ratio SYNC synchronize T timed (slow-blow fuse) TA tantalum
SIL silver SL silver SL slide SNR signal-to-noise ratio SPDT single-pole, double-throw spring SR split ring SPST single-pole, single-throw SSB SSB single sideband SST stainless steel STL steel SQ square SWR standing-wave ratio SYNC synchronize T timed (slow-blow fuse)

TD time delay
TERM terminal
TFT thin-film transistor
TGL toggle
THD thread
THRU through
Tl titanium
TOL tolerance
TRIM trimmer
TSTR transistor
TTL transistor-transistor
logic
TV television
TVI television interference
TWT traveling waye tube
U micro (10 ⁻⁶) (used
in parts list)
UF microfarad (used in
parts list)
UHF ultrahigh frequency
UNREG unregulated
V volt
V volt VA voltampere
Vac
VAR variable
VCO voltage-controlled
oscillator
Vdc volts, dc
Vdc volts, dc VDCW volts, dc, working
(used in parts list)
V(F) volts, filtered
VFO variable-frequency
oscillator
VHF very-high fre-
quency
Vpk volts, peak
Vp-p volts, peak-to-peak
Vrms volts, rms
VSWR voltage standing
wave ratio
V20 voltage-tuned
oscillator
VTVM vacuum-tube
voltmeter
V(X) volts, switched
Wwatt
W/ with
WIV working inverse
voltage
WW, wirewound
W/O without
YIG yttrium-iron-garnet
Z _o characteristic
impedance

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation

Multiple Profix

 $1012 \\ 109 \\ 106 \\ 103 \\ 10 \\ 10-1 \\ 10-2 \\ 10-3 \\ 10-6 \\ 10-9 \\ 10-12 \\ 10-15 \\ 10-18 \\ 10-$ T G M tera giga mega • k kilo deka deci centi da d c m milli μ n micro nano pico femto atto p 1 1 ŧ a **6-3** đ.

,

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty.	Description	Mfr Code	Mfr Part Number
N1 N1	08654-60026 08654-60049	1	RF SECTION ASSEMBLY(EXCEPT OPTION 003) RF Section Assembly(option 003 only)	28480 28480	08654-60026 08654-60049
1C1 1C2 1C3 1C4	0160-2049 0180-0049 0121-0016 0180-0089	1 3 1 3	CAPACITOR-FDTHRU 5000PF +80 -20% 500V Capacitor-FXD 20UF+75-10% 50VDC AL Capacitor-V AIR DIEL 3.5/31.5PF 990V Capacitor-FXD 10UF+50-10% 150VDC AL	28480 56289 94033 56289	0160-2049 30D2066050CC2 404-2 30D106F150DD2
A1E1 A1E2 A1E3 A1E4 A1E5	9170-0029 9170-0029 9170-0029 9170-0029 9170-0029 9170-0029	6	CORE-SHIELDING BEAD Core-Shielding bead Core-Shielding bead Core-Shielding bead Core-Shielding bead Core-Shielding bead	02114 02114 02114 02114 02114 02114	56-590-65A2/4A 56-590-65A2/4A 56-590-65A2/4A 56-590-65A2/4A 56-590-65A2/4A
N1E6 N1E7	9170-0029 9170-0957	1	CORE-SHIELDING BEAD Core, Toroid, NSR, P/O Aiwi	02114 02114	56-590-65A2/4A 10417060 3E2A
11FL1 11FL2 11FL3 11FL4 11FL4	9135-0002 9135-0002 1810-0119 1810-0119 1810-0119	3	FILTER-LP SOLDER-TERMS FILTER-LP SOLDER-TERMS CAPACITOR FEED-THRU FILTER CAPACITOR FEED-THRU TIJER CAPACITOR FEED-THRU JER	28480 28480 01121 01121 01121	9135+0002 9135-0002 BE001-DA104P BE001-DA104P BE001-DA104P
N1FL6 N1FL7 N1FL8	1810-0119 1810-0119 9135-0002	,	CAPACITOR FEED-THRU FILVER Capacitor feed-thru filver Filter-lp solder-terms	01121 01121 28480	8E001-DA104P 8E001-DA104P 9135-0002
N1L1 N1L2	9140-0114 9140-0114	3	COIL-MLD 10UH 10% G=55 .155D%.375LG Coil-MLD 10UH 10% G=55 .155D%.375LG	99800 99800	1537-36 1537-36
A1MP1 A1MP2 A1MP3 A1MP4 A1MP5	0360-0365 0360-0365 0360-0007 0510-0042 0510-0042	2 1 4	TERMINAL-LUG-SLDR 6 SCR .143/.093 ID TERMINAL-LUG-SLDR 6 SCR .143/.093 ID TERMINAL-LUG-SLDR 10 SCR .195/.1 ID HOLE RETAINER-PUSH ON .125-DIA CD PL STL RETAINER-PUSH ON .125-DIA CD PL STL	78189 78189 78189 0018A 0018A	2104-06-00 2104-06-00 2501-10-00 1405-12-CD 1405-12-CD
41MP6 A1MP7 A1MP8 A1MP9 A1MP10	0510-0042 0510-0042 0510-0235 0510-0294 0890-0573	1 1 3	RETAINER-PUSH ON ,125-DIA CD PL STL RETAINER-PUSH ON ,125-DIA CD PL STL RETAINER-RING ,375-DIA CD PL STL PIN;SPRING SST 1/16 X 11/16" LG TUBING-FLEX ,093-ID NPRN-RBR ,063-WALL	0018A 0018A 97464 00000 76385	1405-12-CD 1405-12-CD 1000-37-ST-CD OBD Compound Ax-1060
A1MP11 A1MP12 A1MP13 A1MP14 A1MP15	0890-0573 0890-0573 0890-0573 1200-0081 1200-0081	2	TUBING-FLEX _093-ID NPRN-RBR .063-WALL Tubing-flex .093-ID NPRN-RBR .063-WALL Tubing-flex .093-ID NPRN-RBR .063-WALL Insulator-BSHG-FLG Nylon Insulator-BSHG-FLG Nylon	76385 76385 76385 28480 28480	COMPOUND AX-1060 Compound AX-1060 Compound AX-1060 1200-0087 1200-0087
A1MP16 A1MP17 A1MP18 A1MP19 A1MP20	1400-0024 1460-0195 1500-0432 1530-1766 1530-1767	2 1 1 1 1	CLAMP-CA .25-DIA .5-WD NYL Spring-Ext .125-dd .5-Lg muw Ball drive 1.807-Lg Brøjbrz Damp Pad, Back(special) Damp Pad, Cover(special)	71616 28480 28480 28480 28480 28480	CPC 1953-4A 1460-0195 1500-0432 1530-1766 1530-1767
A 1MP21 A 1MP22 A 1MP23 A 1MP24 A 1MP25	2190-0019 2190-0019 2190-0019 2190-0124 2190-0124 2190-0124	5	WASHER-LK HLCL NO4 .115-IN-ID WASHER-LK HLCL NO4 .115-IN-ID WASHER-LK HLCL NO4 .115-IN-ID WASHER-LK HLCL NO4 .115-IN-ID WASHER-LK INTL T NO10 .195-IN-ID WASHER-LK INTL T NO10 .195-IN-ID	28480 28480 76480 74163 74163	/190-0019 190-0019 2190-0019 500222 500222
A1MP26 A1MP27 A1MP28 A1MP29 A1MP30	2190-0124 2190-0888 2190-0888 2950-0078 2950-0078	2 3	WASHER-LK INT), T NO,-10 ,195-IN-ID WASHER-FL NM NO,-6 ,156-IN-ID ,25-IN-DD WASHER-FL NM NO,-6 ,156-IN-ID ,25-IN-DD NUT-HEX-DBL-CHAM 10-32-THD ,067-THK NUT-HEX-DBL-CHAM 10-32-THD ,067-THK	74163 28480 28480 74163 74163	500222 2190-0888 2190-0863 500220 500220
A1MP31 A1MP32 A1MP33 A1MP34 A1MP35	2950-0078 3030-0564 3030-0564 3030-0564 3030-0564 3030-0564	4	NUT-HEX-DBL-CHAM 10-32-THD .067-THK SCREW-SET 10-32 .875-IN-LG CUP-PT SCREW-SET 10-32 .875-IN-LG CUP-PT SCREW-SET 10-32 .875-IN-LG CUP-PT SCREW-SET 10-32 .875-IN-LG CUP-PT	74163 28480 28480 28480 28480 28480	500220 3030-0564 3030-0564 3030-0564 3030-0564 3030-0564
A1MP36 A1MP37 A1MP38 A1MP39 A1MP39	3050-0105 3050-0105 3050-0188 3050-0274 3050-0274	2 3	WASHER-FL MTLC NO4 .125-IN-ID WASHER-FL MTLC NO4 .125-IN-ID WASHER-SPR CRVD NO3/8 .385-IN-ID WASHER-FL MTLC NO3/8 .39-IN-ID WASHER-FL MTLC NO3/8 .39-IN-ID	28480 28480 78189 28480 28480	3050-0105 3050-0105 3502-20=19 3050-0274 3050-0274
A1MP41 A1MP42 A1MP43 A1MP44 A1MP45	3050-0274 3050-0316 3050-0188 3130-0013 3130-0013	1 4	WASHER-FL MTLC NO3/8 .39-IN-ID WASHER-SPR CRVD NO3/8 .386-IN-ID WASHER-SPR CRVD NO3/8 .385-IN-ID WASHER:SILVER PLATED 0.002" OD/ID WASHER:SILVER PLATED 0.002" OD/ID	28480 28480 28480 76854 76854	3050-0274 3050-0316 3050-0316 4662-2 4862-2
A1MP46 A1MP47 A1MP48 A1MP49 A1MP50	3130-0013 3130-0013 4320-0281 4320-0281 4320-0281	4) 4)	WASHERISILVER PLATED 0.002" OD/ID WASHERISILVER PLATED 0.002" OD/ID Damping Pad, Round Damping Pad, Round Damping Pad, Round	76854 76854 28480 28480 28480	4862-2 4862-2 4320-0281 4320-0281 4320-0281

See introduction to this section for ordering information **†** FOR BACKDATING, SEE TABLE 7-1

ø

1.

r

飰

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1MP51 A1MP52 A1MP53 A1MP54 A1MP55	4320-0281 4320-0283 4320-0283 8160-0008 8160-0021	2	DAMPING PAD, ROUND DAMPING PAD, U-CHANNEL Damping Pad, U-Channel RFI Round Strip AL .25-IN-OD RFI Round Strip BRS AG-PL .125-IN=OD	28480 28480 28480 07700 12881	4320-0281 4320-0283 4320-0283 20-21103 10-118
A1MP56 A1MP57 A1MP58 A1MP59 A1MP60	8300-0006 606A-102 606A-918 608D-59C 03200-00011	1 1 1 1	BRAID, NYLON Roller Detent Bpring Leaf Detent Spring Cursor	28480 28480 28480 28480 28480 28480	8500-0017 606A-102 606A-918 608D-59C 03200-00011
A1MP61 A1MP62 A1MP63 A1MP64 A1MP65	03200-00019 03200-60018 03200-60018 03200-60018 03200-60018	1 3	CONTACT Pulley & Bracket Assembly Pulley & Bracket Assembly Pulley & Bracket Assembly Pulley & Bracket Assembly	28480 28480 28480 28480 28480 28480	03200-00019 03200-60016 03200-60018 03200-60018 03200-60019
A1MP66 A1MP67 A1MP68 A1MP69 A1MP70 \$	08654-00003 08654-00014 08654-00014 08654-00023 08654-000 ⁵⁶	1 2 1 1	CHASSIS-OSCILLATOR Gasket Feed thru shield Gasket Feed thru shield Clamp Braid Bracket, Pot Mounting	28480 28480 28480 28480 28480 28480	08654-00003 08654-00014 08654-00023 08654-00023
A1MP71 A1MP72 A1MP73 A1MP74 A1MP75	08654-00034 08654-00042 08654-00042 08654-20048 08654-20091	2 2 1 1	COVER, RF AMPLIFIER CONTACT, CAPACITOR Contact, Capacitor Pulley, Capacitor Drive Pulley, Pot Drive	28480 28480 28480 28480 28480 28480	08654-00034 08654-00042 08654-00042 08654-20048 08654-20091
A1MP76 A1MP77 A1MP78 A1MP79 A1MP80	08654-20053 08654-20055 08654-20057 08654-20058 08654-20058	1 1 1 1 1	BUSHING Shaft, Frequency Plate. Frequency END Plate, RF Amplifier Shield, RF Amplifier	28480 28480 28480 28480 28480 28480	08654-20053 08654-20055 08654-20057 08654-20058 08654-20058
A1MP81 A1MP82 A1MP83 A1MP84 A1MP85	08654-20021 08654-20061 08654-20062 08654-20063 08654-20063	1 1 2	DIVIDER, RF AMPLIFIER Shield, feed thru Base plate, mach Guide, rod cursor Guide, rod cursor	28480 28480 28480 28480 28480 28480	08654-20021 08654-20061 08654-20062 08654-20063 08654-20063
A1MP86 A1MP87 A1MP88 A1MP89 A1MP90	08654-20064 08654-20070 08654-20070 08654-20074 08654-20074	1 2 1 1	GEAR, CENTER SHAFT M Plug, Threaded Plug, Threaded Shaft Assembly, Dial Drive Cover, RF Section	28480 28480 28480 28480 28480 28480	08654-20064 08654-20070 08654-20070 08654-20074 08654-20076
A1MP91 A1MP92 A1MP93 A1MP94 A1MP95	08654-20077 08654-20078 08654-20083 3030-0001 2680-0105	1 1 1 1 4	SHAFT ASSEMBLY, COUNTER Shaft Assembly, turret Drum Assembly, dial Screw-Set 8-32 .188-in-LG Small Cup-Pt Screw-Mach 10-32 .625-in-LG PAN-HD-POZI	28480 28480 28480 28480 28480 28480	08654-20077 08654-20078 08654-20083 3030-0001 2680-0105
A1MP96 A1MP97 A1MP98 A1MP99 A1MP100	2190-0034 2510-0103 2190-0087 2200-0145 2360-0117	4 2 3 2 6	WASHER-LK HECL NO10 .194-IN-ID Screw-Mach 8-32 .375-IN-LG PAN-HD-POZI WASHER-LK HECL ND8 .168-IN-ID Screw-Mach 4-40 .438-IN-LG PAN-HD-POZI Screw-Mach 6-32 .375-IN-LG PAN-HD-POZI	28480 28480 28480 28480 28480 28480	2190-0034 2510-0103 2190-0087 2200-0145 2360-0117
A1MP101 A1MP102 A1MP103 A1MP104 A1MP105	2360-0115 3050-0010 3050-0066 2420-0001 2360-0123	13 6 2 2 2 2	SCREW-MACH 6-32 .312-IN-LG PAN-HD-POZI WASHER-FL MTLC NO6 .147-IN-ID WASHER-FL MTLC NO6 .147-IN-ID NUT-HEXMW/LKWR 6-32-THD .109-THK SCREW-MACH 6-32 .625-IN-LG PAN-HD-POZI	28480 76210 28480 28480 28480 28480	2360-0115 65 3050-0066 2420-0002 2360-0123
A1MP106 A1MP107 A1MP108 A1MP109 A1MP110	1400-0015 2190-0014 0510-0060 2360-0192 2200-0153	1 4 1 9 3	CLAMP-CA "25-DIA "375-WD STL Washer-lk intl t n02 "089-in-id Retainer-Ring "375-dia Stl CD-PL Screw-Mach 6-32 "25-in-lg 100 deg Screw-Mach 4-40 "875-in-lg PAN-HD+POZI	73734 78189 79136 28480 28480	1550 1902-00 5555-37-8-MD 2360-0192 2200-0153
A1MP111 A1MP112 A1MP113 A1MP114 A1MP115	2200-0172 3050-0071 2510-0109 2360-0121 2260-0009	2 1 4	SCREW-MACH 4-40 .875-IN-LG 82 DEG WASHER-FL MTLC NO8 .169-IN-ID Screw-Mach 8-32 .625-IN-LG PAN-HD-POZI Screw-Mach 6-32 .5-IN-LG PAN-HD-POZI NUT-HEX-W/LKWR 4-40-THD .094-THK .25-A/F	28480 28480 28480 28480 28480 28480	2200-0172 3050-0071 2510-0109 2360-0121 2260-0011
A1MP116 A1MP117 A1MP118 A1MP119 A1MP120	2200-0107 2200-0101 2950-0006 2190-0067 3030-0007	9 2 1 1 2	SCREW-MACH 4-40 .375-IN-LG PAN-HD-POZI SCREW-MACH 4-40 .188-IN-LG PAN-HD-POZI NUT-HEX-DBL-CHAM 1/4-32-THD .094-THK WASHER-LK INTL T NO1/4 .256-IN-IO SCREW-SET 4-40 .125-IN-LG SMALL CUP-PT	28480 28480 73734 78189 28480	2200-0107 2200-0101 9000 1914-05 3030-0007
A1MP121 A1MP122 A1MP123 A1MP124 A1MP125	0520-0129 0590-0106 1400-0249 1400-0024 2200-0113	1 1 1	SCREW-MACH 2-56 .312-IN-LG PAN-HD-POZI NUT-HEX-PLSTCLKG 2-56-THD .141-THK CABLE TIE .062625-DIA .091-WD NVL CLAMP-CA .25-DIA .5-WD NVL SCREW-MACH 4-40 .625-IN-LG PAN-HD-POZI	28480 72962 59730 71616 28480	0520-0129 22NM-26 TyB-23M-8 CPC 1953-4A 2200-0113
					An

See introduction to this section for ordering information **†** FOR BACKDATING, SEE TABLE 7-1.

.

6-5

.,

.

Replaceable Parts

Model 8654B

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1MP126 A1MP127 A1MP128 A1MP129	0610=0011 2360=0299 08654=00039 3030=0022	1 1 1 2	NUT-HEX-DBL-CHAM 2-56-THD .062-THK Screw-Set 6-32 .125-IN-LG CUP-PT STL Bracket, Capacitor Mount Screw-Set	76854 28480 28480 00000	22041-271 2360-0299 08654-09039 3030-0022
AIRI AIR2	0757-0416 2100-3649	3	RESISTOR 511 1% .125W F TC=0+-100 Resistor-var prec ww 3-trn 10k 5%	24546 28480	C4-1/8-T0-5118-F 2100-3649
A1W1	08654-60035	1	CABLE ASSEMBLY, RF OSC OUT, (INCL A1E7)	28480	08654-60035
A1A1 † A1A1	08654-60002 08654-60022	1	RF AMPLIFIER/ALC ASSEMBLY(EXCEPT OPT 003 Restored 08654-60002 or 60102, requires	28480 28480	08654-60002 08654-60022
A1 A1	08654-60050	1	EXCHANGE BOARD ASSEMBLY, RF AMPLIFIER/ALC (Option 003 only)	28480	08654-60050
A1A1	08654-60051	1	RESTORED 08654-60050, REQUIRES EXCHANGE	28480	08654-60051
A1A1C1 A1A1C2 A1A1C3 A1A1C4#	0160-3879 0160-3879 0160-3879 0160-3565	16	CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD 6.8PF +5PF 100WVDC CER *FACTORY SELECTED PART	28480 28480 28480 28480 28480	0160-3879 0160-3879 0160-3879 0160-3565
A1A1C5 A1A1C6 A1A1C7 A1A1C8 A1A1C8 A1A1C9 T	0160-3879 0160-3879 0160-3879 0160-3878 0160-2306	6	CAPACITOR-FXD .01UF +-20X 100WVDC CEP CAPACITOR-FXD .01UF +-20X 100WVDC CER CAPACITOR-FXD .01UF +-20X 100WVDC CER CAPACITOR-FXD 1000PF +-20X 100WVDC CER CAPACITOR-FXD 27PF +-5X 300WVDC MICA	28480 28480 28480 28480 28480	0140-3879 0140-3879 0140-3879 0140-3878 0140-2306
A1A1C10 A1A1C11 A1A1C12 A1A1C12 A1A1C13 A1A1C14	0160-0162 0160-3879 0160-3878 0160-3879 0160-3879	1	CAPACITOR-FXD .022UF +-10X 200WVDC POLYE CAPACITOR-FXD .01UF +-20X 100WVDC CER CAPACITOR-FXD 1000PF +-20X 100WVDC CER CAPACITOR-FXD .01UF +-20X 100WVDC CER CAPACITOR-FXD .01UF +-20X 100WVDC CER	56289 28480 28480 28480 28480 28480	292P22392 0160-3879 0160-3878 0160-3879 0160-3879
A1A1C15 A1A1C16 A1A1C17 A1A1C18 A1A1C18 A1A1C19	0160-3879 0160-3877 0160-3879 0160-3879 0160-3873	1	CAPACITOR-FXD _01UF +-20% 100WVDC CER CAPACITOR-FXD 100PF >-20% 200WVDC CER CAPACITOR-FXD _01UF +-20% 100WVDC CER CAPACITOR-FXD _01UF +-20% 100WVDC CER CAPACITOR-FXD 4,7PF +-,5PF 200WVDC CER	28480 28480 28480 28480 28480 28480	0160-3879 0160-3877 0160-3879 0160-3879 0160-3873
A1A1C20 A1A1C21 A1A1C22 A1A1C23 A1A1C23 A1A1C24	0160-3875 0160-3878 0160-3879 0160-3876 0160-3875	2	CAPACITOR-FXD 22PF +-5% 200WVDC CER CAPACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD 501UF +-20% 100WVDC CER CAPACITOR-FXD 47PF +-20% 200WVDC CER CAPACITOR-FXD 22PF +-5% 200WVDC CER	28480 28480 28480 28480 28480	0160-3875 0160-38,8 0160-3879 0160-3876 0160-3875
A1A1C25	0160-3878		CAPACITOR-FXD 1000PF +-20% 100WVDC CER	28480	0160-3878
A1A1CR1 A1A1CR2 A1A1CR3 A1A1CR3 A1A1CR4 A1A1CR5	1901-0040 1901-0747 1901-0747 1901-0535 1901-0535	17 2 4	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-PIN DIODE-PIN DIODE-SCHOTTKY DIODE-SCHOTTKY	28480 28480 28480 28480 28480	1901-0040 1901-0747 1901-0747 1901-0535 1901-0535
A1A1J1 A1A1J2 A1A1J3	1250-1220 1250-1220 1250-1220	3	CONNECTOR-RF SMC M PC Connector-RF SMC M PC Connector-RF SMC M PC	98291 98291 98291	50=051=0109 50=051=0109 50=051=0109
A1A1L1 A1A1L2 A1A1L3 A1A1L4 A1A1L5	9140-0114 9100-2252 08654-80001 08654-80003 9100-1623	1 1 1 1	COIL-MLD 10UH 10X G=55 .155DX.375LG Cuil-FXD Molded RF CHOKE .27UH 10X INDUCTOR, RF 15 NH INDUCTOR, RF 45 NH Coil-Mld 27UH 5X G=60 .155DX.375LG	99800 24226 28480 28480 24226	1537-36 10/270 05654-80001 08654-80003 15/272
A1A1L6 A1A1L7	08554-80002 9100-2247	1	INDUCTOR, RF 35 NH Coil-Fxd Molded RF Choke .1um 10%	28480 24226	08454-80002 10/100
A1A1MP1 A1A1MP2 A1A1MP3 A1A1MP4 A1A1MP5	0340-0008 08654-00019 08654-00020 08654-00021 08654-00055	1 1 1 1 1	TERMINAL—STUD DBL—TUR PRESS—MTG Shield, Buffer Amplifier Shield, Modulator Ground Strap Label,BD Identification (OPT 003 Only)	96291 28480 28480 28480 28480 28480	87-1000-L2 08654-00019 08654-00020 08654-00021 08654-00055
A1A1Q1 A1A1Q2 A1A1Q3	1854-0696 1205-0037 1855-0020 1854-0696 1205-0037	5	TRANSISTOR NPN SI TO-72 PD=200MW HEAT SINK TO-36-PKG TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI TRANSISTOR NPN SI TO-72 PD=200MW HEAT SINK TO-36-PKG	28480 28480 28480 28480 28480 28480	1854-0696 1205-0037 1855-0020 1854-0696 1205-0037
A1A104	5086-4218 1205-0037	4	HP-21 TO 72 PKG HEAT SINK TO-36-PKG	28480 28480	5086-4218 1205-0037
A1A105 A1A106 A1A106	1854-0696 1205-0037 5086-4218 1854-0696		TRANSISTOR NPN SI TO-72 PD=200MW HEAT SINK TO-36-PKG HP-21 TO-72 PKG (OPT 003 ONLY) Transistor NPN SI TO-72 PD=200MW (Except option 003)	28480 28480 28480 28480 28480	1854-0696 1205-0037 5086-4218 1854-0696
	1205-0037		HEAT SINK TO-36-PKG	28480	1205-0037
A1A1G7 A1A1Q7	5086-4218 1854-0696		HP-21 TO-72 PKG (OPT 003 ONLY) Transistor NPN SI TO-72 PD=200MW (Except option 003)	28480 28480	5086-4218 1854-0696
A1A10A	1205-0037 1853-0020	1	HEAT SINK TO-36-PKG TRANSISTOR PNP SI PD=300MW FT=150MHZ	28480 28480	1205-0037 1853-0020

See introduction to this section for ordering information

•

† FOR BACKDATING, SEE TABLE 7-1.

an Skalake

•

 $\boldsymbol{e}^{\boldsymbol{r}}$

6-6

p · · · · · · ·

.

Ş.

6-7

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1A109	1854-0071	3	TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480	1854=0071
A1A1R1#	0698=7216	. 4	RESISTOR 147 1% .05W F TC=0+-100 *Factory selected part	24546	C3-1/8-T0-147R-G
AIAIR2	0698-7208	2	RESISTOR 68,1 1% ,05% F TC=0+-100	24546	C3-1/8-700-68R1-6
AIAIR3	0698-7232	1	RESISTOR 681 1% .05W F TC=0+-100	24546	C3-1/8-T0-6818-G
AIAIR4	0698-7284	- 3	RESISTOR 100K 1% .05W F TC=0+-100	24546	C3-1/8-T0-1003-G
	A4 04 - 7227		RESISTOR 422 1% _05W F TC=0+-100	24546	C3-1/8-T0-4228-G
A1A1R5 A1A1R6	0698-7227	1 2	RESISTOR 51.1 1% .05W F TC=0+-100	24546	C3-1/8-T00-51R1-G
A1A1R7	0698-7196	i i	RESISTOR 21.5 2% .05W F TC=0+=100	24546	C3-1/8-T00-21R5-G
AIAIRO	0698-7253	3	RESISTOR 5.11K 1X .05W F TC=0+-100	24546	C3-1/8-T0-5111-G
A1A1R9	0698-7229	. 5	RESISTOR 511 1% .05W F TC=0+-100	24546	C3-1/8-T0-5118-G
A1A1R10	0698-7253	<i>i</i> .	RESISTOR 5,11K 1X .05W F TC=0+-100	24546	C3-1/8-70-5111-G
A1A1R11	0698-7222	1 1	RESISTOR 261 1% ,05W F TC=0+-100	24546	C3+1/8-T0-261R-G
A1A1R12	0698-7224	1	RESISTOR 316 1% .05W F TC=0+-100	24546	C3-1/8-T0-316R-G
A1A1R13	0698-7214	2	RESISTOR 121 1% .05W F TC=0+-100	24546	C3+1/8-T0+121R-G
A1A1R14	0698=7188	5	RESISTOR 10 1% .05W F TC=0+=10C	24546	C3-1/8-T00-10R-G
A1A1R15*	0698-7207	1	RESISTOR 61,9 1% .05W F TC=0+-100	24546	C3-1/8-T00-61R9-G
	0408-0205		*FACTORY SELECTED PART	24546	C3-1/8-T00-51R1-G
AÍA1R16 A1A1R17	0698-7205		RESISTOR 51.1 1% .05W F TC=0+-100 Resistor 100k 1% .05W F TC=0+-100	24546	C3=1/8=T0=1003=G
A1A1R18	0757-0814	1	RESISTOR 511 1% .5W F TC=0+-100	19701	MF7C1/2-T0-511R-F
N1A1R19	0690-7239	1	RESISTOR 1,33K 1% ,05W F TC=0+-100	24546	C3-1/8-70-1331-G
1A1H20	0698=7247	1 i.	RESISTOR 2,87K 1% _05W F TC=0+-100	24546	C3-1/8-T0-2871-G
1A1R21	0698-7214		RESISTOR 121 1% .05W F TC=0+-100	24546	C3-1/8-T0-121R-G
SSRIAT	0698-3444	3	RESISTOR 316 1% .125W # TC=0+-100	24546	- C4+1/8-T0-316R-F
1A1R23	0698-7198	2	RESISTOR 26,1 1% .05W F TC=0+=100	24546	C3-1/8-T00-26R1-G
A1A1R24	0698-7217	1	RESISTOR 162 1% .05W F TC=0+-100	24546	C3-1/8-T0-162R-G
N1A1R25	0698-7198		RESISTOR 26,1 1% ,05W F TC=0+-100	24546	C3-1/8-700-26R1-G
AIAIR26	0698-7284		RESISTOR 100K 1% .05W F TC=0+-100	24546	C3=1/8=T0=1003=G
A1A1R27	0698-7188		RESISTOR 10 1% .05W F TC=0+=100	24546	C3=1/8=700+10R=G C3=1/8=70=215R=G
A1A1R28*	0698-7220	1	RESISTOR 215 1% .05W F TC=0+-100 *Factory selected part	24340	C3-1/0-/0-2134-6
	0408-7264		RESISTOR 6.51K 1% .05W F TC=0+-100	24546	C3-1/8-T0-6811-G
K1A1829 A1A1830	0698-7256 0698-7195		RESISTOR 19.6 1% .05W F TC=0+=100	24546	C3-1/8-700-1984-G
A1A1R31*	0698-7212		RESISTOR 100 1% .05W F TC=0+-100	24546	C3-1/8-T0-100R-G
			*FACTORY SELECTED PART		1
A1A1R32	0698-7253	ł	RESISTOR 5,11K 1% .05W F TC=0+-100	24546	C3-1/8-T0-5111+G
A1A1R33	0698-7279	1	RESISTOR 61_9K 1% .05W F TC=0+-100	24546	C3-1/8-70-6192-G
A1A1H35 A1A1R34	0698=7286		RESISTOR 121K 1% .05W F TC=0+=100	24546	C3=1/8=T0=1713=G
A1A1R35	0698-7201	1 -i I	RESISTOR 34.8 1% .05W F TC=0+-100	24546	C3-1/8-T00-34R8-6
AIAIR36	0698-7248	5	RESISTOR 3.16K 1% .05W F TC=0+-100	24546	C3=1/8=T0=3161=G
A1A1R37	0698-7269	1 1	RESISTOR 23,7K 1% .05W F TC=0+-100	24546	C3-1/8-T0-2372+G
A1A1838	0698-7245	1	RESISTOR 2,37K 1% .05W F TC=0+-100	24546	C3-1/8-T0-2371-6
A1A1R39	2100-2497	2	RESISTOR-TRMR 2K 10% C TOP-ADJ 1-TRN	73138	62-207-1
AIAITPI	0360-0124	5	TERMINAL-STUD SGL-PIN PRESS-MTG	28480	0360-0124
AIAITP2	0360-0124		TERMINAL-STUD SGL-PIN PRESS-MTG	28480	0360-0124
A1A17P3	0360-0124	1	TERMINAL-STUD SGL-PIN PRESS-MTG	28480	0360-0124
A1A1TP4 A1A1TP5	0360-0124		TERMINAL©STUD SGL=PIN PRESS=MTG TERMINAL=STUD SGL=PIN PRESS=MTG	28480 28480	0360-0124 0360-0124
					· · · · · · · · · · · · · · · · · · ·
A1A1U1	1826-0013	5	IC 741 OP AMP	28480	1826-0013
4142	08654-60104	1	BOARD ASSEMBLY, FM MODULATOR	28480	08654-60104
A1A2C1	0160-3872	2	CAPACITOR-FXD 2.2PF +25PF 200WVDC CER	28480	0160-3872
A1A2C2	0160-4289	2	CAPACITOR-FXD 15PF +-5% 100WVDC CER	95275	VK25BA150J
14203	0160-4289		CAPACITOR-FXD 15PF +-5% 100WVDC CER	95275	VK250A150J
N1A2C4	0160-3872		CAPACITOR-FXD 2.2PF +=.25PF 200WVDC CER	28480	0160-3872
1A2CR1	0122-0245	2	DIDDE-VVC 1N5139 6.8PF 10X	04713	1N5139
N1A2CR2	0122-0245		DIODE-VVC 1N5139 6.8PF 10%	04713	1N5139
N1A2L1 N1A2L2			NSR, P/O ETCHED CIRCUIT BOARD NSR, P/O ETCHED CIRCUIT BOARD		
AIA2MP1	08454-00040		BRACKET, FM MODULATOR BOARD	28480	08654-00040
A1A2R1	0698-7260	6	RESISTOR 10K 1% .05W F TC=0+=100	24546 24546	C3-1/8-T0-1002-G C3-1/8-T0-1002-G
A1A2R2 A1A2R3	0698-7260 0698-7260		RESISTOR 10K 1% .05W F TC=0+=100 Resistor 10K 1% .05W F TC=0+=100	24546	C3=1/8=70=1002=6 C3=1/8=70=1002=6
				· ·	
A1A3	08654-60003	1 1	BOARD ASSEMBLY, RF OSCILLATOR	28480	08654-60003
A1A3C1	0180-0116	3	CAPACITOR=FXD 6.8UF+=10% 35VDC TA	56289	150D685X903582
A1A3C2 A1A3C3	0121-0447	1 .1	CAPACITOR-V TRMR-CER 1.5/2.5PF 63V Capacitor-FXD 3.3PF +=.5PF 200WVDC CER	00868	53-TRIK0-04 1.5-2.5 PF-P10 0160-0682
A1A3C4	0160-0682		CAPACITUR=FXD 3.3PF +=.3PF 200WVDC CER CAPACITUR=FXD 3.3PF +=.5PF 200WVDC CER	28480	0160=0682
A1A3C5	0160-3879		CAPACITOR-FXD .01UF +-20% 100WVDC CER	28480	0160-3879
	н. Т.				
, ,					
()					
		, ,			· · ·
	•			1 A A	

See introduction to this section for ordering information

.

Table 6-2. Replaceable Parts

	Table 6-2. Replaceable Parts							
Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number			
A1A3C6+	0160-2248	1	CAPACITOR-FXD 4.3PF +25PF 500WVDC CER	28480	0160-2248			
A1A3C7 A1A3C8 A1A3C9	0160-3879 0160-3878 0160-0174	1	*FACTORY SELECTED PART CAPACITOR-FXD _01UF +=20% 1000WVDC CER CAPACITOR-FXD 1000PF +=20% 1000WVDC CER CAPACITOR-FXD _47UF +60=20% 25WVDC CER	28480 28480 28480	0160-3879 0160-3878 0160-0174			
A1A3C10 A1A3C11 A1A3C12+	0160-3879 0160-3878 0160-2236	1	CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD 1PF +25PF 500WVDC CER *FACTORY SELECTED PART	28480 28480 28480	0160-3879 0160-3878 0160-2236			
A1A3CR1 A1A3CR2	1901-0535 1901-0535		DIODE-SCHOTTKY DIODE-SCHOTTKY	28480 28480	1901-0535 1901-0535			
AIAJI	1250-0835	1	CONNECTOR-RF SMC M PC 50-0HM	98291	50-051-0000			
A 1 A 3 Q 1 A 1 A 3 Q 2 A 1 A 3 Q 3 A 1 A 3 Q 4	1854-0345 1854-0345 5086-4218 1205-0037 1854-0404	2 7 3	TRANSISTOR NPN 2N5179 SI TO-72 PD#200MW Transistor NPN 2N5179 SI TO-72 PD#200MW HP-21 to TO-72 Pkg HEAT SINK TO-36-Pkg Transistor NPN SI TO-18 PD#360MW	04713 04713 28480 28480 28480	2N5179 2N5179 5086-4218 1205-0037 1854-0404			
A1A3Q5 A1A3Q6	1854-0404 1854-0404		TRANSISTOR NPN SI TO-18 PD=360MW Transistor NPN SI TO-18 PD=360MW	28480 28480	1854-0404 1854-0404			
A1A3R1 A1A3R2 A1A3R3 A1A3R4 A1A3R4 A1A3R5	0698-7216 0698-7236 0698-7236 0698-7248 0698-7260	2	RESISTOR 147 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 3.16K 1% .05W F TC=0+-100 RESISTOR 10K 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-147R=G C3-1/8-T0-1001=G C3-1/8-T0-1001=G C3-1/8-T0-3161=G C3-1/8-T0-1002=G			
A1A3R6 A1A3R7 A1A3R8 A1A3R9 A1A3R10	0698-7216 0698-7188 0698-7260 0698-7248 0698-7248		RESISTOR 147 1% .05W F TC=0+-100 RESISTOR 10 1% .05W F TC=0+-100 RESISTOR 10K 1% .05W F TC=0+-100 RESISTOR 3.16K 1% .05W F TC=0+-100 RESISTOR 3.16K 1% .05W F TC=0+-100	24546 24546 24546 24546 24546	C3-1/8-T0-147R-G C3-1/8-T00-10R-G C3-1/8-T0-1002-G C3-1/8-T0-3161-G C3-1/8-T0-3161-G			
A1A3R11 A1A3R12 A1A3R13 A1A3R13 A1A3R14 A1A3R15	0698-7228 0698-7248 0698-7188 0698-7208 0698-7216	1	RESISTOR 464 1% .05W F TC=0+-100 RESISTOR 3.16K 1% .05% F TC=0+-100 RESISTOR 10 1% .05% F TC=0+-100 RESISTOR 65.1 1% .05% F TC=0+-100 RESISTOR 147 1% .05% F TC=0+-100	24546 24546 24546 24546 24546 24546	C3-1/8-70-464R-G C3-1/8-70-3161-G C3-1/8-700-10R-G C3-1/8-700-68R1-G C3-1/8-700-68R1-G			
A1A3R16 A1A3R17 A1A3R18 A1A3R18 A1A3R19 A1A3R20	0698-7230 0698-3260 0698-7188 0698-7204 0698-7260	12	RESISTOR 562 1% .05W F 7C=0+-100 RESISTOR 464K 1% .125W F TC=0+-100 RESISTOR 10 1% .05W F TC=0+-100 RESISTOR 46.4 1% .05W F TC=0+-100 RESISTOR 10K 1% .05W F TC=0+-100	24546 91637 24546 24546 24546	C3-1/8-T0-562R-G CMF-55-1, T-1 C3-1/8-T00-10R-G C3-1/8-T00-46R4-G C3-1/8-T0-1002-G			
A1A3R21	0698-7229		RESISTOR 511 1% .05W F TC=0+-100	24546	C3-1/8-T0-511R-6			
144	08654-60021	- 1	TURRET ASSEMBLY	28480	08654-60021			
144E1 144E2 144E3	9170-0847 9170-0847 9170-0847	3	CORE-SHIELDING BEAD Core-Shielding Bead Core-Shielding Bead	02114 02114 02114	56-590-65/38 PARYLENE COATED 56-590-65/38 Parylene Coated 56-590-65/38 Parylene Coated			
A1A4R1 A1A4R2 A1A4R3 A1A4R4 A1A4R5	0686-1015 0686-1015 0686-1015 0686-1015 0686-1015	·'5	RESISTOR 100 5% .5W CC TC=0+529 RESISTOR 100 5% .5W CC TC=0+529	01121 01121 01121 01121 01121 01121	EB1015 E61015 E81015 E81015 E81015 E81015			
A1A5	08654-60028	1	SWITCH ASSEMBLY, ROTARY P.C.	28480	08454-60028			
A1A5J1 A1A5J2			NSR, P/O A1A5. NSR, P/O A1A5.					
A1A5MP1 A1A5MP2 A1A5MP3 A1A5MP4 A1A5W1	08654-00054 3050-0161 0510-0005 3050-0017	1 1 1 1	LABEL, CONNECTOR WASHER-SPR WAVY 1/4" .265"ID RETAINER, RING BSC EXT .25" DIA STL WASHER-FLAT MTLC 1/4" .26" ID 'NSR, P/O A1A5.	28480 04426 28480 28480	08654-00054 R-2 0510-0005 3050-0017			
A1A5W2 A2 A2	08654-60024	1	NSR, P/O AIAS. NSR, P/O AIAS. Attenuator Assembly(Incl A2J1 And A2J2) Not recommended for field repair Restored 08654-60024, Requires Exchange	28480 28480	08654-60024 08654-60023			
A2J1 A2J2			NSR, P/O A2 NSR, P/O A2					
A3	08654-60101		BOARD ASSEMBLY, CONTROL/POWER SUPPLY	28480	08484-40101			
A3C1 A3C2 A3C3 A3C4 A3C5	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055	8	CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER CAPACITOR-FXD .01UF +80-20% 100WVDC CER	28480 28480 28480 28480 28480 28480	08654-60101 0160-2055 0160-2055 0160-2055 0160-2055 0160-2055			

See introduction to this section for ordering information

· .

. entration

14 ° 44

.....

Table 6-2. Replaceable Parts

	Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe	er
	A3C6 A3C7 A3C6 A3C9 A3C10	0160-2055 0160-2055 0160-2055 0160-2055 0180-2181 0180-2181	5	CAPACITOR-FXD .01UF +80-20X 100WVDC CER CAPACITOR-FXD .01UF +80-20X 100WVDC CER CAPACITOR-FXD .01UF +80-20X 100WVDC CER CAPACITOR-FXD 1300UF+75-10X 50VDC AL CAPACITOR-FXD 1300UF+75-10X 50VDC AL	28480 28480 28480 56289 56289	0160-2055 0160-2055 0160-2055 36D132G050AA2A 36D132G050AA2A	1
	A3C11 A3C12 A3C13 A3C14 A3C14	0180-0049 0180-0116 0160-0161 0180-0161 0180-0116 0160-3460	1	CAPACITOR-FXD 2GUF+75-10X 50VDC AL Capacitor-FXD 6.8UF+-10X 35VDC TA Capacitor-FXD .01UF +-10X 200WVDC Polye Capacitor-FXD 6.8UF+-10X 35VDC TA Capacitor-FXD .05UF +80-20X 100WVDC CER	56289 56289 56289 56289 56289 28480	30D2066050CC2 150D685X903582 292P10392 150D685X903582 0160=3460	
	A3C16 A3C17 A3C18 A3C19 A3C20	0160-2194 0160-3456 0180-2206 0160-2204 0160-0300	1 1 1 1	CAPACITOR-FXD .180F +-5% 200WVDC POLYE CAPACITON-FXD 1000PF +-10% 1000WVDC CER CAPACITOR-FXD 600F+-10% 6VDC TA CAPACITOR-FXD 100PF +-5% 300HVDC MICA CAPACITOR-FXD 2700PF +-10% 200WVDC POLYE	28480 28480 56289 28480 56289	0160-2194 0160-3456 150D606×900682 0160-2204 292P27292	
	A3C21 A3C22 A3C23* † A3C24	0180-0291 0160-3534 0140-0195 0160-2257	4 1 1	CAPACITOR-FXD 1UF+-10X 35VDC TA Capacitor-FXD 510PF +-5% 100WVDC MICA Capacitor-FXD 130PF +-5% 300WVDC MICA *Factory Selected Part Capacitor-FXD 10PF +-5% 500WVDC CER	56289 28480 04522 28480	150D105X9035A2 0160-3534 DM15F131J0300WV1CR 0160-2257	
	A3C25 A3C26 A3C27 A3C28 A3C29	0180-0228 0180-0291 0160-2201 0160-0049 0180-0089	1	CAPACITOR-FXD 22UF+-10% 15VDC TA CAFACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 51PF +-5% 300WVDC MICA CAPACITOR-FX/ 20UF+75-10% 50VDC AL CAPACITOR-FX) 10UF+50-10% 150VDC AL	56289 56289 28480 56289 56289	150D226X9015B2 150D105X9035A2 0160-2201 30D206G050CC2 30D106F150DD2	
	A3CR1 A3CR2 A3CR3 A3CR4 A3CR4 A3CR5	1901-0364 1901-0364 1901-0040 1901-0040 1901-0040	2	DIODE-FW BRDG 200V 1A DIODE-FW BRDG 200V 1A DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-SWITCHING 30V 50MA 2NS DO-35	04713 04713 26480 26480 28460	SDA 10185-4 SDA 10185-4 1901-0040 1901-0040 1901-0040	
	A3CR6 A3CR7 A3CR8 A3CR9 A3CR9 A3CR10	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE-BWITCHING BOV 50MA 2NB DO-35 DIODE-BWITCHING BOV 50MA 2NB DO-35 DIODE-BWITCHING BOV 50MA 2NB DO-35 DIODE-BWITCHING BOV 50MA 2NB DO-35 DIODE-BWITCHING BOV 50MA 2NB DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	
	A3CH11 A3CR12 A3CR13 A3CR14 A3CR14 A3CR15	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2N8 DO-35 DIODE-SWITCHING 30V 50MA 2N8 0-35 DIODE-SWITCHING 30V 50MA 2N8 DO-35 DIODE-SWITCHING 30V 50MA 2N8 DO-35 DIODE-SWITCHING 30V 50MA 2N8 DO-35	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040	
	A3CR16 A3CR17 A3CR18	1901-0040 1901-0040 1901-0040		DIODE-SWITCHING 30V 50MA 2NS DO-35 Diode-Switching 30V 50MA 2NS DO-35 Diode-Switching 30V 50MA 2NS DO-35	28480 28480 28480	1901-0040 1901-0040 1901-0040	
	A3MP1 A3MP2 A3MP3	0360-1514 0360-1514 0360-1514	, 40	TERMINAL-STUD SGL-PIN PHESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480	0360-1514 0360-1514 0360-1514	
	A3Q1 A3Q2 A3Q3 A3Q4	1854-0072 08634-20031 1853-0012 1854-0071 1854-0071	2 1 1	TRANSISTOR NPN 2N3054 SI TO-66 PD=25W HEAT SINK, TO-66 Transistor PNP 2N2904a SI TO-5 PD=600MW Transistor NPN SI PD=300MW FT=200MHZ Transistor NPN SI PD=300MW FT=200MHZ	02735 28480 01295 28480 28480	2N3054 08654-20031 2N2904A 1854-0071 1854-0071	
	A3Q5 A3Q6	1854-0072 1854-0022	5	TRANSISTOR NPN 2N3054 SI TO-66 PD#25W Transistor NPN SI TO-39 PD#700MW	02735 07263	2N3054 517843	
	A3R1 A3R2 A3R3 A3R4 A3R4 A3R5	0757-0278 0757-0442 0757-0448 0757-0290 2100-1758	18 1 2 1	RESISTOR 1,78K 1X .125W F TC=0+-100 RESISTOR 10K 1X .125W F TC=0+-100 RESISTOR 5.11K 1X .125W F TC=0+-100 RESISTOR 6.19K 1X .125W F TC=0+-100 RESISTOR-TRMR 1K 5X WW SIDE-ADJ 1=TURN	24546 24546 24546 19701 GB027	C4-1/8-T0-1781-F C4-1/8-T0-1002-F C4-1/8-T0-5111-F MF4C1/8-T0-6191-F CT-106-4	
	A3R6 A3R7 A3R8 A3R9 A3R9	0698-3156 0683-0275 0698-3633 0683-0475 0757-0394	3 2 1 1 2	RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 2.7 5% .25W FC TC=-400/+500 RESISTOR 390 5% 2W MO TC=0>-200 RESISTOR 4.7 5% .25W FC TC=-400/+500 RESISTOR 51.1 1% .125W F TC=0+-100	24546 01121 11502 01121 24546	C4-1/8-T0-1472-F C827G5 RG42 C647G5 C4-1/8-T0-51R1-F	
	A3R11 A3R12 A3R13 A3R14 A3R14	0698-3444 0757-0280 0757-0442 0757-0465 0683-0275	3 9	RESISTOR 316 1% _125W F TC=0+=100 RESISTOR 1K 1% _125W F TC=0+=100 RESISTOR 10K 1% _125W F TC=0+=100 RESISTOR 100K 1% _125W F TC=0+=100 RESISTOR 2,7 5% _25W FC TC==400/+500	24546 24546 24546 24546 01121	C4-1/8-T0-316R-F C4-1/8-T0-1001-F C4-1/8-T0-1002-F C4-1/8-T0-1003-F C82765	
	A3R16 A3R17 A3R18 A3R19 A3R20	0811-2816 0698-3628 0757-0442 0698-3440 0698-3444	1	RESISTOR 1.6 5% .75W PW TC=0+-50 RESISTOR 220 5% 2W MO TC=0+-200 RESISTOR 10M 1% .125W F TC=0+-100 RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 316 1% .125W F TC=0+-100	91637 11502 24546 24546 24546	R8-1/2 RG42 C4-1/8-T0-1002-F C4-1/8-T0-196R-F C4-1/8-T0-316R-F	
L		1	۰.	ntroduction to this section for ordering information or BACKDATING, SEE TABLE 7-1.	l	L	
		· · ·				· · ·	

1

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A3R21 A3R22 A3R23 A3R24 A3R24 A3R25	0757-0464 0757-0463 0698-3457 0757-0280 0757-0441	3 1 3	RESISTOR 90.9K 1% .125W F TC=0+-100 RESISTOR 82.5K 1% .125W F TC=0+-100 RESISTOR 316K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100	24546 24546 91637 24546 24546	C4-1/8-T0-9092=F C4-1/8-T0-8252=F CMF-55-1, T-1 C4-1/8-T0-1001=F C4-1/8-T0-8251=F
Aur26 Abr27 Abr28 Abr29 Abr29 Abr30	0757-0442 0757-0458 0698-3161 0698-3158 0757-0442	6 2 3	RESISTOR 10K 1% ,125W F TC=0+-100 RESISTOR 51.1K 1% ,125W F TC=0+-100 RESISTOR 30.3K 1% ,125W F TC=0+-100 RESISTOR 23.7K 1% ,125W F TC=0+-100 RESISTOR 10K 1% ,125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-5112-F C4-1/8-T0-3832-F C4-1/8-T0-2372-F C4-1/8-T0-1002-F
A3R31 A3R32 A3R33 A3R34 A3R34 A3R35	0757-0394 0757-0442 0698-3154 2100-2489 0757-0447	1	RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 4.22K 1% .125W F TC=0+-100 RESISTOR-TRMR 5K 10% C SIDE-ADJ 1+TRN RESISTOR 16.2K 1% .125W F TC=0+-100	24546 24546 24546 19701 24546	C4-1/8-T0-51R1-F C4-1/8-T0-1002=F C4-1/8-T0-4221=F ET50×502 C4-1/8-T0-1622=F
A3R36 A3R37 A3R38 A3R39 A3R40	0698-3458 0698-3162 0757-0279 0757-0416 0757-0465	322	RESISTOR 348K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	91637 24546 24546 24546 24546	CMF-55-1, T-1 C4-1/8-T0-4642-F C4-1/8-T0-3161-F C4-1/8-T0-511R-F C4-1/8-T0-1003-F
A 3 R 4 1 A 3 R 4 2 A 3 R 4 3 A 3 R 4 4 A 3 R 4 5	0757-0461 0698-3459 0757-0280 0757-0462 2100-2517	1 2 1 1	RESISTOR 68.1K 1% .125W F TC=0+-100 Resistor 383K 1% .125W F TC=0+-100 Resistor 1K 1% .125W F TC=0+-100 Resistor 75K 1% .125W F TC=0+-100 Resistor-TRMR 50K 10% C Side-Adj 1-TRN	24546 91637 24546 24546 30983	C4-1/8-T0-6812-F CMF-55-1, T-1 C4-1/8-T0-1001=F C4-1/8-T0-7502=F ET50X503
A 3R 46 A 3R 47 A 3R 48 A 3R 49 A 3R 50	0698+3260 0757-0465 0757-0442 0698-3454 0757-0442	1	RESISTOR 464K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 215K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	91637 24546 24546 24546 24546	CMF-55-1, Y-1 C4-1/8-T0-1003-F C4-1/8-T0-1002-F C4-1/8-T0-2153-F C4-1/8-T0-1002-F
A3R51 A3R52 A3R53+ A3R54	0757-0180 2100-2516 0698-4424 2100-2516	1 2 1	RESISTOR 31.6 1% 125W F TC=0+=100 RESISTOR=TRMR 100K 10% C SIDE=ADJ 1=TRN RESISTOR 1.4K 1% 125W F TC=0+=100 *Factory selected part Resistor=trmr 300K 10% C Side=ADJ 1=TRN	24546 73138 24546 73138	C4, T-0 62-231-1 C4-1/8-T0-1401-F 62-231-1
A3R55 A3R56 A3R57 A3R58 A3R58	0683-2265 0757-0465 2100-2514 0698-3450 0757-0279	1	RESISTOR 22M 5% .25W FC TC=-9.0/+1200 RESISTOR 100K 1% .125W F TC=0+ 100 RESISTOR-TRMR 20K 10% C SIDE-ADJ 1-TRN RESISTOR 42.2K 1% .125W F TC=0+-100 RESISTOR 3.16K 1% .125W F TC=0+-100	01121 24546 30983 24546 24546	C82265 C4-1/8-T0-1003-F ET50W203 C4-1/8-T0-4222-F C4-1/8-T0-3161-F
A3R60 † A3R61 A3R62 A3R63	0698-3155 0757-0447 0757-0288 0757-0458	1	RESISTOR 4.64K 1X .125W F TC=0+-100 RESISTOR 16.2K 1X .125W F TC=0+-10C RESISTOR 9.09K 1X .125W F TC=0+-100 RESISTOR 51.1K 1X .125W F TC=0+-100	24546 24546 19701 24546	C4-1/8-T0-4641-F C4-1/8-T0-1622-F MF4C1/8-T0-9091-F C4-1/8-T0-5112-F
A391	3101-0973	1	SWITCH-SL DPDT-NS MINTR 54 125VAC/DC PC	79727	GF126-0018
A3TP1=13 A3U2 A3U2 A3U3 A3U4 A3U4 A3U5	0360-1514 1820-0223 1826-0013 1826-0288 1826-0092 1826-0013	1 1 4	TERMINAL-STUD SGL-PIN PRESS-MTG IC LM 301A OP AMP IC 741 OP AMP IC CA 1458 OP AMP IC MC 1458 OP AMP IC 741 OP AMP	28480 27014 28480 28480 28480 28480 28480	0360-1514 LM301AH 1826-0013 1826-0288 1826-0288 1826-0092 1826-0013
A3U6	1826-0013		IC 741 CP AMP	28480	1826-0013
A3VR1 A3VR2 A3VR3	1902-0680 1902-0041 1902-0049	1 1 1	DIODE-ZNR 1N827 6.2V 5% DO-7 PD=.25W DIODE-ZNR 5.11V 5% DO-7 PD=.4W TC=009% DIODE-ZNR 6.19V 5% DO-7 PD=.4W TC=+.022%	03877 15818 28480	1N827 CD 35622 1702-0049
A4 A4j1	0960-0444	. 1	LINE MODULE(INCLUDES A4J1, A4P1). Connector, NSR, P/O A4	28480	0960-0444
A4P1	5020-8157	. 1	CARD, VOLTAGE SELECT (SEE SECTION II)	28480	5020-0157
A5	08654-60106	1	BOARD ASSEMBLY, FM DRIVER	28480	08654-60106
A5C1 A5C2 A5C3 A5C4 A5C5	0160-3447 0160-3467 0160-2201 0160-3467 0160-3467	1	CAPACITOR-FXD 470PF +-10% 1000WVDC CER CAPACITOR-FXD 100PF +-10% 1000WVDC CER CAPACITOR-FXD 51PF +-5% 300WVDC MICA CAPACITOR-FXD 100PF +-10% 1000WVDC CER CAPACITOR-FXD 100PF +-10% 1000WVDC CER	28430 28480 28480 28480 28480 28480	0160-3447 0160-3467 0160-2201 0160-3467 0160-3467
A5C6 A5C7 A5C0 A5C9 A5C10	0160-2201 0160-4084 0160-3467 0180-0374 0160-4084	5	CAPACITOR-FXD 51PF +-5% 300WVDC MICA CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD 100PF +-10% 1000WVDC CER CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD .1UF +-20% 50WVDC CER	28480 28480 28480 56289 28480	0160-2201 0160-4084 0160-3467 1500106×902082 0160-4084
			atroduction to this section for ordering informat	ion	
10		T FO	R BACKDATING, SEE TABLE 7-1.	й	
. 1			· · ·		у. Ц

()

6-11

.

 Table 6-2.
 Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A5C11 A5C12 A5C13 A5C14 A5C15	0180=0058 0180=0058 0160=4084 0160=2264 0160=2264	4	CAPACITOR-FXD 50UF+75-10% 25VDC AL CAPACITOR-FXD 50UF+75-10% 25VDC AL CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD 20PF +-5% 500WVDC CER CAPACITOR-FXD .1UF +-20% 50WVDC CER	56289 56289 28480 28480 28480	30D506G025CC2 30D506G025CC2 0160-4084 0160-2264 0160-4084
A5C16 A5C17 A5C18 A5C19 A5C20	0180-0291 0180-0291 0160-4084 0180-0058 0180-0058		CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD 50UF+75-10% 25VDC AL CAPACITOR-FXD 50UF+75-10% 25VDC AL	56289 56289 28480 56289 56289	150D105X9035A2 150D105X9035A2 0160-4084 30D506G025CC2 30D506G025CC2
ASC21 ASC22 ASC23 ASC24 ASC25	0140-0210 0180-0100 0160-2205 0160-2257 0160-0157	.1 1 1	CAPACITOR-FXD 270PF +-5% 300WVDC MICA Capacitor-FXD 4.7UF+-10% 35VDC TA Capacitor-FXD 120PF +-5% 300WVDC MICA Capacitor-FXD 10PF +-5% 500WVDC CER Capacitor-FXD 4700PF +-10% 200WVDC POLYE	72136 56289 28480 28480 56289	DM15F271J0300WV1CR 150D475×903582 0160-2205 0160-2257 292P47292
A5C26 A5C27 A5C28 A5C29	0180-0089 0140-0198 0160-2201 0160-2201	1	CAPACITOR-FXD 10UF+50-10% 150VDC AL Capacitor-FXD 200PF +-5% 300WVDC MICA Capacitor-FXD 51PF +-5% 300WVDC MICA Capacitor-FXD 51PF +-5% 300WVDC MICA	56289 72136 28480 28480	30D106F150DD2 DM15F201J0300WV1CR 0160-2201 0160-2201
A5CR1 A5CR2 A5CR3 A5CR4 A5CR5	1901-1011 1901-1011 1901-0033 1901-0033 1901-0033	2 5	DIODE-ARRAY 5MV DIODE-ARRAY 5MV DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7 DIODE-GEN PRP 180V 200MA DO-7	28480 28480 28480 28480 28480 28480	1901-1011 1901-1011 1901-0033 1901-0033 1901-0033
ASCR6 ASCR7 ASCR8 ASCR8	1901-0033 1901-0159 1901-0159 1901-0159 1901-0033	5	DIODE-GEN PRP 180V 200MA DO-7 Diode-Pwr Kect 400V 750MA DO-41 Diode-Pwr Rect 400V 750MA DO-41 Diode-Gen PRP 180V 200MA DO-7	28480 04713 04713 28480	1901-0033 8R1358-4 SR1358-4 1901-0033
A5J1 A5J2 A5J3	1200-0508 1200-0508 1200-0508	_ 3	SOCKET-IC 14-CONT DIP-SLDR-TERMS SUCKET-IC 14-CONT DIP-SLDR-TERMS SOCKET-IC 14-CONT DIP-SLDR-TERMS	06776 06776 06776	ICN-143-93W ICN-143-93W ICN-143-93W ICN-143-93W
A5L1 A5L2 A5L3	9140-0137 9140-0137 9140-0137	3	COIL-MLD 1MH 5% Q#60 .19D%.44LG SRF#3MHZ COIL-MLD 1MH 5% Q#60 .19D%.44LG SRF#3MHZ CUIL-MLD 1MH 5% Q#60 .19D%.44LG SRF#3MHZ	99800 99800 99800	2500-28 2500-28 2500-28
A5MP1- A5MP58	0360-0065	1 58	TERMINAL-STUD FKD-TUR SWGFRM-MTG	28480	0360-0065
A501	1854-0022 1854-0023		TRANSISTOR NPN SI TO-39 PD#700MW Transistor NPN SI TO-18 PD#360MW	07263	517843 1854-0023
A5G2 A5R1 A5R2+	0757-0442	8	RESISTOR 10K 1% .125W F TC=0++100 RESISTOR 6.81K 1% .125W F TC=0++100	24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-6811-F
A5R3 A5R4+	0757-0442 0757-0439		*FACTORY SELECTED PART RESISTOR 10K 1% .125W F TC#0++100 RESISTOR 6.81K 1% .125W F TC#0++100 *Factory selected part	24546 24546	C4-1/8-T0-1002=F C4-1/8-T0-6811=F
A5R5 A5R6*	0757=0442 0757=0439		RESISTOR 10K 1% .125W F TC=0+-100 Resistor 6.81K 1% .125W F TC=0+-100 *Factory selected part	24546 24546	C4-1/8-T0-1002-F C4+1/8-T0-6811-F
A5R7 A5R8#	0757-0442 0757-0439		RESISTOR 10K 1% .125W F TC#0+-100 RESISTOR 6.81K 1% .125W F TC#0+-100 *Factory selected part	24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-6811-F
A5R9 A5R10+	0757-0442 0757-0439		RESISTOR 10K 1% .125W F TC=0+-100 Resistor 6.81K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-6811-F
A5R11 A5R12+	0757-0442		*FACTORY SELECTED PART RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100 *FACTORY SELECTED PART	24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-6811-F
A5R13 A5R14+	0757-0442 0757-0439		RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 6.81K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0+1002-F C4-1/8-T0-6811-F
A5R15 A5R16	0757-0440 2100-2216	2	*FACTORY SELECTED PART RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR-TRMR 5K 10% C TOP-ADJ 1-TRN	24546 73138	C4-1/8-T0-7501-F 62-208-1
A5R17 A5R18 A5R19 A5R20 A5R21	0757-1094 2100-2497 0698-3152 0757-0200 0757-0442	1 2	RESISTOR 1.47K 1% .125W F TC=0+-100 RESISTOR+TRMR 2K 10% C TOP-ADJ 1-TRN RESISTOR 3.48K 1% .125W F TC=0+-100 RESISTOR 5.62K 1% .125W F TC=0+-100 RESIS'OR 10K 1% .125W F TC=0+-100	24546 73138 24546 24546 24546	C4-1/8-T0-1471-F 62-207-1 C4-1/8-T0-3481-F C4-1/8-T0-5621-F C4-1/8-T0-1002-F
A5822+	0757-0470	7	RESISTUR 162K 1% .125W F TC=0+-106 *FACTURY SELECTED PART	24546	C4-1/8-T0-1623-#
A5R23*	0757-0470		RESIGIOR 162K 1% .125W F TC=0+-100 *Factory selected Part	24546	C4-1/8+70-1623-F
A5R24+	0757-0470		RESISTOR 162K 1% .125W F TC=0+-100 *Factory selected Part	24546	_4-1/8-T0-1623-F
A5R25+	0757-0470		RESISTOR 162K 1% .125W F TC=0+-100 *Factory selected part	24546	C4-1/8-10-1623-F
A5R26 A5R27 A5R28+	0698-3458 0757-0465 0757-0470		RESISTOR 348K 1% ,125W F TC=0+-100 RESISTOR 100K 1% ,125W F TC=0+-100 RESISTOR 162K 1% ,125W F TC=0+-100 *FACTORY SELECTED PART	91637 24546 24546	CMF-55-1, T-1 C4-1/8-T0-1003-F C4-1/8-T0-1623-F

See introduction to this section for ordering information

,

÷

henia

Replaceable Parts

1

Model 8654B

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
45R29*	0757-0470		RESISTOR 162K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1623-F
45R30+	0757-0470		*FACTORY SELECTED PART RESISTOR 162K 1% J25W F TC=0+=100	24546	C4-1/8-T0-1623-F
A5R31	0757-0458		*FACTORY SELECTED PART Resistor 51.1k 1% .125w F TC=0+=100	24546	C4-1/8-T0-5112-F
A5R32 A5R33*	0757=0399 0757=0419	1	RESISTOR 82.5 1% _125W F TC=0+-100 RESISTOR 681 1% _125W F TC=0+-100	24546 24546	C4-1/8-T0-82R5-F C4-1/8-T0-681R-F
ASR34 ASR35#	0757-0405 0757-0274	1 3	*FACTORY SELECTED PART Resistor 162 1% .125W F TC=0+-100 Resistor 1.21K 1% .125W F TC=0+-100 *Factory selected part	24546 24546	C4=1/8=T0=162R=F C4=1/8=T0=1213=F
A5R36 A5R37 A5R38*	0757-0465 0698-3441 0757-0274	1	RESISTOR 100K 1X .125W F TCR(0, 99) RESISTOR 215 1X .125W F TCR(0, 99) RESISTOR 1.21K 1X .125W F TCR(1, 92) 00 -	24546 24546 24546	C4=1/8=T0=1003=F C4=1/8=T0=215R=F C4=1/8=T0=1213=F
\$R39	0698=3442	3	*FACTORY SELECTED PARTER AND A STREET PARTER STOR 237 1% .125W (* 1984) -100	24546	C4-1/8-T0-237R-F
SR40*	0757-0428	2	RESISTOR 1.62K 1X .125K * TC=0+-100 +Factory selected pary	24546	C4=1/8=70=1621=F
15841 15842 15843	0757-0467 2100-3161 0698-3442	3 1	RESISTOR 121K 1% 125% F TC=0+-100 RESISTOR-TRMR 20K 10% C SIDE-ADJ 17-TRN RESISTOR 237 1% 125% F TC=0+-100	24546 32997 24546	C4-1/8-T0-1213-F 3006P-1-203 C4-1/8-T0-237R-F
5R44+	0757-0278	2	RESISTOR 1.78K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1781-F
NSR 45 NSR 46 NSR 47	0698-3442 0757-0458 0698-3432	1	*FACTORY SELECTED PART RESISTOR 237 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100 RESISTOR 26.1 1% .125W F TC=0+-100	24546 24546 0 3868	C4-1/8-T0-237R-F C4-1/8-T0-5112-F PME55-1/8-T0-26R1-F
SR48+	0757-0428		RESISTOR 1.62K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1621-F
15849 15850 15851	0698-3458 0698-3158 0757-0458	1	*FACTORY SELECTED PART RESISTOR 348K 1% .125W F TC=0+-100 RESISTOR 23.7K 1% .125W F TC=0+-100 RESISTOR 51.1K 1% .125W F TC=0+-100	91637 24546 24546	CMF-55-1, T-1 C4-1/8-T0-2372-F C4-1/8-T0-5112-F
5852 5853 5854 5855	0698-0082 0757-0416 0757-0485 0698-0085	1	RESISTOR 464 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 681K 1% .125W F TC=0+-100 RESISTOR 2.61K 1% .125W F TC=0+-100	24546 24546 24546 24546	C4~1/8-T0-4640-F C4-1/8-T0-511R-F NA4 C4-1/8-T0-2611-F
15R56	0757=0299	1	RESISTOR 825K 1% .25W F TC=0+=25	24546	NEGO
ASR57 ASR58 ASR59 ASR60 ASR61	0698-3157 0757-0200 2100-3056 0757-0442 0757-0346	1 1 2	RESISTOR 19.6K 1% .125W F TC=0+=100 RESISTOR 5.62K 1% .125W F TC=0+=100 RESISTOR=TRMR 5K 10% C SIDE=ADJ 17=TRN RESISTOR 10K 1% .125W F TC=0+=100 RESISTOR 10 1% .125W F TC=0+=100	24546 24546 32997 24546 24546	C4-1/8-T0-1962-F C4-1/8-T0-5621-F 3006P-1-502 C4-1/8-T0-1002-F C4-1/8-T0-10R0-F
A5R62 A5R63 A5R64 A5R65 A5R66*	0698-8625 2100-3052 0698-8625 0698-0083 0757-0447	2 1 7 3	RESISTOR 1K .1% .1W F TC=0+=5 RESISTOR-TRMR 50 20% C SIDE=ADJ 17=TRN RESISTOR 1K .1% .1W F TC=0+=5 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 16.2K 1% .125W F TC=0+=100 *FACTORY SELECTED MART	07716 32997 07716 24546 24546	MAR-5 3006P-1-500 MAR-5 C4-1/8-T0-1961-F C4-1/8-T0-1622-F
15R67 15R68#	0698-0083		RESISTOR 1.96K 1% .125W F 7C#0+#100 Normally Open	24546	C4m1/8-T0-1961-F
5R69 15R70+	0698-0083 0757-0288	3	*FACTORY SELECTED PART RESISTOR 1.96K 1X .125W F TC=0+-100 RESISTOR 9.09K 1X .125W F TC=0+-100 *Factory selected part	24546 19701	C4-1/8-T0-1961-F MF4C1/8-T0-9091-F
5871 5872+	0698-0083 0757-0444	1	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 12.1K 1% .125W F TC=0+-100	24546 24546	C4-1/8-T0-1961-F C4-1/8-T0-1212+F
15873 15874+	0698-0083 0757-0443	1	*FACTORY SELECTED PART RESISTOR 1.96K 1X .125W F TC=0+=100 RESISTOR 11K 1X .125W F TC=0+=100 *Factory selected part	24546 24546	C4-1/8-T0-1961-F C4-1/3-T0-1102-F
5875 5876+	0698-0083 0757-0441	4	RESISTOR 1.96K 1% .125W F TC=0+-100 Resistor 8.25K 1% .125W F TC=0+-100	24546 24546	C4+1/8-T0+1961=F C4+1/8-T0-8251=F
5R77 5R78	0698-3162 0698-3449	5	*FACTORY SELECTED PART Resistor 46,4K 1X .125W F TC=0+-100 Resistor 28,7K 1X .125W F TC=0+-100	24546 24546	C4-1/8-T0-4642-F C4-1/8-T0-2872-F
5879 5880 5881 5882 5883	0698-3449 0698-3156 0757-0440 0757-0441 0757-0346		RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 7.5K 1% .125W F TC=0+-100 RESISTOR 8.25K 1% .125W F TC=0+-100 RESISTOR 10 1% .125W F TC=0+-100	24546 24546 24546 24546 24546	C4-1/8-T0-2872-F C4-1/8-T0-1472-F C4+1/8-T0-7501-F C4-1/8-T0-8251-F C4-1/8-T0-10R0-F
5R84*	0757-0123	5	RESISTOR 34.8K 1% .125W F TC#0++100	24546	C4, Y=0
SR85 ISR86 ISR87	0698-0085 0698-0083 0698-3445	1	*FACTORY SELECTED PART RESISTOR 2.61K 1% .125W F TC=0+=100 RESISTOR 1.96K 1% .125W F TC=0+=100 RESISTOR 348 1% .125W F TC=0+=100	24546 24546 24546	C4-1/8-70-2611=F C4-1/8-70-1961=F C4-1/8-70-348R⇒F
15R88 15R89*	0698-3435 0757-0424	1 2	RESISTOR 38.3 1% .125W F TC=0+=100 RESISTOR 1.1K 1% .125W F TC=0+=100 	24546 24546	C4-1/8-T0-38R3-F C4-1/8-T0-1101-F
5R90 5R91*	0 698-3 439 0757-1094	1 2	*FACTORY SELECTED PART RESISTOR 178 1% .125W F TC=0+-100 RESISTOR 1.47K 1% .125W F TC=0+-100 *Factory selected part	24546 24546	C4-1/8-T0-1788-F C4-1/8-T0-1471-F

,

See introduction to this section for ordering information

FOR BACKDATING, SEE TABLE 7-1.

.

• •

6-13

Table 6-2. Replaceable Parts

SNOT 0+0+2457 PESISTOR JUNK 12 - 1258 F TC0+-100 91837 CWF-55-1, V-1 SNOT 0737-0044 PESISTOR JUNK 12 - 1258 F TC0+-100 24566 C4-1/4-T0-003-F SNITO 0757-0123 PESISTOR JUNK 12 - 1258 F TC0+-100 24566 C4-1/4-T0-3032-F SNITO 0757-0123 PESISTOR JUNK 12 - 1258 F TC0+-100 24566 C4-1/4-T0-3032-F SNITO 0757-0465 PESISTOR JUNK 12 - 1258 F TC0+-100 24566 C4-1/4-T0-003-F SNITO 0757-0465 PESISTOR JUNK 12 - 1258 F TC0+-100 24566 C4-1/4-T0-0103-F SNITO 0757-0424 PESISTOR JUNK 12 - 1258 F TC0+-100 24566 C4-1/4-T0-0103-F SNITO 0757-0424 PESISTOR JUNK 12 - 1258 F TC0+-100 24566 C4-1/4-T0-0103-F SNITO 0757-0424 PESISTOR JUNK 18 12 JESS F TC0+-100 24566 C4-1/4-T0-0103-F SNITO 0757-0425 PESISTOR JUNK 18 12 JESS F TC0+-100 24566 C4-1/4-T0-023-F SNITO 0757-0425 PESISTOR JUNK 18 12 JESS F TC0+-100 24566 C4-1/4-T0-023-F SNITO 0757-0425 PESISTOR JUNK 18 1258	Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
Sing 0/57-0200 PRSISTOR 6.6 (*) 13.125 / F TC00-100 1970 1970 1970 Sing 0/57-0407 1 PRSISTOR 6.6 (*) 13.125 / F TC00-100 24566 Cal/A-TO-751 / F Sing 0.989-332 1 PRSISTOR 14 13.125 / F TC00-100 1970 MFC1/0-1051 / F Sing 0.989-3157 PRSISTOR 14 13.125 / F TC00-100 24566 Cal/A-TO-251 / F Sing 0.989-3157 PRSISTOR 15 (*) 13.125 / F TC00-100 24566 Cal/A-TO-2002 / F Sing 0.989-3151 PRSISTOR 16 (*) 13.125 / F TC00-100 24566 Cal/A-TO-103 / F Sing 0.977-0453 1 PRSISTOR 100 (*) 3.125 / F TC00-100 24566 Cal/A-TO-103 / F Sing 0.977-0451 1 PRSISTOR 100 (*) 3.125 / F TC00-100 24566 Cal/A-TO-103 / F Sing 0.977-0421 1 PRSISTOR 100 (*) 3.125 / F TC00-100 24566 Cal/A-TO-2811 / F Sing 0.977-0421 1 PRSISTOR 750 (*) 1.10 (*) 1.25 / F TC00-100 24566 Cal/A-TO-2811 / F Sing 0.977-0421 1 PRSISTOR 760 (*) 1.10 (*) 1.25 / F TC00-1	45000	0757-0458	T	RESISTOR 51-18 18 -125W F TC=0+-100	24546	C4-1/8-T0-5112-F
Sing Original Image: Singer S		1				MF4C1/8-T0-6191+F
Species DYST-Dub? PESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-1213-F SMPG 0.995-3457 1 RESISTOR 1214 13 .125M F TCC00-100 91637 MWSC1/2-10-100-F SMPG 0.995-3457 1 RESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-1213-F SMPG 0.9757-0467 PESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-12012-F SMPG 0.9757-0467 PESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-12012-F SMPG 0.9757-0465 PESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-12013-F SMPG 0.9757-0421 PESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-12013-F SMPG 0.9757-0421 1 PESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-12013-F SMPG 0.9757-0421 1 PESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-12013-F SMPG 0.9757-0421 1 PESISTOR 1214 13 .125M F TCC00-100 24560 Col/AFTC-12013-F SMPG 0.9757-0465 RESISTOR 0.114 13 .125M F TCC00-100 24560 Col/AFTC-12010			1 1	RESISTOR 750 1% .125W F TC=0+=100	24546	C4-1/8-T0-751-F
Sine Description Description Protection MPSCLAPTO-1004-FF Sine Description Description Description Description Description Sine Description Description Description			1 1		24546	C4-1/8-T0-1213-F
3006 3007 0757-0407 0757-0407 HESISTOR 12(k K 1)258 F TC00-100 24546 C4-1/4-T0-052-F C4, T-0 58700 0757-0407 HESISTOR 12(k K 1)258 F TC00-100 24546 24546 C4-1/4-T0-0332-F 58710 000757-0407 HESISTOR 12(k K 1)258 F TC00-100 24546 24546 C4-1/4-T0-1033-F 58710 000757-0423 HESISTOR 12(k K 1)258 F TC00-100 24546 24546 C4-1/4-T0-0332-F 587100 000757-0424 HESISTOR 12(k K 1)258 F TC00-100 24546 24546 C4-1/4-T0-0351-F 587104 0757-0424 HESISTOR 12(k K 1)258 F TC00-100 24546 24546 C4-1/4-T0-253-F 587105 000757-0424 HESISTOR 20(k K 1)258 F TC00-100 24546 24546 C4-1/4-T0-253-F 587106 0757-0424 HESISTOR 12(k K 1)258 F TC00-100 24546 24546 C4-1/4-T0-0057 587107 2100-1965 HESISTOR 10(k X 1)258 F TC00-100 24546 24546 C4-1/4-T0-0057 587117 0757-0424 HESISTOR 02(K X 1)258 F TC00-100 24546 C4-1/4-T0-0251-F C4-1/4-T0-0251-F 587115 0757-0454 HESISTOR 02(K X 1)258 F TC00-100 24546 C4-1/4-T0-0251-F C4-1/4-T0-0251-F	A5R96		1		19701	MF5C1/8-T0-1004-F
Singe 0757-0464 PESISTOR 20, 9, 4, 12, 125W F TC00-100 24546 Ca-1/4-T0-0892-F Singe 0757-0467 PESISTOR 12(x 1x, 125W F TC00-100 24546 Ca-1/4-T0-0332-F Singe 0757-0467 PESISTOR 32(x 1x, 125W F TC00-100 24546 Ca-1/4-T0-0332-F Singe 0757-0467 PESISTOR 32(x 1x, 125W F TC00-100 24546 Ca-1/4-T0-0331-F Singe 0757-0465 PESISTOR 3.6x 1x, 125W F TC00-100 24546 Ca-1/4-T0-0331-F Singe 0757-0421 PESISTOR 3.6x 1x, 125W F TC00-100 24546 Ca-1/4-T0-025H-F Singe 0757-0421 PESISTOR 3.6x 1x, 125W F TC00-100 24546 Ca-1/4-T0-25H-F Singe 0757-0421 PESISTOR 3.6x 1x, 125W F TC00-100 24546 Ca-1/4-T0-25H-F Singe 0577-0421 PESISTOR 3.6x 1x, 125W F TC00-100 24546 Ca-1/4-T0-25H-F Singe 0577-0421 PESISTOR 3.6x 1x, 125W F TC00-100 24546 Ca-1/4-T0-035F Singe 0577-0424 PESISTOR 3.6x 1x, 125W F TC00-100 24546 Ca-1/4-T0-025F Singe 0777-0424 PESISTOR 9.2x 1x, 125W F TC0	A5R97	0698-3457		RESISTOR 316K 1% _125W F TC=0+-100		
Species 0757-0457 PESISTOR 111. 112.128 F T Ce0+100 2454b C4-1/4-T0-1213-F SM101 0696-3161 PESISTOR 33.6.3K 11. 125W F T Ce0+100 2454b C4.7-0 SM102 0757-0445 1 PESISTOR 33.6.3K 11. 125W F T Ce0+100 2454b C4-1/4-T0-10312-F SM103 0696-3161 1 PESISTOR 100K 12. 125W F T Ce0+100 2454b C4-1/4-T0-10312-F SM103 0696-3161 1 PESISTOR 100K 12. 125W F T Ce0+100 2454b C4-1/4-T0-331-F SM104 0757-0424 PESISTOR 100K 12. 125W F T Ce0+100 2454b C4-1/4-T0-1010-T SM104 0757-0424 PESISTOR 12.1K 12. 125W F T Ce0+100 2454b C4-1/4-T0-2611-F SM104 0757-0455 RESISTOR 12.1K 12. 125W F T Ce0+100 2454b C4-1/4-T0-2611-F SM110 0757-0455 RESISTOR 12.1K 12. 125W F T Ce0+100 2454b C4-1/4-T0-2611-F SM114 0757-0455 RESISTOR 12.1K 12. 125W F T Ce0+100 2454b C4-1/4-T0-2611-F <						· · · · · · · · · · · · · · · · · · ·
SS100 0757-0123 PESISTOP 34.84 11 1.25% F TC80+-100 24566 C4.70 SS101 0698-3151 RESISTOP 35.91 11 1.25% F TC80+-100 24566 C4.74-T0-1003-F SS102 0575-0455 I RESISTOP 35.91 11 1.25% F TC80+-100 24566 C4.74-T0-1003-F SS103 1 RESISTOP 35.91 11 1.25% F TC80+-100 24566 C4.74-T0-1033-F SS103 1 RESISTOP 35.91 11 1.25% F TC80+-100 24566 C4.74-T0-1035-F SS103 00757-0424 RESISTOP 1.1% 11 1.25% F TC80+-100 24566 C4.74-T0-251-F SS103 009757-06274 RESISTOP 2.51% 11 1.25% F TC80+-100 24566 C4.74-T0-2211-F SS110 0757-0645 RESISTOP 1.21% 11 1.25% F TC80+-100 24566 C4.74-T0-2211-F SS111 0757-0645 RESISTOP 8.0.25% 11 1.25% F TC80+-100 24566 C4.74-T0-0251-F SS112 0757-0645 RESISTOP 8.0.25% 11 1.25% F TC80+-100 24566 C4.74-T0-0251-F SS113 0577-0645 RESISTOP 8.0.25% 11 1.25% F TC80+-100 24566 C4.74-T0-0251-F SS113 0577-0645 RESISTOP 8.0.25% 11 1.25% F TC80+-100 24566 C4.74-T0-0251-F <t< td=""><td></td><td></td><td>· ·</td><td>RESISTOR 121K 1% _125W F TC=0+=100</td><td></td><td></td></t<>			· ·	RESISTOR 121K 1% _125W F TC=0+=100		
SR121 0698-3161 RESISTOR 38,3K 1%,125% F TC00+100 24566 C4-1/A-T0-3032-F SR122 0757-0465 RESISTOR 100K 1%,125% F TC00+100 24566 C4-1/A-T0-3331-F SR104 2100-3103 1 RESISTOR 300K 1%,125% F TC00+100 24566 C4-1/A-T0-3331-F SR104 2100-3103 1 RESISTOR 325 K,125% F TC00+100 24566 C4-1/A-T0-1037 SR105 2100-1966 1 RESISTOR 1.1K 1% 125% F TC00+100 24566 C4-1/A-T0-101-F SR107 2100-1966 1 RESISTOR 7.4K 1% 10% C TOP-A0J 1-TRN 73138 62-206-1 SR107 0757-0445 RESISTOR 2.6K 1% 1% 125% F TC00+100 24566 C4-1/A-T0-121F SR110 0757-0445 RESISTOR 2.6K 1% 1% 125% F TC00+100 24566 C4-1/A-T0-1021F SR111 0757-0445 RESISTOR 30.1% 1% 125% F TC00+100 24566 C4-1/A-T0-261FF SR111 0757-0445 RESISTOR 30.1% 1% 125% F TC00+100 24566 C4-1/A-T0-261FF SR111 0757-0458 RESISTOR 30.1% 1% 125% F TC00+100 24566 C4-1/A-T0-0261FF SR114	A5R100	0757-0123				
Sint 2 0.66-3153 1 RESISTOR 3.65% 1X.125% F TE00-100 24506 C4-1/8-T0-3831-F Sint 2 0757-0421 1 RESISTOR 7.6% 1.1% 1.2% F TE00-100 24506 C4-1/8-T0-3831-F Sint 0 0757-0421 1 RESISTOR 7.6% 1.1% 1.2% F TE00-100 24506 C4-1/8-T0-3258F Sint 0 0757-0424 1 RESISTOR 7.6% 1% 1% 1.2% F TE00-100 24566 C4-1/8-T0-258F Sint 0 0757-0424 1 RESISTOR 7.6% 1% 1% 1.2% F TE00-100 24566 C4-1/8-T0-2611-F Sint 0 0757-0455 RESISTOR 1.6% 1% 1% 1.2% F TE00-100 24566 C4-1/8-T0-251-F Sint 1 0757-0465 RESISTOR 0.0% 1% 1.2% F TE00-100 24566 C4-1/8-T0-251-F Sint 1 0757-0465 RESISTOR 7.1% 1% 1% 12% F TE00-100 24566 C4-1/8-T0-251-F Sint 1 0757-0465 RESISTOR 7.6% 1% 1% 1.2% F TE00-100 24566 C4-1/8-T0-251-F Sint 1 0757-0465 RESISTOR 7.6% 1% 1% 1.2% F TE00-100 24566 C4-1/8-T0-251-F Sint 1 0757-0462 RESISTOR 7.6% 1% 1% 1.2% F TE00-100 24566 C4-1/8-T0-261-F </td <td>ASRICI</td> <td>0698-3161</td> <td></td> <td>RESISTOR 38,3K 1% ,125W F TC=0+-100</td> <td>24546</td> <td>C4-1/8-T0-3832-F</td>	ASRICI	0698-3161		RESISTOR 38,3K 1% ,125W F TC=0+-100	24546	C4-1/8-T0-3832-F
SST 100 0698-3153 1 RESISTOR 3, 63x 1x , 125W F TC00-100 24546 C4-1/4-10-4831-P SST 104 0757-0424 1 RESISTOR 4, 63x 1x , 125W F TC00-100 24546 C4-1/4-10-4831-P SST 104 0757-0424 1 RESISTOR 4, 125W F TC00-100 24546 C4-1/4-10-4828APF SST 104 0046-0085 1 RESISTOR -TANK 1K 1X .125W F TC00-100 24546 C4-1/4-10-421-F SST 105 0046-0085 RESISTOR -TANK 1K 1X .125W F TC00-100 24546 C4-1/4-10-421-F SST 105 00757-0424 RESISTOR -TANK 1K 1X .125W F TC00-100 24546 C4-1/4-10-421-F SST 105 0757-0425 RESISTOR 4, 25K 1X .125W F TC00-100 24546 C4-1/4-10-4251-F SST 105 0757-0485 RESISTOR 4, 25K 1X .125W F TC00-100 24546 C4-1/4-10-4251-F SST 105 0757-0484 RESISTOR 4, 05K 1X .125W F TC00-100 24546 C4-1/4-10-4251-F SST 107 0757-0484 RESISTOR 4, 05K 1X .125W F TC00-100 24546 C4-1/4-10-4251-F SST 107 0757-0484 RESISTOR 4, 01K 1X .125W F TC00-100 24546 C4-1/4-10-	A5R102	0757-0465				
Station 2100-3103 1 RESISTOR-TAME 10K 10X C \$102-AD 17-THM 32007 3000P-1-103 Composition Station 0757-0024 1 RESISTOR 4_1K 1X 12K 17 TC00-100 20546 Cc-1/2-10-0-35APF Station 0757-0024 1 RESISTOR 4_1K 1X 12K 17 TC00-100 20546 Cc-1/2-10-0-35APF Station 0757-0024 1 RESISTOR 1_1K 1X 12K 17 TC00-100 20546 Cc-1/2-10-0-2511-F Station 0757-0024 1 RESISTOR 1_1K 1X 12SW F TC00-100 20546 Cc-1/2-10-103-F Station 0757-0045 RESISTOR 0.6K 1X 1.25W F TC00-100 20546 Cc-1/2-10-0251-F Station 0757-0045 RESISTOR 0.6K 1X 1.25W F TC00-100 20546 Cc-1/2-10-0251-F Station 0757-0046 RESISTOR 0.6K 1X 1.25W F TC00-100 20546 Cc-1/2-10-0251-F Station 0757-00464 RESISTOR 0.6K 1X 1.25W F TC00-100 20546 Cc-1/2-10-0251-F Station 0757-00464 RESISTOR 0.6K 1X 1.25W F TC00-100 20546 Cc-1/2-10-027-F Station 0757-00464 RESISTOR 0.6K 1X 1.25W F TC00-100 20546		0698-3153	1	RESISTOR 3.83K 1% .125W F TC=0+-100		
SAN 16 T OTST-0021 I RESISTOR 825 1X.125W F TC00-100 24540 Ca-1/2-10-2540F SAN 16 0757-0021 I RESISTOR 2.67X IX X.125W F TC00-100 24540 Ca-1/2-10-211F SAN 16 0006-0055 RESISTOR 2.61X IX X.125W F TC00-100 24540 Ca-1/2-10-211F SAN 10 0006-0055 RESISTOR 2.61X IX X.125W F TC00-100 24540 Ca-1/2-10-2211F SAN 10 0757-0045 RESISTOR 4.21X IX 1.25W F TC00-100 24540 Ca-1/2-10-2211F SAN 10 0757-0045 RESISTOR 4.25X IX 1.25W F TC00-100 24540 Ca-1/2-10-2251FF SAN 11 0757-0045 RESISTOR 4.25X IX 1.25W F TC00-100 24540 Ca-1/2-10-2051FF SAN 12 0757-0045 RESISTOR 4.25X IX 1.25W F TC00-100 24540 Ca-1/2-10-2051FF SAN 12 0757-0045 RESISTOR 4.05X F TC00-100 24540 Ca-1/2-10-2051FF SAN 12 0757-0442 RESISTOR 4.25X IX 1.25W F TC00-100 24540 Ca-1/2-10-2051FF SAN 13 0006-3156 RESISTOR 4.1X 1.25W F TC00-100 24540 Ca-1/2-10-1021FF SAN 13 0057-0442<	A5R104 .	2100-3103	.1			
Shido Orycolation International Structure Shido Shido <t< td=""><td>15R105 T</td><td>0757-0421</td><td>1</td><td></td><td>- · - · ·</td><td></td></t<>	15R105 T	0757-0421	1		- · - · ·	
Shino Open-Dost PRESISTOR 2_01K 1K 1Z, 125W F TCB0+-100 24566 Ca+/A=T0-2011-F Shino 0757-0645 RESISTOR 2_01K 1K .125W F TCB0+-100 24566 Ca+/A=T0-103=F Shino 0757-0645 RESISTOR 120K 1X .125W F TCB0+-100 24566 Ca+/A=T0-103=F Shino 0757-0645 RESISTOR 100K 1X .125W F TCB0+-100 24566 Ca+/A=T0-103=F Shino 0757-0645 RESISTOR 2.01X 1.25W F TCB0+-100 24566 Ca+/A=T0-0251=F Shino 0757-0645 RESISTOR 0.26K 1X .125W F TCB0+-100 24566 Ca+/A=T0-0251=F Shino 0598-3132 1 RESISTOR 0.26K 1X .125W F TCB0+-100 24566 Ca+/A=T0-0251=F Shino 0598-3459 HESISTOR 383K 1X .125W F TCB0+-100 24566 Ca+/A=T0-0201=F Shino 0598-3156 RESISTOR 0.06K 1X .125W F TCB0+-100 24566 Ca+/A=T0-1072=F Shino 0598-3156 RESISTOR 23.7K 1X .125W F TCB0+-100 24566 Ca+/A=T0-1003=F Shino 0598-3156 RESISTOR 0.5K 1X .125W F TCB0+-100 24566 Ca+/A=T0-1002=F Shino 0598-3156 RE	SR106	0757-0424		RESISTOR 1.1K 1% .125W F TC=0+-100	24546	C4-1/8-T0-1101-F
Shi DB 0696=0085 PR5 ISTOR 2_51M 1X, 125M F TC00+-100 24566 C4-1/8-T0-2611-F Shi DD 0757-0065 RESISTOR 1.21X 11 25M F TC00+-100 24566 C4-1/8-T0-103-F Shi DD 0757-0065 RESISTOR 1.21X 11 25M F TC00+-100 24566 C4-1/8-T0-103-F Shi DD 0757-0065 RESISTOR 6.25K 1X .125M F TC00+-100 24566 C4-1/8-T0-8251-F Shi DD 0757-0041 RESISTOR 6.21X 1.25M F TC00+-100 24566 C4-1/8-T0-8251-F Shi DD 0757-0286 RESISTOR 6.25K 1X .125M F TC00+-100 24566 C4-1/8-T0-8251-F Shi DD 0575-0286 RESISTOR 9.09K 1X .125M F TC00+-100 24566 C4-1/8-T0-8251-F Shi DD 0575-0286 RESISTOR 9.09K 1X .125M F TC00+-100 24566 C4-1/8-T0-8251-F Shi DD 0596-3359 RESISTOR 90.9K 1X .125M F TC00+-100 24566 C4-1/8-T0-7092-F Shi DD 0596-3350 RESISTOR 14 7.X 1X .125M F TC00+-100 24566 C4-1/8-T0-7092-F Shi DD 0757-0464 RESISTOR 10.K 1X .125M F TC00+-100 24566 C4-1/8-T0-7092-F Shi DD 0757-0464	SR107	2100-1986	1 1			
SR110 SR111 0757-0465 0757-0465 RESISTOR 100K 1% .125W F TCs0+-100 RESISTOR 100K 1% .125W F TCs0+-100 24546 24546 C4-1/8-T0-8251-F F C4-1/8-T0-8251-F	A5R108	0698-0085				
Shili 0757-0465 RESISTOR 100K 1X .125W F TC=0+=100 24546 C4=1/8=T0=1003=F SR112 0575-0465 RESISTOR 100K 1X .125W F TC=0+=100 24546 C4=1/8=T0=2631=F SR113 0648-3132 1 RESISTOR 6.31K 1 .125W F TC=0+=100 24546 C4=1/8=T0=2631=F SR114 0757-0464 RESISTOR 6.31K 1 .125W F TC=0+=100 24546 C4=1/8=T0=2631=F SR115 0757-0464 RESISTOR 90.9K 1X .125W F TC=0+=100 19637 CM=1/8=T0=2631=F SR116 0.698-3459 RESISTOR 90.9K 1X .125W F TC=0+=100 24546 C4=1/8=T0=2627=F SR117 0757-0464 RESISTOR 90.9K 1X .125W F TC=0+=100 24546 C4=1/8=T0=4092=F SR119 0.698-3459 RESISTOR 90.9K 1X .125W F TC=0+=100 24546 C4=1/8=T0=4092=F SR120 0757-0464 RESISTOR 90.9K 1X .125W F TC=0+=100 24546 C4=1/8=T0=4092=F SR121 0.698-3457 RESISTOR 914,7K 1X .125W F TC=0+=100 24546 C4=1/8=T0=4092=F SR121 0.698-3457 RESISTOR 70 REG TC 10K DISC 73166 C4=1/8=T0=10237=F SR122 2100-2655 1 RESISTOR 70 REG TC 10K DISC 73166 JA4112 </td <td>ASR109</td> <td>0757-0274</td> <td></td> <td></td> <td></td> <td></td>	ASR109	0757-0274				
Shift OF57-0441 PESISTOR 8.25K is .125W F TC=0100 24546 C4-1/8-T0-2610-F SR112 0698-3132 1 RESISTOR 8.25K is .125W F TC=0100 24546 C4-1/8-T0-8251-F SR114 0757-0286 RESISTOR 9.09K is .125W F TC=0100 24546 C4-1/8-T0-8251-F SR115 0757-0286 RESISTOR 9.09K is .125W F TC=0100 91637 C4-1/8-T0-9091-F SR116 0698-3155 RESISTOR 90.9K is .125W F TC=0100 24546 C4-1/8-T0-9091-F SR117 0757-0464 RESISTOR 90.9K is .125W F TC=0100 24546 C4-1/8-T0-1472-F SR116 0698-3155 RESISTOR 14.7K is .125W F TC=0100 24546 C4-1/8-T0-1472-F SR120 0757-0444 RESISTOR 14.7K is .125W F TC=0100 24546 C4-1/8-T0-1472-F SR121 0698-3457 RESISTOR 10 kis .1 .125W F TC=0100 24546 C4-1/8-T0-1472-F SR122 2100-2655 1 RESISTOR 10 kis .1 .125W F TC=0100 24546 C4-1/8-T0-1472-F SR121 0839-0026 2 THERMISTOR NEG TC 10K DISC 73168 JA4112 SR122	ASR110	0757-0465		RESISTOR 100K 1% .125W F TC=0+=100		
1113 0696-3132 0757-0239 1 RESISTOR 261 1x 125W F TC=0+=100 PESISTOR 5.8115 24346 0757-0236 C=1/8-T0-2610-F 24346 114 0757-0239 PESISTOR 5.81K 1x 125W F TC=0+=100 0698-3459 24346 C=1/8-T0-2610-F 24346 115 0757-02464 RESISTOR 9.9K 1x .125W F TC=0+=100 0698-3459 94537 M#4C1/8-T0-9091-F CMF-55-1, T-1 111 0698-3459 RESISTOR 90.9K 1x .125W F TC=0+=100 0698-3156 24546 C4-1/8-T0-9092-F C4-1/8-T0-9092-F 115R11 0698-3457 RESISTOR 90.9K 1x .125W F TC=0+=100 0598-3457 24546 C4-1/8-T0-9092-F 115R12 0598-3457 RESISTOR 14, TK 1x .125W F TC=0+=100 0598-3457 24546 C4-1/8-T0-2372-F 115R12 0599-3457 RESISTOR 14, TK 1x .125W F TC=0+=100 0598-3457 24546 C4-1/8-T0-2372-F 115R12 0399-0026 2 7HERMISTOR NEG TC 10K DISC THERMISTOR NEG TC 10K DISC 73168 JA4112 115R1 0839-0026 2 THERMISTOR NEG TC 10K DISC THERMISTOR NEG TC 10K DISC 73168 JA4112 15871 0360-1514 TERMINAL-8TUD 3GL-PIN PRESS-MTG 26460 0360-1514 1593 1626-0072 1C LM 318 0P AMP 27014 LM318H <	SR111	0757-0465	() (RESISTOR 100K 1% ,125W F TC=0+-100	24546	C4+1/8+T0-1003=F
Shild 0757-0439 PESISTOR 5.81% 1% 125% F TCm0-100 24546 C4-1/0-T0-8511-F SR115 0757-0288 PESISTOR 5.81% 1% 125% F TCm0-100 19701 MF4C1/0-T0-8011-F SR116 0698-3459 PESISTOR 9.09% 1% 125% F TCm0+100 24546 C4-1/0-T0-8011-F SR116 0698-3156 RESISTOR 90.9% 1% 125% F TCm0+100 24546 C4-1/0-T0-9092-F SR117 0757-0444 RESISTOR 90.9% 1% 125% F TCm0+100 24546 C4-1/0-T0-1472-F SR119 0698-3156 RESISTOR 14,7K 1% 125% F TCm0+100 24546 C4-1/0-T0-1472-F SR120 0757-0442 RESISTOR 35.7K 1% 1.25% F TCm0+-100 24546 C4-1/0-T0-1472-F SR121 0698-3457 RESISTOR 35.7K 1% 1% 1.25% F TCm0+-100 24546 C4-1/0-T0-102-F SR121 0639-0026 2 7HERHISTOR NEG TC 10K DISC 73168 JA4112 SR12 0839-0026 2 7HERHISTOR NEG TC 10K DISC 73168 JA4112 STP1-12 0360-1514 TERMINAL-BTUD SGL-PIN PRESS-MTG 28480 0360-1514 SU1 1826-0061 2 IC LM	SR112 +	0757-0441				
Shiis 0757-0226 RESISTOR 0.00K 1% .125W F TC=0+-100 19701 MF4C1/8-T0-9091-F SR116 0698-3459 RESISTOR 0.0%K 1% .125W F TC=0+-100 91637 CMF-55-1, T-1 SR116 0698-3459 RESISTOR 0.0%K 1% .125W F TC=0+-100 24546 C4-1/8-T0-9092-F SR118 0698-3156 RESISTOR 23.7K 1% .125W F TC=0+-100 24546 C4-1/8-T0-9092-F SR120 0757-0442 RESISTOR 23.7K 1% .125W F TC=0+-100 24546 C4-1/8-T0-2372-F SR121 0698-3457 RESISTOR 316K 1% .125W F TC=0+-100 24546 C4-1/8-T0-2372-F SR121 0698-3457 RESISTOR 716K 1% .125W F TC=0+100 24546 C4-1/8-T0-2372-F SR121 0698-3457 RESISTOR 716K 1% .125W F TC=0+100 24546 C4-1/8-T0-2372-F SR121 0698-3457 RESISTOR 700 % 1% 1% .125W F TC=0+100 91637 CMF-55-1, T-1 SR122 2100-2655 1 RESISTOR NEG TC 10K DISC 73168 JA4112 SR121 0839-0026 2 THERMINAL-8TUD 3GL-PIN PRESS-MTG 28460 0360-1514 SSR11 1826-0072 1C LM	SR113 '	0698+3132	1 1			
Shild 0698-3459 HESISTOR 363K 1%.125W F TC=0+=100 91637 CMF=55-1, T=1 ISR117 0757-0464 RESISTOR 363K 1%.125W F TC=0+=100 24546 C4=1/6=T0=9092=F ISR118 0698-3158 RESISTOR 14.7K 1%.125W F TC=0+=100 24546 C4=1/6=T0=9092=F ISR120 0757-0442 RESISTOR 353TOR 14.7K 1%.125W F TC=0+=100 24546 C4=1/6=T0=2372=F ISR121 0698-3457 RESISTOR 316K 1%.125W F TC=0+=100 24546 C4=1/6=T0=2372=F ISR121 0698-3457 RESISTOR 10K 1%.125W F TC=0+=100 24546 C4=1/6=T0=2372=F ISR122 2100-2655 1 RESISTOR NEG TC 10K DISC 73138 62=213=1 ISR12 0839-0026 2 THERMISTOR NEG TC 10K DISC 73168 JA4112 ISR12 0360-1514 TERMINAL=8TUD 3GL=PIN PRESS=MTG 26460 0360-1514 ISU1 1826-0081 2 IC LM 318 OP AMP 27014 LM318H ISU3 1826-0035 3 IC LM 318 OP AMP 27014 LM318H ISU3 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH ISU3 1826-0035	N5R114					
ISST 10 0757-0464 RESISTOR 90.9K 1X.125W F TC=0+-100 24546 C4-1/8-T0-9092-F ISR 117 0698-3156 RESISTOR 90.9K 1X.125W F TC=0+-100 24546 C4-1/8-T0-1472-F ISR 120 0698-3156 RESISTOR 90.9K 1X.125W F TC=0+-100 24546 C4-1/8-T0-1472-F ISR 120 0757-0442 RESISTOR 90.9K 1X.125W F TC=0+-100 24546 C4-1/8-T0-2372-F ISR 121 0698-3157 RESISTOR 91.0K 1X.125W F TC=0+-100 24546 C4-1/8-T0-2372-F ISR 121 0698-3457 RESISTOR 91.0K 1X.125W F TC=0+-100 24546 C4-1/8-T0-2372-F ISR 12 2100-2655 1 RESISTOR 71.0K 1X.125W F TC=0+-100 91637 CMF-55-1, T-1 ISR 12 0639-0026 2 THERMISTOR NEG TC 10K DISC 73168 JA4112 ISR 12 0360-1514 TERMINAL-8TUD 'SGL-PIN PRESS-MTG 26460 0360-1514 ISU 1 1826-0092 IC LM 316 0P AMP 27014 LM318H ISU 1 1826-0013 IC C M 306A 0P AMP 27014 LM318H ISU 1 1826-0035 2 IC LM 306A 0P AMP 27014 LM306AH ISU 1 1826-0035 <	ASR115					
138116 0608-3156 RESISTOR 14.7K 1X 125W F TC=0+-100 24346 C4-1/8-TO-1472=F 138119 0608-3156 RESISTOR 23.7K 1X .125W F TC=0+-100 24346 C4-1/8-TO-1472=F 138121 0698-3157 RESISTOR 14.7K 1X .125W F TC=0+-100 24346 C4-1/8-TO-1472=F 138121 0698-3457 RESISTOR 10K 1X .125W F TC=0+-100 24346 C4-1/8-TO-102=F 138122 2100-2655 1 RESISTOR-TRMR 100K 10X C TOP-ADJ 1-TRN 73136 62-213-1 138122 2100-2655 1 RESISTOR NEG TC 10K DISC 73168 JA4112 13872 030-026 2 THERMISTOR NEG TC 10K DISC 73168 JA4112 13872 0360-1514 TERMINAL-BTUD 'SGL-PIN PRESS-MTG 28480 0360-1514 1826-0092 1 C MC 1458 OP AMP 28480 1826-0092 1802 1826-0081 2 IC LM 316 OP AMP 27014 LM316H 1804 1826-0035 3 IC LM 308A OP AMP 27014 LM308AH 1804 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH 1804 1826-0035 2	NSR116	0698-3459		AESISTOR 383K 1% .125W F TC#0+-100	91037	Cmp+55+1, 1+1
ISR 119 0609-3158 RESISTOR 23,7K 1x 125W F TC=0+-100 24546 C4-1/8-T0-2372=F ISR 120 0757-0442 RESISTOR 10K 1x .125W F TC=0+-100 24546 C4-1/8-T0-1002=F ISR 121 0698-3457 RESISTOR 316K 1x .125W F TC=0+-100 91637 CMF=75-1, T=1 ISR 122 2100-2655 1 RESISTOR TRMR 100K 10X C TOP-ADJ 1-TRN 73138 62-213-1 ISR 12 0839-0026 2 THERMISTOR NEG TC 10K DISC 73168 JA4112 ISR 12 0360-1514 TERMINAL-STUD SGL-PIN PRESS-MTG 28460 0360-1514 ISU 1 1826-0092 1C LM 316 OP AMP 27014 LM318H ISU 2 1826-0013 2 IC LM 316 OP AMP 27014 LM318H ISU 3 1826-0035 3 IC LM 306A OP AMP 27014 LM318H ISU 4 1826-0035 2 IC LM 306A OP AMP 27014 LM308AH ISU 4 1826-0035 2 IC LM 306A OP AMP 27014 LM308AH ISU 5 1826-0035 2 IC LM 306A OP AMP 27014 LM308AH ISU 4 1826-0035 1 IC L	A5R117	0757-0464				
ISR 120 ISR 121 0757-0442 0698-3457 RESISTOR 10K 1X .12SW F TC=0+-100 RESISTOR 316K 1X .12SW F TC=0+-100 24546 91637 Cu-1/8-T0-1002=F CMF-55-1, T-1 ISR 122 2100-2655 1 RESISTOR TRMR 100K 10X C TOP-ADJ 1-TRN 73138 62-213-1 ISR 12 0839-0026 2 THERMISTOR NEG TC 10K DISC THERMISTOR NEG TC 10K DISC 73168 JA4112 JA4112 ISR 12 0360-1514 TERMINAL-8TUD SGL-PIN PRESS-MTG 28480 0360-1514 ISU1 1826-0092 1 IC MC 1458 OP AMP 27014 LM318H ISU2 1826-0091 2 IC LM 318 OP AMP 27014 LM318H ISU3 1826-0059 3 IC LM 318 OP AMP 27014 LM318H ISU4 1826-0013 IC CM 214 OP AMP 27014 LM308A ISU4 1826-0013 IC CM 308A OP AMP 27014 LM308AH ISU4 1826-0035 IC LM 308A OP AMP 27014 LM308AH ISU4 1826-0035 IC LM 308A OP AMP 27014 LM308AH ISU6 1826-0035 IC LM 308A OP AMP 27014 LM308AH ISU6 1826-00392 IC LM 308A	A58118	0698-3156				
Image: Strict strin strict strict strint strict strin strict strict strict strict s	A5R119	0698-3158				
NSR122 2100-2655 1 RESISTOR-TRMR 100K 10% C TOP-ADJ 1-TRN 73138 62-213-1 NSR12 0839-0026 2 THERMISTOR NEG TC 10K DISC 73168 JA4112 NSR12 0839-0026 2 THERMISTOR NEG TC 10K DISC 73168 JA4112 NSR12 0360-1514 TERMINAL-STUD 3GL-PIN PRESS-MTG 28480 0360-1514 NSU1 1826-0092 1 IC MC 1458 OP AMP 38480 1826-0092 NSU2 1826-0061 2 IC LM 318 OP AMP 27014 LM318H NSU4 1826-0059 3 IC C 1458 OP AMP 27014 LM318H NSU4 1826-0035 1 IC M 308A OF AMP 27014 LM308H NSU4 1826-0035 2 IC LM 308A OF AMP 27014 LM308AH NSU6 1826-0035 2 IC LM 308A OF AMP 27014 LM308AH NSU6 1826-0035 2 IC LM 308A OF AMP 27014 LM308AH NSU6 1826-0035 1 IC LM 308A OF AMP 27014 LM308AH NSU6 1826-0035 1 IC LM 308A OF AMP </td <td>A5R120</td> <td></td> <td>1 1</td> <td>RESISTOR 10K 1% ,125W F TC=0+=100</td> <td></td> <td></td>	A5R120		1 1	RESISTOR 10K 1% ,125W F TC=0+=100		
NAME LIGGLODS I THERMISTOR NEG TC 10K DISC 73168 JA4112 VSRT1 0839-0026 2 THERMISTOR NEG TC 10K DISC 73168 JA4112 VSRT2 0360-1514 TERMINAL-8TUD SGL-PIN PRESS-MTG 28480 0360-1514 VSU1 1826-0092 IC MC 1458 OP AMP 28480 1826-0092 VSU2 1826-0061 2 IC LM 318 OP AMP 27014 LM318H VSU2 1826-0071 3 IC LM 318 OP AMP 27014 LM318H VSU3 1826-0073 3 IC LM 201A OP AMP 27014 LM318H VSU3 1826-0073 3 IC LM 201A OP AMP 27014 LM308H VSU3 1826-0035 1C CM 308A OF AMP 27014 LM308AH VSU4 1826-0035 2 IC LM 308A OF AMP 27014 LM308AH VSU6 1826-0072 IC LM 308A OF AMP 27014 LM308AH 1826-0072 VSU6 1826-0072 IC LM 308A OF AMP 27014 LM308AH 1826-0072	SR121	0698-3457		RESISTOR 316K 1% .125W F TC=0+-100	9103/	Curals int
NSRT2 0839-0026 THERMISTOR NEG TC 10K DISC 73168 JA4112 NSTP1-12 0360-1514 TERMINAL-STUD 3GL-PIN PRESS-MTG 28480 0360-1514 NSU1 1826-0092 IC MC 1458 OP AMP 28480 1826-0092 NSU2 1826-0081 2 IC MC 1458 OP AMP 27014 LM318H NSU3 1826-0081 1 IC LM 318 OP AMP 27014 LM318H NSU3 1826-0035 3 IC LM 201A OP AMP 27014 LM308H NSU5 1826-0013 IC 7/1 OP AMP 28480 1826-0013 NSU6 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0035 1 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0035 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0059 IC LM 201A OP AMP 27014 LM201AH NSU6 1826-0059	45R122	2100-2655	1	RESISTOR-TRMR 100K 10% C TOP-ADJ 1-TRN	73138	62-213-1
ISRT2 0839-0026 THERMISTOR NEG TC 10K DISC 73168 JA4112 ISTP1-12 0360-1514 TERMINAL-STUD SGL-PIN PRESS-MTG 26480 0360-1514 ISU1 1826-0092 IC MC 1458 OP AMP 28480 1826-0092 ISU2 1826-0081 2 IC LM 318 OP AMP 27014 LM318H ISU3 1826-0059 3 IC LM 201A OP AMP 27014 LM318H ISU4 1826-0013 IC CM 308A OF AMP 27014 LM308AH ISU5 1826-0035 2 IC LM 308A OF AMP 27014 LM308AH ISU5 1826-0035 2 IC LM 308A OF AMP 27014 LM308AH ISU5 1826-0035 2 IC LM 308A OF AMP 27014 LM308AH ISU5 1826-0035 10 IC LM 308A OF AMP 27014 LM308AH ISU6 1826-0035 10 IC LM 308A OF AMP 27014 LM308AH ISU6 1826-0092 IC LM 308A OF AMP 27014 LM308AH ISU6 1826-0092 IC LM 201A OF AMP 27014 LM308AH ISU6 1826-0092 <td>ASRTI</td> <td>0839-0026</td> <td>2</td> <td>THERMISTOR NEG TO 10K DISC</td> <td>73168</td> <td></td>	ASRTI	0839-0026	2	THERMISTOR NEG TO 10K DISC	73168	
ASU1 1826-0092 IC MC 1458 OP AMP 38460 1826-0092 ASU2 1826-0081 2 IC LM 316 OP AMP 27014 LM318H ASU3 1826-0059 3 IC LM 201A OP AMP 27014 LM318H ASU5 1826-0013 IC LM 201A OP AMP 27014 LM308AH ASU5 1826-0035 2 IC LM 308A OP AMP 28480 1826-0013 ASU5 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH ASU5 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH ASU6 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH ASU6 1826-0035 IC LM 308A OP AMP 27014 LM308AH ASU6 1826-0092 IC LM 201A OP AMP 28480 1826-0092 ASU6 1826-0092 IC LM 201A OP AMP 27014 LM308AH ASU6 1826-0092 IC LM 201A OP AMP 27014 LM201AH ASU6 1826-0092 IC LM 201A OP AMP 27014 LM201AH ASU9 1826-0092 IC MC 1458 OP AMP <td< td=""><td>SRT2</td><td></td><td></td><td>THERMISTOR NEG TO 10K DISC</td><td>73168</td><td>JA4112</td></td<>	SRT2			THERMISTOR NEG TO 10K DISC	73168	JA4112
1826-0092 IC MC 1458 OP AMP 38480 1826-0092 NSU2 1826-0081 2 IC LM 318 OP AMP 27014 LM318H NSU3 1826-0079 3 IC LM 318 OP AMP 27014 LM318H NSU4 1826-0013 IC LM 318 OP AMP 27014 LM318H NSU5 1826-0013 IC LM 201A OP AMP 27014 LM201AH NSU5 1826-0013 IC LM 308A OP AMP 26480 1826-0013 NSU5 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0092 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0092 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0092 IC LM 201A OP AMP 28480 1826-0092 NSU9 1826-0092 IC LM 201A OP AMP 28480 1826-0092 NSU10 1826-0092 IC LM 201A OP AMP 28480 1826-0092 NSU11 1826-0059 IC LM 201A OP AMP 27014 LM201AH <t< td=""><td>ASTP1-12</td><td>0360-1514</td><td></td><td>TERMINAL-STUD SGL-PIN PRESS-MTG</td><td>28480</td><td>0360-1514</td></t<>	ASTP1-12	0360-1514		TERMINAL-STUD SGL-PIN PRESS-MTG	28480	0360-1514
NSU2 1826=0081 2 IC LM 318 OP AMP 27014 LM318H NSU3 1826=0081 16 LM 318 OP AMP 27014 LM318H NSU4 1826=0059 3 IC LM 201A OP AMP 27014 LM201AH NSU5 1826=0013 IC LM 308A OP AMP 28480 1826=0013 NSU6 1826=0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826=0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826=0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826=0035 1 IC LM 308A OP AMP 28480 1826=0092 NSU6 1826=0092 IC LM 308A OP AMP 28480 1826=0092 NSU6 1826=0092 IC MC 1458 OP AMP 28480 1826=0092 NSU6 1826=0092 IC LM 201A OP AMP 27014 LM201AH NSU10 1826=0059 IC LM 201A OP AMP 27014 LM201AH NSU11 1826=0059 IC LM 201A OP AMP 27014 LM201AH	A5U1	1826-0092	·			1826=0092
NSU3 1826-0081 IC LM 318 OP AMP 27014 LM318H NSU4 1826-0059 3 IC LM 201A OP AMP 27014 LM308H NSU5 1826-0013 IC V1 OP AMP 26480 1826-0013 NSU5 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0035 2 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0035 1 IC LM 308A OP AMP 27014 LM308AH NSU6 1826-0035 IC LM 308A OP AMP 28480 1826-0092 NSU6 1826-0092 IC LM 201A OP AMP 28480 1826-0092 NSU9 1826-0092 IC LM 201A OP AMP 28480 1826-0092 NSU10 1826-0092 IC LM 201A OP AMP 28480 1826-0092 NSU11 1826-0059 IC LM 201A OP AMP 27014 LM201AH NSU11 <td>A5U2</td> <td></td> <td>2</td> <td>IC LM 318 OP AMP</td> <td></td> <td></td>	A5U2		2	IC LM 318 OP AMP		
1826=0059 3 IC LM 201A OP AMP 27014 LM201AH 1826=0013 IC 741 OP AMP 26480 1826=0013 1826=0035 IC LM 308A OP AMP 27014 LM308AH 1826=0092 IC LM 308A OP AMP 28480 1826=0092 1826=0059 IC LM 201A OP AMP 28480 1826=0092 1826=0092 IC LM 201A OP AMP 26480 1826=0092 1826=0092 IC LM 201A OP AMP 26480 1826=0092 1826=0059 IC LM 201A OP AMP 26480 1826=0092 1826=0059 IC LM 201A OP AMP 26480 1826=0092 1826=0059 IC LM 201A OP AMP 27014 LM201AH 1826=0059 IC LM 201A OP AMP 27014 LM201AH 1826=0059 IC LM 201A OP AMP 27014 LM201AH	A5U3					
NSU6 1826-0035 2 IC LM 308A 0P AMP 27014 LM308AH NSU7 1826-0035 IC LM 308A 0P AMP 27014 LM308AH NSU8 1826-0092 IC LM 308A 0P AMP 28480 1826-0092 NSU9 1826-0059 IC LM 201A 0P AMP 27014 LM308AH NSU10 1826-0092 IC LM 201A 0P AMP 27014 LM201AH NSU11 1826-0059 IC LM 201A 0P AMP 28480 1826-0092 NSU11 1826-0059 IC LM 201A 0P AMP 27014 LM201AH	1504		3			
SU7 1826-0035 IC LM 308A OP AMP 27014 LM308AH SU8 1826-0092 IC MC 1458 OP AMP 28480 1826-0092 SU9 1826-0059 IC LM 201A OP AMP 27014 LM201AH SU10 1826-0092 IC MC 1458 OP AMP 28480 1826-0092 SU11 1826-0059 IC LM 201A OP AMP 28480 1826-0092	A5U5	1826-0013		IC 741 OP AMP	28480	1526=0015
SUB 1826=0092 IC MC 1458 OP AMP 28480 1826=0092 NSU9 1826=0059 IC LM 201A OP AMP 27014 LM201AH NSU10 1826=0092 IC MC 1458 OP AMP 28480 1826=0092 NSU11 1826=0059 IC LM 201A OP AMP 27014 LM201AH NSU11 1826=0059 IC LM 201A OP AMP 27014 LM201AH	A5U6	1826-0035	2			
SU9 1826-0059 IC LM 201A OP AMP 27014 LM201AH NSU10 1826-0092 IC MC 1458 OP AMP 28480 1826-0092 NSU11 1826-0059 IC LM 201A OP AMP 27014 LM201AH NSU11 1826-0059 IC LM 201A OP AMP 27014 LM201AH	A5U7		1			
NSU10 1826-0092 IC MC 1458 OP AMP 28480 1826-0092 NSU11 1826-0059 IC LM 201A OP AMP 27014 LM201AH	A5U8					
1826-0059 IC LM 201A OP AMP 27014 LM201AH	1509					
	A5U10	1826-0092		IC MC 1458 UP AMP	20400	1040-UNA4
NSVRI 1902-3345 1 DIODE-ZNR 51,1V 5% DO-7 PD=.4W TC=+.081% 04713 3Z 10939-386	A5U11	1826-0059		IC LM 201A OP AMP	27014	FW5014H
	ASVRI	1902-3345	1	DIODE-ZNR 51,1V 5% DO-7 PD=.4W TC=+.081%	04713	SZ 10939-386
	3	1	I 1		1	

		ۇ م		
		,		
•				
•.	ij			

See introduction to this section for ordering information **†** FOR BACKDATING, SEE TABLE 7-1.

.

6-14

٢

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number Qty Description		Mfr Code	Mfr Part Number	
A6	08654-60037	1	REVERSE POWER ASSEMBLY (OPTION 003 ONNY)	28480	08654-60037
A6FL1 A6FL2	9135-0002	2.	FILTER-LP SOLDER-TERMS FILTER-LP SOLDER-TERMS	28480 28480	9135-0 002 9135-0002
164 5164	1250-0829 1250-0830	1	CONNECTOR-RF SMC M SGL-HULE-FR 50-DHM Connector-RF SMC M SGL Hole FR	98291 2K497	50-045-4610 701873
A6MP1	08640-20191	1	HOUSING, REVERSE POWER	28480	08640-20191
N6A1 †	08640-80049	1	HOARD ASSEMBLY, REVERSE POWER PROTECTION	28480	08640-60049
N6A1C1 N6A1C2 N6A1C3 N6A1C4 N6A1C5	0160-0576 0160-0576 0160-3879 0180-0197 0160-3877	3 2 1 1	CAPACITOR-FXD .1UF +-20% SOWVDC CER CAPACITOR-FXD .1UF +-20% SOWVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD 2.2UF+-10% 20VDC TA CAPACITOR-FXD 100PF +-20% 200WVDC CER	28480 28480 28480 56289 28480	0160-0576 0160-0576 0160-3879 150D225x9020A2 0160-3877
NGA1C6 NGA1C7 NGA1C8 NGA1C9 NGA1C10	0160-0576 0160-3875 0160-3873 0121-0448 0160-0699	1 1 1 1	CAPACITOR-FXD .1UF +-20% 50WVDC CER CAPACITOR-FXD 22PF +-5% 200WVDC CER CAPACITOR-FXD 4.7PF +5PF 200WVDC CER CAPACITOR-V TRMR-CER 2.5/5PF 63V PC-MTG -CAPACITOR-FXD 1PF +1PF 100WVDC CER	26460 26460 26460 00668 72982	0150-0576 0160-3875 0160-3873 96-TRIKO-04 277.45 PF-N033 0101-A112-Cok098
6A1C11	0160-3879		CAPACITOR-FXD .01UF +-20X 100WVDC CER	26480	0160-3879
6641CR1 6641CR2 8641CR3 8641CR3	1901-050 1901-0518 1901-050 1901-0518	5	DIODE-SWITCHING BOV 200MA 2NS DO-7 Diode-Schottky Diode-Switching bov 200MA 2NS DO-7 Diode-Schottky	28480 28480 28480 28480 28480	1901-0050 1901-0518 1901-0050 1901-0518
641K1	0490-1073	1 1	RELAY-REED 1A 250MA 120VAC 4.5V0C-COIL	28480	049041073
N6A1L1	1460-1395 1460-1395	2	WIREFORM CU ALY WIREFORM CU ALY	28480 28480	1460-1395 1460-1395
N6A1MP1 N6A1MP2	0363-0105 0363-0105	. 5	CONTACT	28480 28480	0363-0105 0363-0105
A6A101 A6A102 A6A103	1854-0210 1854-0210 1854-0210	3	TRANSISTOR NPN ANAZAZ BI TO-18 PD=500MW Transistor NPN 2N2222 BI TO-18 PD=500MW Transistor NPN 2N2222 BI TO-18 PD=500MW	04713 704713 04713	2N2222 2N2222 2N2222
A6A1R1 A6A1R2 A6A1R3 A6A1R4 A6A1R5	0698-7241 2100-1986 0683-1055 0698-7277 0698-7212	1 1 1 2 1	RESISTOR 1.42M 18 .05M TC=0+-100 RESISTOR-TRMR 1K 188 C TUM-ADJ 1-TRN RESISTOR 1M 58 .25W FC TC=-800/+900 RESISTOR 51.1K 18 .05M F TC=0+-100 RESISTOR 1.00 18 .05W F TC=0+-100	24546 73138 01121 24546 24546	C-3, T-0 62-206-1 C81055 C3-1/8-T0-5112-G C3-1/8-T0-100R+3
A6A1R6 A6A1R7 A6A1R8 A6A1R9 A6A1R10	0683-0275 0698-7277 0698-7236 0698-7229 0698-7229	1 1 2	RESIDTOR 2.7 St .254 FC TC=-400/+500 RESISTOR 51.14 At .054 F TC=0+-100 RESISTOR 1K ft .054 F TC=0+-100 RESISTOR 511 1% .054 F TC=0+-100 RESISTOR 511 1% .054 F TC=0+-100	01121 24546 24546 24546 24546	CB27G5 C3-1/8-T0-5112=6 C3-1/8-T0-1001=6 C3-1/8-T0-5118=6 C3-1/8-T0-5118=6
46A1R11	0757-0346		MESISTOR 10 11 .125W F TC=0+-100	24546	C4-1/8-T0-10R0-F
16A1U1	1826-0026		EC LM 311 COMPARATOR	27014	LM311H
641VR1 † 641VR2 641VR3 †	1902-0554 1902-0244 1902-0554	* 1	DIODE-ZNR 10V 5% DO-15 PD=1W TC=06% DIODE-ZNR 30.1V 5% DO-15 PD=1W TC=+.075% DIODE-ZNR 10V 5% DO-15 PD=1W TC=06%	28480 26480 28480	1902-0554 1902-0244 1902-0554

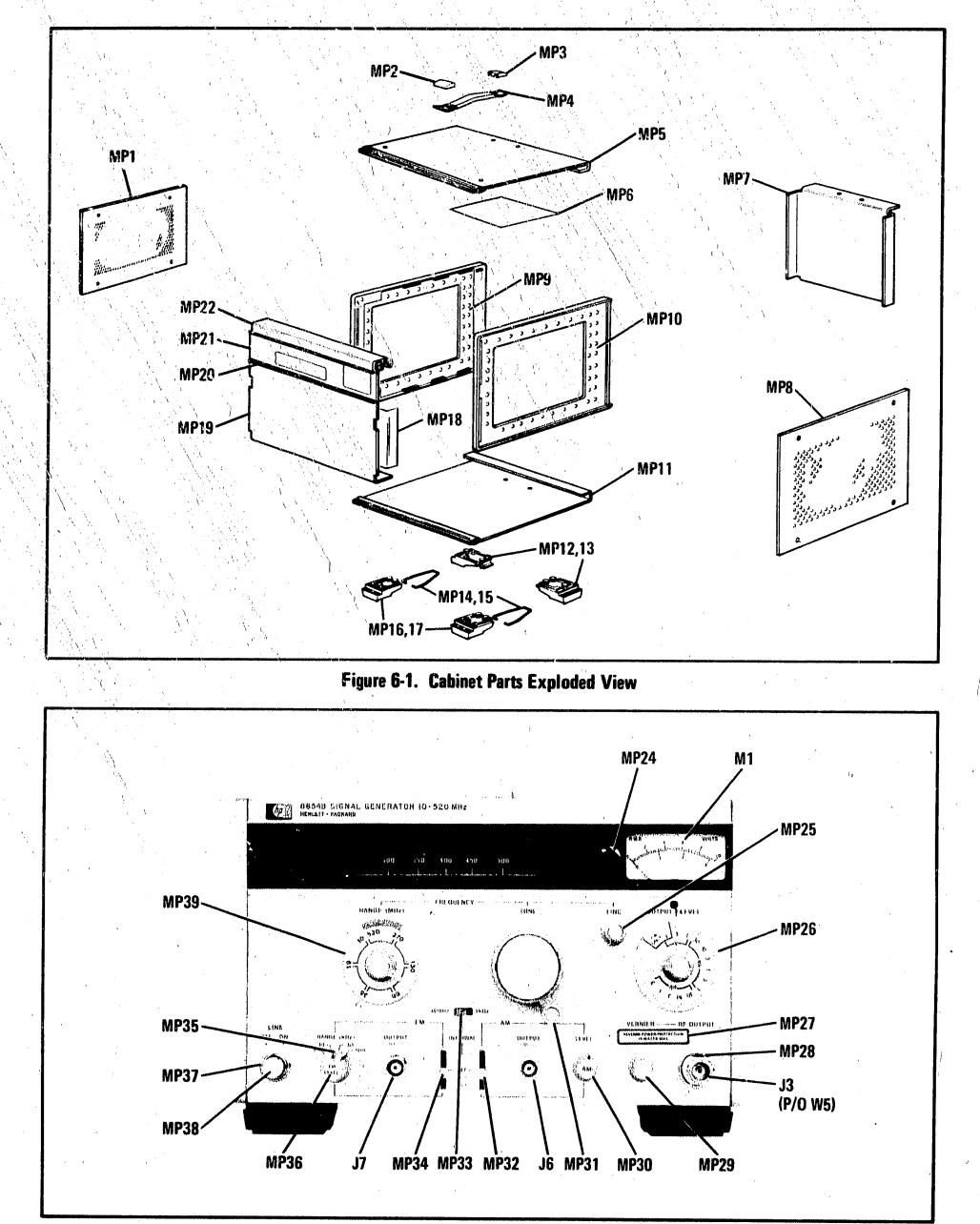
· ·

				1 2
		$= \frac{8^{12}}{28} \frac{2}{N_{\odot}} \frac{1}{\sqrt{2}}$		l
		$\sim \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1$		

See introduction to this section for ordering information **†** FOR BACKDATING, SEE TABLE 7-1 2.5

£

6-15


 Table 6-2.
 Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
			CHASSIS PARTS		
C1	0160-0180	1	CAPACITOR-FXD .033UF +-5% 200WVDC POLYE	56289	292833352
DS1	2140-0244	` 1	LAMP-GLOW AIH 65/105VDC 1MA T-2-BULB	28480	2140-0245
F1	2110-0004	1	FUSE .254 250V FAST-BLO 1,25X.25 UL IEC	75915	312.250
F1'	2110-0479	1	(FOR 100/120V OPERATION)(SEE SECTION 111 FUSE .175A 250V FAST-BLO 1.25X.25 UL (FOR 220/240V OPERATION)(SEE SECTION 111	75915	312.175
J1 J2 J3	1251-0198	1	CONNECTOR-PC EDGE 6-CONT/ROW 2-ROWS Connector(Aux Output)nsr, P/O W3 Connector(RF Output) nsr, P/O W5	71785	251=06=30=261
J.4	1250-0083	1	CONNECTOR-RF BNC FEM SGL-HOLE-PR 50-OHM (Phase Lock Input)	24931	. 26JR-130-1
J5 J6	1250-0118	2	CONNECTOR, NSR, P/O W2 Connector-RF bnc fem Sgl=Hole=FR 50-OHM .	24931	28JR128-1
71	1250-0118		(AM IN/OUT) Connector-RF bnc fem Sgl-Hole-FR 50-ohm (FM In/OUT)	24931	28JR128-1
41	1120-1551	- 1	METERIO-1 MA, 2-1/4" METER CASE SIZE	28480	1120-1551
1P 91	08654-20105	1	FOR MECHANICAL PARTS, SEE PAGE 6-16 BOARD, TERMINAL	28480	08654-20105
e'r "	2100-2661	· 1	RESISTOR-VAR CONTROL CC 1K 20% LIN	01121	М
12	0757-0424 2100-3426	2	RESISTOR 1.1K 1% .125W F TC=0+-100 Resistor-var control CC 1k 20% Lin	24546	C4-1/8-T0-1101-F 70A4G0245102M
14 15	0757-0424 2100-2492	2	RESISTOR 1.1K 1% .125W F TC=0+-100 Resistor-var control CC 5k 20% Lin	24546	C4-1/8-T0-3101+F W
16 *	0757-0280	1	RESISTOR 1K 1% .125W F TC=0+-100 #Factory selected part	24546	C4-1/8-70-1001-F
17 18 19	0698-3441 0698-3160 2100-2492	1	RESISTOR 215 1% .125W F TC=0+-100 RESISTOR 31.6K 1% .125V F TC=0+-100 RESISTOR-VAR CONTROL CC 5K 20% LIN	24546 24546 01121	C4-1/8-T0-215R-F C4-1/8-T0-3162-F W
10	0757-0398 0757-0398	5	NESISTOR 75 1% ,125W 4 TC#0+-100 Resistor 75 1% ,125W F TC#0+-100	24546 24546	C4-1/8-T0-75R0-F C4-1/8-T0-75R0-F
1	3101-1903	1	SWITCH-SL' DPDT-NS MINTR .54 125VAC/DC	28480	3101-1903
2	3100-3304	2	(400 HZ/1KHZ) Switch, Lever	28480	3100-3304
3	3100-3304		(AM) Switch, Lever (FM)	28480	3100-3304
94	3130-0398 3100-3298	· · 1 · · 1	WAFERSSECTION 1.718" DIA Bwitch, Rotary (Meter)	76854 28480	TYPE LK 3100-3295
6	3101-1394	1	SWITCH-PB DPDT-DB ALTNG 10,5A 250VAC (Line(includes d91, MP1 and MP2)	OUZAI	53-67200-120/A1H
17	100-3324	1	SWITCH-RTRY DP4T-NS _812 IN CTR SPCG (FM Range)	28480	3100-3724
1	9100-3568	1	TRANSFORMER, POWER	28480	9100-3568
1	8120-1378	1 .	CABLE ASSY 18AWG 3-CNDCT [GK-JKT _25-0D AC Power (Refer to Section II)	28480	6120-1378
2	8120-0668	1	CABLE-COAX .086-0D (Buffer Ampl Out) includes j5_	28480	8120-0668
3 `	8120-2175	1	CABLE ASSEMBLY, AUX OUTPUT (INCLUDES J2)	2648)	8120-2175
4	8120-0667	1	CABLE-COAX .086-OD (RF AMPL. OUT)	28480	8120-0667
5	8120-0670	1	CABLE-CDAX .086-00 RF OUTPUT, INCLUDES JB(STANDARD ONLY)	28480	812-0470
5	8120-2110	1 -	CABLE ASSY-COAX 50-0HM 5.410-LG RF OUTPUT, INCLUDES J3(OPT 003 ONLY)	28480	8750-5110
b	8120-1593	1	CABLE-SHLD 22AWG 5-CNDCT JGK-JKT .20-0D (LINE SWITCH)	28480	0120-1593
7	8120-0789	3	CABLE-COAX 50 OHM .11-OD 28AWG (+55V)	28460	8120=0789
	8090-0394 8150-0447	() () ()) ()) ()) ()) ()) ()) ()) ()) (SLEEVE-TERMN SLDR-HT SHRK .175/.2-ID Wire 24AWG BK 300V PVC 7x32 80C	06090 29480	C-142-51 8150-0447
8	8120-0789		CABLE-COAX 50 OHM ,11-OD 28AWG (FM DRIVE)	28480	8120-0789
9	8090-0394 8120-0789		SLEEVENTERMN SLDR-HT SHRK 175/.2-ID Cable-Coax 50 ohm .11-od 28Awg (FM Mod Input)	06090 28480	C=142=51 8120=0789
10	8090-0394 8120-2109	ì	SLEEVE-TERMN SLOR-HT SHRA "175/"2-ID Cable Assy-Joax Attenuator Dutput (opt 003 only)	06090 28480	C-142-51 8120-2109
A1,XA2 A3 A4	1251-0159	1	NOT ASSIGNED CONTINUE 2-ROWS	71785	251-15-30-261
IA5	1251-2346	1	CONNECTOR-PC EDGE 18-CONT/ROW 1-ROW	26742	91-6918-1112-00

See introduction to this section for ordering information

Replaceable Parts

Model 8654B

6-16

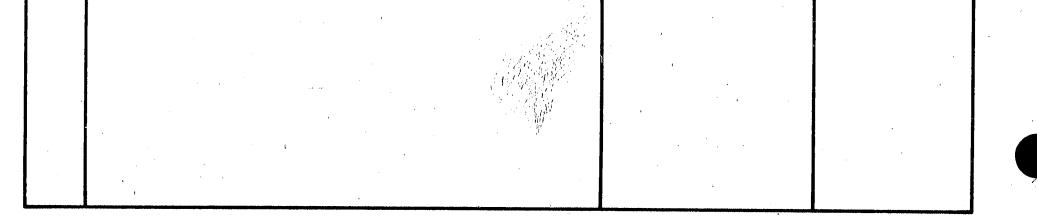
n an an Araban ann an Araban a Araban an A Araban an A

Figure 6-2. Front Panel Mechanical Parts

. . . .

Table 6-2. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
P1 P2 P3 P4 P5	5000-8876 1440-0077 1440-0077 1440-0076 08654-00037	2 2 1 1	MECHANICAL PARTS COVER SIDE 6 X 11 SM Handle-CMPNT Handle-SPCL 7.75-L Cover, Top	28480 12136 12136 12136 28480	5000-8876 346 346 1775-354 COLOR Y31061 08654-00037
426 MP7 MP8 MP9 MP10	08654-20081 08654-00047 5000-8876 5060-0703 5060-0703	1 1 2	INSULATOR, FM DRIVER PANEL, REAR COVER SIDE 6 X 11 SM FRAME ASSEMBLY, 6 X 11 SM FRAME ASSEMBLY, 6 X 11 SM	28480 28480 28480 28480 28480 28480	08654-20081 08654-00047 5000-8876 5060-0703 5060-0703
MP11 MP12 MP13 MP14 MP15	08654-00024 5040-7201 5040-7201 1460-1345 1460-1345	1 4 2	COVER, BOTTOM FOOT FOOT Tilt Stand Tilt Stand	28480 28480 28480 28480 28480 28480	08654-00024 5040-7201 5040-7201 1460-1345 1460-1345
MP16 MP17 MP18 MP19 MP20	5040-7201 5040-7201 08654-00028 08654-00027 7200-1263	1 1 1	FOOT FOOT SUB-PANEL, FRONT PANEL, FRONT Extrusion:trim	28480 28480 28480 28480 28480 28480	5040-7201 5040-7201 08654-00028 08654-00027 7200-1263
MP21 MP22 MP23 MP24 MP25	08654-20050 08654-20049 7120-1254 0370-2628 0370-2383	1 1 1 1 1	WINDOW Trim,Top Nameplate Knob, Bar (meter) Knob (fine frequency)	28480 28480 28480 28480 28480 28480	08634-20050 08654-20049 7120-1254 0370-2628 0370-2383
4P26 4P27 4P28 MP29 MP30	0370-0585 7120-4787 0590-0505 0370-2623 0370-2776	1 1 1 1	KNOB (OUTPUT LEVEL) Label Reverse Power (OPT 003 ONLY) Nut, Knurled 5/8-24 UNEF-28 THREAD Knob, Base (Vernier) Knob (AM Level)	28480 28480 73743 28480 28480	0370-0585 7120-4787 70-801 0370-2623 0370-2776
MP31 MP32 MP33 MP34 MP35	0370-2245 0370-0929 08640-40052 0370-0929 0370-2986	1 2 1	KNOB (FREQUENCY TUNE) Knob, Lever (AM) Lever, Slide Switch (400HZ/1KHZ) Knob, Lever (FM) Knob (FM Range)	28480 28480 28480 28480 28480	0370-2245 0370-0929 08640-40052 0370-0929 0370-2986
MP36 MP37 MP38	0370-2777 0390-0923 3101-0559	1 1 1	KNOB (FM LEVEL) NUT-KNRLD-R 1/2-32-THD .125-THK .635-A/F (SEE SECTION III) CAP-PB TRL WHITE; ZIG-ZAG 90 DEG TO (SEE SECTION III)	28480 28480 28480	0370-2777 0390-0923 3101-0559
MP39 MP40 MP41 MP42 MP43	0370-2778 1250-0522 7120-2359 08654-00033 08654-00031	1 1 1 1	KNOB (FREQUENCY RANGE) Cap-coax to "Jit F-N Non-Bhtg 1.75 in Berial Plate .625-IN-WD 1.5-IN-LG AL Bracket, Attenuator Support Bracket, Meter Switch	28480 24931 28480 28480 28480	0370-2778 25PC100-1 7120-2359 08654-00033 08654-00031
MP44 MP45 MP46 MP47 MP48	08654-00049 08654-00048 08654-20080 7120-4294 08654-00052	1 1 2 1 1	BRACKET, RF CONNECTOR SUPPORT Bracket, FM drive board mounting Standoff, Top Cover Label, Warning Bracket, Meter Support	28480 28480 28480 28480 28480 28480	08654-00047 08654-00048 08654-20080 7120-4274 08654-00052
MP49 MP50 MP51 MP52 MP53	1500-0431 08654-20052 08654-20069 5001-0135 7120-4628	1 1 1 1 3	COUPLER-FLEX 1.05-LG BRS Shaft, meter knob Damp bar top Wrench combination Label information "Caution"	28480 28480 28480 28480 28480 28480	1500-0431 08654-20052 08654-20069 5001-0135 7120-4628
MP54 MP55 MP56 MP57 MP58	08654-20080 08654-00032 08654-00008 08654-20071 5040-0218	1 1 1 1 1 1	STANDOFF, TOP COVER Hinge, FM driver board Bracket, connector Damp bar bottom Coupler	28480 28480 28480 28480 28480 28480	08454-20080 08454-00032 08454-00008 08454-20071 5040-0218
MP59 MP60 MP61 MP62 T MP63	8160-0245 1401-0101 08654-00022 08654-20088 08654-20085	1 1 1 1	GASKET (OPT 003 ONLY) Cover, Power Module Plate, Lockout Bracket Bracket, Attenuator	28480 28480 28480 28480 28480	8140-0245 1401-0101 08654-00022 08654-20088 08654-00045
MP64 † MP65 †	3050-0010 1460-0036	4	WASHER-FL MTLC NO6 .147-IN-ID Spring-cprsn .197-od .281-LG Muw (for FM Level Pot Shaft)	76210 26480	65 1460-0036
ſ	••••••••••••••••••••••••••••••••••••••		Introduction to this section for ordering inform FOR BACKDATING, SEE TABLE 7-1.	atioņ	~ -
		-			6-1


Replaceable Parts

¥1

Model 8654B

Table 6-3. Code List of Manufacturers

Mfr Code	Manufacturer Name	Address	Zip Code
GB027 00000 00184 00865 011295 02114 02735 03877 03888 04713 06776 07263 07716 12881 15818 19701 28496 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 27014 284546 72136 72982 73138 73168 73138 73168 73136 73168 73136 73168 73136 74163 76210 76385 76355 76454 79136 79136 79136 79136 79136 79136 79136 79136 79136 79136 79727 998291 998291 998291	NEOHM U.S.A. COMMON AR TECH PACKAGING CORP STETTNER-TRUSH INC ALLEN-PRADLEY CO TEXAS INSTR INC SEMICOND CMPNY DIV FERROXCUBE CORP RCA CORP SOLID STATE DIV TRANSITRON ELECTRONIC CORP KOI PYROFILM CORP MOTOROLA SEMICONDUCTOR PRODUCTS ROBINSON NUGENT INC FAIFCHILD SEMICONDUCTOR DIV TECHNICAL WIRE PRODUCTS INC TRW INC BURLINGTON DIV TRW INC BURLINGTON DIV TRW INC BURLINGTON DIV TRW ESSMICONDUCTOR METEX CORP CABLEWAVE SYSTEMS INC GDMANDA ELECTRONICS CORP CABLEWAVE SYSTEMS INC GDMANDA ELECTRONICS CORP CABLEWAVE SYSTEMS INC GDMANDA ELECTRONICS CORP GDURNS INC TRIMPOT PPOD DIV SPRAGUE ELECTRIC CO THOMAS & BETTS CO THE COMMERCIAL PLASTICS CO ELECTRO MOTIVE CORP SUB IEC ELASTIC STOP NUT DIV OF AMERACE ERIE TECHNOLOGICAL PRODUCTS INC BECKMAN INSTRUMENTS INC MELIPOT DIV FEDRAL SCREW PRODUCTS CO PHELPS DOGE CORP MAREDEL C W MINOR RUBRER CO INC GAM IND INC SUDI ILLINDIS TOL WORMS INC SHAKEPROOF WALDES-KOHNOOR INC C-W INDUSTRIES INC LA POINTE INDUSTRIES INC LA POINTE INDUSTRIES INC VITRAMON INC INDUSTRIAL RETAINING RING CO SEALECTRO CORP	ENGLAND ANY SUPPLIER OF THE U.S. LOWELL MA CAZENOVIA NY MILWAUKEE WI DALLAS TX SAUGERTIES NY SOMMERVILLE NJ WAKEFIELD MA WHIPPANY NJ PHOENIX AZ NEW ALBANY IN MOUNTAIN VIEW CA CRANFORD NJ BURLINGTON IA BOONE NC EDISON NJ MOUNTAIN VIEW CA MINERAL WELLS TX NORTH MAVEN CT GOWANDA NY BRADFORD PA SANTA CLARA CA PALO ALTO CA SAN DIEGO CA RIVERSIDE CA NORTH ADAMS MA ELIZABETH NJ MUNDELEIN IL WILLERTON CA ASHLAND MA CHICAGO IL NEW YORK NY SAN FRANCISCO CA BLOOMFIELD NJ CRYSTAL LAKE IL ELGIN IL LONG ISLAND CITY NY WARMINSTER PA COLUMBUS NE ROCKVILLE CT BRIDGEORT CT IRVINGTON NJ MARRONECK NY AURORA NY	01854 13035 53212 75231 12477 08876 01880 07981 85008 47150 94040 07016 52601 28607 08817 94040 76067 06473 14070 16701 95051 94304 92121 92507 01247 07207 60060 06226 07083 16512 92634 01721 60618 10022 924103 07003 60014 60126 11101 18974 68601 06066 06601 07111 10544 14052
			1
			· · ·

BACK DATING

MANUAL

CHANGES

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains manual change instructions for backdating this manual for HP Model 8654B Signal Generators that have serial number prefixes that are different than the first prefix listed on the title page. This section also contains instrument modification suggestions and procedures that are recommended to improve the performance and reliability of your generator.

7-3. MANUAL CHANGES

7-4. To adapt this manual to your instrument, refer to Table 7-1 and make all of the manual

changes listed opposite your instrument's serial number or prefix. The manual changes are listed in serial number sequence and should be made in the sequence listed. For example, Change A should be made after Change B; Change B should be made after Change C; etc.

7-5. If your instrument's serial number or prefix is not listed on the title page of this manual or in Table 7-1, it may be documented in a MANUAL CHANGES supplement. For additional important information about serial number coverage, refer to INSTRUMENTS COVERED BY MANUAL in Section I.

75-121Ω

3

7-1

Serial Prefix or Number	Make Manual Changes	Serial Prefix or Number	Make Manual Changes
1512A, 1521A	I,H,G,F,E,D,C,B,A	1612A	I,H,G,F
1529A	I,H,G,F,E,D,C,B	1633A	I,H,G
1531A	I,H,G,F,E,D,C	1638A00696 to 00935	I,H
1532A	I,H,G,F,E,D	1638A00936 to 01095, 1647A	I
1550A	I,H,G,F,E		

Table 7-1. Manual Changes By Serial Number

7-6. MANUAL CHANGE INSTRUCTIONS

CHANGE A

Page 5-3, Table 5-1: Add the following:

r		1	*****
Reference	Pasia of Calcotion	Normal Value	Service
Designator	Basis of Selection	Range	Sheet

A1A1R25

Selected for harmonic distortion and Auxiliary RF output level within specifications. Perform Harmonic Distortion Test (paragraph 4-14). If harmonics exceed the specified level, increase the value of A1A1R25. Check Auxiliary RF Output to ensure that the RF level exceeds specified level after A1A1R25 has been changed.

Manual Changes

CHANGE A (Cont'd)

Page 5-3, Table 5-1: (cont'd)

Change A1A1R28 to A1A1R29. Change A1A1R31 to A1A1R39.

Page 6-5, Table 6-2: Change A1MP81 to 08654-20060.

Pages 6-6 and 6-7, Table 6-2:

Replace entire parts list for A1A1 RF Amplifier/ALC Board Assembly with the attached replaceable parts table (pages 7-3 and 7-4).

Service Sheet 3 (component locations): Replace Figure 8-8 with the following figure:

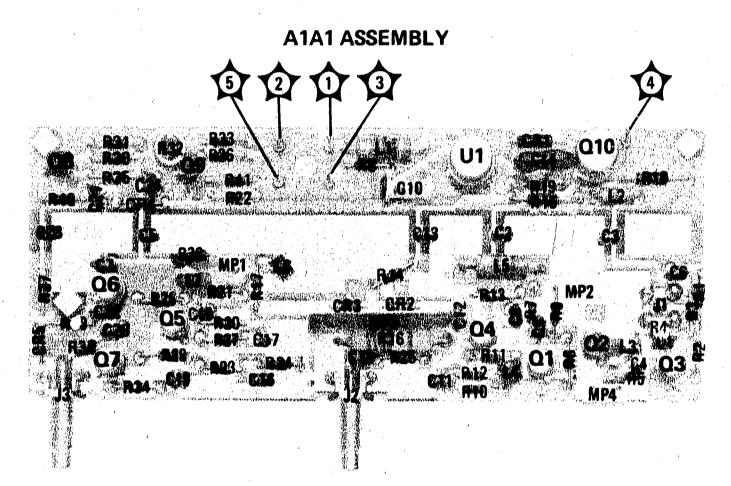


Figure 7-1. A1A1 RF Amplifier/ALC Assembly Component Locations Backdating (Change A)

Service Sheet 3 (schematic):

Replace entire schematic with Figure 7-2 (page 7-5).

CHANGE B

7-2

Page 6-10, Table 6-2:

Change A3R60 to 0757-0438 RESISTOR 5.11KΩ 1% 0.125W F TC=0±100.

Service Sheet 4 (schematic): Change A3R60 to $5.11k\Omega$.

)

7-3

,

Table 7-2. A1A1 R	placeable Parts	Backdating	(Change A)
-------------------	-----------------	------------	------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1A1 A1A1	08654-60102 08654-60022	1	BDARD ASSEMBLY, RF AMPLIFIER/ALC Restored 08654-60002 or 08654-60102, Reguires Exchange	28480 28480	08654-60102 08654-60022
A1A1C1 A1A1C2 A1A1C3 A1A1C4+	0160-3879 0160-3879 0160-3879 0160-3879 0160-3565	13	CAPACITOR-FXD .01UF +-20X 100WVDC CER CAPACITOR-FXD .01UF +-20X 100WVDC CER CAPACITOR-FXD .01UF +-20X 100WVDC CER CAPACITOR-FXD 6.8PF +5F7 100WVDC CER *FACTORY BELECTED PART	28480 28480 28480 28480	0160-3879 0160-3879 0160-3879 0160-3565
A1A1C5 A1A1C6 A1A1C7 A1A1C8 A1A1C8	0160-3879 0160-3879 0160-3879 0160-3878 0160-3878	3	CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD 1000PF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER	28480 28480 28480 28480 28480 28480	0160-3879 0160-3879 0160-3879 0160-3878 0160-3878
A1A1C10 A1A1C11 A1A1C12 A1A1C12 A1A1C13 A1A1C14	0160-2257 0160-3879 0160-3879 0160-3879 0160-3879 0160-2204	1	CAPACITOR-FXD 1./F +-5% 500WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD 100PF +-5% 300WVDC MICA	28480 28480 28480 28480 28480	0160=2257 0160=3679 0160=3679 0160=3679 0160=2204
A1A1C15 A1A1C16 A1A1C17 A1A1C17 A1A1C18 A1A1C19	0160-3877 0160-3879 0160-3873 0160-3879 0160-3879 0160-3879	• X X •	CAPACITOR-FXD 100PF +-20% 200WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD 4.7PF +5PF 200WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER CAPACITOR-FXD .01UF +-20% 100WVDC CER	28480 28480 28480 28480 28480	0160-3877 0160-3879 0160-3873 0160-3879 0160-3879
A1A1C20 A1A1C21 A1A1C22 A1A1C23 A1A1C23 A1A1C24	0160-3878 0160-3875 0150-3876 0160-3875 0160-3878	2	CAPACITOR-FXD 1600PF +-20% 100WVDC CER CAPACITOR-FXD 22PF +-5% 200WVDC CER CAPACITOR-FXD 47PF +-20% 200WVDC CER CAPACITOR-FXD 22PF +-5% 200WVDC CER CAPACITOR-FXD 1000PF +-20% 100WVDC CER	28480 28480 28480 28480 28480 28480	0160-3878 0160-3875 0160-3876 C160-3875 0160-3878
A1A1CR1 A1A1CR2 A1A1CR3 A1A1CR3 A1A1CR4 A1A1CR5	1901-0033 1901-0747 1901-0747 1901-0735 1901-0535	5	DIODE-GEN PRP 180V 200MA DO-7 DIODE-PIN DIODE-PIN DIODE-Schottky DIODE-Schottky	28480 28480 28480 28480 28480 28480	1901-0033 1901-0747 1901-0747 1901-0335 1901-0535
A1A1J1 A1A1J2 A1A1J3	1250-1220 1250-1220 1250-1220 1250-1220	3	CONNECTOR-RF SMC M PC Connector-RF SMC M PC Connector-RF SMC M PC	98291 98291 98291	50+051-0109 50-051-0109 50-051-0109
A1A1L1 A1A1L2 A1A1L3 A1A1L4 A1A1L5	9140~0114 9100-2252 08654-80001 08654-80003 9100-1623	1 1 1	COIL-MLD 10UM 10% Q=35 "155DX.375LG Coil-fxd Molded RF Choke .27UM 10% Inductor, RF 15 NM Inductor, RF 45 NM Coil-MLD 27UM 5% Q#60 .155D%.375LG	99800 24226 28480 28480 24226	1537-36 10/270 0865#-80001 08654-80003 15/272
A1A1L6 A1A1L7	08654-80002 9100-2247		INDUCTOR, RF 35 NH Coil-FXD Molded RF Choke .1uh 10%	28480 24226	08654-80002 10/100
A1A1MP1 A1A1MP2 A1A1MP3 A1A1MP4	0340-0008 08654-00019 08654-00020 08654-00021	1 1 1 1	TERMINAL-STUD DBL-TUR PRESS-MTG Shield, Buffer Amplifier Shield, Modulator Strap Ground	98291 28480 28480 28480	\$7-1000=L2 08654-09819 08654-09020 08654-09021
A1A101 A1A102 A1A103	1854-0696 1205-0037 1855-0020 1854-0696 1205-0037	5	TRANSISTOR NPN SI TO-72 PD=200MW HEAT SINK TO-36-PKG Transistor J-Fet N-Chan D-Mode TO-18 SI Transistor NPN SI TO-72 PD=200MW HEAT SINK TO-36-PKG	28480 28480 28480 28480 28480 28480	1854-0696 1205-0037 1855-0020 1854-0696 1205-0037
A1A1Q4 A1A1Q5 A1A1Q6	5086-4218 1205-0037 1854-0596 1205-0037 1854-0696 1205-0037	1	HP-21 TO TO-72 PACKAGE HEAT BINK TO-36-PKG Transistor NPN SI TO-72 PD=200mW HEAT SINK TO-36-PKG Transistor NPN SI TO-72 PD=200mW HEAT SINK TO-36-PKG	28480 28480 28480 28480 28480 28480	5084-4218 1205-0037 1854-0494 1205-0037 1854-0494 1205-0037
A1A1Q7 A1A1Q8 A1A1Q9 A1A1Q9 A1A1Q10	1854-0896 1205-0037 1853-0020 1854-0071 1853-0001	1 1 1	TRANSISTOR NPN 81 TO-72 PD=200MW HEAT SINK TO-36-PKG Thansistor PNP 31 PD=300MW FT=150MMZ Transistor NPN 81 PD=300MW FT=200MHZ Transistor PNP 81 TO-39 PD=600MW	28480 28480 28480 28480 28480	1854-0494 1205-0037 1853-0020 1854-0071 1855-0001
A1A1R1 A1A1R2 A1A1R3 A1A1R3 A1A1R4 A1A1R5	0698-7216 0698-7208 0698-7232 0698-7227 0698-7205	1 1 1 3	RESISTOR 147 1% .05W F TC=0+-100 RESISTOR 46.1 1% .05W F TC=0+-100 RESISTOR 461 1% .05W F TC=0+-100 RESISTOR 422 1% .05W F TC=0+-100 RESISTOR 51.1 1% .05W F TC=0+-100	24546 24546 24546 24546 24546 24546	C3-1/8-Y0-147R-8 C3-1/8-Y09-68R1-6 C3-1/8-Y0-681R-6 C3-1/8-Y0-82R-6 C3-1/8-Y09-82R-6 C3-1/8-Y09-51R1-6
A1A1R6 A1A1R7 A1A1R6 A1A1R9 A1A1R10	0698-7196 0698-7253 0698-7277 0698-7253 0698-7214	1	RESISTOR 21.5 2X .05W F TC=0+-100 RESISTOR 5.11K 1X .05W F TC=0+-100 RESISTOR 51.1K 1X .05W F TC=0+-100 RESISTOR 5.11K 1X .05W F TC=0+-100 RESISTOR 121 1X .05W F TC=0+-100	24546 24546 24546 24546 24546	C3=1/8=700=2185=6 C3=1/8=70=5111=6 C3=1/8=70=5112=6 C3=1/8=70=5111=6 C3=1/8=70=1218=6

See introduction to this section for ordering information

Manual Changes

μ.

7-4

Model 8654B

tx

Table 7-2. A1A1 Replaceable Parts Backdating (Change A)

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1A1811	0698-7188	2	RESISTOR 10 1% .05% F TC=0+-100	24546	C3-1/8-T00-10R-G
A1A1R12	0698-7207	1	RESISTOR 61,9 1% .05W F TC=0+-100	24546	C3-1/8+700+61R9+8 C3-1/8-709+51R1+6
A1A1R13 A1A1R14	0498-7205	1	RESISTOR 51.1 1X .05W F TC=0+-100 Resistor 316 1X .05W F TC=0+-100	24546	C3-1/8-70-316R-G
ALALRIS	0757-0401	i	RESISTOR 100 1% ,125W F TC=0++100	24546	C4-1/8-T0-101-F
A1A1R16	0757-0814	1 1	REGISTOR 511 1% ,5W F TC=0+-100	19701	MF761/2-70-5118-F
A1A1R17	0498-7205		RESISTOR 51.1 1% .05W F TC=0+-100	24546	C3-1/8-T00-5181-6 C4-1/8-T0-1002-P
A1A1R18 A1A1R19	0757-0442 0698-7284		REGISTOR 10K 1% ,125W F TC=0+~100 Resistor 100K 1% ,05W F TC=0+~100	24546	C3+1/8-T0-1003-G
A1A1R20	0698-7239	ī	RESISTOR 1.33K 1% .05W F TC=0+-100	24546	C3-1/8-T0-1331-8
ALAIR21	0698-7247	1	RESISTOR 2.87K 1% .05W F TC=0+-100	24546	C3-1/8-T0-2871-6
A1A1R22	0698-7277		RESISTOR 51,1K 1X .05W F TC=0+-100	24546	C3-1/8-70-5112-6 C3-1/8-700-26R1-6
A1A1R23 A1A1R24	0698-7198	2.	RESISTOR 26,1 1% .05W F TC=0+-100 Resistor 162 1% .05W F TC=0+-100	24546	C3-1/8-T0-162R-G
A1A1R25"	0498-7209	[i `	RESISTOR 75 1% .05W F TC=0+-100	24546	C3-1/8-700-75R0-6
A1A1R26	0698-7198		"FACTORY SELECTED PART Resistor 26.1 1x .05W F TC=0+-100	24546	C3-1/8-T00-26R1-6
A1A1827	0498-7188		RESISTOR 10 1X .05W F TC=0+=100	24546	C3-1/8-T09-10R-G C4-1/8-T0-316R-F
A1A1R28 A1A1R29+	0698-3444 0698-7216		RESISTOR 316 1% .125W F TC=0+-100 Resistor 147 1% .05W F TC=0+-100	24546 24546	C3-1/8-T0-1 47R-G
****		•	*PACTORY BELECTED PART		
ALAIR30	0498-7248	- 1	RESISTOR 3,16K 1X .05W F TC=0+-100	24546	C3-1/8-T0-3161-6
A1A1R31	0698-7269	1	RESISTOR 23.7K 1% .05W F TC=0+-100	24546	C3-1/8-T0-2372-6
A1A1R32	2100-2497	. 1	RÉSISTOR-TRÀR 2K 10% C TOP-ADJ 1-TRN Resistor 2.37k 1% .05% p TC=0+-100	73138	62-207-1 C3-1/8-T0-2371-G
A1A1R33 A1A1R34	0498-7195	1	RESISTOR 19.6 1X .05W F TC=0+-100	24546	C3-1/8-700-1986-6
A1A1R35	0498-7279	1	RESISTOR 61.9K 1X .05W F TC=0+-100	24546	C3-1/8-T0-6192-G
ASA1836	0698-7286	1	RESISTOR 121K 1% ,05W F TC=0+-100	24546	C3-1/8-T0-1213-G
A1A1837	0698-7253	. 1	RESISTOR 5.11K 1X .05W F TC=0+-100 RESISTOR 34.8 1X .05W F TC=0+-100	24546	C3-1/8-7ú-5111-6 C3-1/8-700-3488-6
A1A1R38 A1A1R39+	0698-7212	1	RESISTOR 100 1% .05W F TC=0+=100 +FACTORY BELECTED PART	24546	C3-1/8-70-100R-G
	0698-7256	1	RESISTOR 6.8:X 1X .05W F TC=0++100	24546	C3-1/8-70-6811-G
A1A1R40 A1A1R41	0698-7284		RESISTOR 100K 1X .05W F TC=0+-100	24546	C3-1/0-70-1003-6
A1A1791 A1A1792 A1A1793 A1A1794 A1A1795	0360-0124 0360-0124 0360-0124 0360-0124 0360-0124 0360-0124	5	TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG TERMINAL-STUD SGL-PIN PRESS-MTG	28480 28480 28480 28480 28480 28480	0340-0124 0360-0124 0360-0124 0360-0124 0360-0124 0360-0124
A1A1U1	1820-0223	1	IC LM BOIA OP AMP	27014	LM301AH
					i,
				1	
	'	,			
			r		
			1		
· · · · · · · · · · · · · · · · · · ·					
	•				
1					
· · · ·					· · · · · ·
				· ·	

÷

See introduction to this section for ordering information

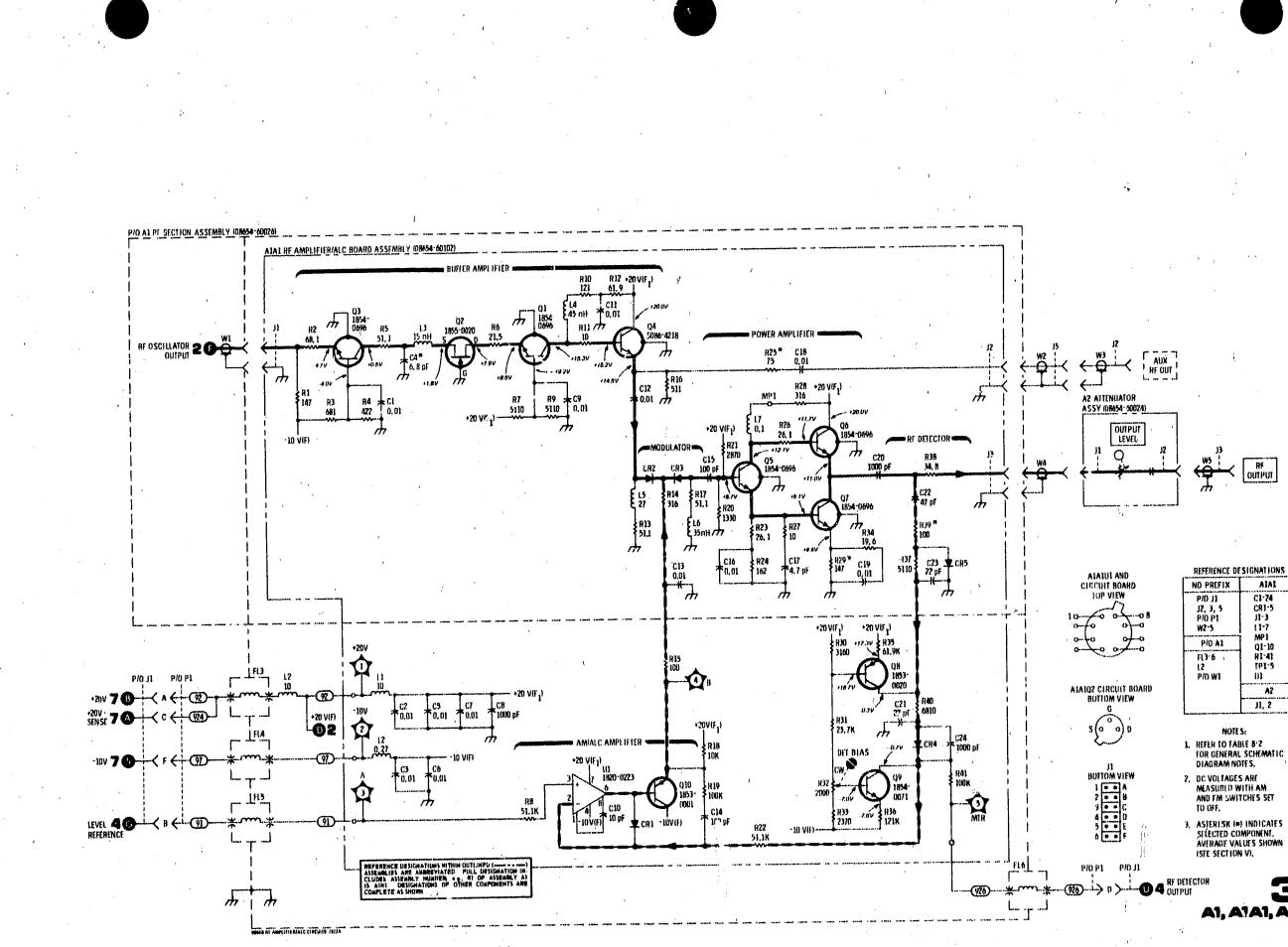


Figure 7-2. RF Amplifier/ALC Assembly Schematic Diagram Backdating (Change A).

7-5

Model 8654B

AIAI

A?

A1, A1A1, A2

Manual Changes

CHANGE C

NOTE

See paragraph 7-19 for recommended instrument modification.

Page 6-14, Table 6-2:

Change A6A1 to 08654-60109.

Change A6A1VR1 and VR3 to 1902-3048 DIODE-ZNR 3.48 5% DO-7 PD=0.4W TC= -0.058%.

Page 6-16, Table 6-2:

Change MP62 to 08654-00030 with the same description.

Delete MP64.

Service Sheet 3A (schematic):

Change the part number for A6A1 to 08654-60109.

Change the voltage for A6A1VR1 and VR3 to 3.48V.

CHANGE D

Page 6-12, Table 6-2: Change A5R59 to 2100-2216 RESISTOR—VAR TRMR 5 KOHM 10% C TOP—ADJ

Service Sheet 6 (component locations):

Replace Figure 8-22 with Figure 7-3 (page 7-7).

CHANGE E

NOTE

See paragraph 7-17 for recommended instrument modification.

Page 6-9, Table 6-2:

Change A3C23 to 0160-2257 CAPACITOR—FXD 10 PF $\pm 5\%$ 500 WVDC CER. Change A3R7 to 0683-0475 RESISTOR 4.7 OHM 5% 0.25W FC TC=-400/+500.

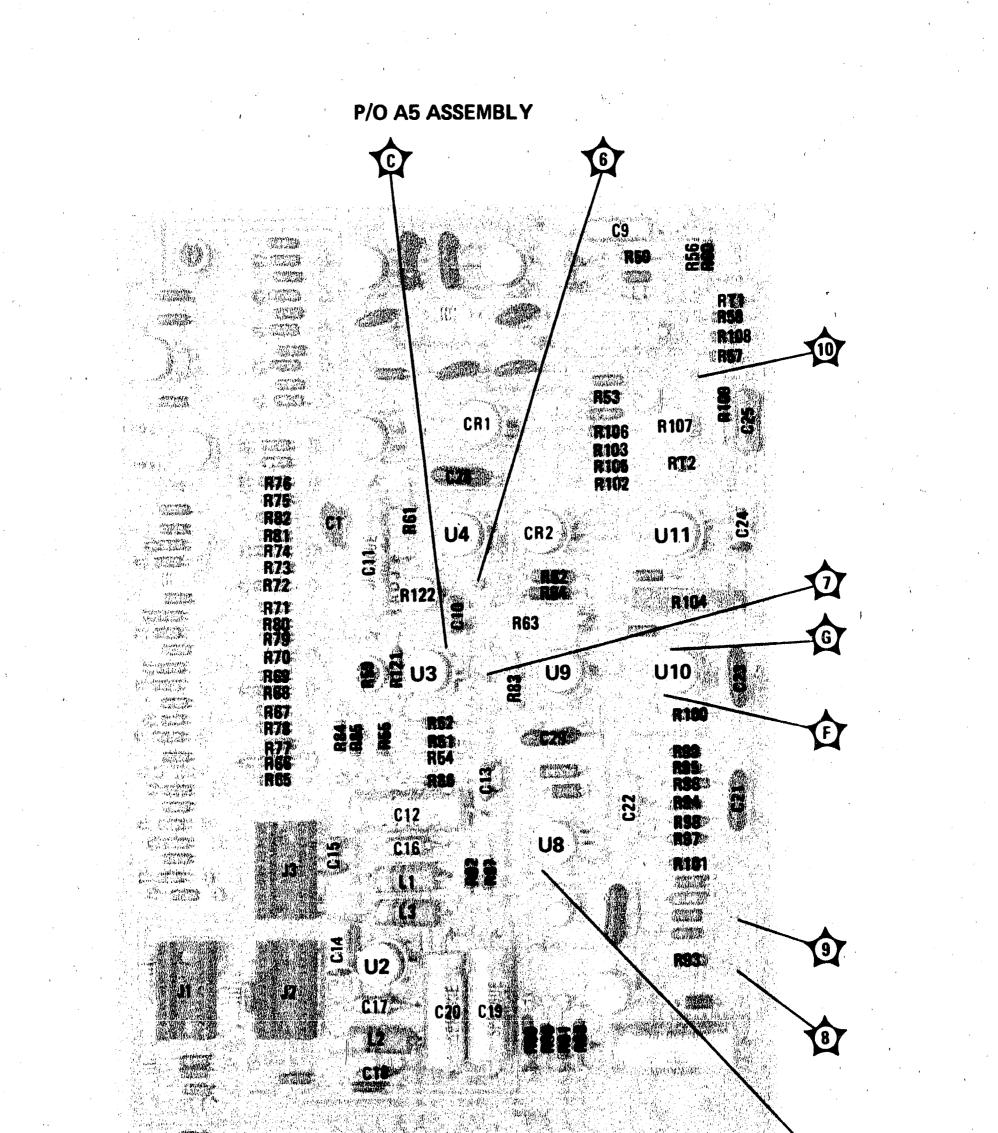
Service Sheet 4 (schematic): Change the value of A3C23 to 10 pF.

Service Sheet 7 (schematic): Change A3R7 to 4.7Ω .

CHANGE F

7-6

NOTE


See paragraph 7-15 for recommended instrument modification.

Page 6-6, Table 6-2: Change A1A1C9 to 0140-0191 CAPACITOR—FXD 56 PF ±5% 300WVDC MICA.

Page 6-16. Table 6-2: Delete MP65.

Service Sheet 3 (schematic): Change A1A1C9 to 56 pF.

7-7

Figure 7-3. P/O A5 FM Driver Board Assembly Component Locations Backdating (Change D)

CHANGE G

NOTE

See paragraphs 7-11 and 7-13 for recommended instrument modifications.

Page 6-13, Table 6-2:

Change A5R105 to 0757-0280 RESISTOR 1K 1%.125W F TC=0±100. Change A5R112 to 0698-3157 RESISTOR 19.6K 1% .125W F TC=0±100.

Service Sheet 6 (schematic): Change the value of A5R105 to $1k\Omega$.

Service Sheet 7 (schematic): Change the value of A5R112 to 19.6k Ω .

CHANGE H

NOTE

See paragraph 7-9 for recommended instrument modification.

Page 6-5, Table 6-2:

Change A1MP70 to 08654-00029. Change A1MP75 to 08654-20051. Change A1R2 to 2100-3458.

CHANGE I

7-8

Page 1-4, Table 1-1:

Under MODULATION CHARACTERISTICS for Frequency Modulation, replace Sensitivity Accuracy and **Indicated FM Accuracy** specifications with the following:

Sensitivity Accuracy $(15^{\circ} \text{ to } 35^{\circ} \text{C})^2$: $\pm 10\%$. For 100 kHz deviation range above 130 MHz, $\pm 13\%$. Indicated FM Accuracy $(15^{\circ} \text{ to } 35^{\circ}\text{C})^2$: $\pm (10\% \text{ of reading } +3\% \text{ of full scale})$. For 100 kHz deviation range above 130 kHz, add 3% of reading.

Page 4-22, paragraph 4-26:

Under SPECIFICATION, replace Sensitivity Accuracy and Indicated FM Accuracy specifications with the following:

Sensitivity Accuracy $(15^{\circ} \text{ to } 35^{\circ} \text{C})^2$: $\pm 10\%$. For 100 kHz deviation range above 130 MHz, $\pm 13\%$. Indicated FM Accuracy $(15^{\circ} \text{ to } 35^{\circ} \text{C})^2$: $\pm (10\% \text{ of reading } +3\% \text{ of full scale})$. For 100 kHz deviation range above 130 kHz, add 3% of reading.

Page 4-24, paragraph 4-26: Change the last sentence in step 7 to read: Voltmeter should read between 20.1 and 24,6 mVrms (31.6 mVpk ±10% which corresponds to 31.6 kHz $\pm 10\%$ frequency deviation).

CHANGE I (Cont'd)

Page 4-24, paragraph 4-26: (Cont'd)

In the table following step 7, change the lower voltmeter limits to 20.1 mVrms and the upper voltmeter limits to 24.6 mVrms.

Replace step 8 with the following:

8. Set FM RANGE to 100 kHz and continue using the settings listed below. For frequencies below 130 MHz the voltmeter should read between 63.6 and 77.8 mVrms (100 mVpk ±10% which corresponds to 100 kHz ±10% frequency deviation). For frequencies above 130 MHz, the voltmeter should read between 61.5 and 79.9 mVrms (100 mVpk ±13% which corresponds to 100 kHz ±13% frequency deviation).

Page 4-25, paragraph 4-26:

In the first table, make the following changes:

For the 66–130 MHz range, change the lower voltmeter limits to 63.6 mVrms and the upper limits to 77.8 mVrms.

For the 130–270 MHz and 270–520 MHz ranges, change the lower voltmeter limits to 61.5 mVrms and the upper voltmeter limits to 79.9 mVrms.

Replace step 10 with the following:

10. Continue as before using the following settings. For frequencies above 130 MHz, the voltmeter should read between 59.4 and 82.0 mVrms (100 mVpk ±16% frequency deviation). For frequencies below 130 MHz, the voltmeter should read between 61.5 and 79.9 mVrms (100 mVpk ±13% which corresponds to 100 kHz ±13% deviation).

In the table below step 10, make the following changes:

For the 130-270 MHz and the 270-520 MHz ranges, change the lower voltmeter limits to 59.4 mVrms and the upper voltmeter limits to 82.0 mVrms.

For the 66-130 MHz range, change the lower voltmeter limits to 61.5 mVrms and the upper voltmeter limits to 79.9 mVrms.

Replace step 11 with the following:

 Set FM RANGE (kHz) to 30 kHz. If necessary adjust FM LEVEL to maintain a panel meter reading of 10 on the 10 scale which corresponds to 31.6 kHz deviation as read on 3 scale. Continue using settings listed below. Voltmeter should read between 19 5 and 25.3 mVrms (31.6 mVpk ±13% which corresponds to 31.6 kHz ±13% deviation).

Page 4-26, paragraph 4-26:

In the table, change the lower voltmeter limit to 19.5 mVrms and the upper voltmeter limit to

25.3 mVrms.

Manual Changes

7-7. INSTRUMENT IMPROVEMENT MODIFI-CATIONS

7-8. Hewlett-Packard has developed certain recommended instrument modifications that can be used to improve the performance and reliability of earlier versions of the 8654B. In some cases, replacing certain parts requires a modification to make these instruments compatible with parts now in use (if the original part is no longer available). These modifications are outlined in the following procedures and are keyed to instruments by serial number prefix.

7-9. Frequency Tune Potentiometer A1R2, Bracket A1MP70 or Pulley A1MP75 Replacement (Serial Numbers 1638A00935 and Below)

7-10. In instruments with serial numbers 1638-00935 and below, if potentiometer A1R2 fails or if bracket A1MP70 requires replacement, all three parts (A1R2, A1MP70, and A1MP75) must be replaced at the same time. Order the following part numbers:

Reference Designation	Part Number	Description
A1MP70	08654-00056	Potentiometer Mount Bracket
A1MP75	08654-20091	Potentiometer Drive Pulley
A1R2	2100-3649	10k Ohm Poten- tiometer

7-11. Preliminary FM Adjustment D Adjustment Range Improvement (Serial Prefixes 1633A and Below)

7-12. On instruments with serial prefixes 1633A or below, when performing the Preliminary Adjustments, insufficient adjustment range may be observed on FM adjustment D. The adjustment range may be increased by changing A5R105 to 825 ohms, 0.25W (HP 0757-0280).

7-15. Frequency Modulation Level Vernier Improvement (Serial Prefixes 1612A and Below)

7-16. On instruments with serial number prefixes 1612A and below, if the frequency modulation level vernier pot is changed, proper smoothness of operation may be difficult to obtain. The addition of a compression spring (HP 1460-0036) on the concentric shaft ahead of the shaft coupler will improve the smoothness of operation of the vernier.

7-17. -10V Regulator Stability Improvement (Serial Prefixes 1550A and Below)

7-18. On instruments with serial prefixes 1550A or below, unwanted sidebands (at approximately 200 kHz) may appear on the RF signal at output levels near +10 dBm. These may be a result of oscillation of the -10V supply. The performance of the -10V power supply exhibiting the above symptoms may be improved by changing A3R7 to 2.7 ohms, 0.25W (HP 0683-0275).

7-19. Meter Switch Coupler Shaft Bushing Bracket Improvement (Serial Prefixes 1531A and Below)

7-20. In instruments with serial prefixes 1531A and below, if the METER switch loses the top and bottom rotation stops, an improved coupler shaft bushing bracket may be installed by following the procedure outlined below.

a. Order the following parts:

Part Number	Qty.	Description
08654-20088	1.	Coupler Shaft Bushing Bracket
3050-0010	4	Flat Washers
1480-0008	2	Roll Pins

7-13. +52.1V Regulator Stability Improvement (Serial Prefixes 1633A and Below)

7-14. On instruments with serial prefixes 1633A or below, the +52.1 V power supply may fail to regulate properly or may show excessive line ripple at low line voltages. This condition may be repaired by changing A5R112 to 8250 ohms, 0.25W (HP 0757-0441). b. Remove old bracket (MP62).

c. Remove coupler shaft bushing from old shaft.

d. Insert bushing into new bracket.

e. Insert two roll pins into new bracket.

f. Mount new bracket using two washers on each mounting stud to shim the bracket away from the subpanel.

Service

SECTION VIII SERVICE

8-1. INTRODUCTION

8-2. This section contains instructions for troubleshooting and repairing the Signal Generator.

8-3. Principles of operation and troubleshooting information are located opposite the schematics on the numerical Service Sheets. Service Sheet A contains an illustrated parts breakdown of the A1 RF Section Assembly. The last foldout in this manual has top and bottom internal views of the instrument showing the locations of the major assemblies, test points, adjustments, and some of the chassis parts.

8-4. The rest of this section has general service information that should help you to quickly service and repair the Signal Generator.

8-5. SAFETY CONSIDERATIONS

8-6. Although this instrument has been designed in accordance with international safety standards, this manual contains information and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition (see Safety Considerations page in the front of the manual). Service and adjustments should be performed only by qualified service personnel.

WARNINGS

Any interruption of the protective (grounding) conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the apparatus dangerous. Intentional interruption is prohibited.

Any adjustment, maintenance, and re-

moval of the bottom cover makes accessible hazardous voltage at connector XA5 (~53 Vrms). Removal of the protective cover on the A4 Line Module exposes hazardous voltage (line voltage) at the module's terminals.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

8-7. PRINCIPLES OF OPERATION

8-8. Principles of operation appear on the foldout pages opposite the block diagrams and the schematics on the Service Sheets. Service Sheet 1 is an overall block diagram that briefly describes overall instrument operation. It is keyed, by the numbers in the lower right-hand corners of the blocks, to the schematic diagrams on the Service Sheets that follow. It provides an assembly-by-assembly description of instrument operation.

NOTE

Table 8-2, Schematic Diagram Notes, ex-

pair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Removal of the top cover makes accessible hazardous voltage in the region of connector XA5 (\sim 53 Vrms) and on the A5 FM Driver Board (\sim 50 Vdc). Re-

plains any unusual symbols that appear on the schematics. The table also explains the switch-wafer numbering system.

8-9. TROUBLESHOOTING

8-10. This manual provides two methods to isclate a problem to a particular assembly. The first method is to use the results of the performance tests (given in Section IV) and the table of Post-Repair

Service

TROUBLESHOOTING (Cont'd)

Performance Tests and Adjustments, found in Section V. More information about this method is given in Section V.

8-11. Overall Troubleshooting. The second, and primary, troubleshooting method is to use the troubleshooting block diagram (found on Service Sheet 1) to isolate a problem to a particular assembly or circuit.

8-12. Circuit-Level Troubleshooting. Once a problem has been isolated to a particular assembly or circuit, the text opposite the service sheet that documents the circuit gives detailed troubleshooting information for the circuit.

8-13. RECOMMENDED TEST EQUIPMENT

8-14. Test equipment and test equipment accessories required to maintain the Signal Generator are listed in Table 1-2. Equipment other than that listed may be used if it meets the listed critical specifications.

8-15. SERVICE AIDS

8-16. Pozidriv Screwdrivers. Many screws in the instrument appear to be Phillips, but are not. To avoid damage to the screw slots, Pozidriv screwdrivers should be used.

8-17. Service Kit. The following parts can be ordered for use in a service kit for the generator. (Before ordering, check to ensure that they are not on hand; most of them are common to service kits for other Hewlett-Packard instruments.)

- 1 SMC Adapter HP 1250-0827
- 2 Test Cables SMC to BNC . . HP 11592-60001
- 1 Extender Board 30 pins ... HP 08640-60036

8-18. Extender Board. An extender board is available that can be used to extend the A3 Control/

tion VI and the alphabetical Service Sheets in Section VIII facilitate the identification of mechanical parts. The locations of individual components mounted on printed circuit boards or other assemblies are shown on the appropriate schematic diagram page or on the page opposite it. The part reference designator is the assembly designator plus the part designator (for example, A3R9 is R9 on the A3 assembly). For specific component description and ordering information, refer to the parts list in Section VI.

8-21. Servicing Aids on Printed Circuit Boards. The servicing aids include test points, transistor and integrated circuit designations, adjustment callouts and assembly stock numbers.

8-22. REPAIR

8-23. Factory-Selected Components

8-24. Some component values are selected at the time of final checkout at the factory (see Table 5-1). Usually these values are selected to provide optimum compatibility with associated components. These components are identified on individual schematics by an asterisk (*). The recommended procedure for replacing a factory-selected part is as follows:

a. Try the same value as the component just removed, then perform the calibration test specified for the circuit in the performance and adjustment sections of this manual.

b. If calibration cannot be accomplished, try the typical value shown in the parts list and repeat the test.

c. If the test results are still not satisfactory, substitute various values within the tolerances specified in Table 5-1, until the desired result is obtained.

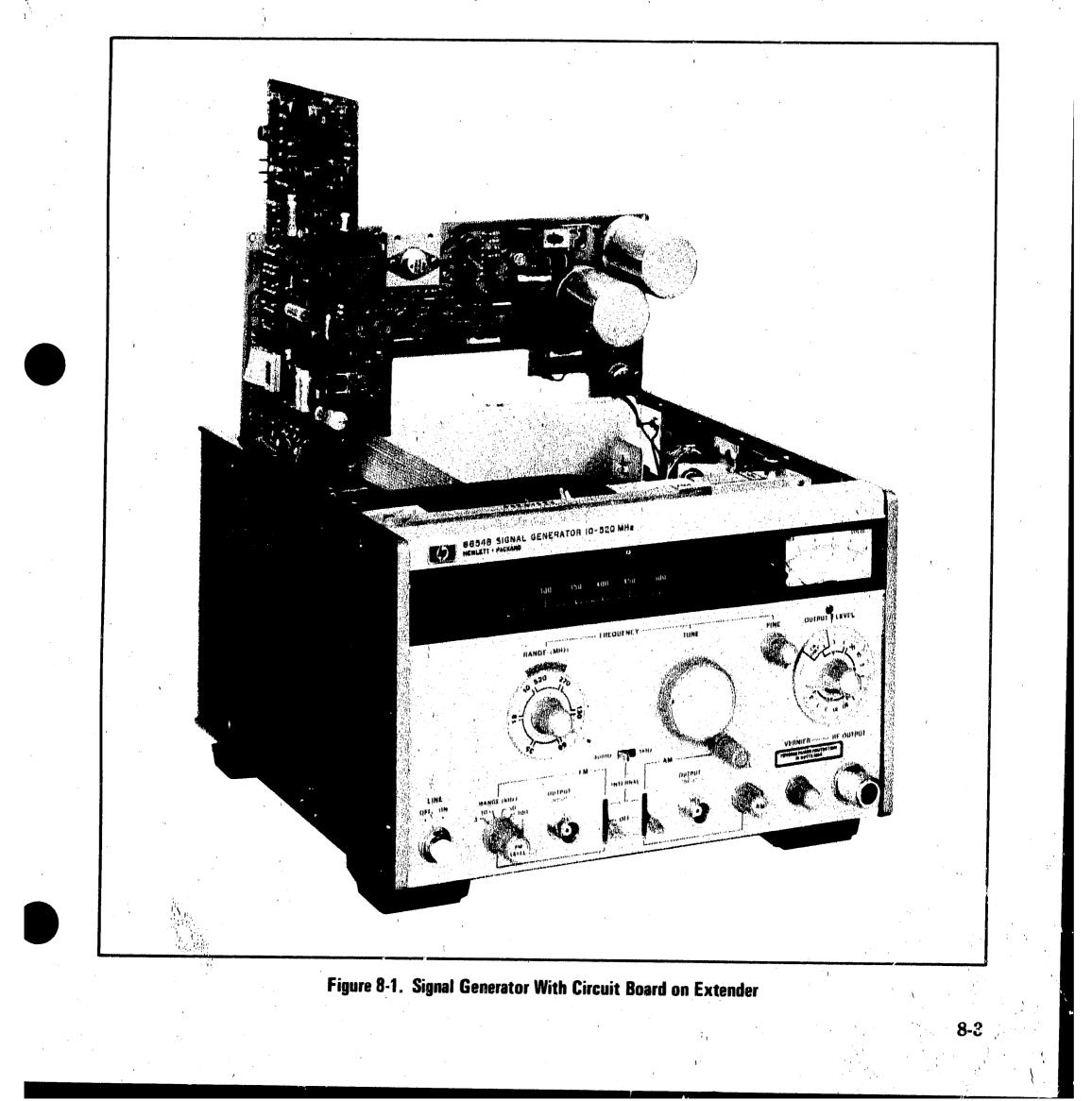
Power Supply Board as shown in Figure 8-1. The part number is HP 08640-60036.

8-19. Wrench. A wrench is supplied with the generator. One end fits 7/32-inch connectors while the other end fits 1/4-inch connectors.

8-20. Part Location Aids. The locations of some chassis-mounted parts and the major assemblies are shown on the last foldout in this manual. In addition, illustrated parts breakdowns located in Sec-

8-25. Etched Circuits

8-26. The etched circuit boards in the Signal Generator are of the plated-through type consisting of metallic conductors bonded to both sides of insulating material. The metallic conductors are extended through the component mounting holes by a plating process. Soldering can be done from either side of the board with equally good results. Table 8-1 lists recommendations and precautions pertinent to etched circuit repair work.


Etched Circuits (Cont'd)

a. Avoid unnecessary component substitution; it can result in damage to the circuit board and/or adjacent components.

b. Do not use a high-power soldering iron on etched circuit boards. Excessive heat may lift a conductor or damage the board.

c. Use a suction device (Table 8-1) or wooden toothpick to remove solder from component mounting holes. DO NOT USE A SHARP METAL OBJECT SUCH AS AN AWL OR TWIST DRILL FOR THIS PURPOSE. SHARP OBJECTS MAY DAMAGE THE PLATED-THROUGH CON-DUCTOR.

d. After soldering, remove excess flux from the soldered areas and apply a protective coating to prevent contamination and corrosion. See Table 8-1 for recommendation.

Service

8-4

8-27. Etched Conductor Repair

8-28. A broken or burned section of conductor can be repaired by bridging the damaged section with a length of tinned copper wire. Allow adequate overlay and remove any varnish from etched conductor before soldering wire into place.

8-29. Component Replacement

8-30. Remove defective component from board.

NOTE

Although not recommended on boards with high-frequency signals or where both sides of a board are accessible, axial lead components, such as resistors and tubular capacitors, can be replaced without unsoldering. Clip leads near body of defective component, remove component and straighten leads left in board. Wrap leads of replacement component one turn around original leads, Solder wrapped connection and clip off excess lead.

8-31. If component was unsoldered, remove solder from mounting holes, and position component as original was positioned. DO NOT FORCE LEADS INTO MOUNTING HOLES; sharp lead ends may damage plated-through conductor.

8-32. Transistor Replacement. Transistors are packaged in many physical forms. This sometimes results in confusion as to which lead is the collector, which is the emitter, and which is the base. Figure 8-2 shows typical epoxy and metal case transistors and the means of identifying the leads.

8-33. To replace a transistor, proceed as follows:

a. Do not apply excessive heat; see Table 8-1 for recommended soldering tools.

b. If possible, use long-nose pliers between transistor and hot soldering tools.'

mal contact with mounting surfaces. To assure good thermal contact for a replacement transistor, coat both sides of the insulator with Dow Corning No. 5 silicone compound or equivalent before fastening the transistor to the chassis. Dow Corning No. 5 compound is available in 8 oz. tubes from Hewlett-Packard; order HP 8500-0059.

8-35. Diode Replacement. Solid state diodes have many different physical forms. This sometimes results in confusion as to which lead is the anode (positive), since not all diodes are marked with the standard symbols. Figure 8-2 shows examples of some diode marking methods. If doubt exists as to polarity, an ohmmeter may be used to determine the proper connection. It is necessary to know the polarity of the ohms lead with respect to the common lead for the ohmmeter used. (For the HP Model 410B Vacuum Tube Voltmeter, the ohms lead is negative with respect to the common; for the HP Model 412A DC Vacuum Tube Voltmeter the ohms lead is positive with respect to the common). When the ohmmeter indicates the least diode resistance, the cathode of the diode is connected to the ohmmeter lead which is negative with respect to the other lead.

NOTE

Replacement instructions are the same as those listed for transistor replacement.

8-36. Illustrated Parts Breakdowns

8-37. An illustrated parts breakdown for the A1 RF Section Assembly is given on Service Sheet A. It is keyed to disassembly and removal instructions (given on the alphabetical service sheets) and to the replaceable parts list given in Section VI. In addition, Section VI contains illustrated parts breakdowns for the cabinet parts and front panel mechanical parts.

8-38. BASIC CIRCUIT THEORY

8-39. Operational Amplifier. Figure 8-3 shows a

c. When installing replacement transistor, ensure sufficient lead length to dissipate soldering heat by using about the same length of exposed lead as used for original transistor.

d. Integrated circuit replacement instructions are the same as those for transistors.

8-34. Some transistors are mounted on heet sinks for good heat dissipation. This requires good ther-

typical operational amplifier. Circuit A is a noninverting buffer amplifier with a gain of 1. Circuit B is a non-inverting amplifier with gain determined by the impedance of R1 and R2. Circuit C is an inverting amplifier with gain determined by R2 and R1. Circuit D shows typical circuit connections and parameters. It is assumed that the amplifier has high gain (A very large), low output impedance (ROUT very small), and high input impedance (Zin very large).

Service

8-5

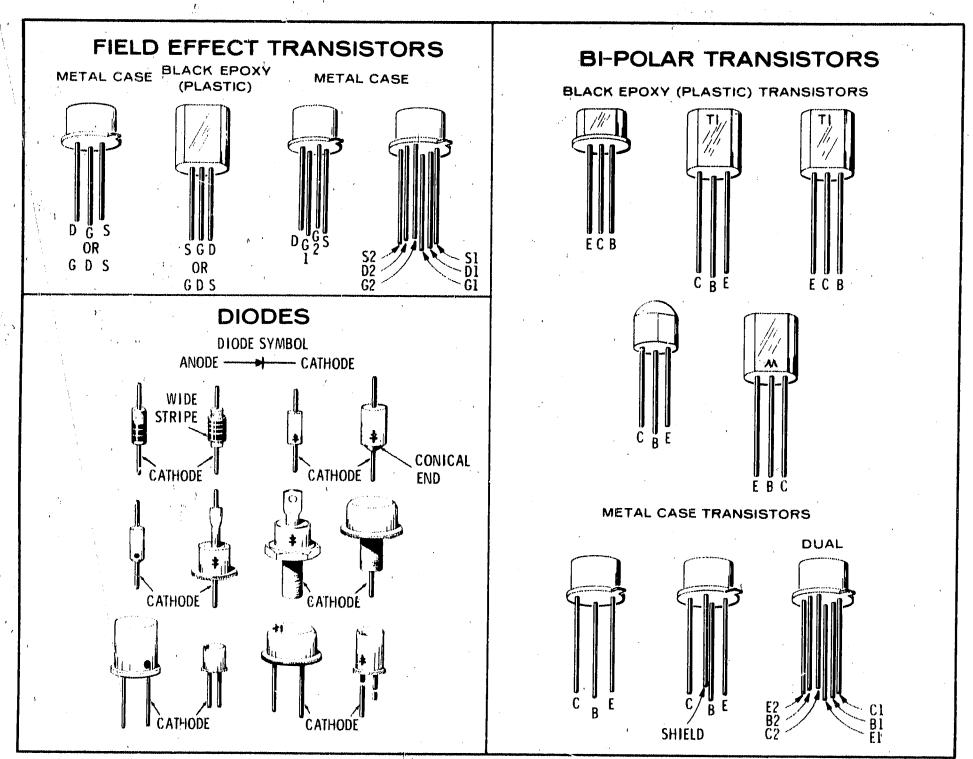


Figure 8-2. Examples of Diode and Transistor Marking Methods

ltem	Use	Specification	Item Recommended
Soldering tool	Soldering, unsoldering	Wattage range: 37-50; Tip Temp: 750-800 $^\circ$	Ungar #766 handle w/*Ungar #1237 heating unit
Soldering Tip	Soldering, unsoldering	*Shape: pointed	*Ungar #PL111
De-soldering Aid	To remove inolten solder from connection	Suction device	Soldapullt by Edsyn Co., Arleta, California
Resin (flux) Solvent	Remove excess flux from soldered area before ap- plication of protective coating	Must not dissolve etched circuit base board	Freon; Acetone; Lacquer Thinner

Table 8-1. Etched Circuit Sold	lering Equipment
--------------------------------	------------------

Solder	Component replacement Circuit board repair Wiring	Hesin (flux) core, high tin content (60/40 tin/lead), 18 gauge (SWG) preferred	
Protective	Contamination, corro- sion protection	Good electrical insulation; corrosion- prevention properties	Silicone Resin such as GE DRI-FILM**88
* For worl 850-900	ting on circuit boards: for gen degrees) and Ungar No. PL11	neral purpose work, use Ungar No. 4037 Heatin 13 1/8" chisel tip.	ng Unit (47½-56½W) tip temperature of

(i)

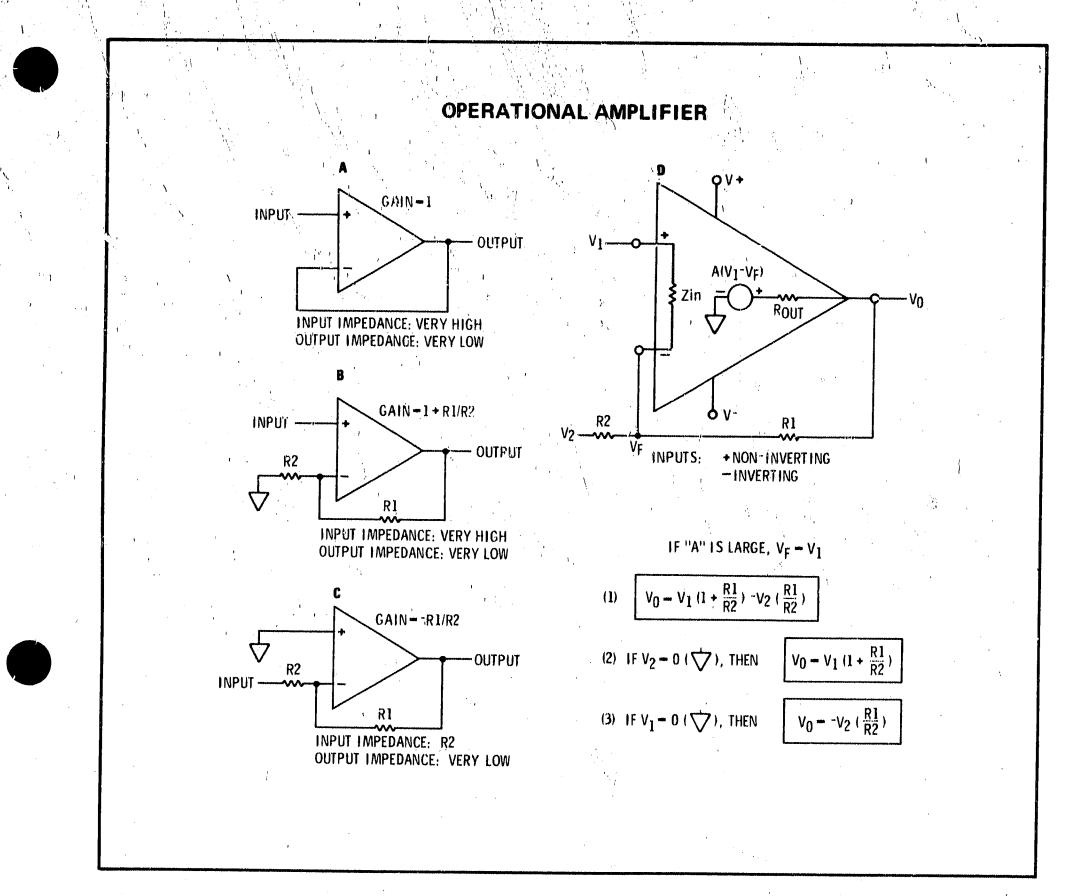
ų,

** General Electric Co., Silicone Products Dept., Waterford, New York, U.S.A.

Service

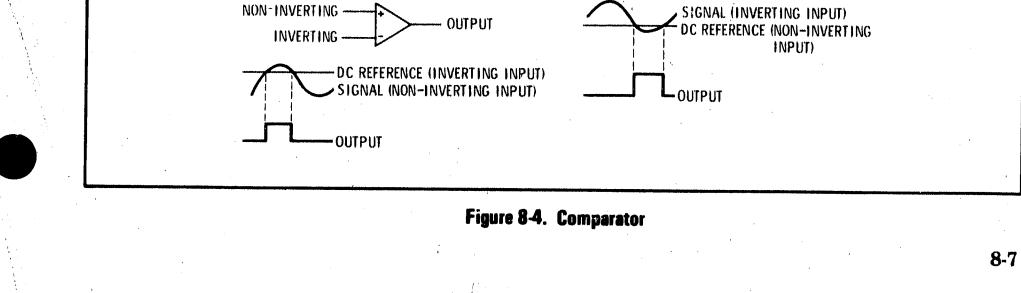
BASIC CIRCUIT THEORY (Cont'd)

8-40. An operational amplifier can be characterized as an ideal voltage amplifier having low output impedance, high input impedance, and very high gain. Also, the output voltage is proportional to the difference in the voltages applied to the two input terminals. In use, the amplifier output drives the input voltage difference close to zero through a negative feedback path.


8-41. When troubleshooting an operational amplifier, measure the voltages at the two inputs with no signal applied; the difference between these voltages should be less than 10 mV. A difference voltage much greater than 10 mV indicates trouble in the amplifier or its external circuitry. Usually this difference will be several volts and one of the inputs will be very close to an applied circuit operating voltage (for example, +20V, -12V).

8-42. Next, check the amplifier's output voltage. It will probably also be close to one of the applied circuit potentials: ground, +20V, -12V, etc. Check to see that the output conforms to the inputs. For example, if the inverting input is positive, the output should be negative; if the non-inverting input is positive, the output should be positive. If the output conforms to the inputs, check the amplifier's external circuitry. If the amplifier's output does not conform to its inputs, it is probably defective.

8-43. Comparator. Comparators are used as sense amplifiers, pulse height discriminators, and voltage comparators. A voltage reference is connected to one of the amplifier's inputs as shown in Figure 8-4. When the input signal voltage crosses the reference, the output goes positive; the output remains positive until the signal re-crosses the reference.


Model 8654B

Service

Figure 8-3. Operational Amplifier

COMPARATOR COMPARATOR

Service

n De se de se	Table 8-2. Schematic Diagram Notes (1 of 2)	
	SCHEMATIC DIAGRAM NOTES	
	Resistance in ohms, capacitance in microfarads, inductance in microhenries otherwise noted.	unless
*	Asterisk denotes a factory-selected value. Value shown is typical. Part may omitted.	be
1	Tool-aided adjustment.	· •
O	Manual Control	
	Encloses front-panel designation.	
[]	Encloses rear-panel designation.	
	- Circuit assembly borderline.	
 	- Other assembly borderline. Also used to indicate mechanical interconnection	n (ganging).
	Heavy line with arrows indicates path and direction of main signal.	
	Heavy dashed line with arrows indicates path and direction of main feedback	•
	Coaxial or shielded cable.	
	Relay Contact moves in direction of arrow when energized.	

Model 8654B

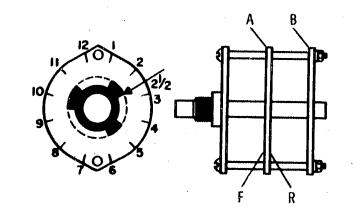
i?i

ł

Wiper moves toward CW with clockwise rotation of control (as viewed from shaft or knob).

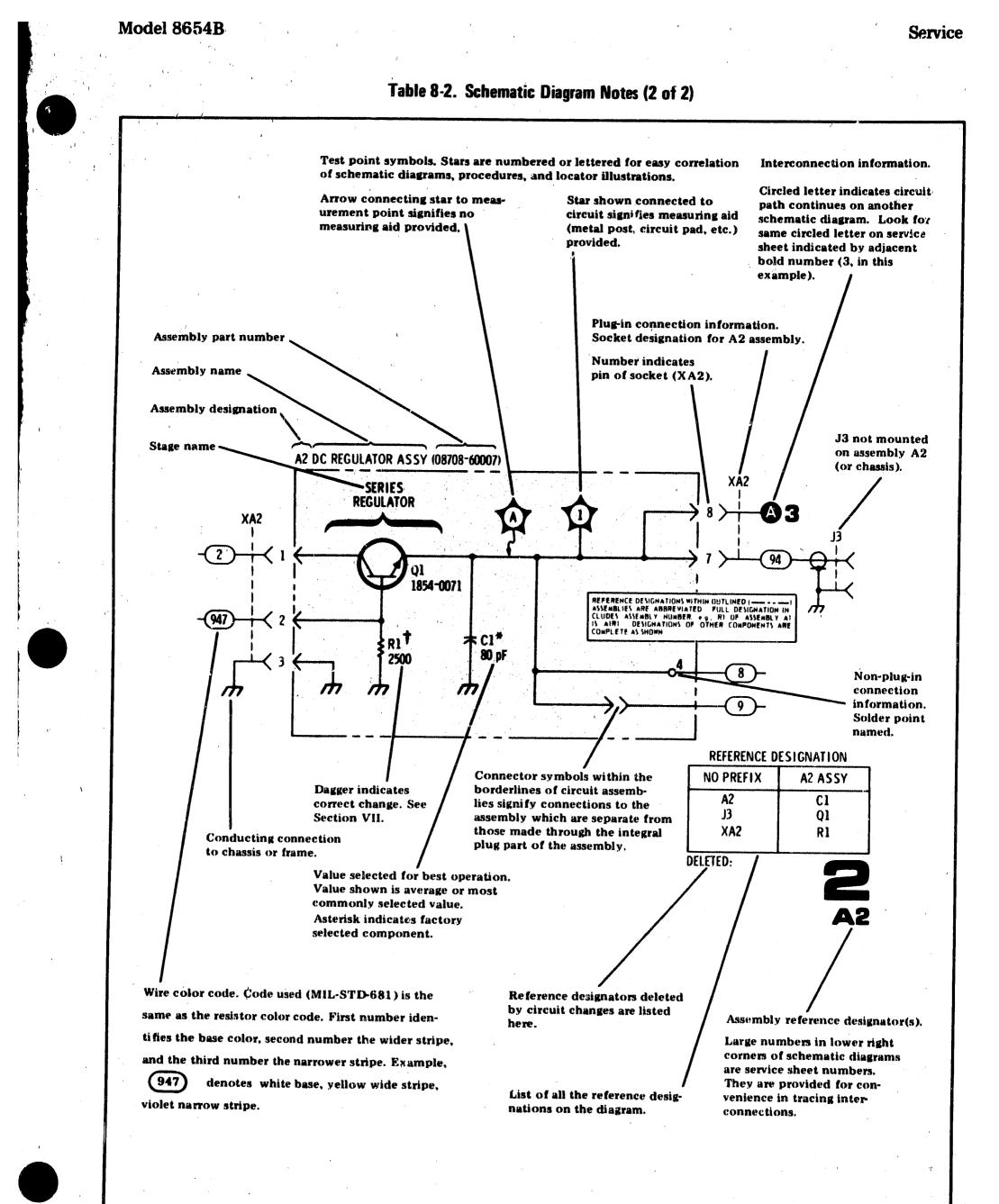
EXAMPLE: A3\$1AR(2-1/2)

A3S1-SWITCH S1 WITHIN ASSEMBLY A3


A = 1st WAFER FROM FRONT (A = 1st, ETC) R = REAR OF WAFER (F = FRONT)

(2-1/2) – TERMINAL LOCATION (2-1/2) (VIEWED FROM FRONT)

₹CW


 Δ

8.8

A direct conducting connection to the earth, or a conducting connection to a structure that has a similar function (e.g., the frame of an air, sea, or land vehicle).

Common connections. All like-designated points are connected.

Service

SERVICE SHEET 1

PRINCIPLES OF OPERATION

General

The Hewlett-Packard Model 8654B is a mechanically-tuned solid-state signal generator producing RF signals covering 10 to 520 MHz in 6 ranges. The output is leveled and continuously variable over a 13 dB range. Attenuation of the RF output signal is controlled in 10 dB steps from +10 to -130 dBm. In addition, calibrated amplitude and frequency modulation are provided including the option of selecting the drive signal from the internal or an external audio source.

RF Oscillator/FM Modulator Circuits

The RF source of the Signal Generator is an LC oscillator. Six frequency ranges are selected by switching tank circuit inductors (FREQUENCY RANGE MHz switch). A variable capacitor (FRE-QUENCY TUNE control) provides tuning across individual ranges. Varactor diodes parallel to the tuning capacitor provide electronic fine tuning (FINE TUNE control), frequency modulation, and phase-lock control through a rear panel connector.

RF Amplifier/ALC Circuits

A Buffer Amplifier isolates the oscillator from the Modulator (a rear panel auxiliary output is taken from the Buffer Amplifier output). The Modulator is a current-controlled RF attenuator which sets the RF level and applies amplitude or pulse modulation to the RF signal. A Power Amplifier increases the level of the RF signal from the Modulator. The output is coupled to the RF Detector and Attenuator Assembly (OUTPUT LEVEL switch). The RF Detector produces a dc output which is proportional to the RF signal level. The AM/ALC Amplifier compares the RF Detector output with an ALC reference voltage (controlled by VERNIER). An error voltage sets the Modulator's drive current which causes the RF signal level to track the de reference voltage. When the ALC reference voltage has a superimposed audio signal, the RF signal is amplitude modulated.

closes to restore generator operation when reverse power has been removed. (The relay is also open when the LINE switch is set to OFF.)

Control Circuits

An Audio Oscillator is enabled when either the AM or FM switch is set to INTERNAL. The 400 Hz/ 1 kHz switch selects the modulation rate. The audio signal is either switched to to AM or FM OUTPUT/INPUT connectors, or passed through an Audio Amplifier to the internal AM or FM circuits (a mechanical interlock prevents simultaneous internal AM and FM).

During FM operation, the audio signal level (either internal or external) is adjusted by the FM LEVEL control. The signal is then coupled to an FM Driver (Service Sheet 6).

During AM operation, the audio signal level (either internal or external) is adjusted by the AM LEVEL control. A Level Reference Amplifier sums the audio signal with a constant dc level and produces a negative ALC reference voltage.

The output level VERNIER adjusts the reference voltage (with or without AM) to vary the RF signal within a 13 dB range. On all output level ranges but +10 dBm, the negative reference voltage is decreased by adding a voltage divider resistor to the Vernier, to produce the first 10 dB of output attenuation. A Shaping Amplifier adds a small amount of distortion to low level ALC signals to compensate for low level non-linearity in the RF Detector. The Shaping Amplifier drives the AM/ ALC Amplifier.

The METER switch selects the input signal to a Meter Driver from either the RF or Audio Detectors. The meter provides indications of RF output level, percent AM, or FM peak frequency deviation.

FM Circuits

The Signal Generator is frequency modulated by

Reverse Power Protection

8-10

The Reverse Power Protection circuit (Option 003 only) has a relay to open the RF signal path if excessive power is applied to the RF OUTPUT connector. In this manner, the generator's output circuitry is protected. The relay automatically varying the capacitance in the RF Oscillator tank circuit. The reverse bias of two varactor diodes in parallel to the tuning capacitor is varied at the modulation rate. The amount of deviation depends on the level of reverse bias imposed on the varactors and the total capacitance in the tank.

The DC Shaping Circuit produces a voltage which is a function of the position of the FREQUENCY TUNE control and correspondingly the capacitance

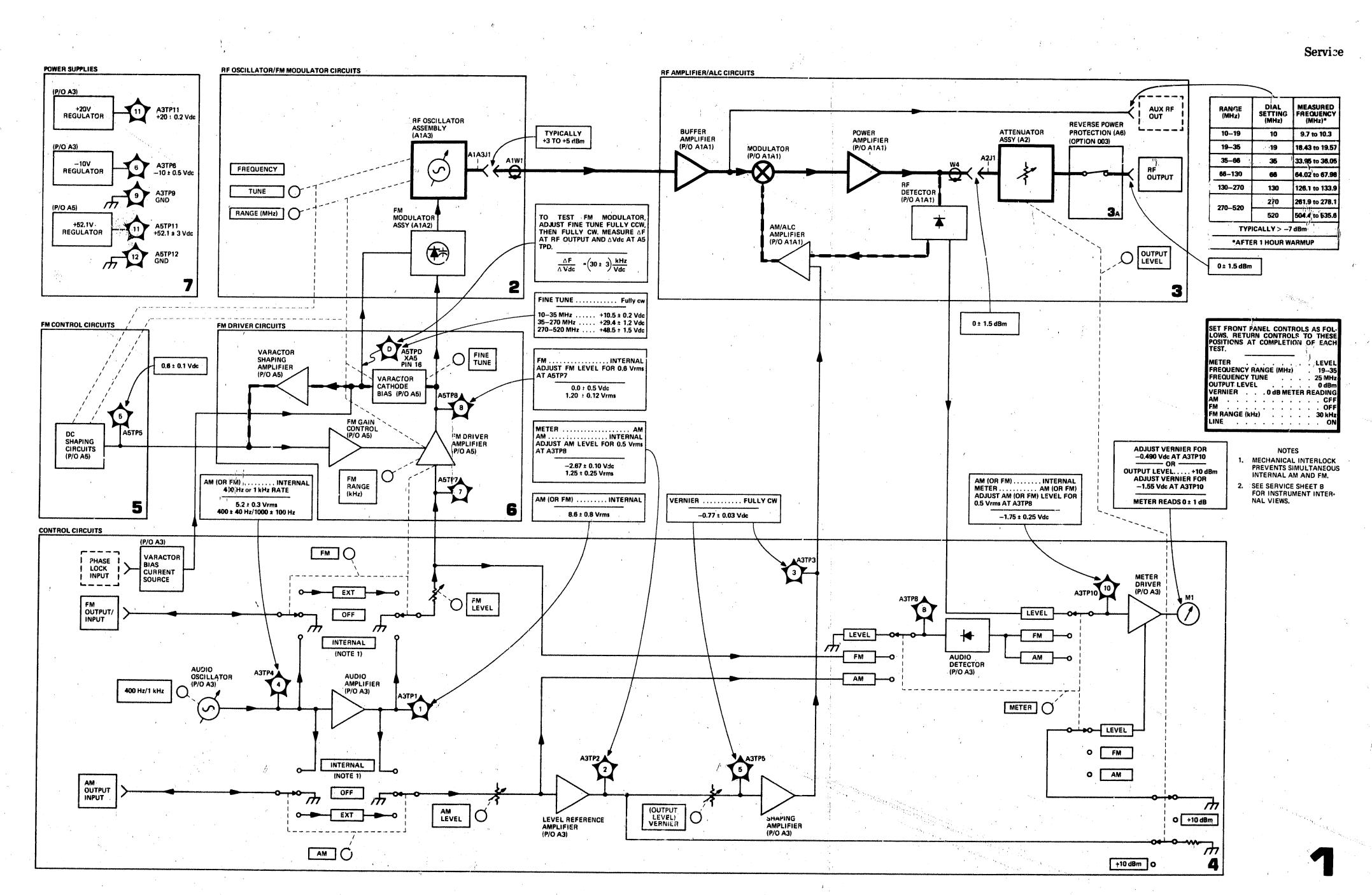
Model 8654B

J

SERVICE SHEET 1 (Cont'd)

in the tank. Since the tuning capacitor does not produce a perfectly linear change in frequency across each range, the dc voltage corresponding to the capacitor tune position is shaped to track frequency. In addition, the frequency change across each range does not perfectly track that of any other range. The DC Shaping circuit also compensates for the variations in frequency tracking between ranges.

The Varactor Shaping Amplifier compensates for the non-linearity of the voltage-capacitance response of the varactor. The feedback through the Varactor Shaping Amplifier and the output of the DC Shaping Circuits are summed in the FM Gain Control Amplifier. The output of this circuit directly controls the gain of the FM Driver Amplifier.


The FM Driver Amplifier receives the FM input through the FM LEVEL vernier and drives the

varactor anode. The voltage imposed onto the varactors is therefore a function of the input voltage, the range of deviation, the frequency range, and the FREQUENCY TUNE position within the range.

TROUBLESHOOTING

Use the troubleshooting block diagram (Service Sheet 1) to isolate the trouble to a specific section of the instrument. Then turn to the service sheet (indicated by bold number in lower right corner of block) and isolate the trouble to the defective component.

When using the troubleshooting block diagram, initially set the generator's controls as indicated in the box at the right of the diagram. Then change the control settings as instructed by the boxes throughout the diagram to make specific measurements. Always return controls to their initial settings after completing a measurement.

. . .

.

Figure 8-5. Troubleshooting Block Diagram

SERVICE SHEET 2

PRINCIPLES OF OPERATION

General

The A1A3 RF Oscillator Board Assembly contains the active portion of the RF oscillator, a buffer amplifier, an ALC circuit, and two power supplies. The tuning capacitor and turret inductors constitute the oscillator tank circuit. Two varactor diodes on the A1A2 FM Modulator Assembly electronically tune the oscillator over a narrow range. The varactors implement electronic FINE TUNE, frequency modulation, and phase lock (when used).

RF Oscillator and Tank Circuit (A1A3)

The RF Oscillator is a two-transistor, push-pull LC oscillator with a built-in ALC loop. The output power is relatively constant at +4 dBm over the six frequency ranges, 10 to 520 MHz. Crosscoupled transistors Q1 and Q2 form a positive-feedback amplifier. C3 and C4 couple the output from the collector of one transistor to the base of the second. R7 and R13 prevent parasitic oscillation modes caused by Q1 and Q2. The parallel resonant tank circuit is coupled across the collectors of Q1 and Q2. The frequency of oscillation is set by the tank circuit because the frequency of resonance is also the point at which the circuit impedance is maximum (loop gain is maximum) and phase shift is zero (maximum positive feedback). Tuning capacitor A1C3 provides about one octave of frequency tuning on each range. Tuning Range capacitor C2 (and parallel capacitor C12*) adjusts the high-frequency-tolow-frequency ratio for each range. Switching the turnet inductors (A1A4L1 to L6), changes the frequency range.

On the five lowest ranges collector bias current for Q1 and Q2 is supplied from the emitter of transistor Q6 through a resistor (A1A4R1 to R5), and through the center tap of the turret inductor. On the 270-520 MHz range, the resistor is replaced by a short to increase the oscillator output power. Inductive beads A1A4E1, E2, and E3 reduce RF leakage into the power supply. Bese voltage for Q1 and Q2 is established by the voltage divider R8 and R9. Current to the emitters of Q1 and Q2 is supplied from current source Q4 through limiting resistor R11. The emitter current is determined by the output of the ALC detector.

The output from the oscillator is taken from the Q1 side of the tank circuit. The output of the Buffer Amplifier Q3 is coupled to the output port and the ALC detector through voltage divider R15 and R16 and coupling capacitor C8. Capacitor C6 filters the oscillator harmonics at high frequencies.

Service

SERVICE SHEET 2 (Cont'd)

The peak-to-peak ALC Detector samples the RF output voltage and regulates the emitter current of $\sqrt{21}$ and $\sqrt{22}$ to provide a leveled output. The peakto-peak RF voltage swing is maintained at +0.3 to +1.3 Vdc at the node common to CR1 and CR2. The voltage into the detector is ac coupled through C11. Voltage divider R20 and R21 establishes a +1.0 Vdc reference voltage at the cathode of hot carrier diode CR2. CR2 clamps the positive peak of the output signal at +1.3 Vdc (+1.0 Vdc plus the junction drop of CR2). As the voltage swings negative and begins to approach +0.3 Vdc, CR1 begins to conduct. It diverts some of the charging current flowing to C5 and C9 (from R17) and reduces their charge. The voltage across C5 is the base-to-emitter voltage of Q4; therefore the emitter current supplied to oscillator transistors Q1 and Q2, and the RF output level, is regulated by this voltage. The RF voltage will seek a level at the node common to CR1 and CR2, such that the positive peak is clamped to +1.3 Vdc and the negative peak causes enough current flow through CR1 so the voltage across C5 is maintained at a constant level. The latter situation occurs when the negative peak approaches +0.3 V/ c.

Transistors Q6 and Q5 isolate the RF oscillator circuit supplies from the power supply. The output cable shield provides a dc and signal ground path.

FM Modulator Assembly (A1A2)

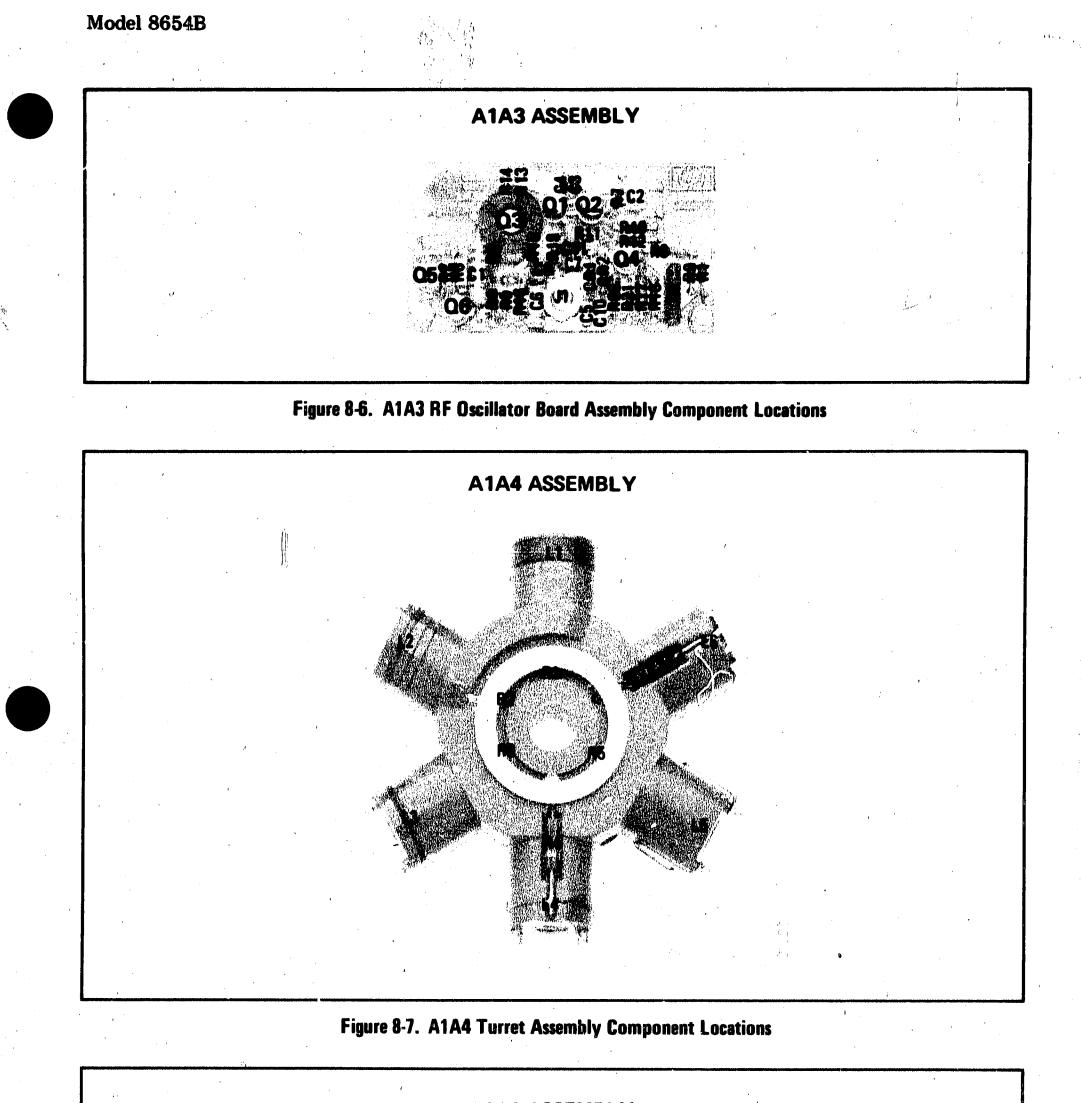
Varactor diodes CR1 and CR2 are in parallel with the main tuning capacitor A1C3. The diodes are reverse biased at +19 Vdc through resistors R1 and R2 and are coupled into the tank circuit through capacitors C1 and C2. An audio modulation signal is applied at the node common to CR1 and CR2 during frequency modulation.

TROUBLESHOOTING

If microphonics are more pronounced than normal, check the deflection of tuning capacitor contacts. Refer to Turret Assembly installation procedure, step 5, (Service Sheet A). In addition, Service

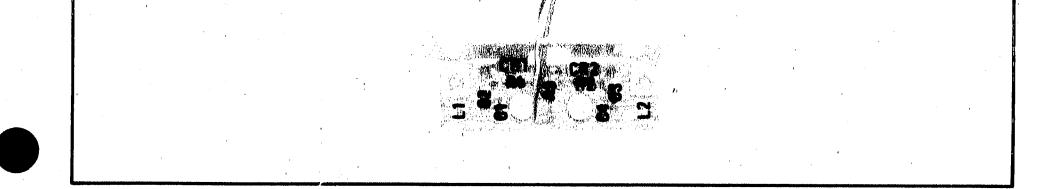
Sheet A and B contain assembly procedures for reducing microphonics.

The output of the A3 RF Oscillator Assembly should be $+4 \pm 2$ dBm. If the output is incorrect, short the collector (metal case) of A1A3Q4 to ground to open the ALC feedback path. If the oscillator and buffer amplifier are operating properly, the RF output will rise to about +14 dEm at 10 MHz and will drop to about +11 dBm at 520 MHz.

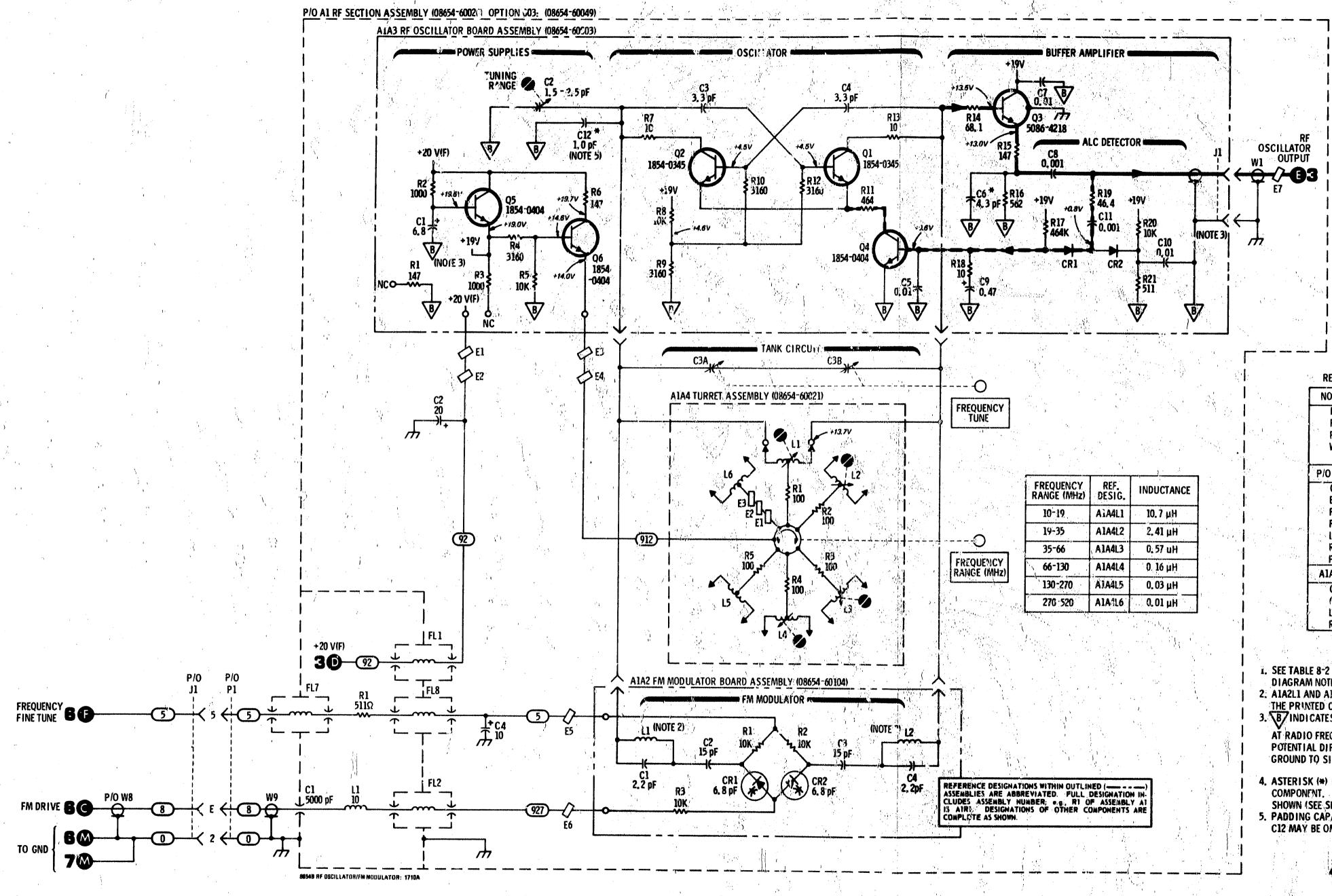

If oscillator distortion is evident, use an oscilloscope to check the A1A3 RF Oscillator Assembly output (at 10 MHz) with a 50 Ω termination and with an open circuit. If the distortion is much greater with the 50 Ω termination, A1A3Q3 is probably defective. Otherwise, A1A3Q1 or Q2 may be causing the distortion. If distortion is evident at higher frequencies only, repeat the distortion check using a spectrum analyzer and a high impedance (>500 Ω) probe. Distortion from the A2 FM Modulator Assembly may be isolated by unsoldering and lifting one lead each of A1A2 CR1 and CR2 from the circuit board and rechecking the distortion.

The RF Oscillator may continue to operate with one defective transistor. Symptoms are: the RF output is lower than normal and distortion is evident. The defective transistor may be isolated by "turning-off" the good transistor. Connect the base of one transistor to the collector (metal case) of A1A3Q4. If oscillation ceases, the other oscillator transistor is probably defective. If oscillation continues, check the other oscillator transistor by the same method.

NOTES


To prevent leakage, verify that cables and connectors are secure.

Ground the A1A3 RF Oscillator with a jumper wire if it is removed from the chassis for purposes of troubleshooting. It is normally grounded through the RF cables and mounting bracket.



A1A2 ASSEMBLY

18

Figure 8-8. A1A2 FM Modulator Board Assembly Component Locations

Service

J1 BOTTOM VIEW

	1	٠	۲	A
1	2	۲	۲	B
	3	٠	٠	С
	4	٠	•	D
	ˈ 5	•	•	E
	6	۲	•	F
•		'		

REFERENCE DESIGNATIONS

	NO PREFIX	AIA3 ASSY
	P/O J1	C1-12
	P/0 P1	CR1,2
	P/O W8 W9	J1
	VVY	Q1-6 R1-21
	P/O ALASSY	AIA4 ASSY
	C1-4	E1-3
	E1-7	L176
	FL1,2	R1-5
t provinci	FL7,8	
	RI	
ere di peri	P/0 W1	
	A1A2 A55Y	
	C1-4	
1	CR1,2	
	L1,2	$\Delta r_{\rm eff}$
	<u>R1-3</u>	

NOTES

- 1. SEE TABLE 8-2 FOR GENERAL SCHEMATIC DIAGRAM NOTES.
- 2. AIA2LI AND AIA2L2 ARE PART OF THE PRINTED CIRCUIT ROARD TRA
- THE PRINTED CIRCUIT BOARD TRACE. 3. BINDICATES SIGNAL GROUND.
- AT RADIO FREQUENCIES THERE IS A POTENTIAL DIFFERENCE FROM CHASSIS GROUND TO SIGNAL GROUND B.
- ASTERISK (*) INDICATES SELECTED COMPONENT. AVERAGE VALUES SHOWN (SEE SECTION V).
 PADDING CAPACITOR A1A3
- C12 MAY BE OMITTED.

A1A3,A1A4

Figure 8-9. RF Oscillator, FM Modulator Schematic Diagram

277

SERVICE SHEET 3

PRINCIPLES OF OPERATION

Amplifier/ALC Assembly (A1A1)

The RF Amplifier/ALC Assembly contains an RF buffer amplifier, a power amplifier, and the power leveling and amplitude modulation circuits.

Buffer Amplifier

The main function of the Buffer Amplifier is to isolate the RF oscillator from the modulator. The gain of the amplifier is approximately 0 dB. Transistors Q1 to Q4 form the four stages of the amplifier. Transistor Q3 is a common-base amplifier with a 50 Ω input. The base of Q3 is biased by voltage divider R3 and R5. L3 and C4 shape the amplifier's frequency response. Q3 drives the common-gate FET stage Q2 which drives the common-base stage Q1 through R7. The base of Q1 is biased by the voltage divider R8 and R10. Q1 drives the emitter follower Q4. The RL network R13, and L4 increases the gain at high frequencies. Q4 drives the modulator diodes; the signal is also coupled to the AUX RF OUT port through R21 and C18.

Power Amplifier

The signal from the modulator is amplified by the Power Amplifier. The amplifier has a nominal low frequency gain of 9 dB with a 1 to 2 dB increase in gain up to 550 MHz and then a rapid roll-off beyond 600 MHz. Transistor Q5 is the input stage and Q6 and Q7 are a push-pull output stage. Q6 is driven from the collector of Q5 and Q7 is driven from the emitter of Q5. The base voltage of Q5 is set by the voltage divider R19 and R20. Emitter current for Q5 is set by resistors R23 and R24. Emitter current for Q7 (and Q6) is set by resistor R28. Networks R22 and L7; R23, R24, and C17; R27 and C19; R30 and C22 shape the frequency response. The power amplifier output is coupled to the attenuator (through C21 and R35) and the RF detector (through C23 and R31).

RF Detector, ALC Amplifier, and Modulator

The RF output level is held constant by the ALC negative feedback loop which is composed of the RF Detector, ALC amplifier, and the Modulator. The RF Detector samples the RF output voltage, and the output is compared to the ALC reference voltage by the ALC Amplifier. The error output of the ALC Amplifier drives the Modulator which, in turn, regulates the RF output to keep the level constant.

> RF Oscillator, FM Modulator (A1A2, A1A3, A1A4) SERVICE SHEET 2

Service

SERVICE SHEET 3 (Cont'd)

C23 couples the RF signal into the detector circuit. Q8 is a current source which supplies bias current to both CR5 and CR4. Q9 sinks one half the current of Q8 causing the current through CR4 to equal that of CR5. R39 (DET BIAS) allows these offset currents to be exactly adjusted. This biasing causes any thermal variations in CR5 to be offset by similar variations in CR4. With no RF signal present, CR5 is slightly turned on. When RF enters through C23, CR5 diverts to ground positive excursions greater than +0.4V (one diode junction drop). This causes C24 to change to a negative dc level. The result is a re-referenced RF waveform at CR5 whose peak positive excursion is clamped to one diode junction drop above ground. The RF signal is filtered out by RC networks R32 and C24, and R29 and C20 leaving the dc component at CR4. The voltage drop across CR4 directly offsets that across CR5. The result is a negative dc potential at the cathode of CR4 whose magnitude is directly proportional to the peak RF voltage entering the circuit.

The detector output drives the meter circuits and the ALC Amplifier U1. U1 compares the ALC reference with the detector output. The resultant error output voltage controls the bias current of CR2 and CR3. CR2 and CR3 are PIN diodes whose RF impedance is inversely related to the dc bias current. Inductor L5 is an RF choke which provides a path to ground for the modulator bias current. Resistors R12 and R16 and inductor L6 provide optimum impedance matching for the modulator. Components CR1 and C10 speed up the modulator response time for AM inputs; C9 provides frequency compensation for the ALC loop.

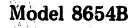
8-14

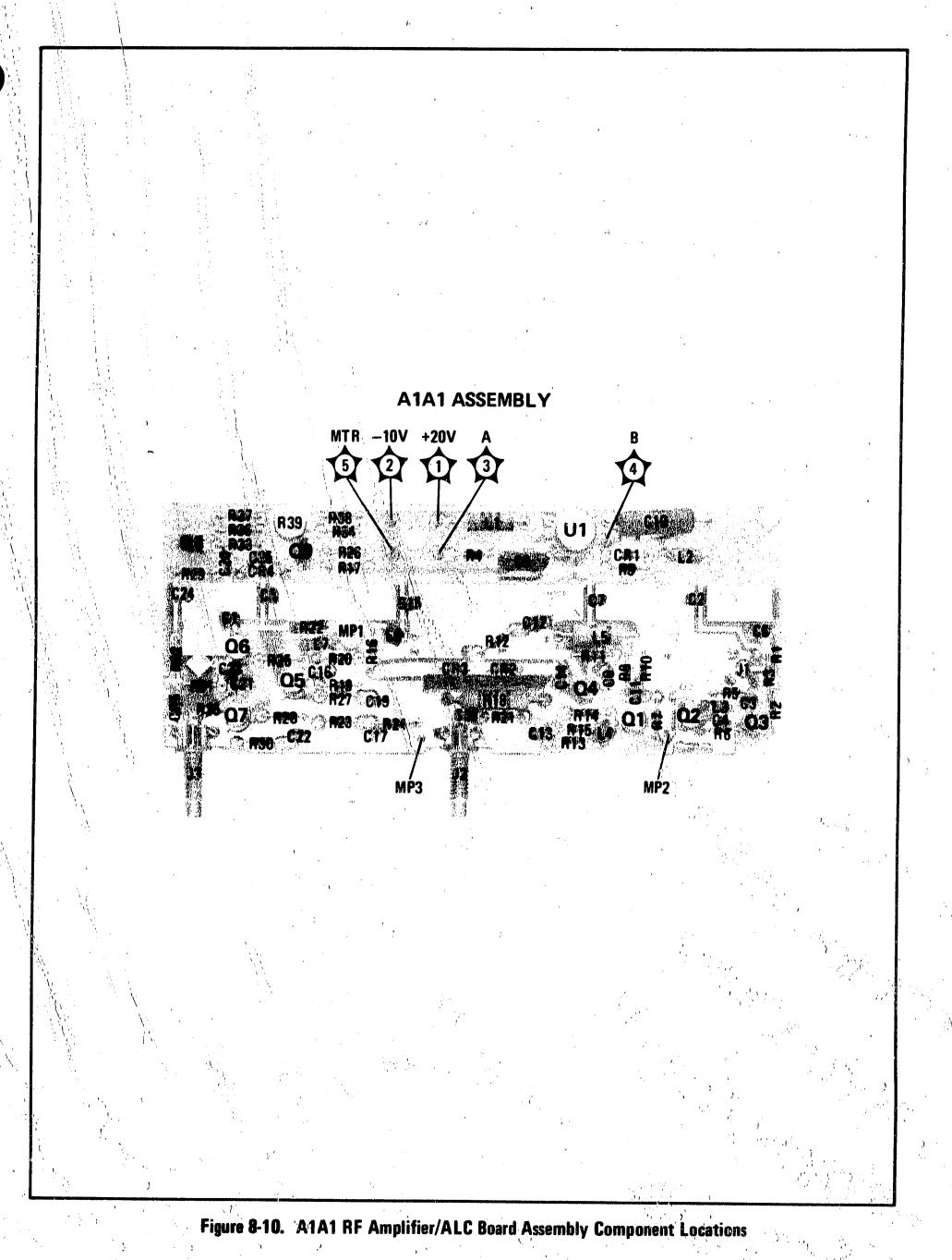
A2 Attenuator Assembly

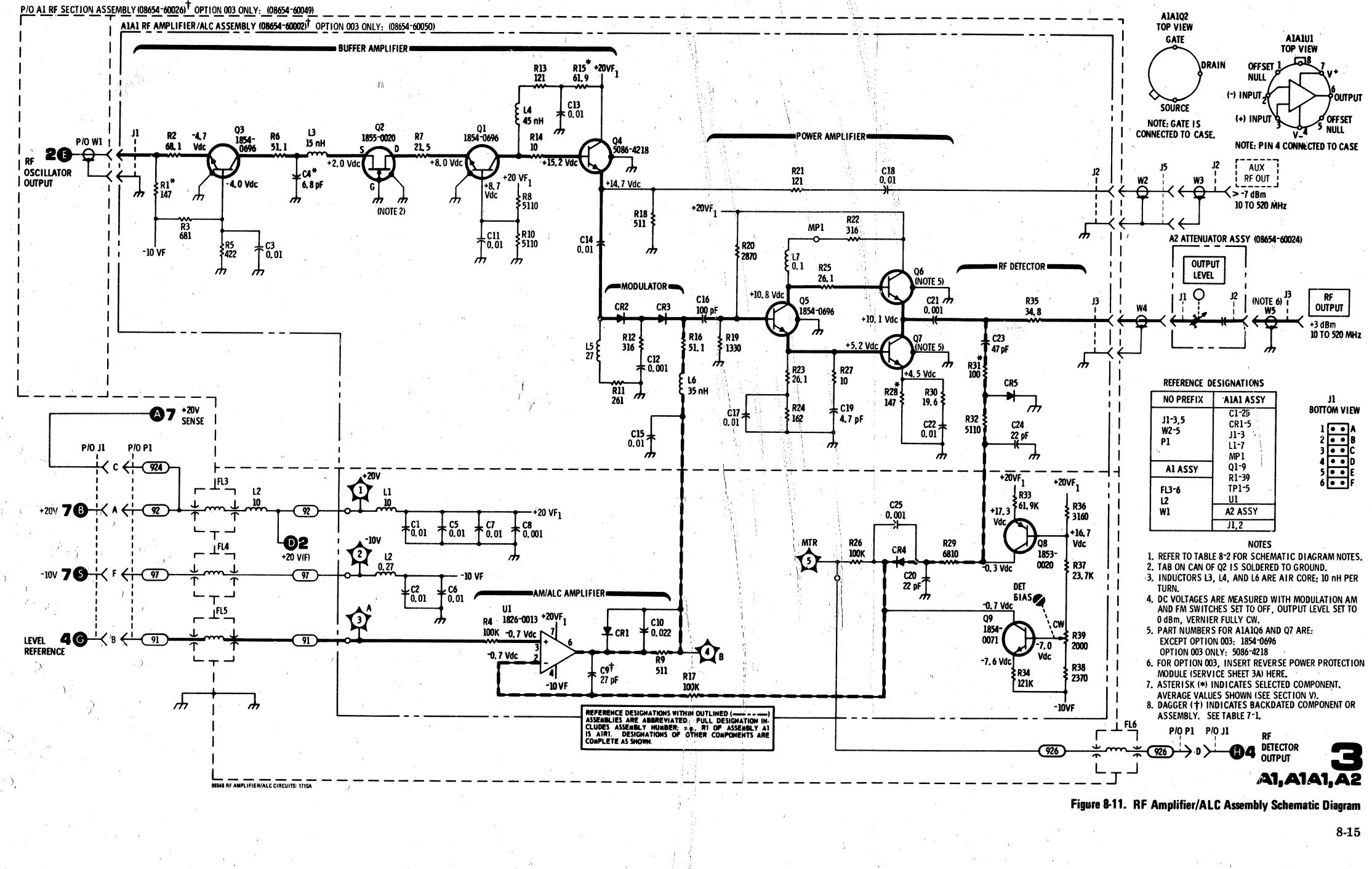
The output of the power amplifier is coupled to the Attenuator Assembly. The step attenuator consists of resistive attenuator sections which are switched in and out by cam-driven microswitches. The top two ranges are 0 dB and each succeeding step is 10 dB (120 dB maximum) at an impedance of 50Ω . The capacitor couples the output to the RF OUTPUT connector J3 (chassis mounted).

TROUBLESHOOTING

In general, troubleshooting the A1A1 assembly is most easily done with the frequency set to 10 MHz, and with an oscilloscope and high impedance probe.


If the AUX RF OUT is lower than normal (-<7 dBm) and the A1 RF Section Assembly output is $+4 \pm 2$ dBm, check amplifier stages A1A1Q1-4 for proper operation.


If the AUX RF OUT level is correct but the signal input applied to A1A1Q5 is abnormal, check the modulator (A1A1CR2 and CR3) and the modulator drive from A1A1U1.


If the input to A1A1Q5 is normal but the RF OUTPUT level is incorrect, check A1A1Q5–Q7 for proper bias. One transistor failure in the Power Amplifier will often cause another to fail.

NOTE

Verify that cables and connectors are secure. Ground the A1A1 RF Amplifier/ALC Assembly with a jumper wire if they are unsecured for purposes of troubleshooting. It is normally grounded through the RF cables and the casting.

Service

SERVICE SHEET 3A (Option 003)

PRINCIPLES OF OPER ATION

General

This Service Sheet documents instruments with reverse power protection (Option 003). The Reverse Power Protection circuit opens a relay contact in the RF signal path if excessive power is applied to the output jack A6J2 to prevent damage to the generator's output circuits. During the time required to open the relay ($\approx 50 \,\mu$ s), the Limiter maintains a safe signal level at the output circuits of the generator. (With LINE switch set to OFF, the relay contacts are open.)

Detector (A6A1)

The Detector is a peak-to-peak detector which senses the RF level. The signal is first reduced by a capacitive voltage divider to protect the detector against large RF levels. It is formed by C10 and the parallel capacitances of C8, CR4, and CR2 with VR2. During negative excursions of the RF signal, current flows through CR4 and charges C10 to approximately Vpk/8. During positive excursions, the stored charge adds to the signal passed by C10 and passes through detector diode CR2. The detected output is stored in the parasitic capacitance of VR2. VR2 also protects the comparator by limiting the maximum signal applied to the comparator.

Level Sensor and Relay Driver (A6A1)

Normally, the RF output signal passes through relay K1 to the output jack A6J2. K1 is held closed by the action of the Detector, Level Sensor, and Relay Driver. Resistors R1 and R2 set a reference level at the non-inverting input of comparator U1. This reference level is more positive than the normal Detector voltage, so the comparator output is pulled high through resistor R7 (U1 is an open-collector output device requiring an external pull-up resistor). The high level on the base of transistor Q1 biases Q1 and Q2 on, thus energizing relay K1 (closed).

An increased signal level at A6J2 will cause an increased Detector output level. If the level from the Detector exceeds the reference level, the comparator output will switch low. (Resistor R4 provides hysteresis to the comparator input to prevent oscillations and ensure positive switching.) A low level on the base of Q1 will bias Q1 and Q2 off. Relay K1 will de-energize (open) when the collector current of Q2 stops flowing. Collector voltage of Q2 will approach source potential to drive transistor Q3 into conduction which can supply approximately +4V at 50 mA to FL2. When the relay opens, expacitor C11 provides a discharge path for the current induc of + the relay coil.

SERVICE SHEET 3A (Cont'd)

When reverse power is removed, the Detector voltage drops below the reference level. The comparator output starts rising toward its high state to close the relay. Capacitor C4 slows the rate of change to decrease relay contact chatter if the reverse power signal is pulsed.

Limiter (A6A1)

The limiter clips any RF voltage imposed on it (from any direction) at approximately 21.2V peakto-peak as described below.

Assume a reverse power signal entering from RF Output. During the first incoming RF cycle, CR3 clips off any negative signal voltage lower than one diode junction drop. During the following half cycle, capacitors C2 and C6 store a charge that positively offsets the cathode of CR3. This has the effect of re-referencing the subsequent RF signal at CR3 so that its peak negative voltage occurs just one diode junction drop below ground. For example, a 5V p-p signal at J2 has excursions of ± 2.5 Vp. The re-referenced signal at CR3 will have a positive excursion of +4.4V and a negative excursion of -0.6V. During the second RF cycle, the anode of CR1 acquires a similar but negative offset. A rereferenced 5 Vp-p signal at CR1 will have a positive excursion of +0.6V and a negative excursion of -4.4V. Once these offsets are established, the sum of the re-referenced in-phase RF signals across VR1 and VR3 is a dc voltage equal to the peak-topeak RF voltage minus the two diode junction drops of CR1 and CR3. For the 5 Vp-p signal, this voltage from CR1 anode to CR3 cathode, would be approximately +3.8 Vdc, insufficient to cause the zeners to conduct. When this dc voltage exceeds the sum of the breakdown voltages of VR1 and VR2, the limiter symmetrically clips the RF waveform. This occurs at RF inputs greater than 21.2 Vp-p. Note that the limiter acts on RF from either direction, the generator or reverse power.

Capacitors C8, C9, and C10, inductors L1 and L2, and the parasitic capacitances of CR1 and CR3 form a low-pass filter to maintain level flatness of the output signal over the range of the generator. Capacitors C3, C5, and C7, and resistors R5, R8, and R9 prevent RF from entering the Relay Driver.

Model 8654B

TROUBLESHOOTING

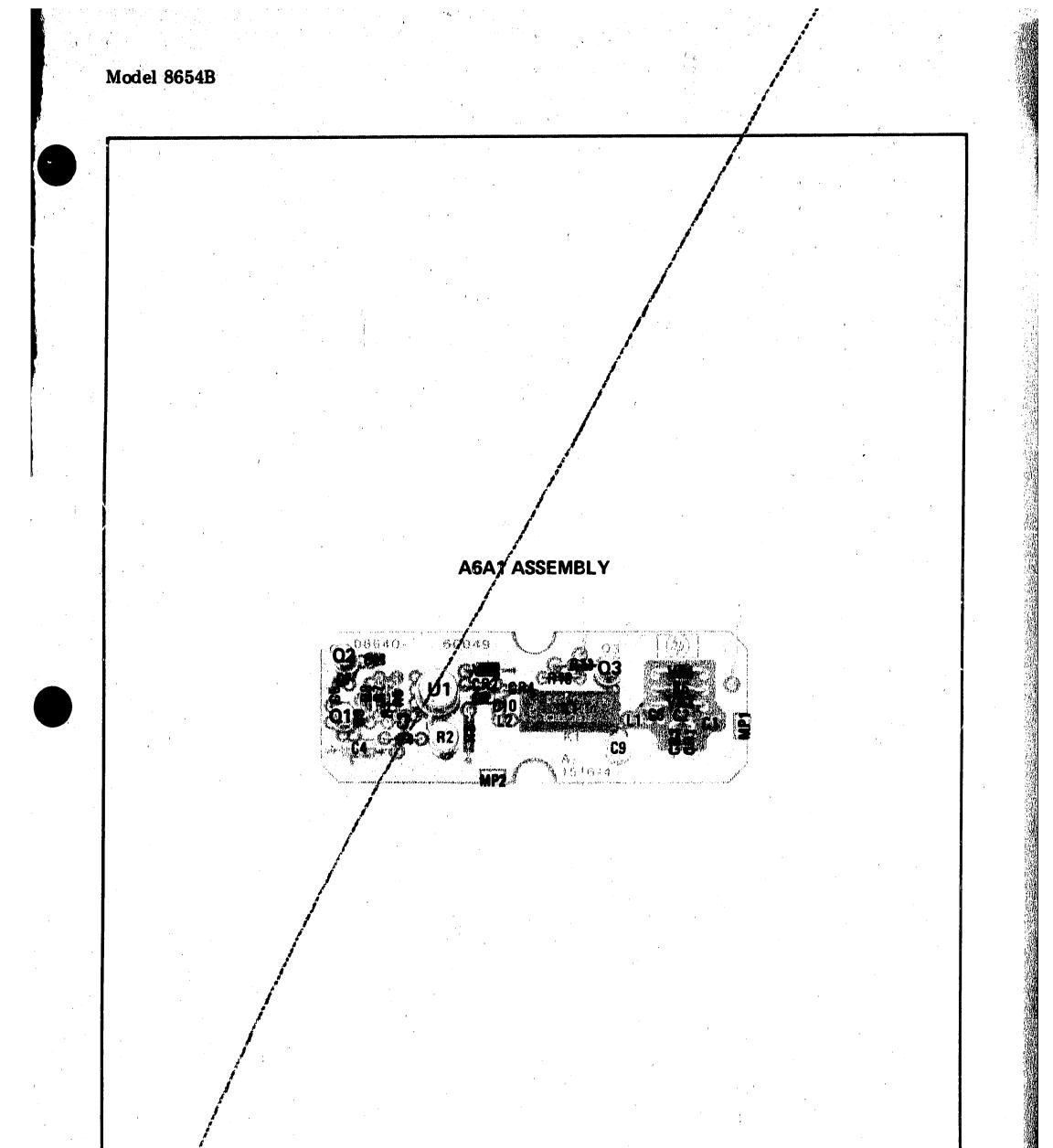
Troubleshoot the A6 assembly by using the test equipment and following the procedure listed below.

Test Equipment

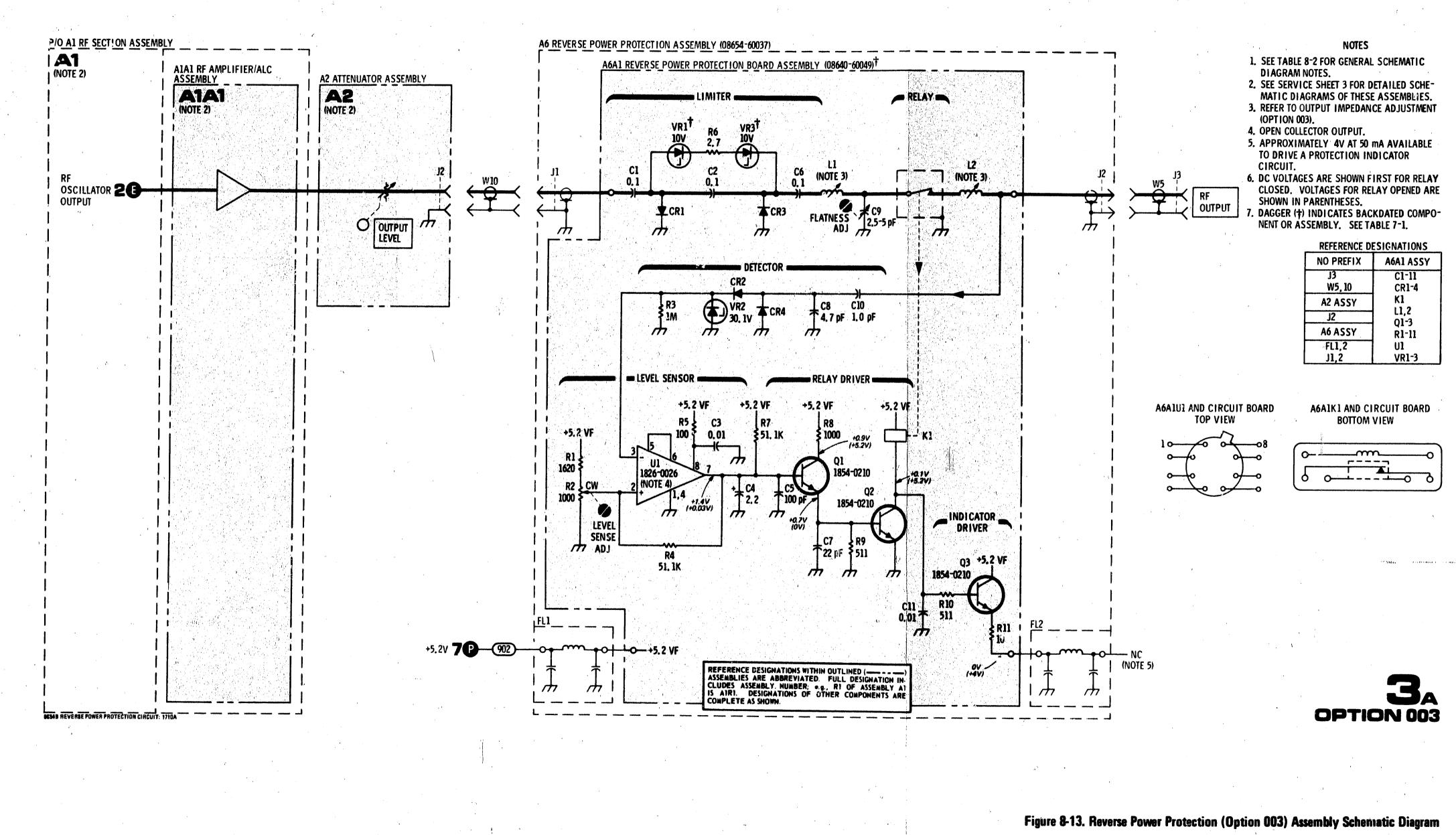
Digital Voltmeter	HP 34702A/34740A
Oscilloscope	. HP182C/1801A/1820C
Test Oscillator	
50-Ohm Load	HP 11593A

Limiter

- 1. With LINE set to OFF, connect test oscillator output to RF IN (FROM ATTEN), A6J1, through a coaxial tee. Connect other port of the tee to an oscilloscope.
- 2. Set test oscillator to 1 MHz with amplitude turned down. Set oscilloscope to display a 1 MHz signal with 10V per vertical division.
- 3. Increase test oscillator output level until clipping of the signal appears on oscilloscope. Amplitude of the clipped waveform should be 19 to 23 Vp-p.



Detector


- 1. With LINE set to OFF, disconnect output cable W11 and connect 50 ohm load to RF OUT (TO FRONT PANEL), A6J2.
- 2. Orient the Reverse Power Protection Assembly so that comparator A6U1 is accessible.
- 3. Set OUTPUT LEVEL to +10 dBm range and LINE to ON.
- 4. Observe dc voltage at pin 3 of A6U1 while adjusting OUTPUT LEVEL over full vernier ranges. The voltage should vary from approximately 50 to 500 mVdc.

Level Sensor, Relay Driver, and Indicator Driver

1. Short pin 2 of comparator A6U1 to ground. The Level Sensor, Relay Driver, and Indicator Driver circuits should switch to "relay-open" conditions (see appropriate dc voltages on schematic).

Figure 8-12. A6A1 Reverse Power Protection Board Assembly Component Locations

Service

SERVICE SHEET 4

PRINCIPLES OF OPERATION

General

The A3 Control/Power Supply Assembly contains the +20 and -10 volt power supplies, the audio modulation oscillator, the ALC level reference amplifier, and the meter circuits. Refer to Service Sheet 7 for information and schematics pertaining to the power supplies.

Audio Oscillator (A3)

When either the AM or FM MODULATION switches are set to INT, the Audio Oscillator is enabled. The oscillator couples a signal of either 400 Hz or 1 kHz (selected by the INTERNAL MODULATION switch) into the AM or FM modulator circuits and to the AM or FM front panel output jacks.

The oscillator consists of U4B and associated components. A frequency-selective modified bridged-tee network forms a negative feedback path. This network, composed of chassis-mounted C1 and A3C16, C19, C20, R20, R21, R22, and R25, is a notch filter with zero phase shift (minimum negative feedback) at the minimum of the notch. The positive-feedback path is a voltage divider in which the amount of feedback is determined by the output of a peak detector. The amount of feedback automatically adjusts to maintain oscillation at a constant output amplitude. The voltage divider consists of R23, CR6, and CR7. Diodes CR6 and CR7 are in ac parallel and dc series. The ac resistance is determined by the dc voltage across capacitor C18. At the peak of each output cycle, VR3 and CR8 conduct and replenish the charge lost from C18. The ac voltage at the output of U4B is approximately 5.2 Vrms. The output is coupled to the AM or FM output jacks, and to the Audio Amplifier U4A.

Audio Amplifier (A3)

The Audio Amplifier U⁴A increases the level of the internal modulation signal to drive the AM or FM modulator circuits. The signal gain of the amplifier is about 1.7. The output drives the modulation level potentiometers. For internal FM, the signal is coupled to the FM Preamplifier (Service Sheet 6). For internal AM, the signal is coupled through R34 to the Level Reference Amplifier.

Reverse Power Protection Assembly (AE) SERVICE SHEET 3A

Service

SERVICE SHEET 4 (Cont'd) Level Reference Amplifier (A3)

The Level Reference Amplifier U1 sums the ALC reference current (supplied by the +20 volt supply through R36) and the AM signal current (either external or from the audio amplifier). The sum of the two currents flows through R37 and generates the negative level reference voltage. The amplifier output drives the AM detector and is coupled to the VERNIER control R5 (chassis mounted). On the +10 dBm OUTPUT LEVEL range, R7 (chassis mounted) is switched out. The ALC reference to the modulator is increased by 10 dB. The output power increases by 10 dB, but AM depth is limited by the maximum output power available. Diodes CR9 and CR10 protect the Level Reference Amplifier input.

Shaping Amplifier (A3)

The Shaping Amplifier U5 pre-distorts low level inputs to compensate for non-linearities in the RF detector at low RF levels. The amplifier gain is near unity. The signal level at the non-inverting (+) input of U5 is normally negative enough to turn off diode CR15 and thus CR15 has no effect. For small negative signal levels CR15 is turned on slightly, the input impedance is lowered, and the overall gain reduced. The point at which CR15 turns on is set by the current established by R52 and R49. Diode CR16 thermally compensates CR15. The DIST ADJ control R52 is set for minimum AM distortion at a low ALC reference level. The shaping amplifier drives the AM/ALC amplifier (Service Sheet 3).

Audio Detector (A3)

The Audio Detector is a negative peak detector which samples the negative ac peak of the incoming AM or FM modulation signal and stores the voltage on a capacitor. The detector output is proportional to the AM depth or FM deviation. Amplifier U3A is used as a voltage comparator. When the voltage at pin 3 is more negative than the voltage at pin 2; the output rapidly switches to a level equal to the voltage across capacitor C28 (which is connected to pin 2 through R44 and R45) minus the voltage drop across the forward-biased diode CR14. The amplifier discharges C28 until the voltage at pin 2 equals the voltage at pin 3, and maintains this condition until the voltage at pin 3 rises. The amplifier then switches positive and slowly charges C28 through resistors R44 and R45 until the voltage at pin 3 becomes more negative than pin 2. Thus, the negative peak value of the input voltage is stored on C28. Resistor R41 adds

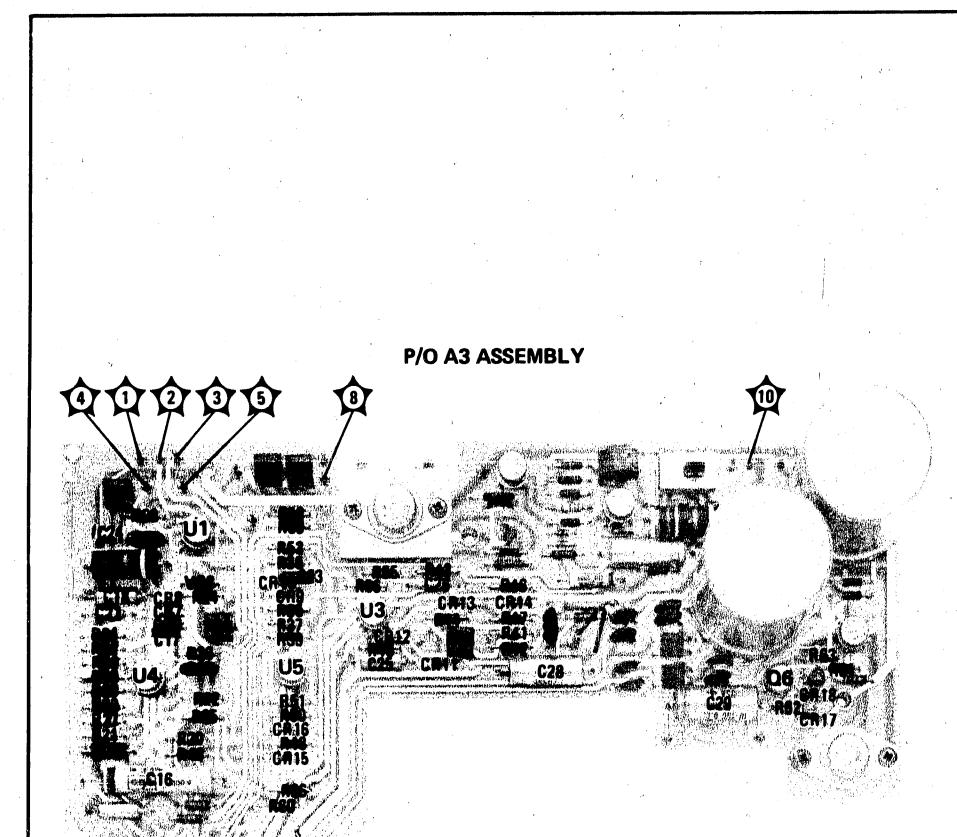
8-18

1.1

a small amount of gain to the detector because R41 and R44 and R45 form a voltage divider. The detector drives the meter driver amplifier when the METER switch is set to AM or FM.

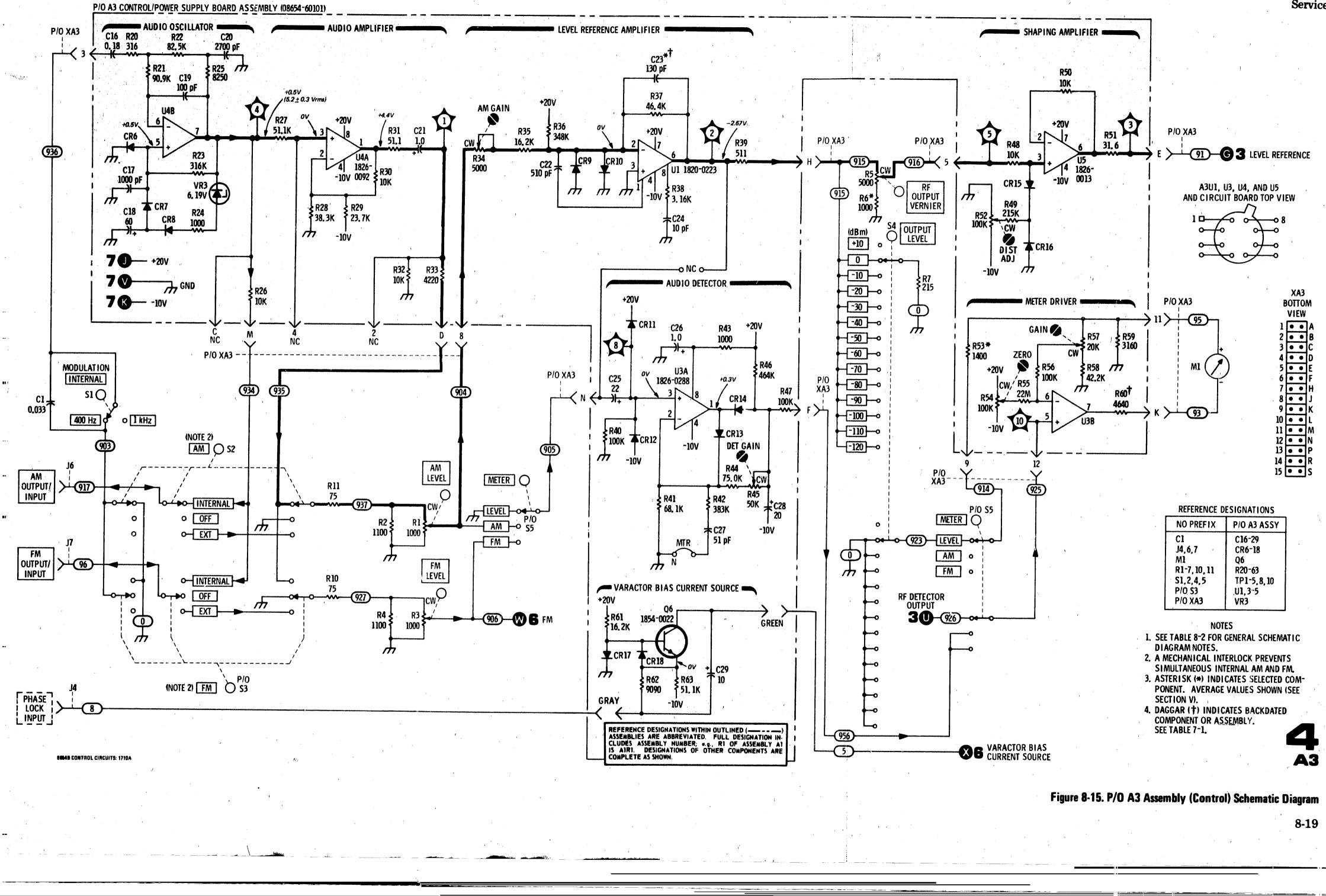
Meter Driver (A3)

The Meter Driver U3 provides an output current to panel meter M1 proportional to the input voltage. The input is either the RF detector output (proportional to RF output voltage) or the Audio Detector output. The voltage at pin 5 is equal to that at pin 6. The voltage at pin 6 establishes the current through resistors R57, R58, and R59 (and R53 when grounded). The current flowing through these resistors also flows through the meter to the amplifier output. R51 varies the amplifier gain, and R54 varies the amplifier offset. R53 reduces the amplifier gain by 10 dB when the OUTPUT LEVEL switch is set to +10 dBm. This compensates for the 10 dB increase of the amplifier input. Resistor R60 limits the maximum nater current.


Varactor Bias Current Source (A3)

Transistor Q6 together with the Varactor Cathode Bias voltages (derived from the 52.1V or +20V power supplies) and the FINE TUNE control (Service Sheet 6) provides the varactor cathode bias. The base of Q6 is held one diode junction drop above ground by CR17. This fixes the emitter voltage at ground potential and sets the current through Q6. The current flows from the various source impedances of the Varactor Cathode Bias circuits (as selected by the RANGE switch) through the FINE TUNE control (Service Sheet 6) to Q6, setting the varactor cathode voltage. Variations in FINE TUNE settings change this resistive divider and consequently the varactor cathode voltage. In addition, small signals at the PHASE LOCK INPUT add to or subtract from the current through R63. Since the emitter of Q6 is held at 0 volts, the current through Q6 must change to compensate for the additional current of the phase lock input. The new current level causes different voltage drops across the resistive loads changing the varactor cathode potential. Large positive phase lock inputs are conducted through CR18 and CR17 to ground. Capacitor C29 frequency compensates the circuit to prevent phase lock loop instability.

TROUBLESHOOTING


Measuring inputs and outputs and comparing them with the normal reading as shown on the schematic is the most efficient way of isolating a malfunctioning stage. Model 8654B

.

Figure 8-14. P/O A3 Control/Power Supply Board Assembly Component Locations

J.

= 1

SERVICE SHEET 5

FM System – General

The FM circuits of the 8654B form a non-linear analog computer that processes the FM input signal to yield calibrated, low-distortion frequency modulation of the generator's RF output. The system makes extensive use of operational amplifier circuits (linear and non-linear) to process analog voltages representing the following parameters — all of which affect FM:

- **1. FREQUENCY TUNE control position.**
- 2. FREQUENCY FINE TUNE setting.
- FREQUENCY RANGE setting. 3.
- 4. FM input signal attenuated through the FM LEVEL control.
- FM RANGE setting. 5.
- Varactor tuning characteristic. 6.
- Phase lock tune signal (if present). 7:

The relationship between the FM input signal and the signal at the varactor anode is a non-linear function of the above parameters. This relationship may be expressed by the following formula:

$$V_{a} = \left[\frac{1}{k} \frac{(V_{b} - V_{a})^{\frac{3}{2}}}{(V_{f})^{3}}\right] V_{FM}$$

where: V_{a} is the varactor anode voltage,

 V_{FM} is the FM input voltage attenuated by the FM LEVEL control.

 $V_{\rm b}$ is the varactor bias voltage (at the cathode) including

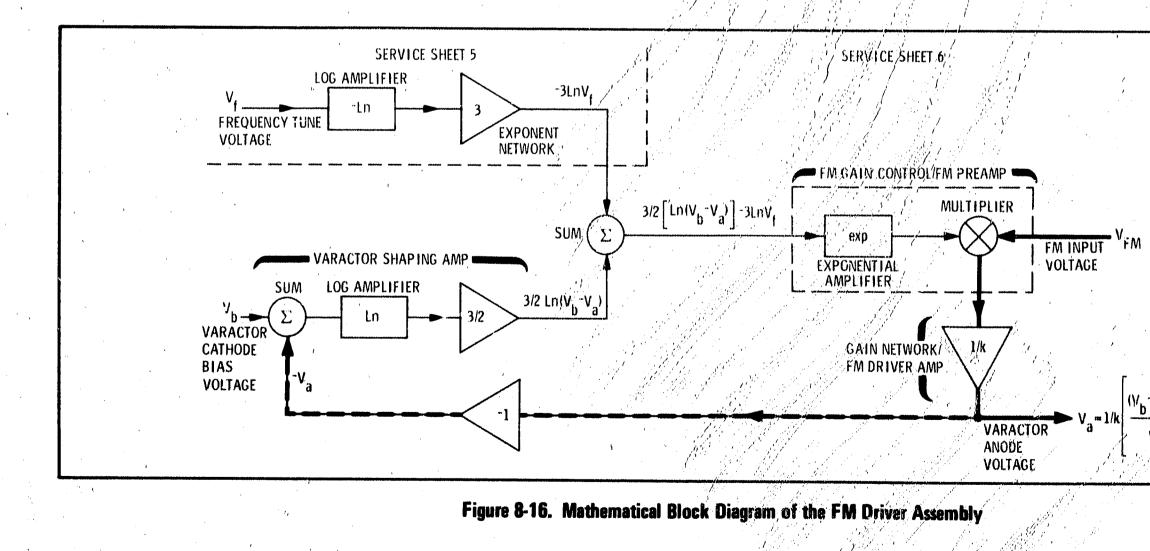
SERVICE SHEET 5 (Cont'd)

and

the fine tune setting and the phase lock signal when present.

V_s is the voltage representing the RF frequency to which generator is tuned and is a non-linear function of the

position of the cursor,


To process the input signal according to the above relationship, the FM circuits use logarithms and exponentials and make use of the mathematical property that $exp(n \ln x) = x^n$. The computation actually performed by the circuitry is the following:

 $V_a = \frac{1}{k} \exp \left[\frac{3}{2} \ln (V_b - V_b) \right]$

A mathematical block diagram of the FM circuitry annotated to show how the above formula is executed appears in Figure 8-16.

FM Control - General

The circuits of Service Sheet 5 develop a voltage (V_f) corresponding to the FREQUENCY TUNE control position on a given frequency range. The shaping network adjusts this voltage for the non-linear frequency-vs-cursor-position characteristic of the tuning capacitor illustrated in Figure 5-4. This network also compensates for the stray/capacitances in the RF oscillator circuits and the stray inductance within the tuning capacitor which are significant on the higher frequency ranges.

k is a constant determined by the frequency range, the FM deviation range, and the specific varactor diodes.

$$V_a$$
) -3 ln V_f V_{FM}

SERVICE SHEET 5 (Cont'd)

DC Shaping Circuit (A5)

A1R2 is mechanically coupled to tuning capacitor A1C3 (Service Sheet 2). U1A and U1B are voltage followers that buffer the two reference voltages set by divider string R15 through R19. The voltage difference between the outputs of U1 is imposed across A1R2 and also across the break-point resistors R1 through R14. Tuning FREQUENCY TUNE down from the top of a given range causes the voltage at TP3 to fall linearly until it is lower than the voltage at the break-point divider for that range. When this occurs, CR6 turns on, and the voltage at the (+) input of U5 becomes the breakpoint voltage minus the voltage at TP3, divided across the corresponding slope resistor (R22 through R30) and R31. In order to track frequency on the three highest ranges, two breakpoints (and slopes) are required. Diodes CR3, CR4, and CR5 switch in the second break-points and slope resistors on these ranges. Voltage follower U5 isolates this voltage and drives log amplifier U6.

Log Amplifier (A5)

Amplifier U6 is connected as an inverting logarithmic amplifier. The logarithmic function is generated by the diode, CRIF, in the feedback path. Since the amplifier feedback holds the anode of CR1F to ground, the output of the amplifier is equal to the voltage drop across CR1F. If the current through the diode is kept low, the voltage across the diode is a logarithmic function of forward current. Thus, a linear input current through R36 yields a logarithmic output voltage across CR1F. Input resistor R36 determines the gain factor of the amplifier and is large enough to keep the current through CR1F low. C2 and C4 bypass RFI, and C3 frequency compensates the amplifier. Diode CR9 prevents CR1F from becoming reverse biased.

Service

SERVICE SHEET 5 (Cont'd)

U7 is a non-inverting amplifier which provides additional gain to the log amplifier stage. Diode CR1D is forward biased by the current path through R49, R41, and R42, and it thermally tracks CR1F to compensate for the effects of temperature changes on the output of U6. R42 allows the offset of U7 to be adjusted to compensate for different diodes. R46, R47, and the exponent network form a voltage divider in the feeback loop of U7 that sets the gain. This gain adjustment is necessary because the stray reactances in the RF oscillator circuit cause the percent of tuning capacitor rotation required to span a given percent of a frequency range to be different for each range. Capacitors C5 and C8 bypass RFI, and C7 rolls off the amplifier's ac gain to reduce system noise.

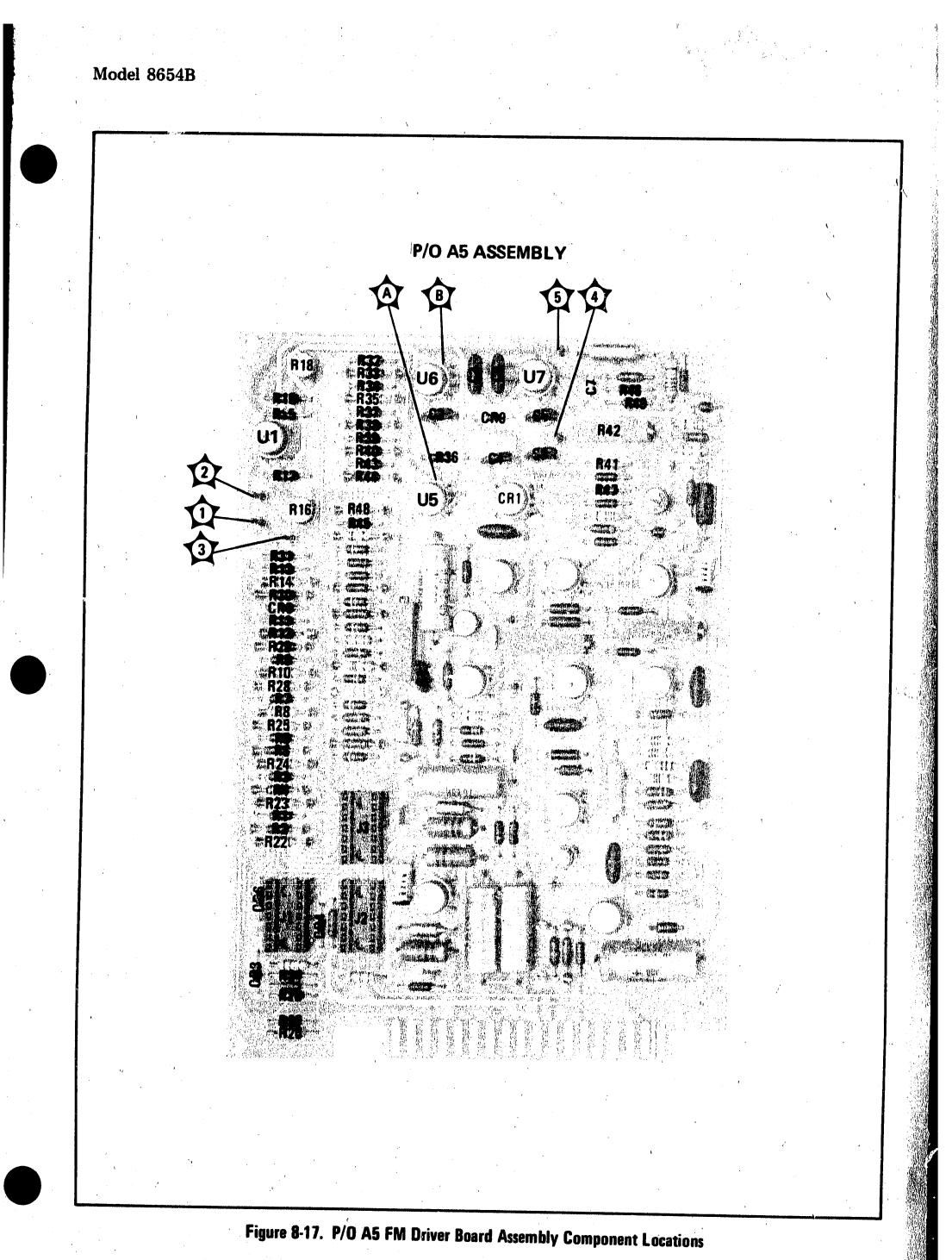
TROUBLESHOOTING

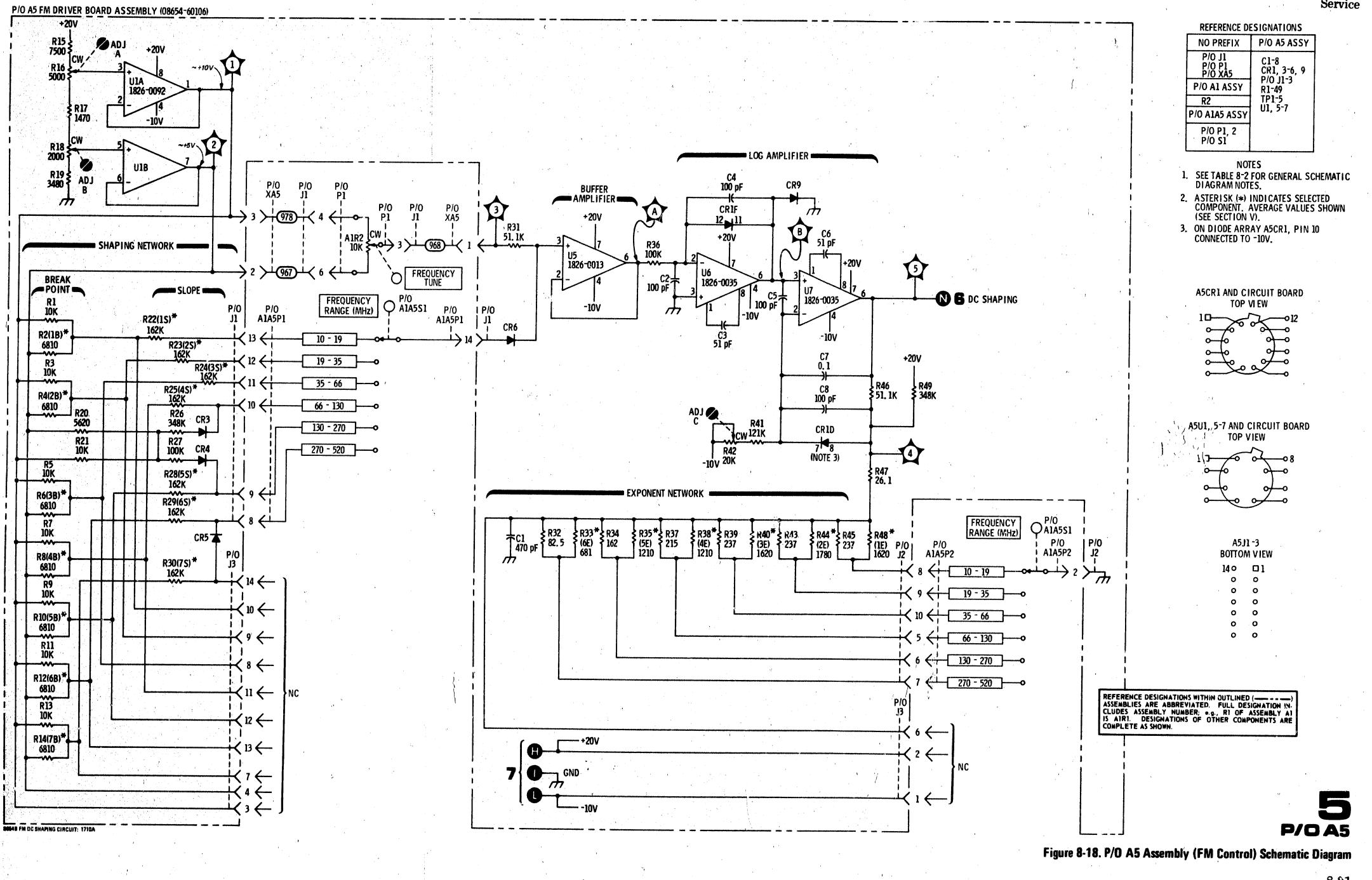
The circuits on this part of the A5 FM Driver Board Assembly are dc shaping circuits only. Troubleshoot the circuit by checking the dc voltages at the test points given in the table for various frequency settings. Also, use an oscilloscope to check the outputs of the amplifiers for spurious oscillations.

TEST EQUIPMENT

Digital Multimeter. HP 34702A/34740A

INITIAL CONTROL SETTINGS


FREQUENCY FINE TUNE	cw
AMO	FF
FMO	FF
FM RANGE (kHz)	Hz
FM LEVEL	


FM DRIVER Assembly Troubleshooting (Service Sheet 5)

FREQUENCY RANGE	FREQUENCY	CY A5TP3 (Vdc)		A5TF	A5TPA (Vdc)		PB (Vdc)	A5TP5 (Vdc)	
(MHz)	(MHz)	Min	Max	Min	Мах	Min	Max	Min	Max
1019	10	5.2	5.6	5.4	5.8	-0.69	-0.61	1.9	2.3
19—35	Do not change setting	5.2	5.6	5.4	5.8	-0.69	-0.61	1.9	2.3
35–66	"	5.2	5.6	5.4	5.8	-0.69	-0.61	1.9	2.3
66-130	77 .	5.2	5.6	5.4	5.8	-0.69	-0.61	2.0	2.4
130-270	"	5.2	5.6	5.5	5.9	-0.69	-0.61	2.1	2.5
270-520	**	5.2	5.6	5.8	6.2	-0.69	-0.61	2.5	3.1
10–19	18	9.5	9.9	9.5	9.9	-0.70	-0.62	-1.4	-1.0
19–35	Do not change setting	9.5	9.9	9.5	9.9	-0.70	-0.62	-1.4	1.0
3566		9.5	9.9	9.5	9.9	-0.70	-0.62	-1.4	-1.0
66-130	"	9.5	9.9	9.5	9.9	-0.70	-0.62	-1.6	-1.2
130–270	"	9.5	9.9	9.5	9.9	-0.70	-0.62	-2.0	-1.6
270–520	"	9.5	9.9	9.5	9.9	-0.70	-0.62	-4.0	-3.2

Control Circuits (P/O A3)

SERVICE SHEET 4

Service

SERVICE SHEET 6

FM DRIVER

General

The circuits on Service Sheet 6 sum the feedback generated by the Varactor Shaping Amplifier with the frequency tune output voltage of the DC Shaping Circuit of Service Sheet 5. The summed voltage controls the gain of the FM Preamplifier which amplifies the FM input signal. The signal is further amplified by the FM Driver Amplifier whose gain is determined by the frequency range and the FM deviation range selected. The output drives the varactor anode.

FM Gain Control and FM Preamplifier (A5)

The input to U4 from U7 of the DC Shaping Circuit (Service Sheet) 5) is a dc voltage proportional to the RF tuning frequency. This voltage is divided by R50 and R53 and summed with the feedback voltage from the Varactor Shaping Amplifier, U11. U4, a voltage follower, buffers the summed signal and drives diodes CR2A and CR2B. The voltage output of U9 exactly complements the voltage output of U4 forming a net zero voltage potential at the nodbetween the diodes. Resistive divider R62 through R64 is in parallel with the two diodes. Adjustment E (R63) sets the node between the two diodes to zero potential. CR2C prevents reverse biasing of CR?A and CR2B when the instrument is turned on. The impedance at this node is an exponential function of the voltage across the diodes. Because the diodes are in the feedback loop of U3, they determine its gain. Thus, a linear change in voltage at the input of U4 will cause an exponential change in the gain of U3. The FM Preamplifier U3 amplifies the modulation signal from the FM LEVEL potentiometer. The output of U3 is therefore equal to the FM modulation signal multiplied by the exponential of the input to U4. CR2D provides thermal compensation for CR2A and CR2B. C9 speeds up the ac response of diode CR2D. The resistor network composed of R56, R57, R58, R60, and thermistor RT1 compensates for changes in varactor tuning sensitivity with temperature.

The gain of U3 is determined by R59, R55, and the non-linear impedance at the node between CR2A and CR2B. Since U3 is a

SERVICE SHEET 6 (Cont'd)

non-inverting amplifier, when the ratio of feedback resistance to diode im edance approaches unity, the amplifier's gain strays slightly from a pure ratio of impedances. R54 introduces a small portion of the modulation signal into the amplifier's inverting input causing the gain of U3 to follow the impedance ratio more closely. R122 adjusts the dc offset of U3, and R59 is the master gain adjustment for the FM circuits.

FM Driver Amplifier (A5)

The output of U3 couples through the Gain Network to the FM Driver Amplifier U2. U2 is an inverting amplifier whose gain is set for each frequency range by changing the feedback resistance R77 through R82. For the 100 kHz FM deviation range, the feedback is further attenuated through divider R84 through R86. R65 through R76 fine adjust the resistance at the input to U2. The gain of U2 for peak deviations of 3, 10, and 30 kHz is set by the Gain Network and output dividers R87 through R91. On the 100 kHz deviation range, the gain of U2 is increased by adding the divider formed by R84, R85, and R86 into the feedback loop of the amplifier. L3 and C14 peak the amplifier's frequency response. C19 and C20 filter the noise on the line to the varactor anode when FM is off

Varactor Shaping Amplifier (A5)

The Varactor Shaping Amplifier circuits provide feedback compensation to the FM Gain Control stage in order to linearize the voltage-vs-tuning response curve of the varactor diodes. Since the diode response depends on the dc bias as well as the ac modulation signal, both components enter into the shaping.

Amplifier U8A is a voltage follower which buffers a portion of the dc bias at the varactor cathodes. R97 and R98 divide the bias voltage. To optimize the Q and voltage swing of the varactors, switch A1A5S1 applies higher bias voltages to the varactor cathodes on higher frequency ranges. The FINE TUNE control varies this bias to fine adjust the oscillator output frequency. R97 and R98 apply a portion of this bias voltage to buffer amplifier U8A. C22 assures that only dc signals reach the amplifier.

SERVICE SHEET 6 (Cont'd)

Just as U8 buffers a voltage representing the varactor cathode dc bias, U10A buffers (and inverts) a voltage representing the ac and dc varactor anode signal. R93, R94, and C21 form a frequency sensitive divider at the input of U10A. R95 and R99 set U10A gain to unity. The output is coupled through R100 and C23 to the summing junction at the non-inverting input of U10B. The current flowing into this junction is proportional to the total voltage across the varactors.

Amplifier U10B is connected as an inverting logarithmic amplifier. The logarithmic function is generated by the diode, CR1B, in the Feedback path. Since the amplifier's feedback forces the voltage at the anode of CR1B to ground, the output voltage of the amplifier is equal to the voltage drop across CR1B. If the current through the diode is kept low, voltage across diode is a logarithmic function of input current to the amplifier. Thus, a linear input current yields a logarithmic output voltage across CR1B. CR1A prevents reverse voltage across CR1B.

U11 amplifies the varactor shaping voltage. The gain of this stage is set by feedback resistors R107 and R108, and input resistances R103, R106, and RT2. CR1C temperature compensates CR1B of the log amplifier U10B. R104, R105, and R102 provide an adjustable offset bias current into CR1C. Additional temperature compensation is provided by RT2 at the input of U11. Since the output of this circuit acts as feedback into the summing junction of the FM Gain Control amplifiers, the gain adjust R107 controls the dynamic shaping response of the entire FM circuitry to compensate for the varactor nonlinearities — minimizing FM distortion.

TROUBLESHOOTING

The circuits on this part of the A5 FM Driver Board Assembly are non-linear ac and dc shaping circuits. The output of the circuit is at A5TP8 which drives the varactor diodes on the A1A2 FM Modulator Board Assembly. To troubleshoot the circuit, first verify that the voltage is correct at A5TP5 (see Troubleshooting on Service Sheet 5), then check the ac and dc voltages given in the

SERVICE SHEET 6 (Cont'd)

procedure below. Check the voltages in the order listed. If only one frequency range is defective, check only that range. If FM deviation is only slightly in error, performing the FM adjustments may correct for this. Also use an oscilloscope to check the outputs of the operational amplifiers for spurious oscillation.

Distortion in the ac waveforms is normal at A5TPG and A5TP10 especially where the relative input voltage at A5TP9 is large. The waveform, however, should be smooth with no clipping.

TEST EQUIPMENT:

Digital Multimeter.HP 34702A/34740AOscilloscopeHP 182C/1801A/1820CTest Oscillator.HP 651B

FREQUENCY FREQUEN RANGE TUNE		CY A5TP6 with FM OFF (mVdc)		A5TP6 with FM INTERNAL (mVrms)		A5TPC with FM UFF (mVdc)		A5TPC with FM INTERNAL (mVrms)		A5TP8 with FM OFF (mVdc)		A5TP8 with FM INTERNA (mVrms)	
(MHz)	(MHz)	Min	Max	Min	Max	Min	Max	Min	Мах	Min	Мах	Min	Мах
10—19	10	-0.5	+0.5	5.0	5.8	20	+20	105	135	- 5 00 ^{°°}	+500	2800	3400
19–35	Do not change setting	0.5	+0.5	5.0	5.8	-20	+20	105	135	-300	+300	1600	2000
35–66	"	-0.5	+0.5	5.0	5.8	20	+20	170	230	-300	+300	3100	3800
66—130	1	0.5	+0.5	5.0	5.8	20	+20	180	240	-150	+150	1500	1900
130-270	"	-0.5	+0.5	5.0	5.8	20	+20	200	260	- 75	+ 75	900	1100
270-520	, "	0.5	+0.5	5.0	5.8	-20	+20	330	450	-100	+100	1600	2100
10–19	19	-0.5	+0.5	5.0	5.8	-20	+20	18	25	500	+500	500	600
19—35	Do not change setting	-0.5	• +0.5 •	5.0	5.8	-20	+20	18	25	-300	+300	250	350
35-66	"	-0.5	+0.5	5.0	5.8	-20	+20	28	38	-300	+300	500	650
66–130	"	-0.5	+0.5	5.0	5.8	-20	+20	25	35	-150	+150	220	270
130270	11	0.5	+0.5	5.0	5.8	-20	+20	20	28	- 75	+ 75	90	160
270-520	"	-0.5	+0.5	5.0	5.8	20	+20	10	15	-100	+100	40	120

NOTE

SERVICE SHEET 6 (Cont'd) PROCEDURE:

- 1. Unsolder jumper wire between test points A5TP8 and TP9.
- 2. Set Signal Generator controls as follows:

9 MHz
Hz
CW
· ·
RNAL
Iz
cw 🤅
Z

3. Connect voltmeter to A5TP7 and adjust FM LEVEL for 600 mVrms.

4. Set FREQUENCY RANGE, FREQUENCY TUNE, and FM as listed in the table below and check ac and dc voltages at the test points indicated.

FM Driver Board Assembly Troubleshooting (Part I)

Service

SERVICE SHEET 6 (Cont'd)

5. Set FM to OFF. Connect test oscillator to A5TP9. Set frequency to 1 kHz and adjust level for 3 Vrms at A5TP9. 6. Set FREQUENCY RANGE as listed in the table below and check ac and dc voltages at test points listed.

NOTE

Disconnect test oscillator from A5TP9 when measuring dc voltages.

FM Driver Board Assembly Troubleshooting (Part II)

FREQUENCY	A5TPD (Vdc)		A5TPE (Vdc)		A5T	A5TPF (Vdc) A5		PF (mVrms)	A5TPG (mVdc)									
RANGE (MHz)	Min	Min	Min	Min	Min	Min	Min	Min	Min	Мах	Min	Max	Min	Max	Min	Max	Min	Max
10-35	+10.3	+10.7	+2.20	+2.50	-1.40	-1.20	290	360	650	-590								
35–270	+28.2	+30.6	+6.2	+7.00	-3.80	-3.30	290	360	680	-610								
270520	+47.0	+50.0	+10.3	+11.4	6.20	-5.50	290	360	-690	620								
							ti.	, , , , , ,	•									
REQUENCY	A5TPC	G (mVrms)	A51	'P10 (mVa	A (ot	5TP10 (mVrms)			<u></u> .								
RANGE (MHz)	Min	Max	Min	M	ax M	lin	Max											
10-35	10	12	-10	+1	0 1	4	18		`	•								

. Resolder jumper between A5TP8 and TP9.

3.4

2.2

270-520

+35

+55

+55

+80

8.

4.2

2.7

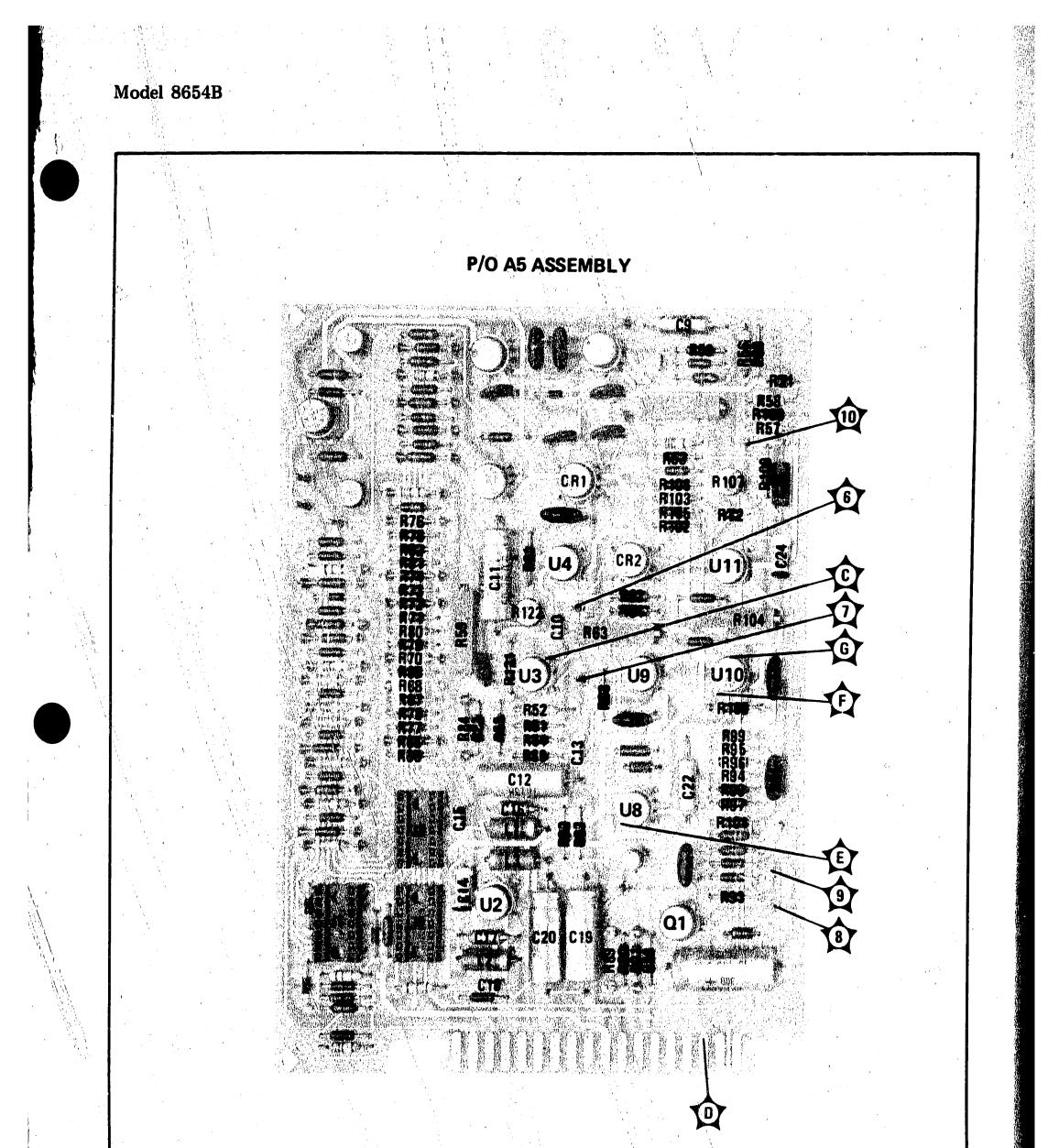


Figure 8-19. P/O A5 FM Driver Board Assembly Component Locations

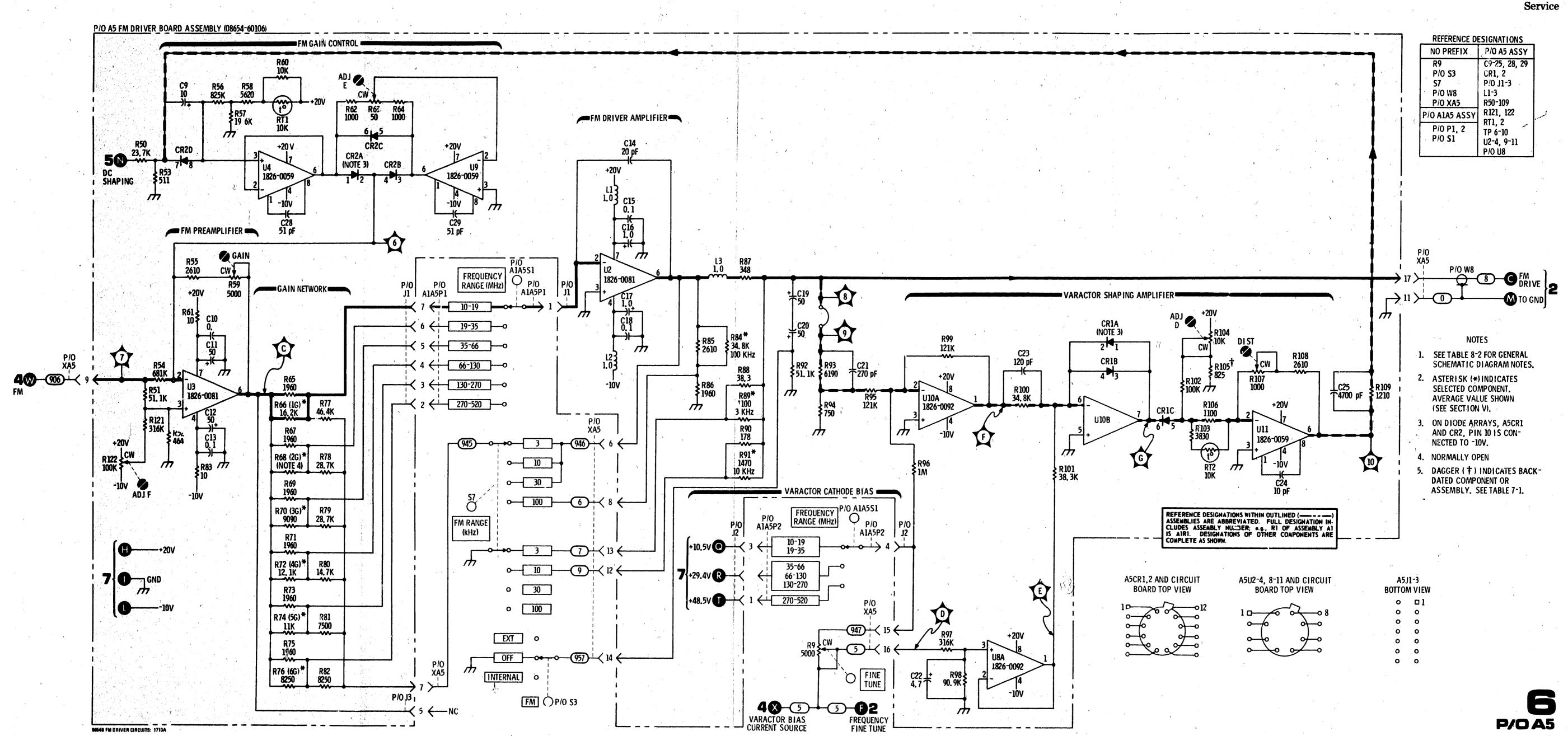
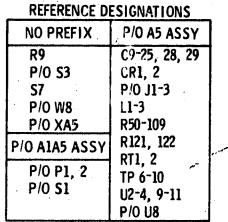



Figure 8-20. P/O A5 Assembly (FM Driver) Schematic Diagram

SERVICE SHEET 7

PRINCIPLES OF OPERATION

+20 Volt Regulator (A3)

The +20 Volt Regulator is a linear series type with current limiting for over-current protection. The series regulator transistor Q1 is collector (case) grounded and regulates on the ground return side of the supply. Amplifier U2 compares the output voltage with the reference established by VR1; the output drives transistor Q2. Q2 is a common-base amplifier which drives Q1. RC networks R10 and C13, R19, and C15, and R15 and C14 provide frequency compensation. Transistor Q3 senses excessive supply current flowing through R16 and shuts down the supply by taking drive current away from the base of Q1. Resistor R14 biases the base of Q2 during turn on and diodes CR4 and CR5 clamp the base near ground potential when the supply is on.

The Power Supply Isolation Switch S1 aids in fault isolation of the +20V supply. By switching S1 to TEST, the +20V supply is conected to a test load R8, also the sense line (going to VR1 and R4) is connected directly on the Power Supply Assembly (rather than in A1). If a short had existed on A3 or elsewhere in the instrument, the supply would now operate normally and thus verify that the supply was not at fault.

-10 Volt Regulator (A3)

The -10 Volt Regulator is a linear series type with current limiting. The supply is dependent on the +20 Vdc supply for its operation. Amplifier U6 compares ground with the output of voltage divider R2 and R3, which is connected between the +20 Vdc and -10 Vdc outputs. U6 drives the series regulator transistor Q5. RC network R7 and C12 provide frequency compensation. Transistor Q4 limits suppply current.

+52.1 Volt Regulator (A5)

The +52.1V Regulator is a linear series type with current limiting. The supply is dependent on the +20 Vdc supply for its operation. Amplifier U8B compares a +10V reference (derived from the +20V supply through resistive divider R110 and R111) with the output of voltage divider R116 and R117. The current through **R112** provides the base current series regulator Q1. By sinking some of the current through R112, U8B adjusts the drive to Q1, regulating the output voltage. VR1 drops the high voltage required at the base of Q1 to a level compatible with U8B. Transistor Q2 limits the supply current. Capacitor C27 provides frequency compensation.

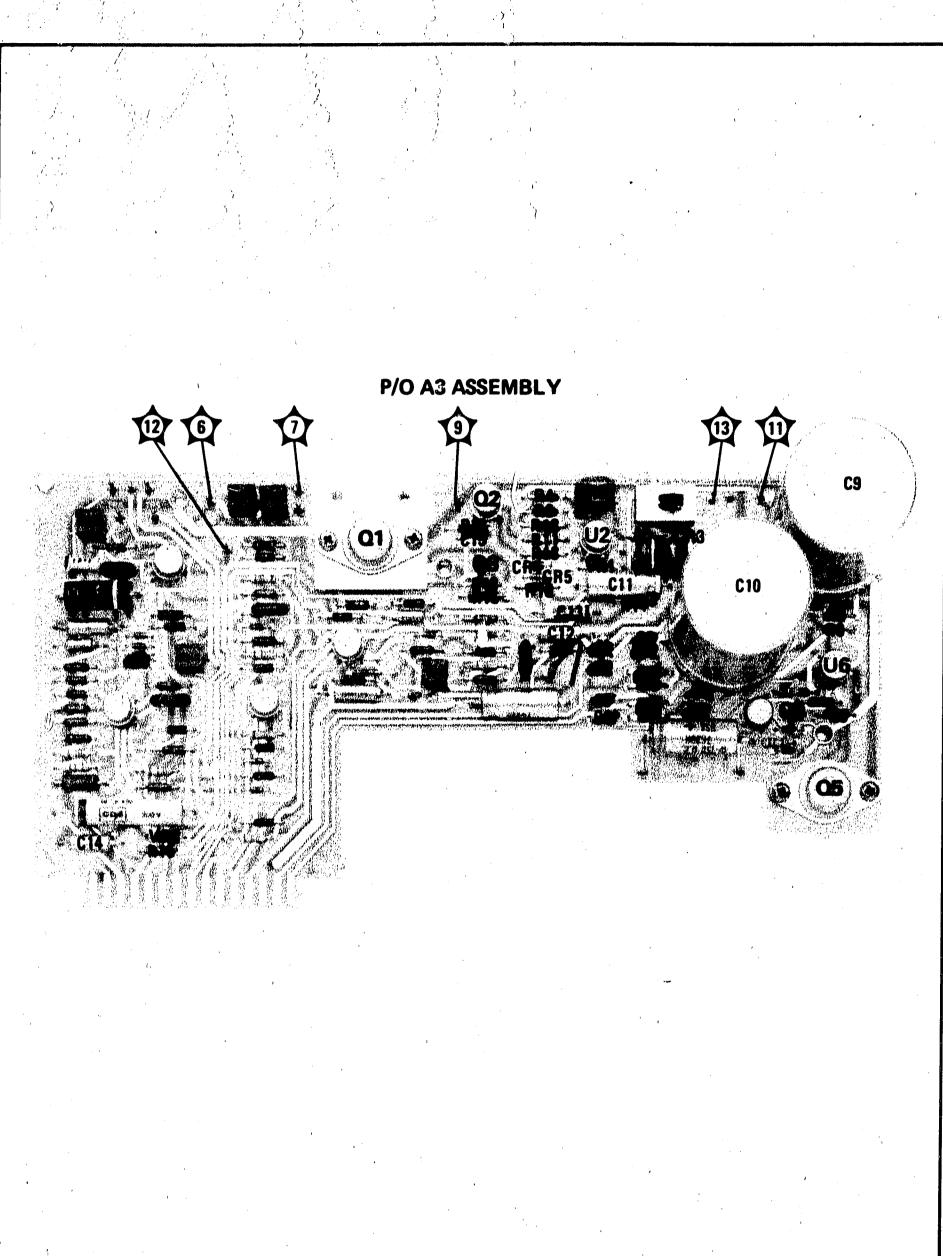
TROUBLESHOOTING

Before attempting to troubleshoot the power supplies, check the lamp in the LINE switch to see if it is illuminated. If not, check the fuse. Also verify that the transformer primary is matched to the available line voltage (refer to Figure 2-1).

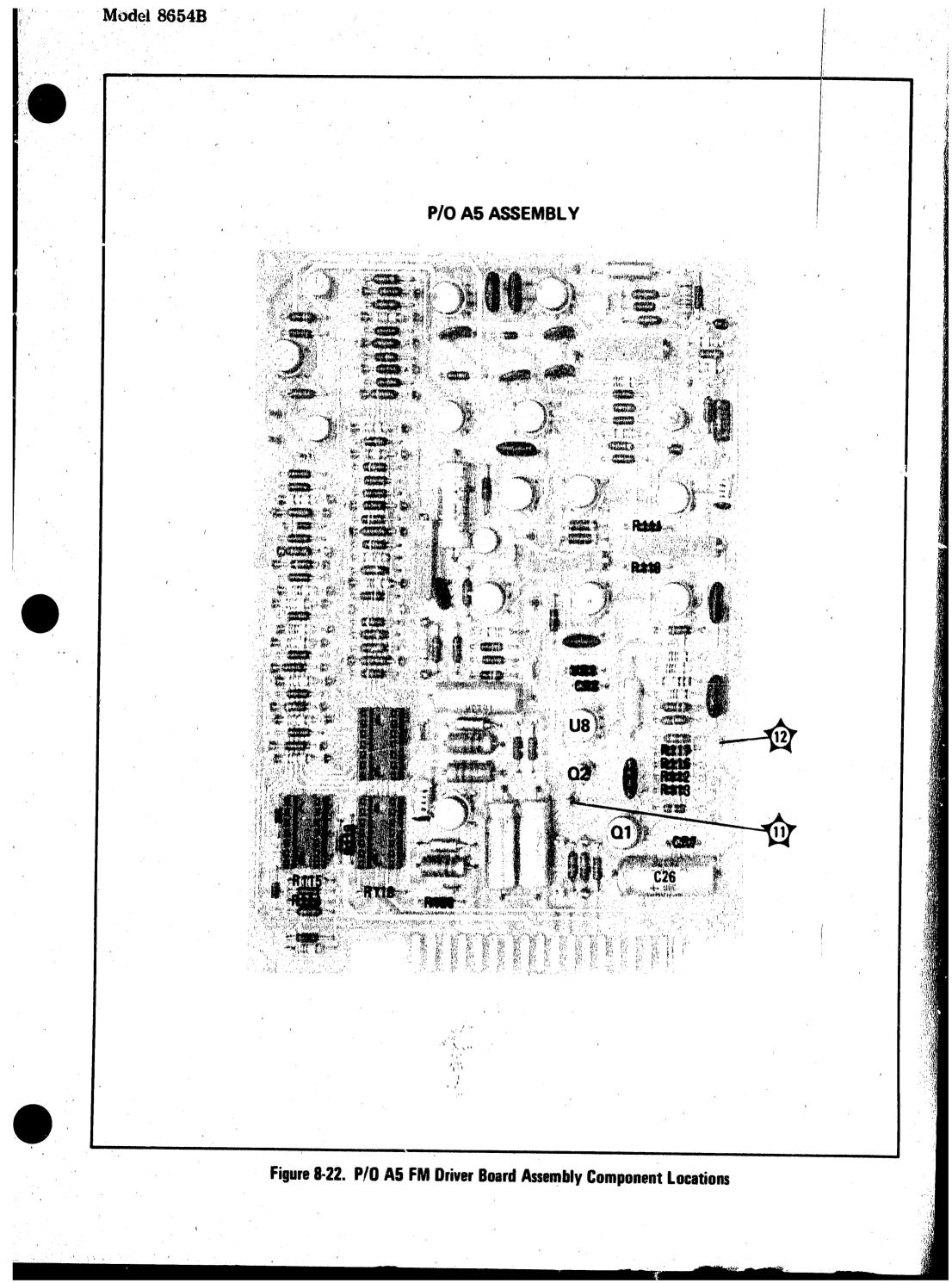
SERVICE SHEET 7 (Cont'd)

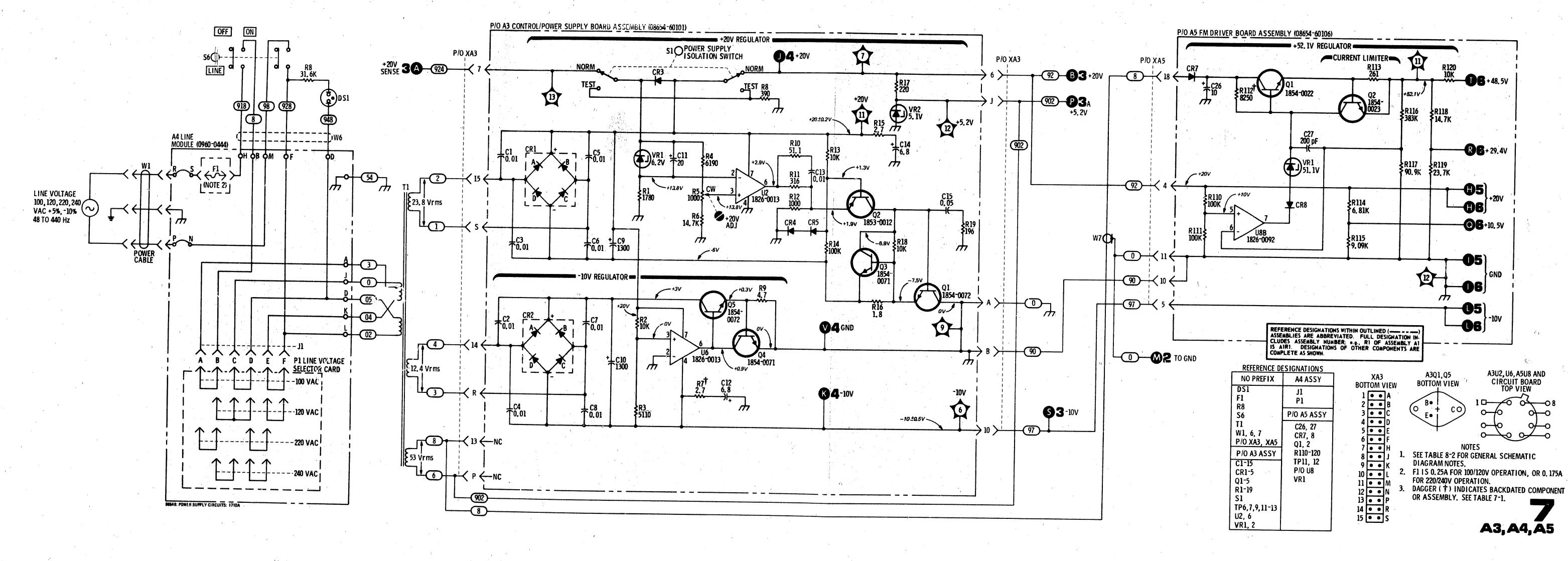
The -10 volt supply is dependent on the +20 volt supply. Check the +20 volt supply before attempting to troubleshoot the -10 volt supply.

Q3 and Q4 are current limiting transistors. If the voltage measured across R16 or R9 is ≈ 0.6 Vdc, the supply which exhibits this condition will have a voltage lower than normal due to excess current flow.


Total current flow through a power supply may be calculated by measuring the voltage across R16 or R9. The total current flow to the A1 RF Section Assembly may be measured at XA3 pin 6 (+20 volt supply) and XA3 pin 10 (-10 volt supply). Malfunctioning components which cause high current flow may be isolated to the RF assembly or chassis by measuring the total and RF section current flow. One may also measure resistance at the power supply output with the instrument turned off.

Measurement Total Current RF Assy Current Resistance	Supply					
Measurement	+20V	-10V				
Total Current	0.30A	0.16A				
RF Assy Current	0.14A	0.05A				
Resistance	1.5kΩ *	950 Ω**				


If noise is evident in the power supplies in the form of ripple, a filter capacitor may be defective. The ripple frequency is normally 120 Hz; if it is 60 Hz, a rectifier diode quad is probably defective. White noise may be caused by a defective operational amplifier (U2 or U6) or the regulator diode VR1. RF noise would be evident if the high-frequency rolloff networks (R15 and C14, R10 and C13, C15 and R19; R7 and C12) are defective.



Service

Figure 8-23. Power Supplies Schematic Diagram

SERVICE SHEET A

A1 RF Section Disassembly and Reassembly

NOTE

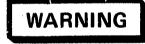
Numbers in parentheses refer to Figure 8-24.

RF Section Cover (1) Removal

- Remove RF Section Assembly (Service Sheet B).
- 2. Remove four pan-head screws with lockwashers (159, 161) and remove cover.

RF Section Cover (1) Installation

MICROPHONICS


In order to minimize the possibility of microphonics and RFI in the generator, perform steps 1 through 4 before replacing the RF Section cover.

Glue any loose wires on turret inductors with coil varnish.¹

- 2. Check the Frequency Tune capacitor shaft for looseness by applying lateral pressure to the large pulley (22). If the shaft is loose, it can be tightened using the screw and locknut on the end of the capacitor opposite the pulley.
- Check that all nuts, screws, and connectors are tight. 3.
- Check that the RFI braid (158) is in place and properly meshed to the RF Section cover (1).
- Carefully lift cover into place and securely replace four panhead screws with lockwashers (159, 161). Avoid damaging electrical or mechanical parts with cover while installing.

RF Amplifier/ALC Board Assembly Removal (A1A1)

Remove RF Section Assembly (Service Sheet B) and RF Section cover (procedure given above).

The edges of the RFI gasket on the amplifier cover (132) are sharp and can cause personal injury if not handled with care.

- 2. Remove four pan-head screws with starwashers (130) and three pan-head screws with lockwashers (127, 128) from RF Amplifier cover (132) and lift off cover.
- Remove W1, W2, and W4 from A1A1J1 through J3 (124, 3. 131, 136).
- Remove three hex nuts and lockwashers (96, 98, 101, 106, 4. 140, 142) that secure A1A1J1 through J3 (124, 131, 136).

¹E.g., 1202 Glyptal Clear Air Drying and Baking Varnish, General Electric Supply Co., Insulating Material Products Dept. No. 1, Campbell Rd., Schenectady, N.Y., 12306 (HP 6010-0034).

SERVICE SHEET A (Cont'd)

- 5. Remove 9/16-inch output amplifier bushing (139).
- 6. Remove two flat-head screws (126) that secure RF Amplifier divider and remove divider (133).

Carefully lift A1A1 RF Amplifier up and back to free board from RF Amplifier Shield. Wires attached to the board are long enough to allow board removal without unsoldering.

NOTES

The shield and ground clip near Q2 may easily be broken off. If so they must be resoldered before assembly installation to ensure proper operation of the RF Amplifier/ALC circuits.

If the assembly is to be checked for malfunctions with the board assembly removed from the casting, a ground wire must be attached from circuit board ground to chassis ground.

RF Amplifier/ALC Board Installation (A1A1)

- 1. Replace RF Amplifier/ALC Board while feeding the four wires through the hole for them in the RF Amplifier Shield. (Do not pinch wires beneath board.)
- Loosely replace center divider (133) with two flat-head screws (126).
- Replace 9/16-inch output amplifier bushing (139) and secure tightly.
- Replace and tighten lockwashers (98, 106) and hex nuts (96, 101) that secure A1A1J2 (124) and A1A1J3 (131).
- Replace and tighten hex nut and lockwasher (140, 142) that secures A1A1J1 (136).
- 6. Tighten two flat-head screws (126) that secure RF Amplifier center divider (133).
- 7. Replace RF Amplifier cover (132) by loosely inserting three pan-head screws with lockwashers (127, 128) and four panhead screws with starwashers (130).

NOTE

RFI gasket should mesh neatly against the base plate (109).

- While pressing down and forward on cover, first tighten three center screws, then four corner screws
- 9. Reconnect W1 (5) to A1A1J1 (136).

RF Oscillator Board Assembly Removal (A1A3)

1. Remove RF Section Assembly (Service Sheet B) and RF Section cover (procedure given above).

SERVICE SHEET A (Cont'd)

- Remove W1 (5) from A1A3J1 (8). 2.
- Remove two hex nuts (4) with lockwashers (6).
- 4. Unsolder two wires.

Be careful not to damage the capacitors close to the hex nuts. It may be necessary to grind down the sides of the hex-nut driver to gain necessary clearance from the capacitors.

RF Oscillator Board Assembly Installation (A1A3)

1. Install the RF Oscillator Board Assembly (10) by reversing the removal procedure, while observing the following considerations.

CAUTION

Do not overtighten the hex nuts. The mounting studs are easily stripped.

NOTE

When resoldering the two wires, it is important that they be twisted.

Turret Assembly Removal (A1A4)

- Remove the RF Section Assembly (Service Sheet B) and RF 1 Section cover (procedure given above).
- Remove heat sink on transistor A1A3Q3. 2.
- Disconnect W1 from A1A3J1 (8).
- 4. Loosen two setscrews (148) that secure turret to Turret Assembly Shaft (95).
- 5. Turn turret halfway between ranges and gently slide it off of the shaft.

CAUTION

Do not lift or pull the Turret Assembly by the inductor coils. Be careful not to snag the coils on the RF Oscillator Board.

Turret Assembly Installation (A1A4)

- 1. If the Frequency Tune capacitor or FM Modulator Board Assembly (15) has been removed, it must be installed before installation of the Turret Assembly.
- 2. If the RF Oscillator is in place, remove the heatsink on A1A3Q3 and remove W1 from A1A3J1 (8).

Power Supply Circuits (P/O A3, P/O A5) **SERVICE SHEET 7**

Service

SERVICE SHEET A (Cont'd)

CAUTION

Do not lift or pull the Turret Assembly by the inductor coils. Be careful not to snag the coils on the RF Oscillator Board.

- Turn frequency dial to 270–520 MHz range. to shaft.
- Check all ranges for proper contact of the indescribed above for all ranges.
- W1 to A1A3J1.

FM Modulator Board Assembly Removal (A1A2)

- sembly (procedures given above).
- 2. Remove two pan-head screws (13) with star
- 3. Remove two hex nuts (9) and lockwashers (11).
- Unsolder two wires and remove board. 4.

FM Modulator Board Assembly Insallation (A1A2)

- If the Frequency Tune capacitor (19) has been removed, it must be installed before installation of the FM Modulator Board Assembly (15).
- reversing the procedures for removal.

8-26

Model 8654B

CAUTION

Do not overtighten the hex nuts (9). The mounting studs are easily stripped.

Frequency Tune Capacitor Removal (A1C3) 1. Remove RF Section Assembly (Service Sheet B) and the RF Section cover, the RF Oscilla-

- tor Board Assembly, the Turret Assembly, and the FM Modulator Board Assembly. The procedures are given above.
- In order to prevent the need to restring the dial, securely tape the dial cord to the tuning capacitor pulley (22).
- Loosen two allen setscrews (20) that secure the pulley to the tuning capacitor shaft and lift pulley off. (Position pulley to maintain cord tension.)
- Remove two pan-head screws (21) and lock nuts (26) at the capacitor mounting bracket (25) and remove capacitor.

Frequency Tune Capacitor Installation (A1C3)

1. Install the Frequency Tune Capacitor by reversing the procedures for removal.

Rotary P.C. Switch Assembly Removal (A1A5)

- 1. Remove RF Section Assembly (Service Sheet
- 2. Remove one pan-head screw (85) and lockwasher (84) that secure A1A5 assembly to the frequency plate (88).
- Remove one self-locking machine screw (69) that secures the switch shaft to the dial drum shaft (125). Remove A1A5 assembly.

Rotary P.C. Switch Assembly Installation (A1A5)

- Install the Rotary P.C. Switch Assembly by · 1. reversing steps 2 and 3 of the removal procedure.
 - Set FREQUENCY RANGE (MHz) to the 10-19 MHz range. Loosen the self-locking machine screw (69) in the rotary switch shaft and set the spring contacts on the switch rotor straight up (instrument in normal operating position).
 - Tighten the shaft screw (69) and reinstall the RF Section assembly (Service Sheet B).

3. With the Turret Assembly (146) held in midrange position, carefully press it onto the Turret Assembly Shaft (95). The turret's metal ring should mate with the contact (151).

Turn turret so that the inductor pins for 270-520 MHz range are touching the capacitor contacts (inductor is metal plate, no wire). Center inductor pins (in two planes) on capacitor contacts and tighten two allen setscrews

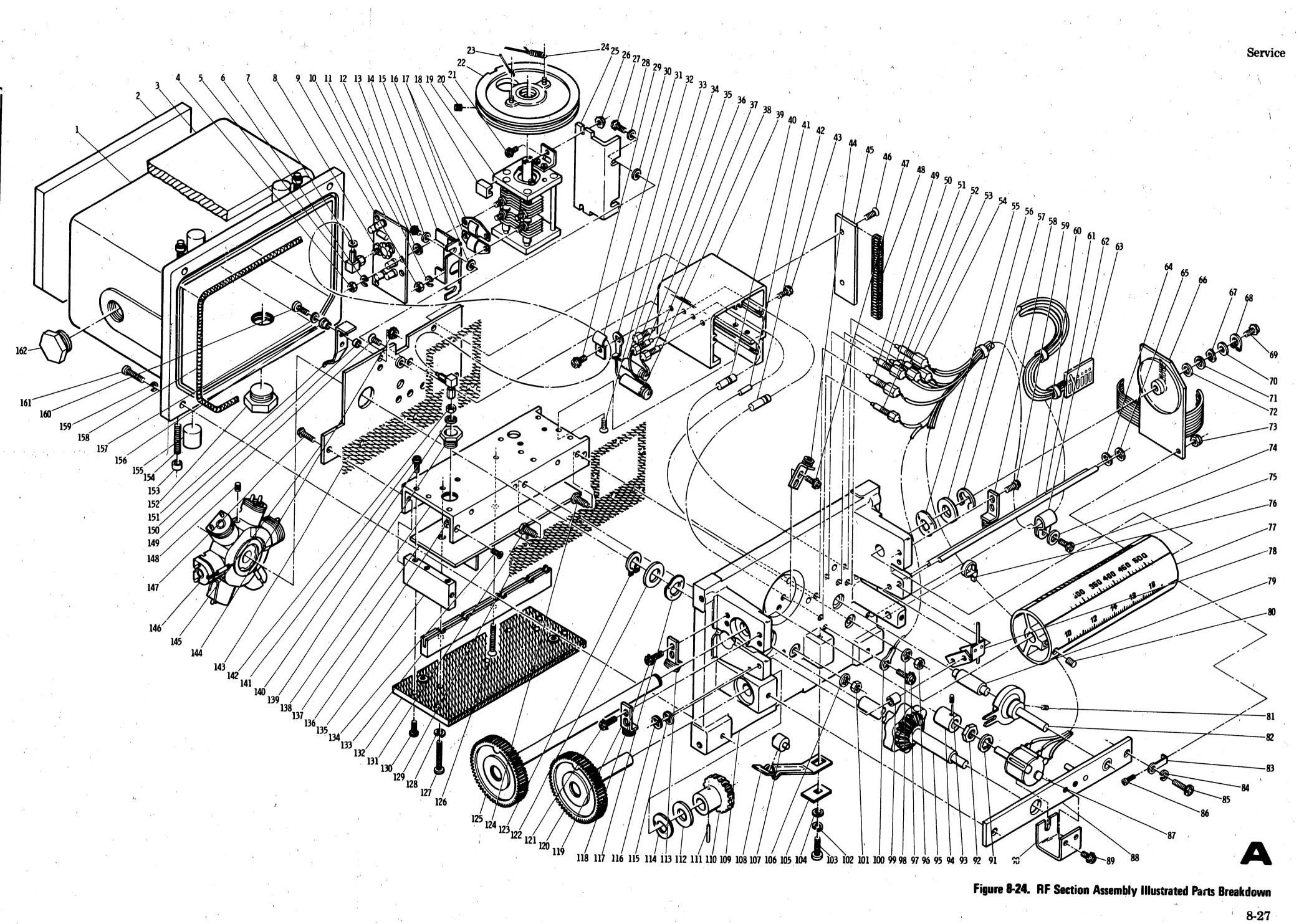
ductor pins with the capacitor contacts. The minimum deflection of the contacts on any range should be greater than or equal to 0.8 mm (1/32 inch). If adjustment is required, loosen two pan-head screws (27) on capacitor bracket and two pan-head screws (13) on FM Modulator Board bracket. Make adjustment by moving entire capacitor assembly just enough so that the contact deflection is as

Replace heatsink on A1A3Q3 and reconnect

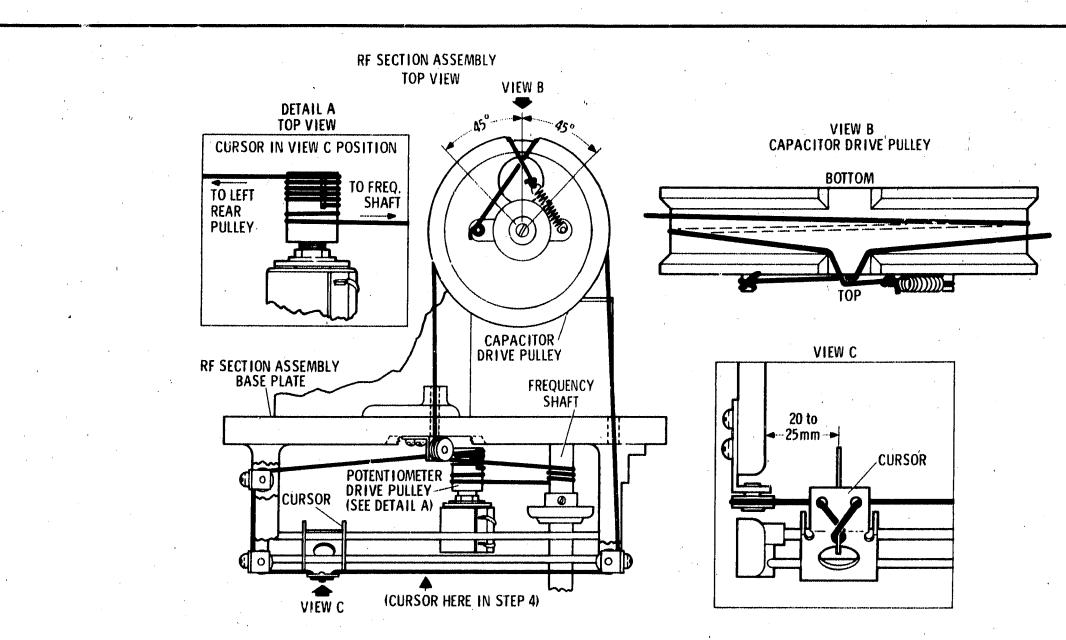
Remove RF Section Assembly (Service Sheet B), the RF Section cover, and the Turret As-

washers and four flat washers (14, 16).

Install the FM Modulator Board Assembly by


. .

A1 RF Section Assembly Legend (Service Sheet A)


A1 RF Section Assembly Legend (Service Sheet A)

ltem No.	Reference Designator	Description	ltem No.	Reference Designator	Description	ltem No.	Reference Designator	Description
1	A1MP30	RF Section Cover	55	A1MP43	Spring Washer	109	A1MP83	Base Plate
2	A1MP19	Back Damp Pad	56	A1MP39	Flat Washer	110	A1MP86	
3	A1MP20	Cover Damp Pad	57	A1MP8	Retainer Ring	111	A1MP9	Counter Gear Shaft
4	A1MP126	Hex Nut	58	A1MP63	Pulley Bracket	111	A1MP40	Spring Pin Flat Washer
5	A1W1	Pickup Cable Assembly	59	A1MP116	Machine Screw	112	A1MP40 A1MP65	Flat Washer
6	A1MP107	Lock Washer	60	A1MP84	Cursor Guide Rod	113	A1MP65 A1MP42	Pulley Bracket
7	P/O A1W1	Ferrite Washer	61	A1MP85	Cursor Guide Rod	114	A1MP42 A1MP6	Spring Washer
8	A1A3J1	RF Jack	62	A1MP124	Nylon Cable Clamp	115	AIMP6 A1MP7	Push On Retainer
9	A1MP115	Hex Nut	63	P1	Terminal Board	110	AIMP7 A1MP38	Push On Retainer
10	A1A3	RF Oscillator Board Assembly	64	A1MP4	Push On Retainer	117	1	Spring Washer
11	A1MP22	Lock Washer	65	A1MP5	Push On Retainer	118	A1MP116	Machine Screw
12	A1MP44	Flat Washer	66	A1A5	Rotary P.C. Switch Assembly	119	A1MP64	Pulley Bracket
13	A1MP100	Machine Screw	67	A1A5MP2	Spring Washer	120	A1MP91	Counter Shaft Assembly
14	A1MP102	Flat Washer	68	A1A5MP3	Retainer Ring	121	A1MP116	Machine Screw
15	A1A2	FM Board Assembly	69	A1MP125	Machine Screw		A1MP41	Flat Washer
16	A1MP102	Flat Washer	70	A1A5MP4	Flat Washer	123	A1MP108	Grip Ring
17	A1MP72,73	Capacitor Contact	71	A1A5MP4	Flat Washer	124	A1A1J3	RF Jack
18	A1MP52,53	Capacitor Damp Pad	72	A1A5MP4	Flat Washer	125	A1MP89	Dial Drive Assembly
19	A1C3	Variable Capacitor	73	A1MP122	Hex Nut	126	A1MP111	Flathead Screw
20	A1MP129	Setscrew	74	A1MP103	Flat Washer	127	A1MP110	Machine Screw
21	A1MP101	Machine Screw	75	A1MP100	Machine Screw	128	A1MP23	Lock Washer
22	A1MP74	Capacitor Drive Pulley	76	A1MP123	Cable Tie	129	A1MP68	Feedthru Shield Gasket
23	A1MP56	Nylon Cord	77	A1MP93	Dial Drum	130	A1MP101	Machine Screw
24	A1MP17	Extension Spring	78	A1MP60	Cursor	131	A1A1J2	RF Jack
25	A1MP128	Capacitor Mount Bracket	79	A1MP77	Frequency Shaft	132	A1MP71	RF Amplifier Cover
26	A1MP104	Hex Nut with Lock Washer	80	A1MP94	Setscrew	133	A1MP81	RF Amplifier Divider
27	A1MP105	Machine Screw	81	A1MP127	Setscrew	134	A1MP109	Flathead Screw
28	A1MP103	FlataWasher	82	A1MP18	Ball Drive	135	A1MP79	RF Amplifier End Plate
29	A1MP101	Machine Screw	83	A1MP3	Solder Lug	136	A1A1J1	RF Jack
30	A1MP103	Flat Washer	-84	A1MP98	Lock Washer	137	A1A1	RF Amplifier Board Assembly
31	A1MP106	Metal Cable Clamp	85	A1MP97	Machine Screw	138	A1MP80	RF Amplifier Shield
32	A1MP1	Solder Lug	86	A1MP121		139	A1MP76	Output Amplifier Bushing
33	A1MP109	Flathead Screw	87	AIR2	Machine Screw	140	A1MP26	Lock Washer
34	A1C2	Capacitor	88	AIRZ A1MP78	Potentiometer	141	A1MP101	Machine Screw
35	A1FL2	Feedthru Filter	89	AIMP78 A1MP117	Frequency Plate	142	A1MP31	Hex Nut
36	A1FL8	Feedthru Filter	90	A1MP117 A1MP70	Machine Screw	143	A1MP67	Feedthru Shield Gasket
37	A1FL1	Feedthru Filter	91	A1MP70 A1MP119	Potentiometer Mounting Bracket	144	A1MP115	Hex Nut with Lock Washer
38	A1C4	Capacitor	92	A1MP119 A1MP118	Lock Washer	145	A1MP66	Oscillator Chassis
39	A1MP82	Feedthru Shield	93		Hex Nut	146	A1A4	Turret Assembly
40	A1L2	Inductor	93 94	A1MP120	Set Screw	147	A1MP100	Machine Screw
41	A1R1	Resistor	94 95	A1MP75	Potentiometer Drive Pulley	148	A1A4MP1	Setscrew
42	A1L1	Inductor	95 96	A1MP92	Turret Shaft Assembly	149	A1MP109	Flathead Screw
43	A1MP114	Machine Screw	90 97	A1MP29	Hex Nut	150	A1MP27	Non-Metallic Washer
44	A1MP62	Pulley Bracket		A1MP101	Machine Screw	151	A1MP61	Contact
45	A1MP69	Braid Clamp	98	A1MP24	Lock Washer	152	A1MP87	Threaded Plug
46	A1MP109	Flathead Screw	99	A1MP10	Flex Tubing	153	A1MP11	Flex Tubing
47	A1MP116	Machine Screw	100	A1MP2	Solder Lug	154 (<i>i</i>)	A1MP32	Setscrew
48	A1MP54	RFI Braid	101	A1MP30	Hex Nut	155	A1MP48	Silicon Rubber Damp Pad
49	A1FL7		102	A1MP98	Lock Washer	156	A1MP14	Bushing
50	AIFL6	Feedthru Filter	103	A1MP97	Machine Screw	157	A1MP36	Flat Washer
51	AIFL6 A1FL4	Feedthru Filter	104	A1MP112	Flat Washer	158	A1MP55	Braid
51		Feedthru Filter	105	A1MP58	Leaf Spring	159	A1MP96	Lock Washer
52 53	A1C1	Feedthru Capacitor	106	A1MP25	Lock Washer	160	A1MP99	
00	A1FL5	Feedthru Filter	107	A1MP57	Detent Roller	161		Machine Screw
54	A1FL3	Feedthru Filter	108	-		1 101 1	A1MP95	Machine Screw

A1 RF Section Assembly Legend (Service Sheet A)

- 1. Remove RF Section Assembly (Service Sheet B), RF Section cover, and A1A5 Rotary P.C. Switch Assembly (Service Sheet A). Remove retainer ring, flat washer, and spring washer at right end of dial drum shaft. Loosen dial drum setscrew and remove shaft and drum. (Item numbers in parentheses refer to Figure 8-24.)
- 2. Remove screws (89) securing potentiometer bracket (90) to frequency plate. Remove pot drive pulley (secured by two setscrews) and turn pot fully cw. Loosen setscrews securing frequency tune capacitor pulley (22) and turn capacitor fully cw. Cut 1.3 mm (5½ ft.) of dial cord (A1MP56). Tie two large knots 12 mm (1/2 in.) apart midway in the cord. Insert cord in pot drive pulley slot, capturing knots in center hole.
- Grasp pot drive pulley at slotted end. Wind one end of cord three full turns cw around pulley. Grasp pulley at unslotted end keeping previous turns in place. Wind other length of cord four full turns cw around pulley and fix turns to pulley with tape. Mount pulley on pot shaft so that pulley slot will be horizontal when installed pot is fully cw. Tighten 7. Loosen potentiometer pulley setscrew and remove tape over windings. one pulley setscrew and reinstall pot.
- 4. Route 4-turn end of cord around two left side pulleys to cursor, pinching the cord between the pulleys and their brackets to maintain tension. With cursor positioned just left of center track, feed cord through left cursor hole, 2 turns cw around pin, and through right cursor hole (see View C). Pinch cord between right side pulley and bracket through hole in base plate to frequency tune (large) pulley. Set large pulley so gap in upper edge is $45-90^{\circ}$ ccw from position shown in figure above. Wind

cord around pulley to the gap and tie cord to pin securely with a figureeight knot. The gap should be 45° ccw from position shown above when cord is taut. Tighten one setscrew on large pulley to hold cord taut.

- 5. Feed second length of cord from pot pulley $2\frac{1}{2}$ turns cw and around frequency shaft, placing each turn behind last. Route cord behind green wire soldered to A1FL7, around center pulley, through hole in base plate to frequency tune pulley. Wind cord one full turn cw around pulley to pulley gap. This turn should pass under the other end of cord but over its own previous turn (see View B). Tie cord to spring and hook spring on pin. Cord should have light tension throughout.
- 6. Loosen setscrew in large pulley and lift pulley off capacitor shaft to relieve cord tension slightly. Set cord previously pinched between pulleys and brackets onto pulleys. Replace large pulley on capacitor shaft, relieving cord tension by extending spring.
- Tune cursor to right end of track. Insert allen driver into set screw in pot pulley and apply slight tension as if to tune cursor beyond stop. Tighten both setscrews. (This assures pot does not reach its cw stop when cursor is tuned to high end of range.)
- Replace dial drum and Rotary P.C. Switch Assembly. Perform Tuning Capacitor Pulley Adjustment (paragraph 5-21), and Frequency and Range Adjustment (paragraph 5-22). Replace RF Section cover and perform all FM adjustments (paragraphs 5-23 through 5-25).

Figure 8-25. Model 8654B Dial Stringing Procedure

SERVICE SHEET B

A1 RF Section Removal and Installation Procedures

- Remove all four instrument covers by removing 14 flat-head screws. The covers are shown in Figure 6-1 (MP's 1, 5, 8, and 11).
- Remove A5 FM Driver Board Assembly by carefully disconnecting the ribbon cable connectors (at A5J1 and A5J2), and extracting the board from the 18-pin edge connector. The pins on the ribbon cable connectors are easily bent and should be protected whenever removed from their sockets.
- Loosen two machine screws that secure the meter bracket. Remove one flat-head screw from the top of the trim strip and one machine screw from each end of the strip. Carefully lift strip with meter off of the instrument. Be sure the meter index is free of its hole in the right side frame assembly. Slide meter off of trim strip and return it to the instrument.

CAUTION

Since the meter is not secured, care must be taken that it does not fall out when the instrument is tilted.

- Remove the FREQUENCY RANGE and TUNE knobs from the front panel by loosening two allen screws each.
- 6. Disconnect semi-rigid cables W2 at J5 and W4 at A2J1 using the combination wrench supplied with the instrument.
- 7. Remove two pan-head screws and lockwashers that secure the FM Driver Board support bracket. Remove bracket.
- Remove two flat-head screws from each end of the top RF Section Assembly support bar, and remove bar.

CAUTION

Bars on top and bottom of instrument support the full weight of the RF Section Assembly. To avoid damaging stress to semi-rigid coaxial cables W2 and W4, disconnect cables at J5 and A2J1 before removing support bars.

9. Disconnect 12-pin printed circuit card from J1.

10. Remove two flat-head screws from each end of the bottom RF Section Assembly support bar and remove bar.

> **RF Section Assembly Illustrated Parts Breakdown (A1A1)** and Disassembly Procedures SERVICE SHEET A

Service

SERVICE SHEET B (Cont'd)

11. Carefully lift out RF Section Assembly.

NOTE

Whenever RF Assembly is out of the instrument, take care not to bend dial cursor. It is also recommended that semi-rigid coaxial cables W2 and W4 be disconnected from the RF Assembly (at A1A1J2 and A1A1J3).

RF Section Assembly Installation

CAUTION

While working with and around the semirigid coaxial cables in the generator, do not bend the cables more than necessary. Do not torque the RF connectors to more than 0.5 Nm (5 inch-pounds).

MICROPHONICS

To minimize the possibility of microphonics in the generator, perform steps 1 and 2 before installing the RF Section Assembly.

- A1A1J3.
- are tight.

8-28

Model 8654B

1. Check that semi-rigid coaxial cables W2 and W4 are firmly connected to A1A1J2 and

Check that the four large pan-head screws that secure the RF Section Assembly cover 3. Install RF Section Assembly in the generator by performing steps 2 through 11 of the removal procedure in reverse order.

MICROPHONICS

To minimize the possibility of microphonics in the generator, perform steps 4 through 7 before replacing the instrument covers.

- 4. Check that four rubber damper pads are in place in the top and bottom support bars.
- 5. Check that semi-rigid coaxial cables W2 and W4 are firmly connected at J5 and A2J1. The cables should not be touching the RF assembly casting, the Attenuator assembly casting, or the FM Driver Board Support bracket. The cables should be wrapped together at approximately 50 mm (2-inch) intervals.
- **6**. Check that the FM Driver Board bracket holds the FM Driver Board securely. If not, lift the board and press the bracket in. However, the bracket must not touch the semirigid coaxial cables or the RF connectors.
- Check that the FREQUENCY RANGE and Tune knobs do not touch the front panel as they turn through their range.
- Replace the four instrument covers ensuring that all screws are tight.

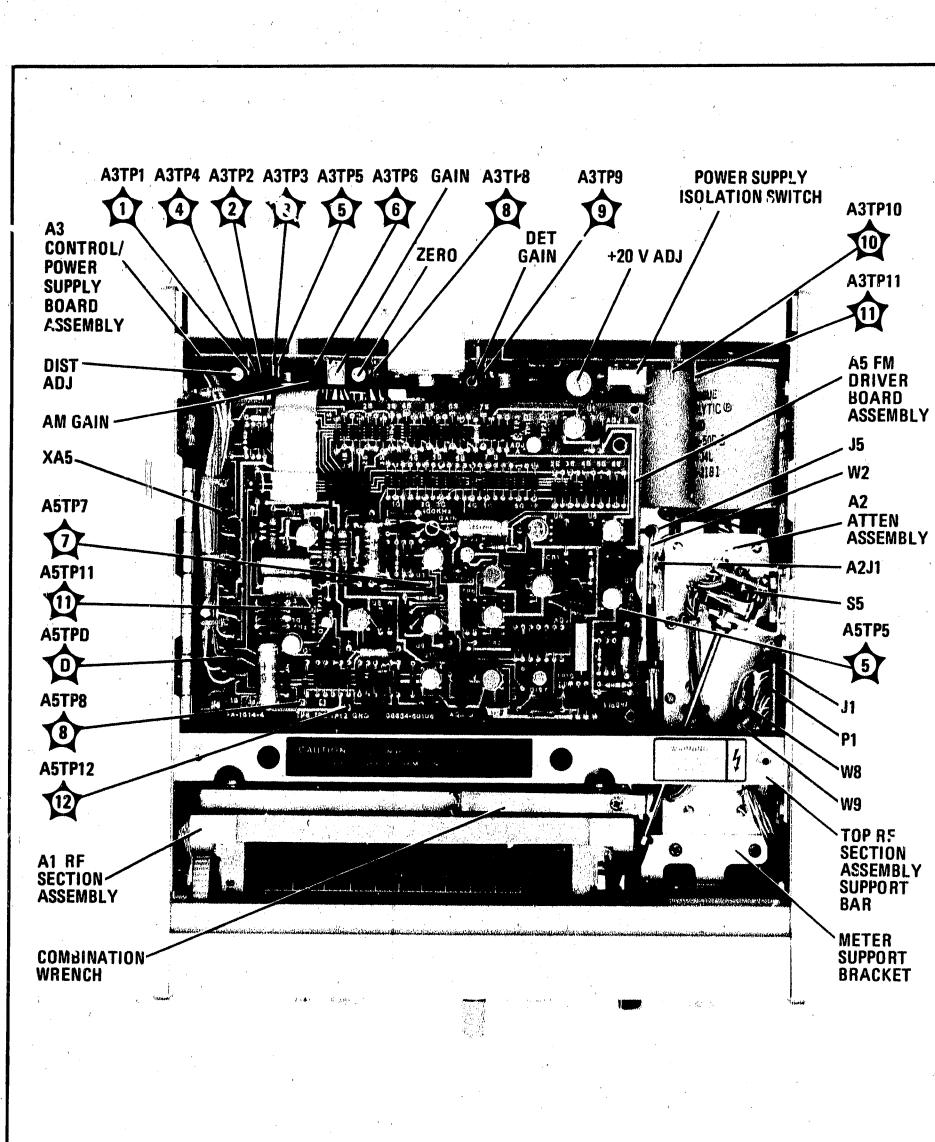
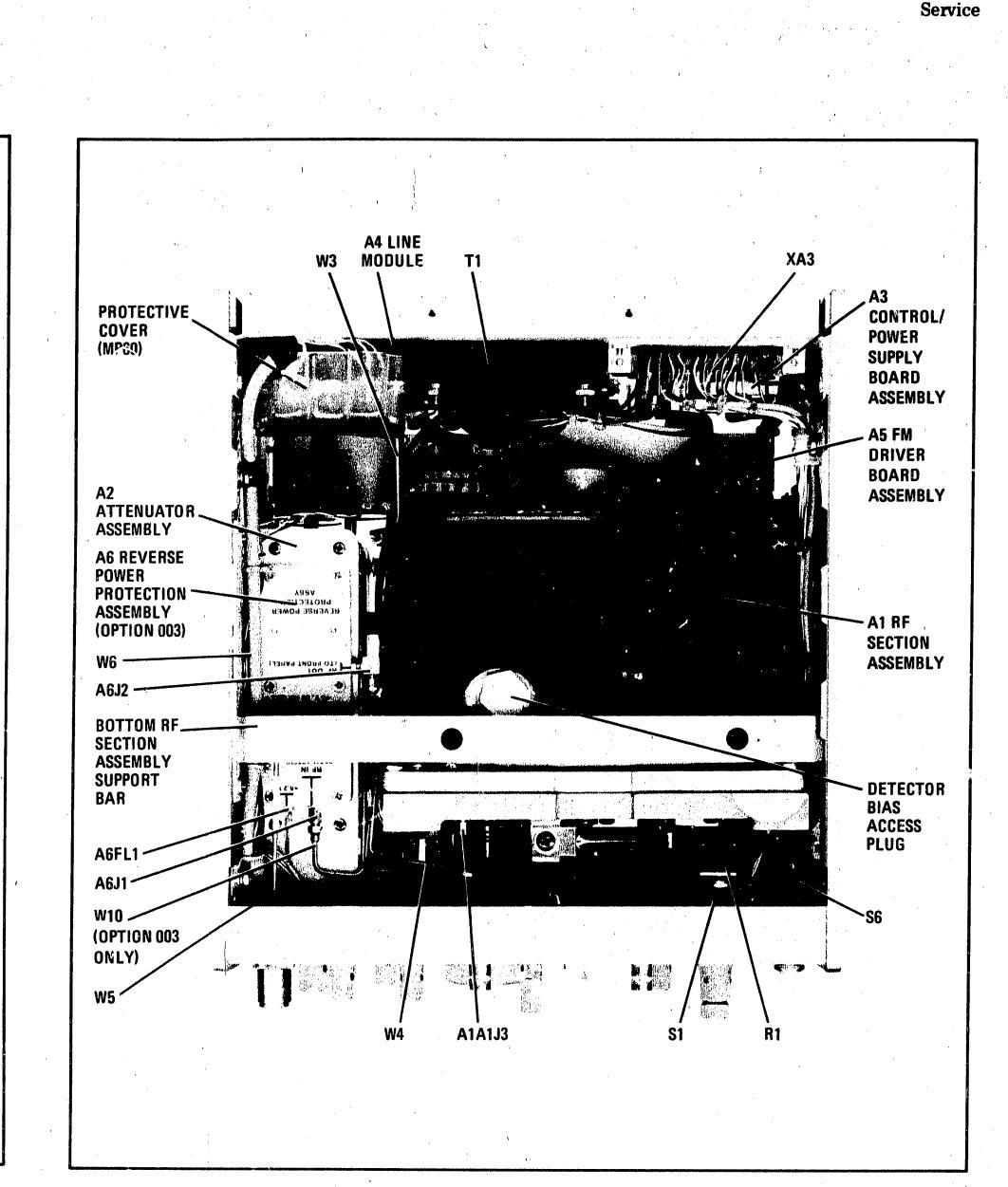
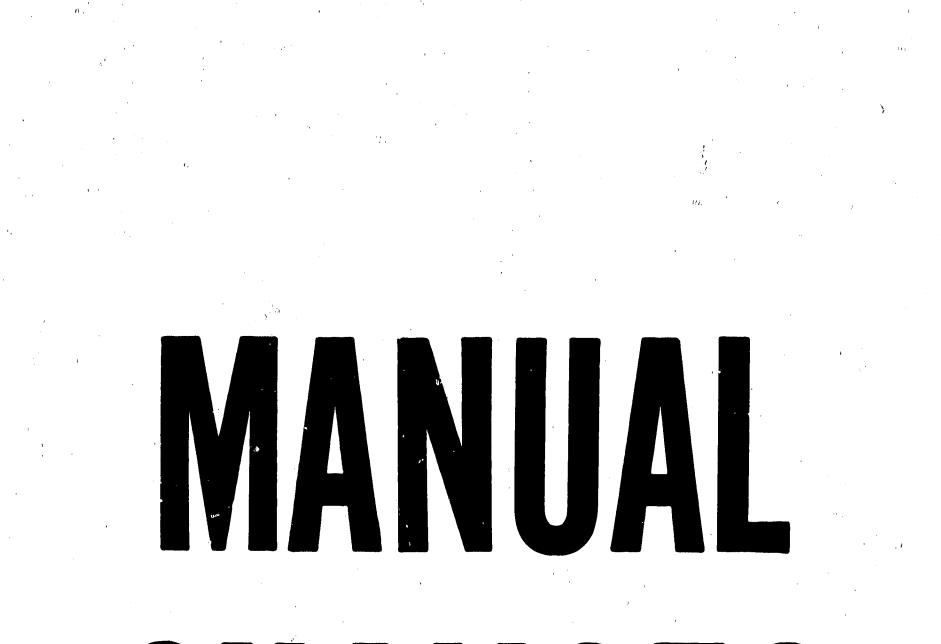



Figure 8-26. Top Internal View



Top and Bottom Internal Views

8-29/8-30

B

CHANGES

 $\frac{1}{rg}$

MANUAL CHANGES

SIGNAL GENERATOR

- MANUAL IDENTIFICATION Model Number: 8654B Date Printed: March 1977 Part Number: 08654-90025

This supplement contains important information for correcting manual errors and for adapting the manual to instruments containing improvements made after printing the manual.

To use this supplement, first, make all ERRATA corrections and then all appropriate serial number related changes indicated in the tables below.

SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES	SERIAL PREFIX OR NUMBER	MAKE MANUAL CHANGES
181 Í A	1		
1842A	1-2		
1844A	1-3		- · · · · ·
1849A	1-4		
1920A	1-5		
2011A	1-6		
2121A	1-7		
2231A	1-8		
2249A	1-9		
2315A	1-10		
2339A	1-11		
>> 2341A	1-12		
		1	
(
	· ·		
		· ·	:

>> NEW ITEM

NOTE: Manual change supplements are revised as often as necessary to keep manuals as current and accurate as possible. Hewlett-Packard recommends that you periodically request the latest edition of this supplement. Free copies are available from all HP offices. When requesting copies, quote the manual identification information from your supplement or the model number and print date from the title page of the manual.

Printed in U.S.A.

01 January 1984 9 Pages Text 2 Pages Illustrations PACKARD

08654-90025

ERRATA

Page i, Title Page:

Under SERIAL NUMBERS, change the first sentence to read as follows: This manual applies directly to instruments with serial numbers prefixed 1710A and 1733A.

Page 1-4, Table 1-1:

Under Frequency Modulation, change the External FM Sensitivity specification to read:

External FM Sensitivity (with FM vernier fully clockwise):² 1 volt peak into 600 ohms yields maximum peak deviation as indicated in table below.

 FM Range (kHz)
 Meter Scale
 Maximum Peak Deviation (kHz)

 3
 0-3
 3.16

 10
 0-10
 10

 30
 0-3
 31.6

 100
 0-10
 100

Under GENERAL CHARACTERISTICS, change Power specifications to read: Power: 100 or 120 volts (+5%, -10%) from 48 to 44C Hz; or 220 or 240 volts (+5%, -10%) from 48 to 66 Hz. Power consumption is 2^{r} VA maximum. 2.29m (7 1/2 ft) power cable furnished with mains plug to match destination requirements.

Page 2-1, paragraph 2-7:

Change the first sentence to read:

"The 8654B Signal Generator requires a power source of 100 or 120 volts (+5%, -10%) from 48 to 66 Hz, single phase."

In Figure 2-1, add the following after the third sentence:

| HARNING |

To avoid the possibility of hazardous electrical shock, do not operate this instrument at line voltages greater than 126.5 Vac with line frequencies greater than 66 Hz (leakage currents at these line settings may exceed 3.5 mA).

40 40

Model 8654B

ERRATA (cont'd)

>> Page 2-1, Paragraph 2-9:

Add the following under NOTE:

Two fuses are supplied with each instrument. One fuse has the proper rating for 110/120 Vac line operation; the other fuse is rated for 200/220 Vac operation.

One fuse is installed in the instrument at the time of shipment. The rating of the installed fuse is selected according to the line voltage specified by the customer. If the voltage is not specified, the rating of the installed fuse will be selected according to the country of destination.

Page 5-15, paragraph 5-23:

Add the following as step 10:

"10. Remove jumper wire between A5TP8 and A5TP12."

In step 11, change the voltmeter reading to 0.60 + 0.10 Vdc.

In step 12, change the adjustment voltage to 0.00 + 0.10 Vdc.

In step 16, change the voltage at A5TP8 to \pm 0.10 Vdc.

Page 6-6, Table 6-2:

Delete the AlAl 08654-60022 and 08654-60051 listings. (Restored 08654-60022 and 08654-60051 Board Assemblies no longer available). AlAl: For recommended replacement, see CHANGE 3.

NOTE

When replacing AlAl, part number 08654-60002 or 08654-60050, replace RF Amplifier Cover, AlMP71 and order associated hardware AlMP130, AlMP131 and AlMP132. See CHANGE 3 for part numbers.

AlAlC1-3,5,6,11,13-15,17,18,22: For recommended replacement, see CHANGE 10.

AlAlQ6: For recommended replacement, see CHANGE 11.

Page 6-10, Table 6-2:

A3U3: Change Part Number to 1826-0092 and under the Description add: (recommended replacement).

A3U4: For recommended replacement, see CHANGE 10.

Page 6-13, Table 6-2:

>> A5Ul and A5U8: For recommended replacement, see CHANGE 10.

>> A5U10: For recommended replacement, see CHANGE 12.

>> Page 6-15, Table 6-2:

Change R1 to HP Part Number 2100-2063 (CD5) RESISTOR-VAR CONTROL CCP 1K 10% LIN.

Page 6-17, Table 6-2:

Add MP67 08654-00057 COVER, TRANSFORMER (MP66 not assigned). Add MP68 7120-7032 LABEL, SAFETY (CD5). MP26: Change Part Number to 0370-3051. MP39: For recommended replacement see CHANGE 9.

2)

ERRATA (cont'd)

Page 8-19, Figure 8-15, Service Sheet 4 (schematic):

In the lower right hand portion of the schematic change the off-page indicator 3 U to 3 H.

In the center portion change U3A part number to 1826-0092.

Page 8-23, Figure 8-19:

P/O A5 FM Driver Board Assembly Component Locations. In the center of the board, change the following designations:

R52 becomes R54

R51 becomes R52

R54 becomes R51

Page 8-23, Figure 8-20, Service Sheet 6 (schematic):

Add pin number "11" to the junction of A5J2 and A1A5P2 for the line labeled "+29.4V \mathbb{R} ".

- 4 -

08654-90025

Model 8654B

CHANGE 1

Page 6-9, Table 6-2:

Make the following changes to the A3 listings:

Add A3C30 0180-2214 CAPACITOR-FXD 90 UF +75 -10% 16 VDC AL. Delete CR1 and CR2.

Add CR19-CR26 1901-0327 DIODE-PWR RECT 200V 1A 6US.

Page 8-25, Service Sheet 7 (component locations):

Replace Figure 8-21 with the attached Figure 8-21. P/O A3 Control Power Supply Board Assembly Component Locations (P/O CHANGE 1). Page 8-25, Service Sheet 7 (schematic):

Make the following changes to the A3 Assembly.

Add C30, 90 uF, across VR2 with the positive polarity connected to the +5.2V line.

Delete the dashed line around CR1 and CR2.

Change the reference designators of CR1A-D and CR2A-D to the following:

Change CR1A to CR19. Change CR1B to CR20. Change CR1C to CR21. Change CR1D to CR22. Change CR2B to CR23. Change CR2B to CR24. Change CR2C to CR25. Change CR2D to CR26.

CHANGE 2

Page 6-9, Table 6-2:

Change A3C12 to 0180-1746 CAPACITOR-FXD 15 UF + 10% 20 VDC TA (CD5). Page 8-25 Service Sheet 7 (schematic):

Change A3C12 to 15 uF.

- 5 -

Model 8654B

CHANCE 3

Page 5-2, Table 5-1:

Reference Designator	Basis of Selection	Normal Value Barge	Service Sheet
AJA1C4 and	(See AlA3C6 selection) If the AlA1 RF	0-6.8 pF	3
AIAIL3	Amplifier Assembly has been repaired, selection of AlAlC4 and L3 may be		
	necessary in order to achieve the proper	İ	
	RF output level. Check the output level at the rear panel AUX RF OUT connector.		
	If the output level at the high end of		
	the 270-520 MHz range is lower than the published specification, adjust AlAlL3		
	by increasing the spacing between its		
	turns, which increases the power output. Adjust AIAIL3 until the AUX RF OUT level		
	is just within specified limits.		
	Excessive power may cause the second harmonic to be out of specification. If		
Í	after adjusting the inductor, the level		•
	is still out of specification, increase ALALC4 one standard value and repeat		
	adjustment of APALL3. Perform Harmonic		
1 1	Listortion Test (peragraph 4-14) and Output Level Flatness Test (paragraph		
· · ·	4-18).		
Change Page 6-6	Table 6-2: ALMP71 to $08654-00060$ (CD4). and 6-7, Table 6-2:	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Add All Change	MP130 0520-0130 SCREN-MACH 2-56 .375-IN-LG MP131 2190-0890 WASHER-LK HLCL NO.2 .088-IN MP132 3050-0098 WASHER-FL MTCL NO.2 .094-IN A1A1 (08654-60002) to 08654-60092.	-ID (CD1).	(CD1)
Change (CDO).	A1A1 (08654-60050) to 08654-60093. A1A1C4 to 0160-3872 CAPACITOR-FXD 2.2 PF		
Add Al	AICR6 and CR7 1901-0050 DIODE SWITCHING 8CV	200 MA 2NS 1	00-35
(CD3).	,		
Change	AlAll3 to 08654-80002 INDUCTOR RF 35 NH (CI k (indicating a factory selected value).	02) and add a	an

LINK SGL TO-12-PKG (CD8). Add A1A1VR1 and VR2 1902-0579 DIODE-ZNR 5.11V 5% DO-15 PD=1W TC=.009% (CD3). Page 5-17, Table 6-2: Change MP60 to 4040-1083 COVER POWER MODULE (CD8).

CHANGE 3 (cont'd)

Page 8-15, Service Sheet 3 (component locations):

Replace Figure 8-10 with the attached Figure 8-10. AlAl RF Amplifier/ALC Board Assembly Component Locations (P/O CHANGE 3).

Page 8-15, Service Sheet 3 (schematic):

Change AlAlC4 to 2.2 pF.

Change AlAlL3 to 3.5 nH and add an asterisk (indicating factory selected value).

Replace appropriate portion of the schematic diagram with the attached partial schematic. P/O Figure 8-11. RF Amplifier/ALC Assembly Schematic Diagram (P/O CHANGE 3).

Page 8-26, Service Sheet A (Al RF Section Disassembly and Reassembly Procedures):

Under RF Amplifier/ALC Board Assembly Removal (AlAl), add the following as the first sentence in step 2:

"Remove four machine screws (123A) with washers (123B, 123C) that secure the thermal links to the RF Amplifier cover.

Under RF Amplifier/ALC Board Installation (AlAl), add the following as the second sentence in step 8:

"Replace and tighten the four machine screws (123A) with washers (123B, 123C) that secure the thermal links to the RF Amplifier cover."

Page 8-27, Service Sheet A (legend):

Add the following to the Al RF Section Assembly legend:

Item Number 123A AlMP130 Machine Screw.

Item Number 1238 AlMP131 Lock Washer.

Item Number 123C AlMP132 Flat Washer.

Page 8-27, Service Sheet A, Figure 8-24:

Replace appropriate portion of Figure 8-24 with the attached partial figure, P/O Figure 8-24. RF Section Assembly Illustrated Parts Breakdown (P/O CHANGE 3).

CHANGE 4

Page 6-15, Table 6-2:

Change R8 to 0698-3162 46.4K 1% .125W F TC=0+100 (CDO). Page 8-25, Service Sheet 7 (schematic): Change R8 to 46.6k.

CHANGE 5

Page 6-15, Table 6-2:

Change S1 to 3101-0415 SWITCH-SL DPDT MINTR .5A 125 VAC/DC (CDO).

- 7 -

08654-90025

Model 8654B

CHANGE 6

Page 6-10, Table 6-2:

Change A3U4 to 1826-0547 IC O? AMP DUAL 8-DIP-8 (CD3). Page 6-13, Table 6-2:

Change A5U1, U8 and U10 to 1826-0547 IC OP ANP DUAL C-DIP-8 (CD3). Page 8-19, Service Sheet 4 (schematic):

Change A3U4 to 1826-0547.

The physical location of capacitor Cl has been changed. Cl is no longer soldered directly to switch Sl, but is now mounted on a solder lug which is attached to the Attenuator support bracket.

NUTE

This change does not affect the schematic diagram.

Page 8-21. Service sheet 5 (schematic): Change A5U1 to 1826-0547. Page 8-23, Service Sheet 6 (schematic): Change A5U8 and A5U10 to 1826-0547.

CHANGE 7

Page 6-6, Table 6-2:

Add Alalel 9170-0847 FERRITE BEAD (CD3).

Page 6-10, Table 6-2:

Change A3R44 to 0698-3159 RESISTOR 26.1E .125W F TC=9+100 (CD5). Change A3R45 to 2100-3355 RESISTOR TRAR 100K 10% C SIDE ADJ 1-TRN (CD0).

Page 8-15, Service Sheet 3 (schematic):

Add AlAlEl ferrite bead on the Q4 end of R14. <u>Page 8-19, Service Sheet 4 (schematic)</u>: Change A3R44 to 26.1k. Change A3R45 to 100k.

CHANGE 8

Page 6-14, Table 6-2 (Replaceable Parts):

Delete A6A1R6, part number 0633-0275.

Add A6A1L3 9100-2249 INDUCTOR RF-CH-MLD 150 NH 10% .105DX.26LG (CD1). Page 8-17, Service Sheet 3A (schemtic):

In "LIMITER" portion of A6A1 REVERSE POWER PROTECTON BOARD ASSEMBLY Schematic, replace 2.7 ohm resistor R6 with 150 nH inductor L3. Replace R6 in A6A1 Component Locator (Figure 8-12) with L3.

CHANGE 9

Page 6-17, Table 6-2:

Change MP39 to 0370-3056 KNOB (FREQUENCY RANGE)

Model 8654B

SW: M

CHANGE 10 - Serial Prefix 2315A

Page 6-6, Table 6-2:

Change AlAlC1-3,5,6,11,13-15,17,13,22 to HP Part Number 0160-5759 (CD6) CAPACITOR-FXD .01UF +-20% 100VDC CER.

Change AlA1C7 to HP Part Number 0160-4077 (CD9) CAPACITOR-FXD .01UF . +-20% 50VLC CER.

Page 6-10, Table 6-2:

Change A3U4 to HP Part Number 1826-0785 (CD1) IC OP AMP LOW-BIAS-H-IMPD DUAL 8-DIP-C.

Page 6-13, Table 6-2:

Change A5U1,8 and 10 to HP Part Number 1826-0785 (CD1) IC OP AMP LOW-BIAS-H-IMPD DUAL 8-DIP-C.

Page 8-19, Service Sheet 4 (schematic):

Change A3U4 to 1826-0785.

Page 8-21, Service Sheet 5 (schematic):

Change A5U1 to 1826-0785.

Page 8-23, Service Sheet 6 (schematic): Change A5U8,10 to 1826-0785.

CHANGE 11

Page 6-6, Table 6-2:

Change the first AlAlQ6 entry to "5086-4218 HP-21 TO-72 PKG." Delete the phrase, "(OPTION 003 ONLY)."

Delete the second AlAlQ6 entry. Do not delete the AlAlQ6 heat sink entry.

Page 8-15, Service Sheet 3 (schematic):

Under NOTES, change NOTE 5 to read as follows:

5. PART NUMBERS FOR ALALQ6 AND Q7 ARE:

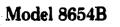
AIA1Q6

ALL INSTRUMENTS: 5086-4218

A1A1Q7

EXCEPT OPTION 003: 1854-0696 OPTION 003 ONLY: 5086-4218

>> CHANGE 12


Page 6-13, Table 6-2:

Change A5U10 to HP Part Number 1826-0111 (CD7) IC OP AMP GP DUAL TO-99 PKG.

Page 8-23, Service Sheet 6 (schematic):

Change A5010 to 1826-0111.

08654-90025

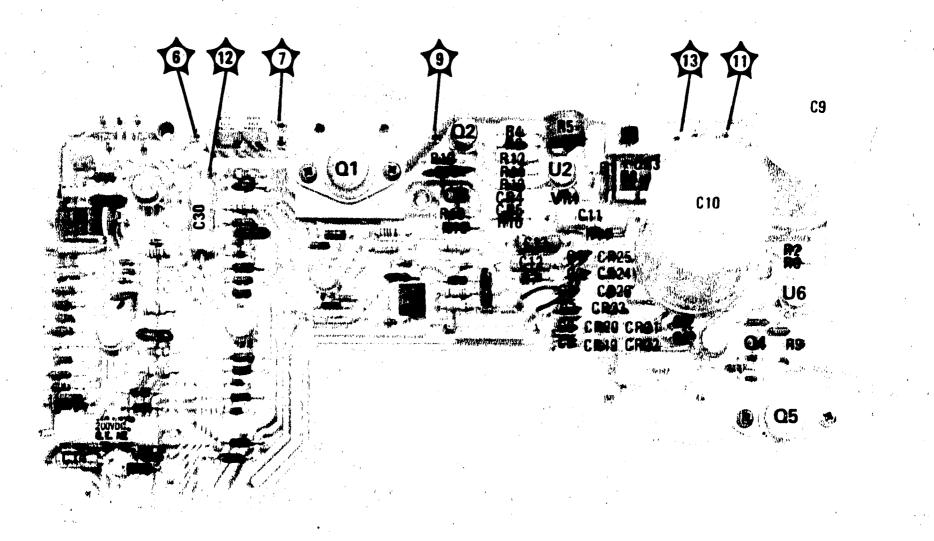
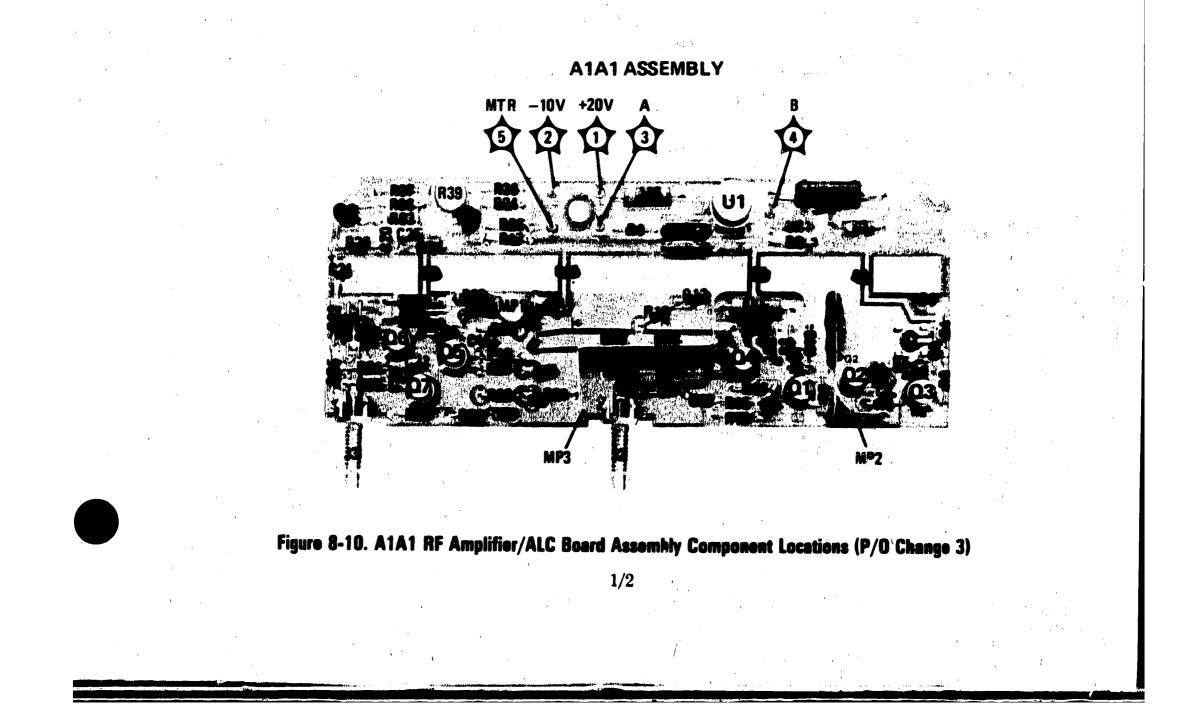
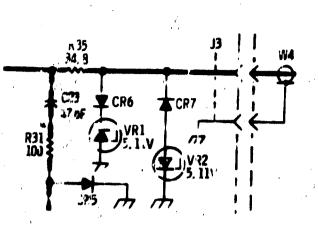
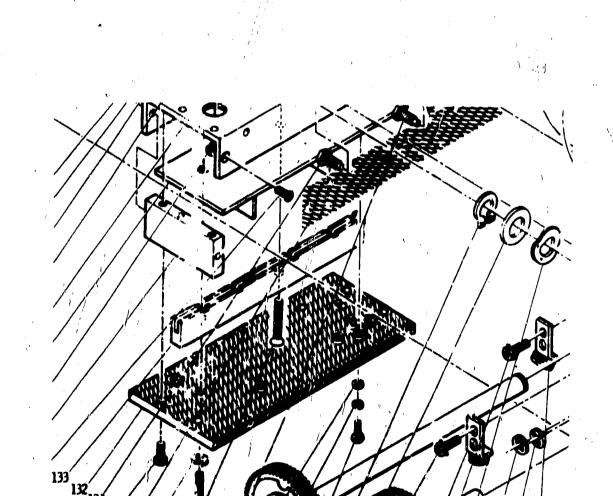
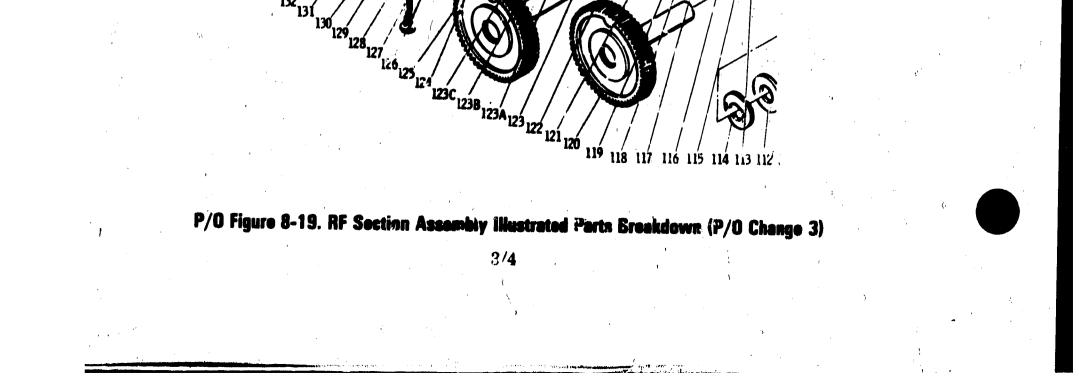




Figure 8-21. P/O A3 Control/Power Supply Board Assembly Component Locations (P/O Change 1)




Model 8654B

08654-90025

P/O Figure 8-11. RF Amplifier/ALC Assembly Schematic Diagram (P/O Change 3)

