
Laboratory to the subject:
 „Design of ASICs”

Bachelor Level

1) Introduction.
 It is intended to perform three exercises as a part of the laboratory. Completion of the exercises
gives as the result design of simple digital IC core which is made using standard cells technique. As the
design tool CADENCE RC Compiler and Encounter are used, as the simulator IRUN/Simvision are also
used. Standard cells library used during labs is made as the result of one student master thesis. The design
of cells were made with UMC 130nm CMOS process.

It is mandatory to complete all 3 exercises in the program lab. At the end of each of exercise
student have to fill enclosed table and send it via email to the person conducting laboratory.

2) Computer accounts and logging in.

All students attending the labs will obtain account with the login name according to the following
format:

s_xyyy
where: x – first letter of the name, yyy – full surname without national diacritics. Immediately after
switching on of the computer in the lab (room EA308) it is necessary to choose LINUX as the starting OS
(Win XP is the default one).

NOTE: login name have to be typed in using only lowercase letters otherwise system will allow to log
in to the computer but rights to the network directories will not be granted properly (they are used for
distribution of the CADENCE software as well as technology dependent files and libraries).
After first login it is mandatory to change the password from default to user given one. It can be
performed by the command:

passwd
typed in LINUX terminal. LINUX terminal can be opened by right clicking in the desktop area and
selecting Open in Terminal as it is shown at the figure below:

Account system used in the lab is common for all computers. Anyone can log in using the same

login name to all machines. User file system is unique and different at all computers. Due to above
reasons it is advised to take the same computer place in consecutive labs because there will be current
working files on that particular machine. Unfortunately, there is sometimes need to copy files from one
machine to another. In such a case one can use Linux scp command. For example if user named s_xyyy
wants to copy the directory named lab1 recursively including all the files it includes from the computer
named fpgalab5 to the current directory in currently logged in machine should issue following command
in the terminal:

scp –r s_xyyy@fpgalab5:/home2/s_xyyy/lab1 .
Please note dot at the end of the comment which mean current directory. Please also note that in the lab
EA308 users directory is placed in /home2 folder.

3) Main information regarding CADENCE software.
 The CADENCE software is installed in the following directory:
/cadence/cadence2012_2013. In order to use the software the number of environmental variables
has to be set. There is a script prepared to run all necessary settings, please run the command (in the
terminal):

 source /cadence/cadence2012_2013/c64bit.csh
Hint: you can use TAB key to prompt for possible file and directory names during entering the above
command. Next you should create new empty folder for your design and enter it below are some basic
commands which can help with this task:
changes directory into user’s home directory which in our case is /home2/s_xyyy
 cd
creates new directory named new_directory_name:
 mkdir new_directory_name
enter into directory
 cd new_directory_name
running a software, in below example running digital simulation console:

 nclaunch –new &
Character ”&” after command means that process will be run in the background and terminal will be
released for entering another command.

Cadence software suite includes comprehensive support environment which can be started by entering
command

cdnshelp &
After that help window opens as it is shown in the below figure.

There are possible help packets to be selected at the bottom of the Cadence Help window. In the
above figure it is ASSURA-6154.12 and EDI11.12. To add other necessary packets click button
Add/Remove in the Library subwindow and next press Add.. and then from the list of the
available can be chosen needed one, please observe example explaining help packets location below:

/cadence/cadence2009_2010/(name of needed packet)/doc.
After adding needed help suite there are possible options to sort according to document type or Product

type. Alternatively, by clicking on the task bar needed document can be viewed as PDF instead of
hypertext. In case if there are difficulties in opening PDF documents it is necessary to configure Firefox
as PDF reader. To do this click menu Edit/Settings next tab Applications, then click Add and
next enter pdf in the column Ext and firefox in the column Application.

Lab 1
Simulation of simple digital block

Optional but recommended: There is tutorial included in Cadence Help explaining how to perform
simulation. Please run command cdnshelp to open help window. Next choose Incisive_12.1 and
then please click following buttons:

View Documents – By Document Type
expand sign ”+” in documents given in 12.10
expand sign ”+” in documents entitled Getting Started
double click into Verilog/VHDL Tutorial

Going back to the lab exercise please prepare VHDL description of the digital circuit which

should include following 4 blocks:
cw_1 – main block consisting of 3 remaining blocks,
dzielnik – synchronous frequency divider with asynchronous reset, constant divide ratio equal to 100,
licznik – synchronous counter with asynchronous reset, count range: 0-9,
dekoder – combinatorial block which should include BCD to 7 segment LED decoder for common
cathode display.
All the blocks should be connected exactly as it is shown in the below figure. Used signal names should
be also as in the figure. Additionally please prepare testbench file with the entity named
cw_1_testbench which should instantiate cw_1 and generate input signals. Test signal reset_i
should be active until 35 ms, signal f_100Hz_i should be square wave of frequency equal to 100Hz.
Each of blocks (VHDL entity) should be placed in separate VHDL file named as block name with the
extension .vhdl. For making description you can use any text editor, for example: gedit, vi or
emacs.

To check VHDL syntax use below command:

ncvhdl –messages –V93 name_of_the_file.vhdl
In the case there are errors there will be information given with the line and column in which an error
occurred. If there are many errors please start correction with first error! After checking all the files
please start the simulation wit the command:

nclaunch –new &
The window should be raised:

There are 2 modes of simulation possible but we use single step one. Please press button Single Step
and below shown window should open:

Default there is Verilog file filter set. To browse VHDL files enter .vhdl in Filters filed. Next add
all the files which were previously checked against VHDL syntax correctness. First browse for the file an

next press button. Then choose menu Tools/ IRUN and check field Other Options and enter
text: –top cw_1_testbench –V93. It is necessary in order to indicate which block is of the highest
hierarchy. After that window should look like:

Please click OK and if all the files are VHDL syntax correct SimVsion simulator should automatically
start. SimVsion starts with 2 windows named: Design Browser and Console as it is shown
below:

To made simulation and see results on the waveform signals should be selected and “send” to waveform.

Please select signals in the Design Browser and the press . Clicking „+” just next to name of
design will expand hierarchy, all signals from any point of the hierarchy can be selected and then send to
waveform. For example, in the figure below, all signals of block cw_1_tesbench and internal data
and f_1Hz are added to the waveform.

Simulation starts after clicking right arrow , but it is worth to limit end time before simulation starts
(by clicking down arrow). Time unit can be changed using button: . Simulation restart can
be made through . Time scale can be changed by dragging time cursor given at the bottom of
waveform or by clicking one of the buttons which are situated at the right high side. In the case
when some VHDL files should changed simulation restart can be performed using menu: Simulation/
Reinvoke Simulator.../ Yes.
 SimVision simulator have many additional functions and only two of them are described
below:
Finding places where signal is set/changed
We want to find place in the source code where signal f_1Hz changes value from 1 to 0, in order to
make it is necessary to:

a) made simulation containing signal f_1Hz in the waveform,
b) click on the signal f_1Hz,

c) click on the symbol , which starts searching for signal changes, it is necessary to click as many
times as needed to find interesting time point,

d) click menu Explore/Go To/Cause, Source Browser window should rise up in which it
is possible to choose signal control cases (left side), at the same time right part shows source code
with the arrow pointing to the code line,

e) window including source code is used only for code browsing, if some code changes are to be
made one can run text editor through menu Edit/Edit File, default system editor is vi, to
change default to any other can chose menu Edit/ Preferences/ Source
Browser/ Editor Command, and next enter command, for example command xterm -e
gedit %F runs gedit,

f) after source codes changes simulation has to be restarted through menu
Simulation/ Reinvoke Simulator.../ Yes.

Browsing schematics
Schematic browsing can be made through selecting block to be viewed and then „sending” it to the
Schematic Tracer. For example we wants to see full schematic of our design then we should:

a) in the window Design Browser select block WORKLIB:CW_1_TESTBENCH,

b) send selection to the schematic tracer clicking ,
c) Schematic Tracer window should open, selecting object and clicking one can

change current hierarchy point.

Annex: Model protocol:

LAB 1, Design of ASICs
No Desciption Value
1 Date of completion
2 Name and surname
3 Screen of simulation window, all signals of the top block should be included.

Simulation time 15 s.
4 File: cw_1_testbench.vhdl
5 File: cw_1.vhdl
6 File: dzielnik.vhdl
7 File: licznik.vhdl
8 File: dekoder.vhdl

Bogdan Pankiewicz, Gdańsk, September 2010
Amendments:Oct. 2011,Sep. 2014

LAB2

Logic synthesis and simulation after synthesis

Help for EDI11.12 - synthesis: PDF version of the help to RTL Compiler is available:
/cadence/cadence2012_2013/edi_11.1/doc/rc_start/rc_start.pdf and
rc_user/rc_user.pdf. Alternatively, it is also possible to run command cdnshelp & and next
choose library EDI11.12/ RTL Compiler.

During the LAB2 logic synthesis of the circuit prepared as the result of he LAB1 in made. After
that simulation of synthesized circuit is also made.

NOTE:

 If someone want to use given in LAB2 commands directly, without need of paths and file
names changes, should prepare working directory as follows:

- create directory lab2 and enter it,
- create subdirectories: hdl, rpt and out,
- to perform above mentioned steps it is necessary to:

open terminal and run following commands:
cd
mkdir lab2
cd lab2
mkdir hdl
mkdir rpt
mkdir out

- next, into subdirectory hdl prepared during Lab1 VHDL files should be copied,
- running of the RC Compiler should be performed from lab2 directory.

Cadence software for logic synthesis is RTL Compiler. Software starting is made from the

terminal through command:
rc or rc –gui

if we want to also rise up graphical window. After starting up the software commands are issued using
text mode. General help can be obtained by command help. Help regarding certain specific command
can be obtained by command help name_of_command.

Typical design flow is presented in the below figure. This figure is taken from the
RTL Compiler help and it is basic flow which does not contain advanced possibilities such as: DFT,
clock gating, low power and many others.

During this lab we also will go through basic flow, if someone wants to extend please find appropriate
chapter in the RTL Compiler manual. First step during the synthesis is setting of paths and libraries.
All the settings are made through attribute setting. In order to set directory which will be searched for
HDL files hdl_serch_path attribute should be set. For example if we want our HDL files to be
searched in hdl subdirectory following command should be run:

 set_attribute hdl_search_path ./hdl /
Character / at the end of the command means setting attribute to the root of the design. Setting path for
library searching:

set_attribute lib_search_path /techfiles_ldap/umc_ksmi_lab/lib /
To check value of the attribute following command can be used:

get_attribute checked_attribute_name
At the computers in the lab EA308 directory /techfiles_ldap contains various libraries divided for various
manufacturers and technologies. During this lab libraries for 130nm CMOS UMC process are used and
are located at /techfiles_ldap/umc_ksmi_lab. Some of the files are confidential and users
have access only to public files. Above mentioned directory includes following subdirectories:

- lib libraries of the standard cells in the Liberty format, three types of cells are given:
typical, fast and slow,

- techLEF containing general LEF file (description of supported metal layers and vias),
- cellsFEF containing shapes and pinout of the cells,
- verilog and VHDL containing descriptions of the standard cells in Verilog and VHDL

formats, can be used for simulations and are also available in three speed grades.
There is also possible to prepare script and run in RC Compiler. In order to do it include command can
be used. RC Compiler during work logs all issued commands into default file named rc.cmd, logs
also all console infos into file rc.log. To rerun previously made commands one can use command:

include rc.cmdxx where xx is the last number of log.
Going back to the lab, all the HDL files have to be placed in the hdl directory and the search path should
be set as in above examples. Next read in libraries by command:

set_attribute library {cells_typical.lib cells_best.lib
cells_worst.lib } /
In this point LEF files can also be read in. It is not necessary but improve delay calculation.

set_attribute lef_library {../techLEF/tech8m2t/tech8m2t.lef
../cellsLEF/cells.lef} /
Reading in of single file can be made without {} parenthesis, for many it is obligatory. In the next step
HDL files are read in:
read_hdl -vhdl {cw_1.vhdl dekoder.vhdl dzielnik.vhdl licznik.vhdl}
Source files should have UNIX line terminations otherwise errors may occur (Window files have to be
converted first). Parameter –vhdl means VHDL files, defaults RTL Complier reads in Verilog files.
 Next step is elaboration which builds general structure of the design and checks semantics
correctness.

elaborate
After elaboration, if RC Compiler was run with -gui option, in the graphical window block diagram
should appear. It can be browsed and one can go deeper through expanding ”+” character in the
Hierarchy tab. Next step is adding constraints. All the constraint can be divided into 3 main
categories:

- work conditions,
- clock signals,
- I/O timing constraints.

Constraints can be set using following methods:
- manual entering in the RTL Compiler program,
- reading in constraint file,
- reading in constraint file in SDC format.

In this lab only timing constraints will be set. First clock with the period 3500ps and name CLK will be
defined:

define_clock -name CLK -period 3500 [find / -port f_*]
Additionally I/O paths are supposed to have extra delay 100ps:

external_delay -output 100 -clock CLK [find / -port a]
external_delay -output 100 -clock CLK [find / -port b]
external_delay -output 100 -clock CLK [find / -port c]
external_delay -output 100 -clock CLK [find / -port d]
external_delay -output 100 -clock CLK [find / -port e]
external_delay -output 100 -clock CLK [find / -port f]
external_delay -output 100 -clock CLK [find / -port g]
external_delay -input 100 -clock CLK [find / -port rs*]

Command find works on the entire design hierarchy and can be used in scripts.
Next step is logic synthesis:

synthesize -to_mapped
After synthesis as the result netlist using standard cells is obtained. Graphical window of the program
shows detailed schematic of resulting circuit.
Last step is reports generation final netlist generation:

report timing
report area
report timing > ./rpt/timing_umc.rpt
report area > ./rpt/area_umc.rpt
write_hdl > ./out/cw_1_umc.v
write_sdf > ./out/cw_1_umc.sdf
write_sdc > ./out/cw_1_umc.sdc

As the result of above commands, in directories rpt and out, reports and final netlist are placed.
Additionally in the out directory constraint file in SDC format is placed. It is necessary for next lab –
implementation.

 Second part of the lab is timing simulation of the circuit after synthesis. Simulation is made
identical as in Lab1, the only differences are that different files are to be read in. After launching
simulation:
 nclaunch –new &
Please choose Single step and add files:
/techfiles_ldap/umc_ksmi_lab/verilog/cells_typical_corrected.v - which is
standard cells library in Verilog format,
./out/cw1_umc.v - which is netlist resulting from synthesis process and
./hdl/cw_1_testbench.vhdl – which is previously prepared testbench for functional simulation
Before reading in testbench file please change frequency of the clock to 100MHz and fasten release of the
reset. Simulation waveform should include delays caused by gates and flip-flops used in the circuit.

Annex: Model protocol:

LAB 2, Design of ASICs
No Description Value
1 Date of completion
2 Name and surname
3 Snapshot of the synthesis graphical window – top hierarchy cw_1

4 Snapshot of the synthesis graphical window – expanded block top hierarchy licznik

5 Snapshot of the synthesis graphical window – expanded block dzielnik

6 Snapshot of the synthesis graphical window – expanded block dekoder

7 Snapshot of the simulation window which will show delays of signals

8 Delay of the signal f_1Hz relative to
f_100Hz

 Bogdan Pankiewicz, Gdańsk, September 2010, 2014

LAB 3 – in translation process

