
R

Constraints
Guide

10.1

Constraints Guide www.xilinx.com 10.1

Xilinx is disclosing this user guide, manual, release note, and/or specification (the "Documentation") to you solely for use in the development
of designs to operate with Xilinx hardware devices. You may not reproduce, distribute, republish, download, display, post, or transmit the
Documentation in any form or by any means including, but not limited to, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written consent of Xilinx. Xilinx expressly disclaims any liability arising out of your use of the Documentation. Xilinx reserves
the right, at its sole discretion, to change the Documentation without notice at any time. Xilinx assumes no obligation to correct any errors
contained in the Documentation, or to advise you of any corrections or updates. Xilinx expressly disclaims any liability in connection with
technical support or assistance that may be provided to you in connection with the Information.

THE DOCUMENTATION IS DISCLOSED TO YOU “AS-IS” WITH NO WARRANTY OF ANY KIND. XILINX MAKES NO OTHER
WARRANTIES, WHETHER EXPRESS, IMPLIED, OR STATUTORY, REGARDING THE DOCUMENTATION, INCLUDING ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGEMENT OF THIRD-PARTY
RIGHTS. IN NO EVENT WILL XILINX BE LIABLE FOR ANY CONSEQUENTIAL, INDIRECT, EXEMPLARY, SPECIAL, OR INCIDENTAL
DAMAGES, INCLUDING ANY LOSS OF DATA OR LOST PROFITS, ARISING FROM YOUR USE OF THE DOCUMENTATION.

© 2002–2008 Xilinx, Inc. All rights reserved.

XILINX, the Xilinx logo, the Brand Window, and other designated brands included herein are trademarks of Xilinx, Inc. All other trademarks
are the property of their respective owners.

R

http://www.xilinx.com

R

Preface

About This Guide

The Xilinx® Constraints Guide describes constraints and attributes that can be attached to
designs for Xilinx FPGA and CPLD devices. This chapter contains the following sections:

• “Guide Contents”

• “Additional Resources”

• “Conventions”

Guide Contents
This Guide contains the following chapters:

• Chapter 1, “Introduction,” discusses What’s New in this Guide for ISE™ Release 10.1,
and provides a Supported Architectures table showing the Xilinx devices supported
for each constraint.

• Chapter 2, “Constraint Types,” discusses the various types of constraints documented
within this Guide, including CPLD fitter, grouping constraints, logical constraints,
physical constraints, mapping directives, placement constraints, placement
constraints, routing directives, synthesis constraints, timing constraints

• Chapter 3, “Entry Strategies for Xilinx Constraints,” discusses entry strategies for
Xilinx constraints, including which feature of the ISE software to use to enter a given
constraint type.

• Chapter 4, “Timing Constraint Strategies,” provides general guidelines that explain
how to constrain the timing on designs when using the implementation tools for
FPGA devices.

• Chapter 5, “Xilinx Constraints,” describes the individual constraints that can be used
with Xilinx FPGA and CPLD devices, including, for each constraint, architecture
support, applicable elements, description, propagation rules, syntax examples, and,
where necessary, additional information for particular constraints.

Additional Resources
To find additional documentation, see the Xilinx website at:

http://www.xilinx.com/literature.

To search the Answer Database of silicon, software, and IP questions and answers, or to
create a technical support WebCase, see the Xilinx website at:

http://www.xilinx.com/support.
Constraints Guide www.xilinx.com 3
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=xilinx+literature
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=support

Preface: About This Guide
R

Conventions
This document uses the following conventions. An example illustrates each convention.

Typographical
The following typographical conventions are used in this document:

Convention Meaning or Use Example

Courier font
Messages, prompts, and
program files that the system
displays

speed grade: - 100

Courier bold
Literal commands that you
enter in a syntactical statement ngdbuild design_name

Helvetica bold

Commands that you select
from a menu File → Open

Keyboard shortcuts Ctrl+C

Italic font

Variables in a syntax
statement for which you must
supply values

ngdbuild design_name

References to other manuals
See the Development System
Reference Guide for more
information.

Emphasis in text
If a wire is drawn so that it
overlaps the pin of a symbol,
the two nets are not connected.

Square brackets []

An optional entry or
parameter. However, in bus
specifications, such as
bus[7:0], they are required.

ngdbuild [option_name]
design_name

Braces { } A list of items from which you
must choose one or more lowpwr ={on|off}

Vertical bar | Separates items in a list of
choices lowpwr ={on|off}

Vertical ellipsis
.
.
.

Repetitive material that has
been omitted

IOB #1: Name = QOUT’
IOB #2: Name = CLKIN’
.
.
.

Horizontal ellipsis . . . Repetitive material that has
been omitted

allow block block_name
loc1 loc2 ... locn;
4 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Conventions
R

Online Document
The following conventions are used in this document:

Convention Meaning or Use Example

Blue text
Cross-reference link to a
location in the current
document

See the section “Additional
Resources” for details.

Refer to “Title Formats” in
Chapter 1 for details.

Red text Cross-reference link to a
location in another document

See Figure 2-5 in the
Virtex™-II Handbook.

Blue, underlined text Hyperlink to a website (URL) Go to http://www.xilinx.com
for the latest speed files.
Constraints Guide www.xilinx.com 5
10.1

http://www.xilinx.com

Preface: About This Guide
R

6 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Table of Contents
Preface: About This Guide
Guide Contents . 3
Additional Resources . 3
Conventions . 4

Chapter 1: Introduction
What’s New . 11
Supported Architectures . 11

Chapter 2: Constraint Types
Attributes and Constraints . 17
CPLD Fitter . 18
Grouping Constraints . 19
Logical Constraints. 21
Physical Constraints. 21
Mapping Directives . 22
Placement Constraints. 22
Routing Directives . 24
Synthesis Constraints . 24
Timing Constraints . 24
Configuration Constraints . 28

Chapter 3: Entry Strategies for Xilinx Constraints
Constraints Entry Methods . 29
Constraints Entry Table . 30
Schematic Design . 35
VHDL . 36
Verilog. 36
ABEL . 37
UCF. 37
UCF and NCF File Syntax . 38
PCF . 42
NCF . 43
Constraints Editor . 43
UCF Syntax . 45
Project Navigator. 50
Floorplanner . 50
Floorplan Editor. 51
Constraints Guide www.xilinx.com 7
10.1

http://www.xilinx.com

R

PACE . 51
Partial Design Pin Preassignment . 52
FPGA Editor . 53
Constraints Priority . 55

Chapter 4: Timing Constraint Strategies
Basic Implementation Tools Constraining Methodology . 57
Global Timing Assignments. 58
Specific Timing Assignments . 61
Multi-Cycle and Fast or Slow Timing Assignments . 63
Specific OFFSET Constraints Using PAD and or Register Groups 65
Special Case Path Constraining. 67
Path Coverage Statistics . 69
Static Timing Analysis . 70
Synchronous Timing . 72
Directed Routing . 74

Chapter 5: Xilinx Constraints
Constraint Information . 77
Alphabetized List of Xilinx Constraints. 78
Area Group (AREA_GROUP) . 81
Asynchronous Register (ASYNC_REG) . 87
BEL . 89
Block Name (BLKNM) . 91
BUFG (CPLD) . 93
Clock Dedicated Route . 95
Collapse (COLLAPSE) . 97
Component Group (COMPGRP) . 99
CoolCLOCK (COOL_CLK) . 100
Configuration . Mode (CONFIG_MODE) 102
Data . Gate (DATA_GATE) 104
DCI_CASCADE. 106
DCI_VALUE . 109
Directed Routing (DIRECTED_ROUTING). 110
Disable (DISABLE) . 112
D. rive (DRIVE) 114
Drop Specifications (DROP_SPEC) . 117
Enable (ENABLE) . 118
Enable Suspend (ENABLE_SUSPEND) . 120
Fast (FAST) . 121
Feedback (FEEDBACK) . 123
File (FILE). 125
Float (FLOAT) . 127
8 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

R

From Thru T. o (FROM-THRU-TO) 129
From To (FROM-TO) . 131
Hierarchical Block Name (HBLKNM). 133
Hierarchical Lookup Table Name (HLUTNM) . 136
HU_SET . 139
Input Buffer Delay Value (IBUF_DELAY_VALUE) . 141
IFD_DELAY_VALUE . 143
Input Registers (INREG) . 145
IOB . 146
Input Output Block Delay (IOBDELAY) . 148
Input Output Standard (IOSTANDARD) . 150
Keep (KEEP) . 153
Keeper (KEEPER) . 155
Keep Hierarchy (KEEP_HIERARCHY). 157
Location (LOC). 160
Locate (LOCATE) . 187
Lock Pins (LOCK_PINS) . 189
Lookup Table Name (LUTNM) . 191
Map (MAP) . 194
Maximum Delay (MAXDELAY) . 196
Maximum Product Terms (MAXPT) . 198
Maximum Skew (MAXSKEW). 200
No Delay (NODELAY) . 202
No Reduce (NOREDUCE) . 204
Offset In (OFFSET IN) . 206
Offset Out (OFFSET OUT) . 212
Open Drain (OPEN_DRAIN) . 217
Optimizer Effort (OPT_EFFORT) . 219
Optimize (OPTIMIZE) . 220
Period (PERIOD) . 222
Pin (PIN). 231
POST_CRC . 232
POST_CRC_ACTION . 234
POST_CRC_FREQ . 236
POST_CRC_SIGNAL . 237
Priority (PRIORITY) . 239
Prohibit (PROHIBIT). 240
Pulldown (PULLDOWN) . 244
Pullup (PULLUP) . 246
Power Mode (PWR_MODE) . 248
Registers (REG) . 250
Relative Location (RLOC) . 252
Relative Location Origin (RLOC_ORIGIN) . 282
Constraints Guide www.xilinx.com 9
10.1

http://www.xilinx.com

R

Relative Location Range (RLOC_RANGE) . 284
Save Net Flag (SAVE NET FLAG) . 287
Schmitt Trigger (SCHMITT_TRIGGER) . 289
Slew (SLEW) . 291
Slow (SLOW) . 293
Stepping (STEPPING). 295
Suspend (SUSPEND). 296
System Jitter (SYSTEM_JITTER) . 298
Temperature (TEMPERATURE) . 300
Timing Ignore (TIG) . 302
Timing Group (TIMEGRP) . 306
Timing Specifications (TIMESPEC) . 311
Timing Name (TNM). 314
Timing Name Net (TNM_NET) . 322
Timing Point Synchronization (TPSYNC). 326
Timing Thru Points (TPTHRU) . 329
Timing Specification Identifier (TSidentifier) . 332
U_SET . 336
Use Relative Location (USE_RLOC) . 338
Use Low Skew Lines (USELOWSKEWLINES) . 340
VCCAUX . 342
Voltage (VOLTAGE) . 343
VREF . 345
Wire And (WIREAND) . 347
XBLKNM . 349
10 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

R

Chapter 1

Introduction

This chapter discusses What’s New in this Guide for ISE™ Release 9.1i, and provides a
Supported Architectures table showing the Xilinx® devices supported for each constraint.
This chapter contains the following sections:

• “What’s New”

• “Supported Architectures”

What’s New
The following changes have been made to this edition (ISE Release 9.1i) of the Xilinx
Constraints Guide.

• “DCI_CASCADE” constraint added (Virtex™-5)

• “Hierarchical Lookup Table Name (HLUTNM)” constraint added (Virtex-5)

• “Enable Suspend (ENABLE_SUSPEND)” constraint added (Spartan™-3A)

• “Stepping (STEPPING)” constraint added

• “Attributes and Constraints” and “Configuration Constraints” sections added to
Chapter 2, “Constraint Types”

Supported Architectures
The Supported Architectures table shows the Xilinx devices supported for each constraint.
Contact Xilinx Technical Support if you need information for Xilinx architectures not
shown.

Table 1-1: Supported Architectures

Constraint Architecture

V
ir

te
x

V
ir

te
x-

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro

V
ir

te
x-

II
P

ro
 X

V
ir

te
x-

4

V
ir

te
x-

5

S
p

ar
ta

n
-I

I

S
p

ar
ta

n
-I

IE

S
p

ar
ta

n
-3

S
p

ar
ta

n
-3

A

S
p

ar
ta

n
-3

E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

Constraints A

Area Group
(AREA_GROUP)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No
Constraints Guide www.xilinx.com 11
10.1

http://www.xilinx.com

Chapter 1: Introduction
R

Asynchronous Register
(ASYNC_REG)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Constraints B

BEL No No Yes Yes Yes Yes Yes No No Yes Yes Yes No No No

Block Name (BLKNM) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

BUFG (CPLD) No No No No No No No No No No No No Yes Yes Yes

Constraints C

Clock Dedicated Route No No No No No Yes Yes No No Yes Yes Yes No No No

Collapse (COLLAPSE) No No No No No No No No No No No No Yes Yes Yes

Component Group
(COMPGRP)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Configuration Mode
(CONFIG_MODE)

Yes Yes Yes Yes Yes Yes No Yes Yes Yes No No No No No

CoolCLOCK (COOL_CLK) No No No No No No No No No No No No No No Yes

Constraints D

Data Gate (DATA_GATE) No No No No No No No No No No No No No No Yes

DCI_CASCADE No No No No No No Yes No No No No No No No No

DCI_VALUE No No Yes Yes Yes Yes Yes No No Yes No No No No No

Directed Routing
(DIRECTED_ROUTING)

No No Yes Yes No Yes Yes No No Yes Yes Yes No No No

Disable (DISABLE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

D rive (DRIVE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Drop Specifications
(DROP_SPEC)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Constraints E

Enable (ENABLE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Enable Suspend
(ENABLE_SUSPEND)

No No No No No No No No No No Yes No No No No

Constraints F

Table 1-1: Supported Architectures

Constraint Architecture

V
ir

te
x

V
ir

te
x-

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro

V
ir

te
x-

II
P

ro
 X

V
ir

te
x-

4

V
ir

te
x-

5

S
p

ar
ta

n
-I

I

S
p

ar
ta

n
-I

IE

S
p

ar
ta

n
-3

S
p

ar
ta

n
-3

A

S
p

ar
ta

n
-3

E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

12 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Supported Architectures
R

Fast (FAST) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Feedback (FEEDBACK) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

File (FILE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Float (FLOAT) No No No No No No No No No No No No No Yes Yes

From Thru T o (FROM-
THRU-TO)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

From To (FROM-TO) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Constraints H

Hierarchical Block Name
(HBLKNM)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Hierarchical Lookup Table
Name (HLUTNM)

No No No No No No Yes No No No No No No No No

HU_SET Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Constraints I

Input Buffer Delay Value
(IBUF_DELAY_VALUE)

No No No No No Yes Yes No No No Yes Yes No No No

IFD_DELAY_VALUE No No No No No Yes Yes No No No Yes Yes No No No

Input Registers (INREG) No No No No No No No No No No No No No Yes Yes

IOB Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Input Output Block Delay
(IOBDELAY)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Input Output Standard
(IOSTANDARD)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes

Constraints K

Keep (KEEP) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Keeper (KEEPER) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No Yes

Keep Hierarchy
(KEEP_HIERARCHY)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Constraints L

Location (LOC) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 1-1: Supported Architectures

Constraint Architecture

V
ir

te
x

V
ir

te
x-

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro

V
ir

te
x-

II
P

ro
 X

V
ir

te
x-

4

V
ir

te
x-

5

S
p

ar
ta

n
-I

I

S
p

ar
ta

n
-I

IE

S
p

ar
ta

n
-3

S
p

ar
ta

n
-3

A

S
p

ar
ta

n
-3

E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

Constraints Guide www.xilinx.com 13
10.1

http://www.xilinx.com

Chapter 1: Introduction
R

Locate (LOCATE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Lock Pins (LOCK_PINS) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Lookup Table Name
(LUTNM)

No No No No No No Yes No No No No No No No No

Constraints M

Map (MAP) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Maximum Delay
(MAXDELAY)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Maximum Product Terms
(MAXPT)

No No No No No No No No No No No No Yes Yes Yes

Maximum Skew
(MAXSKEW)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Constraints N

No Delay (NODELAY) Yes Yes Yes Yes Yes No No Yes Yes Yes Yes Yes No No No

No Reduce (NOREDUCE) No No No No No No No No No No No No Yes Yes Yes

Constraints O

Offset In (OFFSET IN) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Offset Out (OFFSET OUT) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Open Drain
(OPEN_DRAIN)

No No No No No No No No No No No No No No Yes

Optimizer Effort
(OPT_EFFORT)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Optimize (OPTIMIZE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Constraints P

Period (PERIOD) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Pin (PIN) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

POST_CRC No No No No No No Yes No No No Yes No No No No

POST_CRC_ACTION No No No No No No No No No No Yes No No No No

POST_CRC_FREQ No No No No No No No No No No Yes No No No No

Table 1-1: Supported Architectures

Constraint Architecture

V
ir

te
x

V
ir

te
x-

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro

V
ir

te
x-

II
P

ro
 X

V
ir

te
x-

4

V
ir

te
x-

5

S
p

ar
ta

n
-I

I

S
p

ar
ta

n
-I

IE

S
p

ar
ta

n
-3

S
p

ar
ta

n
-3

A

S
p

ar
ta

n
-3

E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

14 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Supported Architectures
R

POST_CRC_SIGNAL No No No No No No Yes No No No No No No No No

Priority (PRIORITY) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Prohibit (PROHIBIT) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Pulldown (PULLDOWN) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Pullup (PULLUP) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No Yes Yes

Power Mode
(PWR_MODE)

No No No No No No No No No No No No Yes No No

Constraints R

Registers (REG) No No No No No No No No No No No No Yes Yes Yes

Relative Location (RLOC) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Relative Location Origin
(RLOC_ORIGIN)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Relative Location Range
(RLOC_RANGE)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Constraints S

Save Net Flag (SAVE NET
FLAG)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Schmitt Trigger
(SCHMITT_TRIGGER)

No No No No No No No No No No No No No No Yes

Slew (SLEW) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Slow (SLOW) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Stepping (STEPPING) No No Yes Yes Yes Yes Yes No No No Yes Yes No No No

Suspend (SUSPEND) No No No No No No No No No No Yes No No No No

System Jitter
(SYSTEM_JITTER)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Constraints T

Temperature
(TEMPERATURE)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Timing Ignore (TIG) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Timing Group (TIMEGRP) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Table 1-1: Supported Architectures

Constraint Architecture

V
ir

te
x

V
ir

te
x-

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro

V
ir

te
x-

II
P

ro
 X

V
ir

te
x-

4

V
ir

te
x-

5

S
p

ar
ta

n
-I

I

S
p

ar
ta

n
-I

IE

S
p

ar
ta

n
-3

S
p

ar
ta

n
-3

A

S
p

ar
ta

n
-3

E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

Constraints Guide www.xilinx.com 15
10.1

http://www.xilinx.com

Chapter 1: Introduction
R

Timing Specifications
(TIMESPEC)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Timing Name (TNM) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Timing Name Net
(TNM_NET)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Timing Point
Synchronization
(TPSYNC)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Timing Thru Points
(TPTHRU)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Timing Specification
Identifier (TSidentifier)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Constraints U

U_SET Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Use Relative Location
(USE_RLOC)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Use Low Skew Lines
(USELOWSKEWLINES)

Yes Yes No No No No No Yes Yes No No No No No No

Constraints V-X

VCCAUX No No No No No No No No No No Yes No No No No

Voltage (VOLTAGE) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

VREF No No No No No No No No No No No No No No Yes

Wire And (WIREAND) No No No No No No No No No No No No Yes No No

XBLKNM Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No

Table 1-1: Supported Architectures

Constraint Architecture

V
ir

te
x

V
ir

te
x-

E

V
ir

te
x-

II

V
ir

te
x-

II
P

ro

V
ir

te
x-

II
P

ro
 X

V
ir

te
x-

4

V
ir

te
x-

5

S
p

ar
ta

n
-I

I

S
p

ar
ta

n
-I

IE

S
p

ar
ta

n
-3

S
p

ar
ta

n
-3

A

S
p

ar
ta

n
-3

E

X
C

95
00

\X
L

\X
V

C
o

o
lR

u
n

n
er

X
P

L
A

3

C
o

o
lR

u
n

n
er

-I
I

16 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

R

Chapter 2

Constraint Types

This chapter discusses the various types of constraints documented within this Guide. This
chapter contains the following sections:

• “Attributes and Constraints”

• “CPLD Fitter”

• “Grouping Constraints”

• “Logical Constraints”

• “Physical Constraints”

• “Mapping Directives”

• “Placement Constraints”

• “Routing Directives”

• “Synthesis Constraints”

• “Timing Constraints”

• “Configuration Constraints”

Attributes and Constraints
The terms attribute and constraint have been used interchangeably by some in the
engineering community, while others ascribe different meanings to these terms. In
addition, language constructs use the terms attribute and directive in similar yet different
senses. For the purpose of clarification, the Xilinx® documentation refers to the terms
attributes and constraints as defined below.

Attributes
An attribute is a property associated with a device architecture primitive component that
generally affects an instantiated component’s functionality or implementation. Attributes
are passed as follows:

• In VHDL, by means of generic maps

• In Verilog, by means of defparams or inline parameter passing while instantiating
the primitive component

Examples of attributes are:

• The INIT property on a LUT4 component

• The CLKFX_DIVIDE property on a DCM

All attributes are described in the appropriate Xilinx Libraries Guide as a part of the
primitive component description.
Constraints Guide www.xilinx.com 17
10.1

http://www.xilinx.com

Chapter 2: Constraint Types
R

Synthesis Constraints
Synthesis constraints direct the synthesis tool optimization technique for a particular
design or piece of HDL code. They are either embedded within the VHDL or Verilog code,
or within a separate synthesis constraints file. Examples of synthesis constraints are:

• USE_DSP48 (XST)

• RAM_STYLE (XST)

Synthesis constraints are documented as follows:

• XST constraints are documented in the Xilinx XST User Guide.

• Synthesis constraints for other synthesis tools are documented in the vendor’s
documentation for the tool. For more information on synthesis constraints for your
synthesis tool, see the vendor documentation.

Implementation Constraints
Implementation constraints are instructions given to the FPGA implementation tools to
direct the mapping, placement, timing or other guidelines for the implementation tools to
follow while processing an FPGA design. Implementation constraints are generally placed
in the UCF file, but may exist in the HDL code, or in a synthesis constraints file. Examples
of implementation constraints are:

• LOC (placement) constraints

• PERIOD (timing) constraints

Implementation constraints are documented in the Xilinx Constraints Guide.

CPLD Fitter
The following constraints apply to CPLD devices:

“BUFG (CPLD)” “Collapse (COLLAPSE)” “CoolCLOCK
(COOL_CLK)”

“Data Gate (DATA_GATE)” “Fast (FAST)” “Input Registers (INREG)”

“Input Output Standard
(IOSTANDARD)”

“Keep (KEEP)” “Keeper (KEEPER)”

“Location (LOC)” “Maximum Product Terms
(MAXPT)”

“No Reduce
(NOREDUCE)”

“Offset In (OFFSET IN)”
“Offset Out (OFFSET
OUT)”

“Open Drain
(OPEN_DRAIN)”

“Period (PERIOD)”

“Prohibit (PROHIBIT)” “Pullup (PULLUP)” “Power Mode
(PWR_MODE)”

“Registers (REG)” “Schmitt Trigger
(SCHMITT_TRIGGER)”

“Slow (SLOW)”

“Timing Group
(TIMEGRP)”

“Timing Specifications
(TIMESPEC)”

“Timing Name (TNM)”
18 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Grouping Constraints
R

Grouping Constraints
In a TS TIMESPEC attribute, specify the set of paths to be analyzed by grouping start and
end points in one of the following ways.

• Refer to a predefined group by specifying one of the corresponding keywords: CPUS,
DSPS, FFS, HSIOS, LATCHES, MULTS, PADS, RAMS, BRAMS_PORTA, or
BRAMS_PORTB.

• Create your own groups within a predefined group by tagging symbols with “Timing
Name (TNM)” (pronounced tee-name) and “Timing Name Net (TNM_NET)”
constraints.

• Create groups that are combinations of existing groups using “Timing Group
(TIMEGRP)” symbols.

• Create groups by pattern matching on net names. For more information, see “Creating
Groups by Pattern Matching” in the “Timing Group (TIMEGRP)” constraint.

Using Predefined Groups
Using predefined groups, you can refer to a group of flip-flops, input latches, pads, or
RAMs by using the corresponding keywords. See the following table.

“Timing Specification
Identifier (TSidentifier)”

“VREF” “Wire And (WIREAND)”

Table 2-1: Predefined Groups

Keyword Description

CPUS PPC405 in Virtex™-II Pro, Virtex-II Pro X and Virtex-4 FX

DSPS DSP48 and any DSP48 derivative in Virtex-4, Virtex-5 and Spartan-
3A Extended

FFS • All CLB and IOB edge-triggered flip-flops
• Shift Register LUTs in Virtex and derived
• Dual-data-rate registers in Virtex-II and derived (includes both

flip-flops in the DDR)

HSIOS GT and GT10 in Virtex-II Pro and Virtex-II Pro X

LATCHES All CLB and IOB level-sensitive latches

MULTS Multipliers, both sync and async, in Virtex-II and derived

PADS All I/O pads (typically inferred from top level HDL ports)

RAMS • All CLB LUT RAMs, both single- and dual-port (includes both
ports of dual-port)

• All block RAMs, both single-and dual-port (includes both ports
of dual-port)

BRAMS_PORTA Port A of all dual-port block RAMs

BRAMS_PORTB Port B of all dual-port block RAMs
Constraints Guide www.xilinx.com 19
10.1

http://www.xilinx.com

Chapter 2: Constraint Types
R

From-To statements enable you to define timing specifications for paths between
predefined groups. The following examples are TS attributes that are entered in the UCF.
This method enables you to easily define default timing specifications for the design, as
illustrated by the following examples.

Predefined Group Examples
Following is a UCF syntax example.

TIMESPEC “TS01”=FROM FFS TO FFS 30;

TIMESPEC “TS02”=FROM LATCHES TO LATCHES 25;

TIMESPEC “TS03”=FROM PADS TO RAMS 70;

TIMESPEC “TS04”=FROM FFS TO PADS 55;

TIMESPEC “TS01” = FROM BRAMS_PORTA TO BRAMS_PORTB(gork*);

For BRAMS_PORTA and BRAM_PORTB, the specification TS01 controls paths that begin
at any A port and end at a B port, which drives a signal matching the pattern gork*.

BRAMS_PORTA and BRAMS_PORTB Examples
Following are additional examples of BRAMS_PORTA and BRAMS_PORTB.

NET "X" TNM_NET = BRAMS_PORTA groupA;

The TNM group groupA contains all A ports that are driven by net X. If net X is traced
forward into any B port inputs, any single-port block RAM elements, or any Select RAM
elements, these do not become members of groupA.

NET "X" TNM_NET = BRAMS_PORTB(dob*) groupB;

The TNM group groupB contains each B port driven by net X, if at least one output on that
B port drives a signal matching the pattern dob*.

INST "Y" TNM = BRAMS_PORTB groupC;

The TNM group groupC contains all B ports found under instance Y. If instance Y is itself
a dual-port block RAM primitive, then groupC contains the B port of that instance.

INST "Y" TNM = BRAMS_PORTA(doa*) groupD;

The TNM group groupD contains each A port found under instance Y, if at least one output
on that A port drives a signal matching the pattern doa*.

TIMEGRP “groupE” = BRAMS_PORTA;

The user group groupE contains the A ports of all dual-port block RAM elements in the
design. This is equivalent to BRAMS_PORTA(*).

TIMEGRP “groupF” = BRAMS_PORTB(mem/dob*);

The user group groupF contains all B ports in the design, which drives a signal matching
the pattern mem/dob*.

A predefined group can also carry a name qualifier. The qualifier can appear any place the
predefined group is used. This name qualifier restricts the number of elements referred to.
The syntax is:

predefined group (name_qualifier [name_qualifier])

name_qualifier is the full hierarchical name of the net that is sourced by the primitive being
identified.
20 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Logical Constraints
R

The name qualifier can include the following wildcard characters:

• An asterisk (*) to show any number of characters

• A question mark (?) to show a single character

Wildcard characters allow you to:

• Specify more than one net

• Shorten and simplify the full hierarchical name

For example, specifying the group FFS(MACRO_A/Q?) selects only the flip-flops driving
the Q0, Q1, Q2 and Q3 nets.

The following constraints are grouping constraints:

Logical Constraints
Logical constraints are constraints that are attached to elements in the design prior to
mapping or fitting. Applying logical constraints helps you to adapt your design’s
performance to expected worst-case conditions. Later, when you choose a specific Xilinx®
architecture, and place and route or fit your design, the logical constraints are converted
into physical constraints.

You can attach logical constraints using attributes in the input design, which are written
into the Netlist Constraints File (NCF) or NGC netlist, or with a User Constraints File
(UCF).

Three categories of logical constraints are:

• “Placement Constraints”

• “Relative Location (RLOC) Constraints”

• “Timing Constraints”

For FPGA devices, relative location constraints (RLOCs) group logic elements into discrete
sets. They allow you to define the location of any element within the set relative to other
elements in the set, regardless of eventual placement in the overall design. For more
information, see “Relative Location (RLOC) Constraints” in this chapter.

Timing constraints allow you to specify the maximum allowable delay or skew on any
given set of paths or nets in your design.

Physical Constraints
Constraints can also be attached to the elements in the physical design, that is, the design
after mapping has been performed. These constraints are referred to as physical
constraints. They are defined in the Physical Constraints File (PCF), which is created
during mapping.

“Component Group
(COMPGRP)”

“Pin (PIN)” “Timing Group
(TIMEGRP)”

“Timing Name (TNM)” “Timing Name Net
(TNM_NET)”

“Timing Point
Synchronization
(TPSYNC)”

“Timing Thru Points
(TPTHRU)”
Constraints Guide www.xilinx.com 21
10.1

http://www.xilinx.com

Chapter 2: Constraint Types
R

Xilinx recommends that you place any user-generated constraint in the UCF file, not in an
NCF or PCF file.

Note: The information in this section applies to FPGA device families only.

When a design is mapped, the logical constraints found in the netlist and the UCF file are
translated into physical constraints, that is, constraints that apply to a specific architecture.
These constraints are found in a mapper-generated file called the Physical Constraints File
(PCF).

The PCF file contains two sections:

• The schematic section, which contains the physical constraints based on the logical
constraints found in the netlist and the UCF file

• The user section, which can be used to add any physical constraints

Mapping Directives
Mapping directives instruct the mapper to perform specific operations. The following
constraints are mapping directives:

Placement Constraints
This section describes the placement constraints for each type of logic element in FPGA
designs, such as:

• Flip-flops

• ROMs and RAMs

• BUFTs

• CLBs

“Area Group
(AREA_GROUP)”

“BEL” “Block Name (BLKNM)”

“DCI_VALUE” “D rive (DRIVE)” “Fast (FAST)”

“Hierarchical Block Name
(HBLKNM)”

“Hierarchical Lookup Table
Name (HLUTNM)”

“HU_SET”

“IOB” “Input Output Block Delay
(IOBDELAY)”

“Input Output Standard
(IOSTANDARD)”

“Keep (KEEP)” “Keeper (KEEPER)” “Lookup Table Name
(LUTNM)”

“Map (MAP)” “No Delay (NODELAY)” “Optimize (OPTIMIZE)”

“Pulldown
(PULLDOWN)”

“Pullup (PULLUP)” “Relative Location
(RLOC)”

“Relative Location Origin
(RLOC_ORIGIN)”

“Relative Location Range
(RLOC_RANGE)”

“Save Net Flag (SAVE NET
FLAG)”

“Slew (SLEW)” “U_SET” “Use Relative Location
(USE_RLOC)”

“XBLKNM”
22 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Placement Constraints
R

• IOBs

• I/Os

• Edge decoders

• Global buffers

Individual logic gates, such as AND or OR gates, are mapped into CLB function generators
before the constraints are read, and therefore cannot be constrained.

The following constraints control mapping and placement of symbols in a netlist:

• “Block Name (BLKNM)”

• “Hierarchical Block Name (HBLKNM)”

• “Hierarchical Lookup Table Name (HLUTNM)”

• “Location (LOC)”

• “Lookup Table Name (LUTNM)”

• “Prohibit (PROHIBIT)”

• “Relative Location (RLOC)”

• “Relative Location Origin (RLOC_ORIGIN)”

• “Relative Location Range (RLOC_RANGE)”

• “XBLKNM”

Most constraints can be specified either in the HDL or in the UCF file. In a constraints file,
each placement constraint acts upon one or more symbols. Every symbol in a design
carries a unique name, which is defined in the input file. Use this name in a constraint
statement to identify the symbol.

The UCF and NCF files are case sensitive. Identifier names (names of objects in the design,
such as net names) must exactly match the case of the name as it exists in the source design
netlist. However, any Xilinx constraint keyword (for example, LOC, PROHIBIT, RLOC,
BLKNM) can be entered in either all upper-case or all lower-case letters. Mixed case is not
allowed.

Relative Location (RLOC) Constraints
The RLOC constraint groups logic elements into discrete sets. You can define the location
of any element within the set relative to other elements in the set, regardless of eventual
placement in the overall design. For example, if RLOC constraints are applied to a group of
eight flip-flops organized in a column, the mapper maintains the columnar order and
moves the entire group of flip-flops as a single unit. In contrast, absolute location (LOC)
constraints constrain design elements to specific locations on the FPGA die with no
relation to other design elements.
Constraints Guide www.xilinx.com 23
10.1

http://www.xilinx.com

Chapter 2: Constraint Types
R

Placement Constraints
The following constraints are placement constraints:

Routing Directives
Routing directives instruct PAR to perform specific operations. The following constraints
are routing directives:

• Area Group (AREA_GROUP)

• Configuration Mode (CONFIG_MODE)

• Lock Pins (LOCK_PINS)

• Optimizer Effort (OPT_EFFORT)

• Use Low Skew Lines (USELOWSKEWLINES)

Synthesis Constraints
Synthesis constraints instruct the synthesis tool to perform specific operations. The
following constraints are synthesis constraints:

Timing Constraints
Xilinx software enables you to specify precise timing constraints for your Xilinx designs.
You can specify the timing constraints for any nets or paths in your design, or you can
specify them globally. One way of specifying path requirements is to first identify a set of
paths by identifying a group of start and end points. The start and end points can be flip-
flops, I/O pads, latches, or RAMs. You can then control the worst-case timing on the set of
paths by specifying a single delay requirement for all paths in the set.

“Area Group
(AREA_GROUP)”

“BEL” “Location (LOC)”

“Locate (LOCATE)” “Optimizer Effort
(OPT_EFFORT)”

“Prohibit (PROHIBIT)”

“Relative Location
(RLOC)”

“Relative Location Origin
(RLOC_ORIGIN)”

“Relative Location Range
(RLOC_RANGE)”

“Use Relative Location
(USE_RLOC)”

“From To (FROM-TO)” “IOB” “Keep (KEEP)”

“Map (MAP)” “Offset In (OFFSET IN)”

“Offset Out (OFFSET
OUT)”

“Period (PERIOD)”

“Timing Ignore (TIG)” “Timing Name (TNM)” “Timing Name Net
(TNM_NET)”
24 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Timing Constraints
R

The primary way to specify timing constraints is to enter them in your design (HDL and
schematic). However, you can also specify timing constraints in constraints files (UCF,
NCF, PCF, XCF). For more information about each constraint, see the later chapters in this
Guide.

Once you define timing specifications and map the design, PAR places and routes your
design based on these requirements.

To analyze the results of your timing specifications, use the command line tool, TRACE
(TRCE) or the ISE™ Timing Analyzer.

XST Timing Constraints
XST supports an XCF (XST Constraints File) syntax to define synthesis and timing
constraints. The constraint syntax in use prior to the ISE 7.1i release is no longer supported.

Timing constraints supported by XST can be applied via either:

• The -glob_opt command line switch

• The constraints file

Command Line Switch

Using the -glob_opt command line switch is the same as selecting Process Properties
> Synthesis Options > Global Optimization Goal. Using this method allows you to
apply global timing constraints to the entire design. You cannot specify a value for these
constraint; XST optimizes them for the best performance. These constraints are overridden
by constraints specified in the constraints file.

Constraints File

Using the constraint file method, you can use the native UCF timing constraint syntax.
Using the XCF syntax, XST supports constraints such as TNM_NET, TIMEGRP, PERIOD,
TIG, FROM-TO, including wildcards and hierarchical names.

Note: Timing constraints are written to the NGC file only when the Write Timing Constraints
property is checked in the Process Properties dialog box in Project Navigator, or the -
write_timing_constraints option is specified when using the command line. By default, they are
not written to the NGC file.

Independent of the way timing constraints are specified, the Clock Signal option affects
timing constraint processing. In the case where a clock signal goes through which input
pin is the real clock pin. The CLOCK_SIGNAL constraint allows you to define the clock
pin. For more information, see the Xilinx XST User Guide.

UCF Timing Constraint Support
Caution! If you specify timing constraints in the XCF file, Xilinx strongly suggests that you to
use the '/' character as a hierarchy separator instead of '_'.

The following timing constraints are supported in the XST Constraints File (XCF).

From-To

FROM-TO defines a timing constraint between two groups. A group can be user-defined
or predefined (FFS, PADS, RAMS). For more information, see the “From To (FROM-TO)”
constraint. Following is an example of XCF Syntax:
Constraints Guide www.xilinx.com 25
10.1

http://www.xilinx.com

Chapter 2: Constraint Types
R

TIMESPEC “TSname”=FROM “group1” TO “group2” value;

OFFSET IN

The OFFSET IN constraint is used to specify the timing requirements of an input interface
to the FPGA. The constraint specifies the clock and data timing relationship at the external
pads of the FPGA. An OFFSET IN constraint specification checks the setup and hold
timing requirements of all synchronous elements associated with the constraint. The
following image shows the paths covered by the OFFSET IN constraint. For more
information, see the “Offset In (OFFSET IN)” constraint.

OFFSET OUT

The OFFSET OUT constraint is used to specify the timing requirements of an output
interface from the FPGA. The constraint specifies the time from the clock edge at the input
pin of the FPGA until data becomes valid at the outp pin of the FPGA. For more
information, see the“Offset Out (OFFSET OUT)” constraint.

TIG

The “Timing Ignore (TIG)” constraint causes all paths going through a specific net to be
ignored for timing analyses and optimization purposes. This constraint can be applied to
the name of the signal affected.

XCF Syntax:

NET “netname” TIG;

TIMEGRP

“Timing Group (TIMEGRP)” is a basic grouping constraint. In addition to naming groups
using the TNM identifier, you can also define groups in terms of other groups. You can
create a group that is a combination of existing groups by defining a TIMEGRP constraint.

You can place TIMEGRP constraints in a constraints file (XCF or NCF). You can use
TIMEGRP attributes to create groups using the following methods.

• Combining multiple groups into one

• Defining flip-flop subgroups by clock sense

XCF Syntax:

TIMEGRP “newgroup”=”existing_grp1” “existing_grp2”
[“existing_grp3” . . .];

TNM

“Timing Name (TNM)” is a basic grouping constraint. Use TNM (Timing Name) to
identify the elements that make up a group, which you can then use in a timing
specification. TNM tags specific FFS, RAMs, LATCHES, PADS, BRAMS_PORTA,
BRAMS_PORTB, CPUS, HSIOS, and MULTS as members of a group to simplify the
application of timing specifications to the group.

The RISING and FALLING keywords may also be used with TNMs.

XCF Syntax:
26 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Timing Constraints
R

{NET|INST|PIN} “net_or_pin_or_inst_name” TNM=[predefined_group]
identifier;

TNM Net

“Timing Name Net (TNM_NET)” is essentially equivalent to TNM on a net except for input
pad nets. Special rules apply when using TNM_NET with the “Period (PERIOD)”
constraint for DLL/DCM/PLLs in the following devices:

• Virtex

• Virtex-E

• Virtex-II

• Virtex-II Pro

• Virtex-II Pro X

• Virtex-4

• Virtex-5

• Spartan-II

• Spartan-IIE

• Spartan-3

• Spartan-3A

• Spartan-3E

For more information, see “PERIOD Specifications on CLKDLLs, DCMs and PLLs” in the
“Period (PERIOD)” constraint.

A TNM_NET is a property that you normally use in conjunction with an HDL design to tag
a specific net. All downstream synchronous elements and pads tagged with the TNM_NET
identifier are considered a group. For more information, see the “Timing Name
(TNM)”constraint.

XCF Syntax:

NET “netname” TNM_NET=[predefined_group] identifier;

Timing Model
The timing model used by XST for timing analysis takes into account both logic delays and
net delays. These delays are highly dependent on the speed grade that can be specified to
XST. These delays are also dependent on the selected technology (for example, Virtex and
Virtex-E devices). Logic delays data are identical to the delays reported by Trace (Timing
analyzer after Place and Route). The Net delay model is estimated based on the fanout
load.

Priority
Constraints are processed in the following order:

• Specific constraints on signals

• Specific constraints on top module

• Global constraints on top module

For example, constraints on two different domains or two different signals have the same
priority (that is, PERIOD clk1 can be applied with PERIOD clk2).
Constraints Guide www.xilinx.com 27
10.1

http://www.xilinx.com

Chapter 2: Constraint Types
R

Timing and Grouping Constraints
The following are timing constraints and associated grouping constraints:

Configuration Constraints
The following are configuration constraints:

“Asynchronous Register
(ASYNC_REG)”

“Disable (DISABLE)” “Drop Specifications
(DROP_SPEC)”

“Enable (ENABLE)” “From Thru T o (FROM-
THRU-TO)”

“From To (FROM-TO)”

“Maximum Skew
(MAXSKEW)”

“Offset In (OFFSET IN)”

“Offset Out (OFFSET
OUT)”

“Period (PERIOD)”

“Priority (PRIORITY)” “System Jitter
(SYSTEM_JITTER)”

“Temperature
(TEMPERATURE)”

“Timing Ignore (TIG)” “Timing Group
(TIMEGRP)”

“Timing Specifications
(TIMESPEC)”

“Timing Name (TNM)” “Timing Name Net
(TNM_NET)”

“Timing Point
Synchronization
(TPSYNC)”

“Timing Thru Points
(TPTHRU)”

“Timing Specification
Identifier (TSidentifier)”

“Voltage (VOLTAGE)”

“Configuration Mode
(CONFIG_MODE)”

“DCI_CASCADE” “Stepping (STEPPING)”

“POST_CRC” “POST_CRC_ACTION” “POST_CRC_FREQ”

“POST_CRC_SIGNAL” “VCCAUX” “VREF”
28 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

R

Chapter 3

Entry Strategies for Xilinx Constraints

This chapter discusses entry strategies for Xilinx® constraints, including which feature of
the ISE™ software to use to enter a given constraint type. This chapter contains the
following sections:

• “Constraints Entry Methods”

• “Constraints Entry Table”

• “Schematic Design”

• “VHDL”

• “Verilog”

• “ABEL”

• “UCF”

• “PCF”

• “NCF”

• “Constraints Editor”

• “Project Navigator”

• “Floorplanner”

• “Floorplan Editor”

• “PACE”

• “Partial Design Pin Preassignment”

• “FPGA Editor”

• “Constraints Priority”

Constraints Entry Methods
The following table shows which feature of the ISE software to use to enter a given
constraint type.

Table 3-1: Constraints Entry Methods

ISE Tool Constraint Type Devices

Constraints Editor Timing All CPLD and FPGA device
families

Floorplanner Non-timing placement
constraints

All FPGA device families
Constraints Guide www.xilinx.com 29
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Constraints Entry Table
The following table lists the constraints and their associated entry strategies. See the
individual constraint for syntax examples.

PACE IO placement and area-
group constraints

All CPLD and FPGA device
families except Virtex™-5
and Spartan™-3A

Floorplan Editor IO placement and area-
group constraints

Virtex-4, Virtex-5 and
Spartan-3A devices only

Schematic and Symbol
Editors

IO placement and RLOC
constraints

All CPLD and FPGA device
families

Table 3-1: Constraints Entry Methods

ISE Tool Constraint Type Devices

Table 3-2: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

\V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

F
lo

o
rp

la
n

 E
d

it
o

r

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

See Table 3-1, “Constraints Entry Methods,” above for the Constraint Type and Devices with which
each of these tools can be used.

Constraints A

Area Group (AREA_GROUP) √ √ √ √ √ √ √

Asynchronous Register
(ASYNC_REG)

√ √ √ √

Constraints B

BEL √ √ √ √ √

Block Name (BLKNM) √ √ √ √ √

BUFG (CPLD) √ √ √ √ √ √

Constraints C

Clock Dedicated Route √ √ √

Collapse (COLLAPSE) √ √ √ √

Component Group
(COMPGRP)

√

Configuration Mode
(CONFIG_MODE)

√

CoolCLOCK (COOL_CLK) √ √ √ √ √
30 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Constraints Entry Table
R

Constraints D

Data Gate (DATA_GATE) √ √ √ √ √

DCI_CASCADE √ √ √

DCI_VALUE √ √

Directed Routing
(DIRECTED_ROUTING)

√ √ √

Disable (DISABLE) √ √ √

D rive (DRIVE) √ √ √ √ √ √ √

Drop Specifications
(DROP_SPEC)

 √ √ √

Constraints E

Enable (ENABLE) √ √ √

Enable Suspend
(ENABLE_SUSPEND)

√ √

Constraints F

Fast (FAST) √ √ √ √ √ √ √ √

Feedback (FEEDBACK) √ √ √ √

File (FILE) √ √

Float (FLOAT) √ √ √ √ √ √

From Thru T o (FROM-THRU-
TO)

√ √ √ √

From To (FROM-TO) √ √ √ √ √

Constraints H

Hierarchical Block Name
(HBLKNM)

√ √ √ √

Hierarchical Lookup Table
Name (HLUTNM)

√ √ √ √ √ √ √

HU_SET √ √ √ √ √

Table 3-2: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

\V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

F
lo

o
rp

la
n

 E
d

it
o

r

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

See Table 3-1, “Constraints Entry Methods,” above for the Constraint Type and Devices with which
each of these tools can be used.
Constraints Guide www.xilinx.com 31
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Constraints I

Input Buffer Delay Value
(IBUF_DELAY_VALUE)

√ √ √ √

IFD_DELAY_VALUE √ √ √ √

Input Registers (INREG) √ √ √

IOB √ √ √ √ √ √ √ √

Input Output Block Delay
(IOBDELAY)

√ √ √ √ √ √

Input Output Standard
(IOSTANDARD)

√ √ √ √ √ √ √ √

Constraints K

Keep (KEEP) √ √ √ √ √ √

Keeper (KEEPER) √ √ √ √ √ √ √

Keep Hierarchy
(KEEP_HIERARCHY)

√ √ √ √ √ √

Constraints L

Location (LOC) √ √ √ ∗ √ √ √ √ √ √ √

Note: * Pin assignments are specified in ABEL PIN declarations without using the LOC keyword.

Locate (LOCATE) √ √

Lock Pins (LOCK_PINS) √ √ √

Lookup Table Name (LUTNM) √ √ √ √

Constraints M

Map (MAP) √ √ √

Maximum Delay (MAXDELAY) √ √ √ √ √ √ √

Maximum Product Terms
(MAXPT)

√ √ √ √

Maximum Skew (MAXSKEW) √ √ √ √ √ √ √

Table 3-2: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

\V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

F
lo

o
rp

la
n

 E
d

it
o

r

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

See Table 3-1, “Constraints Entry Methods,” above for the Constraint Type and Devices with which
each of these tools can be used.
32 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Constraints Entry Table
R

Constraints

No Delay (NODELAY) √ √ √ √ √

No Reduce (NOREDUCE) √ √ √ ∗ √ √ √

Note: * Specified using ABEL-specific keyword RETAIN.

Constraints O

Offset In (OFFSET IN) √ √ √ √ √ √

Offset Out (OFFSET OUT) √ √ √ √ √ √

Open Drain (OPEN_DRAIN) √ √ √ √ √ √

Optimizer Effort
(OPT_EFFORT)

√ √ √ √

Optimize (OPTIMIZE) √ √ √ √ √

Constraints P

Period (PERIOD) √ √ √ √ √ √ √ √

Pin (PIN) √

POST_CRC √ √

POST_CRC_ACTION √ √

POST_CRC_FREQ √ √

POST_CRC_SIGNAL √ √

Priority (PRIORITY) √ √ √

Prohibit (PROHIBIT) √ √ √ √ √ √

Pulldown (PULLDOWN) √ √ √ √ √ √ √

Pullup (PULLUP) √ √ √ √ √ √ √ √

Power Mode (PWR_MODE) √ √ √ √ √ √

Constraints R

Registers (REG) √ √ √ √ √ √

Relative Location (RLOC) √ √ √ √ √ √

Table 3-2: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

\V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

F
lo

o
rp

la
n

 E
d

it
o

r

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

See Table 3-1, “Constraints Entry Methods,” above for the Constraint Type and Devices with which
each of these tools can be used.
Constraints Guide www.xilinx.com 33
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Relative Location Origin
(RLOC_ORIGIN)

√ √ √ √ √ √

Relative Location Range
(RLOC_RANGE)

√ √ √ √ √ √

Constraints S

Save Net Flag (SAVE NET
FLAG)

√ √ √ √ √

Schmitt Trigger
(SCHMITT_TRIGGER)

√ √ √ √ √ √

Slew (SLEW) √ √ √ √ √ √ √

Slow (SLOW) √ √ √ √ √ √ √ √

Stepping (STEPPING) √

Suspend (SUSPEND) √ √ √ √ √

System Jitter (SYSTEM_JITTER) √ √ √ √ √

Constraints T

Temperature (TEMPERATURE) √ √ √ √

Timing Ignore (TIG) √ √ √ √ √ √

Timing Group (TIMEGRP) √ √ √ √ √

Timing Specifications
(TIMESPEC)

√ √ √ √

Timing Name (TNM) √ √ √ √ √ √

Timing Name Net (TNM_NET) √ √ √ √ √

Timing Point Synchronization
(TPSYNC)

√ √ √

Timing Thru Points (TPTHRU) √ √ √ √

Timing Specification Identifier
(TSidentifier)

√ √ √ √ √ √

Constraints U

U_SET √ √ √ √ √

Table 3-2: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

\V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

F
lo

o
rp

la
n

 E
d

it
o

r

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

See Table 3-1, “Constraints Entry Methods,” above for the Constraint Type and Devices with which
each of these tools can be used.
34 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Schematic Design
R

Schematic Design
To add Xilinx constraints as attributes within a symbol or schematic drawing, follow these
rules:

• If a constraint applies to a net, add it as an attribute to the net.

• If a constraint applies to an instance, add it as an attribute to the instance.

• You cannot add global constraints such as PART and PROHIBIT.

• You cannot add any timing specifications that would be attached to a TIMESPEC or
TIMEGRP.

• Enter attribute names and values in either all upper case or all lower case. Mixed
upper and lower case is not allowed.

For more information about creating, modifying, and displaying attributes, see the
Schematic and Symbol Editors help.

In the this Guide, the syntax for any constraint that can be entered in a schematic is
described in the individual section for the constraint. For an example of correct schematic
syntax, see “Schematic Syntax Example” in the “BEL” constraint.

Use Relative Location
(USE_RLOC)

√ √ √ √ √

Use Low Skew Lines
(USELOWSKEWLINES)

√ √ √ √ √ √ √

Constraints V

VCCAUX √ √

Voltage (VOLTAGE) √ √ √ √

VREF √ √ √

Constraints W

Wire And (WIREAND) √ √ √ √

Constraints X

XBLKNM √ √ √ √ √

Table 3-2: Constraints Entry Table

Constraint

S
ch

em
at

ic

V
H

D
L

\V
er

ilo
g

A
B

E
L

N
C

F

U
C

F

C
o

n
st

ra
in

ts
 E

d
it

o
r

P
C

F

X
C

F

F
lo

o
rp

la
n

n
er

F
lo

o
rp

la
n

 E
d

it
o

r

PA
C

E

F
P

G
A

 E
d

it
o

r

P
ro

je
ct

 N
av

ig
at

o
r

See Table 3-1, “Constraints Entry Methods,” above for the Constraint Type and Devices with which
each of these tools can be used.
Constraints Guide www.xilinx.com 35
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

VHDL
In VHDL code, constraints can be specified with VHDL attributes. Before it can be used, a
constraint must be declared with the following syntax:

attribute attribute_name : string;

Example:

attribute RLOC : string;

An attribute can be declared in an entity or architecture.

• If the attribute is declared in the entity, it is visible both in the entity and the
architecture body.

• If the attribute is declared in the architecture, it cannot be used in the entity
declaration.

Once the attribute is declared, you can specify a VHDL attribute as follows:

attribute attribute_name of
{component_name|label_name|entity_name|signal_name
|variable_name|type_name}: {component|label|entity|signal
|variable|type} is attribute_value;

Accepted attribute_values depend on the attribute type.

Examples:

attribute RLOC of u123 : label is "R11C1.S0";

attribute bufg of my_clock: signal is “clk”;

For Xilinx, the most common objects are signal, entity, and label. A label describes an
instance of a component.

VHDL is case insensitive.

In some cases, existing Xilinx constraints cannot be used in attributes, since they are also
VHDL keywords. To avoid this naming conflict, use a constraint alias. Each Xilinx
constraint has its own alias. The alias is the original constraint name prepended with the
prefix "XIL_". For example, the "RANGE" constraint cannot be used in an attribute directly.
Use "XIL_RANGE" instead.

Verilog
You can specify constraints as follows in Verilog code:

(* ATTRIBUTE_NAME = "attribute_value" *)

The attribute_value is case sensitive.

 Examples:

(* RLOC = "R11C1.S0" *)

(* HU_SET = "MY_SET" *)

(* BUFG = "clk" *)
36 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

ABEL
R

ABEL
Xilinx supports the use of ABEL for CPLD devices.

Following is an example of the basic syntax.

XILINX PROPERTY 'bufg=clk my_clock';

UCF
The UCF file is an ASCII file specifying constraints on the logical design. You can create
this file and enter your constraints with any text editor. You can also use the Constraints
Editor to create constraints within a UCF file. For more information, see “Constraints
Editor” in this chapter.

These constraints affect how the logical design is implemented in the target device. You
can use the file to override constraints specified during design entry.

UCF Flow
The following figure illustrates the UCF flow.

The UCF file is an input to NGDBuild (see the preceding figure). The constraints in the
UCF file become part of the information in the NGD file produced by NGDBuild. For
FPGA devices, some of these constraints are used when the design is mapped by MAP and
some of the constraints are written into the PCF (Physical Constraints File) produced by
MAP.

The constraints in the PCF file are used by each of the physical design tools (for example,
PAR and the timing analysis tools), which are run after the design is mapped.

Manual Entry of Timing Constraints
You can manually enter timing specifications as constraints in a UCF file. When you run
NGDBuild on the design, the timing constraints are added to the design database as part of
the NGD file. To avoid manually entering timing constraints in a UCF file, use the Xilinx
Constraints Editor.

Figure 3-1: UCF File Flow

X7423

NGDBuild

NGD
Generic Database

(Containing Constraints)

NGO
Logical Design

EDF
EDIF File

UCF
User Constraints

File
Constraints Guide www.xilinx.com 37
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

UCF and NCF File Syntax
Logical constraints are found in:

• The Netlist Constraint File (NCF), an ASCII file generated by synthesis programs

• The User Constraint File (UCF), an ASCII file generated by the user

Xilinx recommends that you place user-generated constraints in the UCF file — not in an
NCF or PCF file.

General Rules
Following are some general rules for the UCF and NCF files.

• The UCF and NCF files are case sensitive. Identifier names (names of objects in the
design, such as net names) must exactly match the case of the name as it exists in the
source design netlist. However, any Xilinx constraint keyword (for example, LOC,
PERIOD, HIGH, LOW) may be entered in all upper-case, all lower-case, or mixed
case.

• Each statement is terminated by a semicolon (;).

• No continuation characters are necessary if a statement exceeds one line, since a
semicolon marks the end of the statement.

• Xilinx recommends that you group similar blocks, or components, as a single timing
constraint, and not as separate timing constraints.

• To add comments to the UCF and NCF file, begin each comment line with a pound (#)
sign, as in the following example.

file TEST.UCF
net constraints for TEST design
NET “$SIG_0 “ MAXDELAY = 10;
NET “$SIG_1 “ MAXDELAY = 12 ns;

C and C++ style comments (/* */ and respectively) are also supported.

• Statements need not be placed in any particular order in the UCF and NCF file.

• Enclose NET and INST names in double quotes (recommended but not mandatory).

• Enclose inverted signal names that contain a tilde (for example, ~OUTSIG1) in double
quotes (mandatory).

• You can enter multiple constraints for a given instance. For more information, see
“Entering Multiple Constraints” in this chapter.

Conflict in Constraints
The constraints in the UCF and NCF files and the constraints in the schematic or synthesis
file are applied equally. It does not matter whether a constraint is entered in the schematic
or synthesis file, or in the UCF and NCF files. If the constraints overlap, UCF overrides
NCF and schematic constraints. NCF overrides schematic constraints.

If by mistake two or more elements are locked onto a single location, the mapper detects
the conflict, issues an error message, and stops processing so that you can correct the
mistake.
38 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

UCF and NCF File Syntax
R

Syntax
The UCF file supports a basic syntax that can be expressed as:

{NET|INST|PIN} “full_name” constraint;

or as

SET set_name set_constraint;

where

• full_name is a full hierarchically qualified name of the object being referred to. When
the name refers to a pin, the instance name of the element is also required.

• constraint is a constraint in the same form as it would be used if it were attached as an
attribute on a schematic object. For example, LOC=P38 and FAST.

• set_name is the name of an RLOC set. For more information, see “RLOC Description”
in the “Relative Location (RLOC)” constraint.

• set_constraint is an RLOC_ORIGIN or RLOC_RANGE constraint.

Specifying Attributes for TIMEGRP and TIMESPEC
To specify attributes for TIMEGRP, the keyword TIMEGRP precedes the attribute
definitions in the constraints files.

TIMEGRP “input_pads”=PADS EXCEPT output_pads;

Using Reserved Words
In all of the constraints files (NCF, UCF, and PCF), instance or variable names that match
internal reserved words may be rejected unless the names are enclosed in double quotes. It
is good practice to enclose all names in double quotes.

For example, the following entry would not be accepted because the word “net” is a
reserved word.

NET net OFFSET=IN 20 BEFORE CLOCK;

Following is the recommended way to enter the constraint.

NET “net” OFFSET=IN 20 BEFORE CLOCK;

or

NET “$SIG_0” OFFSET=IN 20 BEFORE CLOCK;

Enclose inverted signal names that contain a tilde (for example, ~OUTSIG1) in double
quotes (mandatory) as follows:

NET “~OUTSIG1” OFFSET=IN 20 BEFORE CLOCK;

Wildcards
You can use the wildcard characters, asterisk (*) and question mark (?) in constraint
statements as follows:

• The asterisk (*) represents any string of zero or more characters.

• The question mark (?) indicates a single character.

In net names, the wildcard characters enable you to select a group of symbols whose
output net names match a specific string or pattern. For example, the constraint shown
Constraints Guide www.xilinx.com 39
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

below increases the output speed of pads to which nets are connected with names that
meet the following patterns:

• They begin with any series of characters (represented by an asterisk [*]).

• The initial characters are followed by "AT."

• The net names end with one single character (represented by a question mark [?].

NET “*AT?” FAST;

In an instance name, a wildcard character by itself represents every symbol of the
appropriate type. For example, the following constraint initializes an entire set of ROMs to
a particular hexadecimal value, 5555.

INST “$1I3*/ROM2” INIT=5555;

If the wildcard character is used as part of a longer instance name, the wildcard represents
one or more characters at that position.

In a location, you can use a wildcard character for either the row number or the column
number. For example, the following constraint specifies placement of any instance under
the hierarchy of loads_of_logic in any CLB in column 8.

INST “/loads_of_logic/*” LOC=CLB_r*c8;

Wildcard characters can be used in dot extensions.

CLB_R1C3.*

Wildcard characters cannot be used for both the row number and the column number in a
single constraint, since such a constraint is meaningless.

Traversing Hierarchies
Top-level block names (design names) are ignored when searching for instance name
matches. You can use the asterisk wildcard character (*) to traverse the hierarchy of a
design within a UCF and NCF file. The following syntax applies (where level1 is an
example hierarchy level name).

* Traverses all levels of the hierarchy

level1/* Traverses all blocks in level1 and below

level1/*/ Traverses all blocks in the level1 hierarchy level but no further
40 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

UCF and NCF File Syntax
R

Consider the following design hierarchy.

Figure 3-2: UCF Design Hierarchy

With the example design hierarchy, the following specifications illustrate the scope of the
wildcard.

INST * => <everything>
INST /* => <everything>
INST /*/ => <$A1,$B1,$C1>
INST $A1/* => <$A21,$A22,$A3,$A4>
INST $A1/*/ => <$A21,$A22>
INST $A1/*/* => <$A3,$A4>
INST $A1/*/*/ => <$A3>
INST $A1/*/*/* => <$A4>
INST $A1/*/*/*/ => <$A4>
INST /*/*22/ => <$A22,$B22,$C22>
INST /*/*22 => <$A22,$A3,$A4,$B22,$B3,$C3>

Entering Multiple Constraints
You can cascade multiple constraints for a given instance in the UCF file:

INST instanceName constraintName = constraintValue | constraintName =
constraintValue;

For example:

INST myInst LOC = P53 | IOSTANDARD = LVPECL33 | SLEW = FAST;

File Name
By default, NGDBuild reads the constraints file that carries the same name as the input
design with a .ucf extension. However, you can specify a different constraints file name
with the -uc option when running NGDBuild. NGDBuild automatically reads in the NCF
file if it has the same base name as the input EDIF file and is in the same directory as the
EDIF file.

The implementation tools (for example, NGDBuild, MAP, and PAR) require file name
extensions in all lowercase (for example, .ucf) in command lines.

$A21 $A22

$A3

$A4

$A1

$B21 $B22

$B3

$B1

$C21 $C22

$C3

$C1

X8571
Constraints Guide www.xilinx.com 41
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

Instances and Blocks
The statements in the constraints file concern instances and blocks, which are defined as
follows.

• An instance is a symbol on the schematic.

• An instance name is the symbol name as it appears in the EDIF netlist.

• A block is a CLB, an IOB, or a TBUF.

• Specify the block name with the BLKNM, HBLKNM, or XBLKNM attributes. By
default, the software assigns a block name on the basis of a signal name associated
with the block.

PCF
The NGD file produced when a design netlist is read into the Xilinx Development System
may contain a number of logical constraints. These constraints originate in any of these
sources.

• An attribute assigned within a schematic or HDL file

• A constraint entered in a UCF (User Constraints File)

• A constraint appearing in an NCF (Netlist Constraints File) produced by a CAE
vendor toolset

Logical constraints in the NGD file are read by MAP. MAP uses some of the constraints to
map the design and converts logical constraints to physical constraints. MAP then writes
these physical constraints into a Physical Constraints File (PCF).

The PCF file is an ASCII file containing two separate sections:

• A section for those physical constraints created by the mapper

• A section for physical constraints entered by the user

The mapper section is rewritten every time you run the mapper.

Mapper-generated physical constraints appear first in the file, followed by user physical
constraints. In the event of conflicts between mapper-generated and user constraints, user
constraints are read last, and override mapper-generated constraints.

The mapper-generated section of the file is preceded by a SCHEMATIC START notation on
a separate line. The end of this section is indicated by SCHEMATIC END, also on a separate
line. Enter user-generated constraints, such as timing constraints, after SCHEMATIC END.

You can write user constraints directly into the file or you can write them indirectly (or
undo them) from within the FPGA Editor. For more information on constraints in the
FPGA Editor, see the FPGA Editor help.

Note: Whenever possible, you should add design constraints to the HDL, schematic, or UCF,
instead of PCF. This simplifies design archiving and improves design role checking.

The PCF file is an optional input to PAR, FPGA Editor, TRACE, NetGen, and BitGen.

The file may contain any number of constraints, and any number of comments, in any
order. A comment consists of either a pound sign (#) or double slashes (//) ,followed by any
number of other characters up to a new line. Each comment line must begin with # or //.
42 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

NCF
R

The structure of the PCF file is as follows.

schematic start;
translated schematic and UCF and NCF constraints in PCF format
schematic end;
user-entered physical constraints

Caution! Put all user-entered physical constraints after the “schematic end” statement. Any
constraints preceding this section or within this section may be overwritten or ignored.

Do not edit the schematic constraints. They are overwritten every time the mapper
generates a new PCF file.

Global constraints need not be attached to any object, but should be entered in a
constraints file.

Indicate the end of each constraint statement with a semi-colon.

In all of the constraints files (NCF, UCF, and PCF), instance or variable names that match
internal reserved words are rejected unless the names are enclosed in double quotes. It is
good practice to enclose all names in double quotes. For example, the following entry
would not be accepted because the word net is a reserved word.

NET net FAST;

Following is the recommended way to enter the constraint.

NET “net” FAST;

NCF
The syntax rules for NCF files are the same as those for the UCF file. For more information,
see “UCF and NCF File Syntax” in this chapter.

Constraints Editor
Use Constraints Editor to enter timing constraints . The user interface simplifies constraint
entry by guiding you through constraint creation without your needing to understand
UCF file syntax.

For the constraints and devices with which Constraints Editor can be used, see
“Constraints Entry Methods” above. For information on running Constraints Editor, see
the ISE Help

Used in the implementation phase of the design after the translation step (NGDBuild),
Constraints Editor allows you to create and manipulate constraints without any direct
editing of the UCF. After the constraints are created or modified with Constraints Editor,
NGDBuild must be run again, using the new UCF and design source netlist files as input
and generating a new NGD file as output.

Input/Output
Constraints Editor requires:

• A User Constraints File (UCF)

• A Native Generic Database (NGD) file

Constraints Editor uses the NGD to provide names of logical elements for grouping. As
output, it uses the UCF.
Constraints Guide www.xilinx.com 43
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

After you open Constraints Editor, you must first open a UCF file. If the UCF and NGD
root names are not the same, you must select the appropriate NGD file to open. For more
information, see the Constraints Editor help.

Upon successful completion, Constraints Editor writes out a UCF. NGDBuild (translation)
uses the UCF, along with design source netlists, to produce an NGD file. The NGD file is
read by the MAP program. MAP generates a physical design database in the form of an
NCD (Native Circuit Description) file and also generates a PCF (Physical Constraints File).
The implementation tools use these files to ultimately produce a bitstream.

Not all Xilinx constraints are accessible through Constraints Editor. Constraints supported
in Constraints Editor and the associated UCF syntax are described in “UCF Syntax.”

Starting Constraints Editor
Constraints Editor runs on PCs and workstations. You can start Constraints Editor:

• “From Project Navigator”

• “As a Standalone”

• “From the Command Line”

From Project Navigator

Within Project Navigator, launch Constraints Editor from the Processes window.

1. Select a design file in the Sources window.

2. Double-click Create Timing Constraints in the Processes window, which is located
within User Constraints underneath Design Utilities.

As a Standalone

If you installed Constraints Editor as a standalone tool on your PC, either:

• Click the Constraints Editor icon on the Windows desktop, or

• Select Start > Programs > Xilinx ISE > Accessories > Constraints Editor

From the Command Line

Below are several ways to start Constraints Editor from the command line.

With No Data Loaded

To start Constraints Editor from the command line with no data loaded, type:

constraints_editor

With the NGD File Loaded

To start Constraints Editor from the command line with the NGD file loaded, type:

constraints_editor ngdfile_name

where

• ngdfile_name is the name of the NGD file

It is not necessary to use the .ngd extension.

If a UCF file with the same base name as the NGD file exists, it is loaded also. Otherwise,
you are prompted for a UCF file.
44 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

UCF Syntax
R

With the NGD File and the UCF File Loaded

To start Constraints Editor from the command line with the NGD file and the UCF file
loaded, type:

constraints_editor ngdfile_name -uc ucf_file_name

where

• ngdfile_name is the name of the NGD file

• ucf_file_name is the name of the UCF file

It is not necessary to use the .ucf extension.

As a Background Process

To run Constraints Editor as a background process on a workstation, enter:

constraints_editor &

UCF Syntax
This section describes the UCF syntax for constraints that are supported by Constraints
Editor. For more information, see the Constraints Editor help. This chapter contains the
following:

• “Group Elements Associated by Nets (TNM_NET)”

• “Group Elements by Instance Name (TNM)”

• “Group Elements by Element Output Net Name Schematic Users (TIMEGRP)”

• “Timing THRU Points (TPTHRU)”

• “Pad to Setup”

• “Clock to Pad”

• “FROM TO”

• “FROM/THRU/TO”

• “FROM TO TIG”

• “Net TIG”

• “Period”

• “VOLTAGE”

• “TEMPERATURE”

Group Elements Associated by Nets (TNM_NET)

Definition

A TNM_NET (timing name for nets) is an attribute that can be used to identify the
elements that make up a group which can then be used in a timing specification.
Essentially TNM_NET is equivalent to TNM on a net except for pad nets.
Constraints Guide www.xilinx.com 45
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

UCF Syntax

NET “netname” TNM_Net=identifier;

where

• netname is the name of a net

• identifier is a value that consists of any combination of letters, numbers, or
underscores

Group Elements by Instance Name (TNM)

Definition

Identifies the instances that make up a group which can then be used in a timing
specification. A TNM (pronounced tee-name) is a flag that you place directly on your
schematic to tag a specific net, element pin, primitive or macro. All symbols tagged with
the TNM identifier are considered a group.

UCF Syntax

INST “instance_name” TNM=identifier;

where

• instance_name can be FFs, All Pads, Input Pads, Output Pads, Bi-directional Pads, 3-
stated Output Pads, RAMs, or Latches

• identifier is a value that consists of any combination of letters, numbers, or
underscores

Keep identifier short for convenience and clarity.

Group Elements by Element Output Net Name Schematic Users
(TIMEGRP)

Definition

Specifies a new group with instances of FFs, PADs, RAMs, LATCHES, or User Groups by
output net name.

UCF Syntax

TIMEGRP identifier=element (output_netname);

where

• identifier is the name for the new time group

• element can be FFS, All Pads, Input Pads, Output Pads, Bi-directional Pads, 3-stated
Output Pads, RAMs, LATCHES, or User Groups

• output_netname is the name of the net attached to the element
46 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

UCF Syntax
R

Timing THRU Points (TPTHRU)

Definition

Identifies an intermediate point on a path.

UCF Syntax

INST “instance_name” TPTHRU=identifier;

NET “netname” TPTHRU=identifier;

where

• identifier is a unique name

Pad to Setup

Definition

Specifies the timing relationship between an external clock and data at the pins of a device.
Operates on pads or predefined groups of pads.

UCF Syntax

OFFSET=IN time unit BEFORE pad_clock_netname [TIMEGRP
“reg_group_name”];

[NET “pad_netname”] OFFSET=IN time unit BEFORE pad_clock_netname
[TIMEGRP “reg_group_name”];

[TIMEGRP “padgroup_name”] OFFSET=IN time unit BEFORE pad_clock_netname
[TIMEGRP “reg_group_name”];

where

• padgroup_name is the name of a group of pads predefined by the user

• reg_group_name is the name of a group of registers predefined by the user

• pad_clock_netname is the name of the clock at the port

For more information on Pad to Setup, see “Global Tab” in the Constraints Editor help.

Clock to Pad

Definition

Specifies the timing relationship between an external clock and data at the pins of a device.
Operates on pads or predefined groups of pads.

UCF Syntax

OFFSET=OUT time unit AFTER pad_clock_netname [TIMEGRP
“reg_group_name”];

NET “pad_netname” OFFSET=OUT time unit AFTER pad_clock_netname [TIMEGRP
“reg_group_name”];

TIMEGRP “padgroup_name” OFFSET=OUT time unit AFTER pad_clock_netname
[TIMEGRP “reg_group_name”];
Constraints Guide www.xilinx.com 47
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

where

• padgroup_name is the name of a group of pads predefined by the user

• reg_group_name is the name of a group of registers predefined by the user

• pad_clock_netname is the name of the clock at the port

For more information on Clock to Pad, see “Global Tab” in the Constraints Editor help.

FROM TO

Definition

Establishes an explicit maximum acceptable time delay between groups of elements.

UCF Syntax

TIMESPEC “TSid”=FROM “source_group” TO “destination_group” time [unit];

where

• source_group and destination_group are FFS, RAMS, PADS, LATCHES, or user-created
groups

FROM/THRU/TO

Definition

Establishes a maximum acceptable time delay between groups of elements relative to
another timing specification.

UCF Syntax

TIMESPEC “TSid”=FROM “source_group” THRU “timing_point” TO
“destination_group” time [unit];

where

• source_group and destination_group are FFS, RAMS, PADS, LATCHES, or user-created
groups

• timing_point is an intermediate point as specified by the TPTHRU constraint on the
Advanced tab window

FROM TO TIG

Definition

Marks paths between a source group and a destination group that are to be ignored for
timing purposes.

UCF Syntax

TIMESPEC “TSid”=FROM “source_group” TO “destination_group” TIG;

TIMESPEC “TSid”=FROM “source_group” THRU “timing_point(s)” TO
“destination_group” TIG;
48 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

UCF Syntax
R

where

• source_group and destination_group are FFS, RAMS, PADS, LATCHES, or user-created
groups

• timing_point is an intermediate point as specified by the TPTHRU Points constraint on
the Advanced tab window

Net TIG

Definition

Marks nets that are to be ignored for timing purposes.

UCF Syntax

NET “netname” TIG;

NET “netname” TIG=“TSid1” ... “TSidn”;

Period

Definition

Defines a clock period.

UCF Syntax

TIMESPEC “TSid”=PERIOD {timegroup_name time | TSid
[+/- phase [units]} [HIGH | LOW high_or_low_time unit];

where

• id is a unique identifier. The identifier can consist of letters, numbers, or the
underscore character (_).

• unit is picoseconds, nanoseconds, microseconds, or milliseconds

• HIGH | LOW indicates the state of the first pulse of the clock

• phase is the amount of time that the clock edges are offset when describing the time
requirement as a function of another clock

• units are in ms, us, ns, and ps

VOLTAGE

Definition

Specifies operating voltage and provides a means of prorating delay characteristics based
on the specified voltage.

UCF Syntax

VOLTAGE=value[units];

where

• value is an integer or real number specifying the voltage in volts and units is an
optional parameter specifying the unit of measure
Constraints Guide www.xilinx.com 49
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

TEMPERATURE

Definition

Allows the specification of the operating temperature which provides a means of prorating
device delay characteristics based on the specified junction temperature. Prorating is a
linear scaling operation on existing speed file delays and is applied globally to all delays.

UCF Syntax

TEMPERATURE=value [units];

where

• value is an integer or real number specifying the temperature in Celsius as the default.
F and K are also accepted.

Project Navigator
To set implementation constraints in Project Navigator:

• For FPGA devices, the implementation process properties specify how a design is
translated, mapped, placed, and routed. You can set multiple properties to control the
implementation processes for the design.

• For CPLD devices, the implementation process properties specify how a design is
translated and fit.

For more information, see the Project Navigator help for the Process Properties dialog box.

Floorplanner
The following sections explain how to set area and IOB constraints using Floorplanner.

For the constraints and devices with which Floorplanner can be used, see “Constraints
Entry Methods” above. For information on running Floorplanner, see the ISE Help.

Using Area Constraints
Area constraints are a way of restricting where PAR can place a particular piece of logic. By
reducing PAR's search area for placing logic, PAR's performance may be improved.

To create an area constraint in Floorplanner.

1. Select a hierarchical group in the Design Hierarchy window.

2. Select Floorplan > Assign Area Constraint.

Use the mouse to drag a rectangular box where you want to locate the area constraint.

The area constraint includes all the tiles inside the drag box.

Area constraints may overlap each other. Select Floorplan > Bring Area To Front or
Floorplan > Push Area To Back to move a selected area constraint in front of or behind
another.
50 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Floorplan Editor
R

Creating UCF Constraints from IOB Placement
You can also add constraints to the UCF file through Floorplanner and iteratively
implement your design to achieve optimal placement.

To begin with, you need only the NGD file generated in a previous flow. In Floorplanner,
you manually make IOB assignments which are automatically written into the UCF file.
Floorplanner edits the UCF file by adding the newly created placement constraints. The
placement constraints you create in Floorplanner take precedence over existing constraints
in the UCF.

Next, go through the steps of implementing your design by running NGDBuild, MAP, and
PAR.

Floorplan Editor
For the constraints and devices with which Floorplan Editor can be used, see “Constraints
Entry Methods” above. For information on running Floorplan Editor, see the ISE Help.

PACE
You can set constraints in the Pinout & Area Constraints Editor (PACE). Within PACE, the
Pin Assignments Editor is mainly used to assign location constraints to IOs. It is also used
to assign IO properties such as IO Standards.

For the constraints and devices with which PACE can be used, see “Constraints Entry
Methods” above. For more information about accessing and using PACE, see the ISE Help.

LOC Constraints
This section refers to LOC constraints for IOs (including Bank and Edge constraints) and
global logic.

IOs

NET “name” LOC = "A23";

NET “name” LOC = "BANK0";

NET “name” LOC = "TL"; //half-edge constraint

NET “name” LOC = "T"; //edge constraint

Global Logic

INST “gt_name” LOC = GT_X0Y0;

INST “bram_name” LOC = RAMB16_X0Y0; (or RAMB4_C0R0)

INST “dcm_name” LOC = DCM_X0Y0;

INST “ppc_name” LOC = PPC405_X0Y0;

INST “mult_name” LOC = MULT18X18_X0Y0;
Constraints Guide www.xilinx.com 51
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

IOSTANDARD Constraints
NET “name” IOSTANDARD = "LVTTL";

PROHIBIT Constraints
CONFIG PROHIBIT = A23;

CONFIG PROHIBIT = SLICE_X1Y6;

CONFIG PROHIBIT = TBUF_X0Y0; (RAMs, MULTs, GTs, DCMs also)

AREA Constraints Editor
The AREA Constraints Editor is mainly used to assign areas to hierarchical blocks of logic.
The following UCF examples show AREA_GROUP constraints that can be set in the AREA
Constraints Editor.

INST “name” AREA_GROUP = group_name;

AREA_GROUP “group_name” RANGE=SLICE_X1Y1:SLICE_X5Y5;

AREA_GROUP “group_name” RANGE = SLICE_X6Y6:SLICE_X10Y10,
SLICE_X1Y1:SLICE_X4Y4;

AREA_GROUP “group_name” COMPRESSION = 0;

AREA_GROUP “group_name” ROUTE_AREA = FIXED;

Note: SLICE_ equals CLB_ for Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices.

Partial Design Pin Preassignment
Note: This section deals with Pin Preassignment when a design is partially completed. For
information on Pin Preassignment in which an HDL template is built by adding constraints to pins that
are defined within PACE, see the ISE Help.

Designs that are not yet fully coded might still have layout requirements. Pin assignments,
voltage standards, banking rules, and other board requirements might be in place long
before the design has reached the point where these constraints can be applied. The Pin
Preassignment feature allows the pin-out rules of the design to be determined before the
design logic has been completed.

To use the Pin Preassignment feature in PACE:

1. Provide the complete list of ports in your top-level design

2. Assign I/O constraints to them

Even if the ports are not used by any logic in the design (that is, no loads for input pins, no
sources for output pins), they can still receive constraints and be kept through
implementation.

Assign LOC or IOSTANDARD constraints in the UCF just like for any I/O pin. These
requirements are annotated in the database. PACE can be used to assign pin locations,
banking groups or voltage standards, and DRC checks can be run. The final PAD report
contains any pins that have logic or constraints associated with them.
52 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

FPGA Editor
R

This implementation of the design is incomplete and cannot be downloaded to the
hardware. You should expect these errors during the DRC phase of bitstream generation
(BitGen):

• ERROR: PhysDesignRules:368 - The signal <D_OBUF> is incomplete. The signal is
not driven by any source pin in the design.

• ERROR: PhysDesignRules:10 - The network <D_OBUF> is completely unrouted.

To trim any unused ports from the design, remove the associated constraints. The Translate
(NGDBuild) phase trims these unused pins.

In this example, there are six top-level ports. Only three (clk, A, C) are currently used in the
design. Of the remaining three ports:

• B is kept because it has a LOC constraint.

• D is kept because it has an IOSTANDARD constraint.

• E is trimmed because it is completely unused and unconstrained.

Verilog Example

module design_top(clk, A, B, C, D, E);
input clk, A, B;
output reg C, D, E;

always@(posedge clk)
C <= A;

endmodule

UCF Example

NET "A" LOC = "E2" ;
NET "B" LOC = "E3" ;
NET "C" LOC = "B15" ;
NET "D" IOSTANDARD = SSTL2_II ;

FPGA Editor
You can add certain constraints to, or delete certain constraints from, the PCF file in the
FPGA Editor. In the FPGA Editor, net, site, and component constraints are supported as
property fields in the individual nets and components. Properties are set with the Setattr
command, and are read with the Getattr command.

All Boolean constraints (BLOCK, LOCATE, LOCK, OFFSET IN, OFFSET OUT, and
PROHIBIT) have values of On or Off; offset direction has a value of either In or Out; and
offset order has a value of either Before or After. All other constraints have a numeric
value. They can also be set to Off to delete the constraint. All values are case-insensitive
(for example, “On” and “on” are both accepted).

When you create a constraint in the FPGA Editor, the constraint is written to the PCF file
whenever you save your design. When you use the FPGA Editor to delete a constraint and
then save your design file, the line on which the constraint appears in the PCF file remains
Constraints Guide www.xilinx.com 53
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

in the file but it is automatically commented out. Some of the constraints supported in the
FPGA Editor are listed in the following table.

Locked Nets and Components
If a net is locked, you cannot unroute any portion of the net, including the entire net, a net
segment, a pin, or a wire. To unroute the net, you must first unlock it. You can add pins or
routing to a locked net.

A net is displayed as locked in the FPGA Editor if the Lock Net [net_name] constraint is
enabled in the PCF file. You can use the Net Properties property sheet to remove the lock
constraint.

When a component is locked, one of the following constraints is set in the PCF file.

lock comp [comp_name]
locate comp [comp_name]
lock macro [macro_name]
lock placement

If a component is locked, you cannot unplace it, but you can unroute it. To unplace the
component, you must first unlock it.

Table 3-3: Constraints Supported in FPGA Editor

Constraint Accessed Through

block paths Component Properties and Path Properties property sheet

define path Viewed with Path Properties property sheet

location range Component Properties Constraints page

locate macro Macro Properties Constraints page

lock placement Component Properties Constraints page

lock routing of this net Net Properties Constraints page

lock routing Net Properties Constraints page

maxdelay allnets Main Properties Constraints page

maxdelay allpaths Main Properties Constraints page

maxdelay net Net Properties Constraints page

maxdelay path Path Properties property sheet

maxskew Main Properties Constraints page

maxskew net Net Properties Constraints page

offset comp Component Properties Offset page

penalize tilde Main Properties Constraints page

period Main Properties Constraints page

period net Net Properties Constraints page

prioritize net Net Properties Constraints page

prohibit site Site Properties property sheet
54 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Constraints Priority
R

Interaction Between Constraints
Schematic constraints are placed at the beginning of the PCF file by MAP. The start and end
of this section is indicated with SCHEMATIC START and SCHEMATIC END, respectively.
Because of a “last-read” order, all constraints that you enter in this file should come after
SCHEMATIC END.

You are not prohibited from entering a user constraint before the schematic constraints
section, but if you do, a conflicting constraint in the schematic-based section may override
your entry.

Every time a design is remapped, the schematic section of the PCF file is overwritten by the
mapper. The user constraints section is left intact, but certain constraints may be invalid
because of the new mapping.

Constraints Priority
In some cases, two timing specifications cover the same path. For cases where the two
timing specifications on the path are mutually exclusive, the following constraint rules
apply.

File Priorities
Priority depends on the file in which the constraint appears. A constraint in a file accessed
later in the design flow replaces a constraint in a file accessed earlier in the design flow
(Last One Wins) if the constraint name is the same in both files. If the two constraints have
different names, the last one in the PCF file has priority.

Priority is as follows. The first listed is the highest priority, the last listed is the lowest.

• Constraints in a Physical Constraints File (PCF)

• Constraints in a User Constraints File (UCF)

• Constraints in a Netlist Constraints File (NCF)

• Attributes in a schematic

Timing Specification Priorities
If two timing specifications cover the same path, the priority is as follows. The first listed is
the highest priority, the last listed is the lowest.

• Timing Ignore (TIG)

• FROM THRU TO

• FROM TO

• Specific OFFSET

• Group OFFSET

• Global OFFSET

• PERIOD
Constraints Guide www.xilinx.com 55
10.1

http://www.xilinx.com

Chapter 3: Entry Strategies for Xilinx Constraints
R

FROM THRU TO and FROM TO Statement Priorities
FROM THRU TO and FROM TO statements have a priority order that depends on the type
of source and destination groups included in a statement. The priority is as follows (first
listed is the highest priority, last listed is the lowest).

• Both the source group and the destination group are user-defined groups

• Either the source group or the destination group is a predefined group

• Both the source group and the destination group are predefined groups

OFFSET constraints take precedence over more global constraints.

OFFSET Priorities
If two specific OFFSET constraints at the same level of precedence interact, an OFFSET
with a register qualifier takes precedence over an OFFSET without a qualifier; if otherwise
equivalent, the latter in the constraint file takes precedence.

Net Delay and Net Skew Priorities

Net delay and net skew specifications are analyzed independently of path delay analysis
and do not interfere with one another.

Constraints Priority Exceptions

There are circumstances in which constraints priority may not operate as expected. These
cases include supersets, subsets, and intersecting sets of constraints. See the following
diagram.

• In Case A, the TIG superset conflicts with the PERIOD set.

• In Case B, the intersection of the PERIOD and TIG sets creates an ambiguous
circumstance. In this instance, constraints may sometimes be considered as part of
TIG, and at other times part of PERIOD.

• In Case C, the TIG subset works normally within the PERIOD superset.

Figure 3-3: Interaction Between Constraints Sets

X9513

Case A Case B Case C

TIGPERIOD

PERIODTIG PERIOD

TIG

Constraints Sets
56 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

R

Chapter 4

Timing Constraint Strategies

This chapter provides general guidelines that explain how to constrain the timing on
designs when using the implementation tools for FPGA devices. This chapter contains the
following sections:

• “Basic Implementation Tools Constraining Methodology”

• “Global Timing Assignments”

• “Specific Timing Assignments”

• “Multi-Cycle and Fast or Slow Timing Assignments”

• “Special Case Path Constraining”

• “Path Coverage Statistics”

• “Static Timing Analysis”

• “Synchronous Timing”

• “Directed Routing”

For more information about timing constraints and strategies:

1. Go to the Xilinx® home page.

2. Click Support.

3. Click Tech Tips.

4. Click Timing & Constraints.

Basic Implementation Tools Constraining Methodology
Creating global constraints for a design is the easiest way to provide coverage of the
constrainable connections in a design, and to guide the tools to meet timing requirements
for all paths. The global constraints constrain the whole design. If there are multi-cycle or
static paths, you can constrain them using more specific constraints. A multi-cycle path is
a path between two registers with a timing requirement that is a multiple of the clock
period for the registers. A static path does not include clocked elements, for example, pad-
to-pad paths.

Xilinx recommends that you specify the exact value required for a path, as opposed to
over-tightening a specification. Specifying tighter constraints than required is not
recommended. Tighter constraints can lengthen PAR runtimes and cause degradation in
the quality of results.

The Constraints Editor is based on the methodology discussed in this chapter. The group
names and TSids in the examples show how the Constraints Editor populates the grids and
creates new groups and constraints. The Constraints Editor provides additional help. The
clocks and IOs are supplied, so you need not know the exact spelling of the names. You
Constraints Guide www.xilinx.com 57
10.1

http://www.xilinx.com/
http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

only need to define the timing, and not the syntax, of the constraints. For more specific
grouping, element names are provided, and exceptions to the global constraints can be
made using those groups.

The first tab of the Constraints Editor shows all the global paths that need to be covered. If
this tab is completed, all synchronous paths are covered.

All examples in this chapter show the UCF syntax.

Global Timing Assignments
Global timing assignments are overall constraints that cover all constrainable paths in a
design. These assignments include:

• Clock definitions

• Input and output timing requirements

• Combinatorial path requirements

Following are some recommendations for assigning definitions.

Assigning Definitions for Clocks Driven by Pads
Define each clock in the design. Defining each clock covers all synchronous paths within
each clock domain and paths that cross between related clock domains. Use a TNM_NET
on each clock net (on the net attached to the pad, usually the port name in HDL,) and then
use the TIMESPEC PERIOD syntax with the TNM_NET group created. Using the
TIMESPEC version of the PERIOD definition allows for greater path control later on when
constraining paths between clock domains.

For more information if you are using a Virtex™ DLL/DCM, see “Assigning Definitions
for DLL/DCM/PLL Clocks” in this chapter.

Related Clocks Example
The following example design has two clocks. TNM_NETs identify the synchronous
elements of each clock domain. TIMESPEC PERIOD gives the flexibility to describe inter
clock domain path requirements. The clock “clock2_in” has twice the period of
“clock1_in,” which is shown in the following UCF example with the clock2_in PERIOD
definition using a function of the “TS_clock1_in” specification (“TS_clock1_in” * 2).

NET “clock1_in” TNM_NET = “clock1_in”;

TIMESPEC “TS_clock1_in” = PERIOD “clock1_in” 20 ns HIGH 10;

NET “clock2_in” TNM_NET = “clock2_in”;

TIMESPEC “TS_clock2_in” = PERIOD “clock2_in” “TS_clock1_in” * 2;

The Constraints Editor uses the clock pad net name for the group name and the TSid as
show in the previous example. This feature is important if you want to override a
constraint that was entered in the source.

PHASE Related Clocks Example
The following example shows how to specify two clocks related by a phase difference. The
clock "clock" has a period of 10ns. The clock "clock_90" is also 10 ns, but is shifted 90
degrees out of phase, or is lagging "clock's" rising edge by 2.5 ns.
58 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Global Timing Assignments
R

Use the keyword PHASE to identify this relationship. The timing tools use this information
in OFFSET and cross-clock domain paths. See the following example.

NET "clock" TNM_NET = "clock";

TIMESPEC "TS_clock" = PERIOD "clock" 10 ns HIGH 50%;

NET "clock_90" TNM_NET = "clock_90";

TIMESPEC "TS_clock_90" = PERIOD "clock_90" "TS_clock" * 1 PHASE + 2.5ns;

Assigning Definitions for DLL/DCM/PLL Clocks
TRANSLATION (NGDBuild) propagates TNM_NET tags through DLLs, DCMs and PLLs.
NGDBuild creates new TNM_NETs for each of the DLL, DCM and PLL output taps and
associated PERIOD statements. The code takes into account the phase relationship factor
of the outputs for the DLL, and also performs the appropriate multiplication or division of
the PERIOD value.

The code also takes into account any of the PHASE taps adjustments. This means that for
OFFSETs and cross-clock domain paths, the timing tools now know the relationship for
PHASE shifts also.

DCM PERIOD Propagation Example
In this example, you only need to define the input clock to the DCM. The tools generate all
of the correct PERIODs for the output taps. Assume that the input clock (net "clock_in"
with PERIOD 30 ns) DCM in this example uses the CLK0 (net "clock0") and CLK2X180 (net
"clock2x180") output taps. When you define the input clock, the system performs all of the
transformations.

For input clock “clock_in”:

NET "clock_in" TNM_NET = "clock_in";

TIMESPEC "TS_clock_in" = PERIOD "clock_in" 30 ns HIGH 50%;

Generated clock definitions:

NET "clock0" TNM_NET = "clock0";

TIMESPEC "TS_clock0" = PERIOD "TS_clock_in" * 1;

NET "clock2x180" TNM_NET = "clock2x180";

TIMESPEC "TS_clock2x180" = PERIOD "TS_clock_in" / 2 PHASE + 7.50 ns;

Assigning Definitions for Derived and Gated Clocks
For clocks that are created in the FPGA, such as the output of a register or a gated clock (the
output of combinatorial logic), the net name from the output of the register or gate should
be the name used for the TNM_NET group name and TSid. For more information, see
“OFFSETs with Derived or Gated Clocks” in this chapter.

Assigning Input and Output Requirements
Constrain input and output timing requirements using the OFFSET constraints. Pad to
Setup requirements use OFFSET IN BEFORE and for Clock to Out requirements use
OFFSET OUT AFTER.
Constraints Guide www.xilinx.com 59
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

You can specify OFFSETs in three levels of coverage.

• The first, global OFFSET applies to all inputs or outputs for a specific clock.

• The second, a group OFFSET form, identifies a group of inputs or outputs clocked by
a common clock that have the same timing requirements.

• The third, a specific OFFSET form, specifies the timing by each input or output.

OFFSET constraints of a more specific scope override a more general scope.

A group OFFSET overrides a global OFFSET specified for the same IOs. A specific OFFSET
overrides both global and group OFFSETs if used. This priority rule allows you to start
with global OFFSETs, then create group or specific OFFSETs for IOs with special timing
requirements.

For memory usage and runtime considerations, use global and group OFFSETs and avoid
specific OFFSETs whenever possible. Using wildcards in the specific OFFSET form creates
multiple specific OFFSET constraints, not a group OFFSET.

Example:

NET bob* OFFSET = IN 5 AFTER clock;

Global Inputs Requirements
Use OFFSET IN BEFORE to define Pad to Setup timing requirements. OFFSET IN BEFORE
is an external clock-to-data relationship specification and takes into account the clock
delay, clock edge and DLL/DCM/PLL introduced clock phase when analyzing the setup
requirements (data delay + setup - clock delay-clock arrival).). Clock arrival takes into
account any clock phase generated by the DLL/DCM/PLL or clock edge. This strategy
constrains all of the inputs clocked by the same clock to identical requirements.

Following is a global OFFSET IN BEFORE example:

OFFSET = IN value units BEFORE clock_pad_net;

OFFSET = IN 10 ns BEFORE “clock_in”;

where

• value is the time allowed for the data to propagate from the pad to meet a setup
requirement to the clock. This value is in relationship to the clocks initial edge at the
pin of the chip. (The PERIOD constraint defines the clock initial edge.)

• units is ms, micro, ns (default) or ps

• clock_pad_net is the name of the clock using the net name attached to the pad (This or
the port name for HDL designs)

Global Outputs Requirements
Use OFFSET OUT AFTER to define Clock to Pad timing requirements. OFFSET OUT
AFTER is an external clock-to-data specification and takes into account the clock delay,
clock edge and DLL/DCM/PLL introduced clock phase when analyzing the setup
requirements (clock delay + clock to out + data delay +clock arrival). Clock arrival takes
into account any clock phase generated by the DLL/DCM/PLL or clock edge. This
strategy constrains all of the outputs clocked by the same clock to the same requirement.
60 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Specific Timing Assignments
R

The following is a global OFFSET OUT AFTER example:

OFFSET = OUT value units AFTER clock_pad_net;

OFFSET = OUT 10 ns AFTER "clock_in";

where

• value is the time allowed for the data to propagate from the synchronous element
(clock to out, TCKO) to the pad. This value is in relationship to the clocks initial edge at
the pin of the chip. (The PERIOD constraint defines the clock initial edge.)

• units is ms, micro, ns (default) or ps

• clock_pad_net is the name of the clock using the net name attached to the pad or the
port name for HDL designs

Assigning Global Pad to Pad Requirements
Use a FROM PADS TO PADS constraint to globally constrain all combinatorial pin-to-pin
paths. If you do not have any combinatorial pin-to-pin paths, ignore this constraint.

Following a global pad to pad example:

TIMESPEC “TSid” = FROM “PADS” TO “PADS” value units;

TIMESPEC “TS_P2P” = FROM “PADS” TO “PADS” 10 ns;

where

• id is a user-specified unique identifier for the constraint

• value is the time allowed for the data to propagate from an input pad to an output pad

• units is ms, micro, ns (default) or ps

Specific Timing Assignments
If there are paths that are static in nature, you can use TIG to eliminate the paths from
timing consideration in Place and Route (PAR) and TRCE. If there are paths that require
faster or slower specifications than the global requirements, you can create fast or slow
exceptions for those paths. If multi-cycle paths exist, identify and constrain them.

The TIG paths still show the longest delay for that constraint in the verbose timing report.
Net TIGs can be turned off in the Timing Analyzer to see the actual timing on these nets.

You can specify false paths (paths to ignore) in two different ways: by nets and elements or
by timing paths. Identifying false paths allows PAR to concentrate on more critical paths
when placing components and when using routing resources. There might be less runtime
because PAR does not need to meet a specific timing requirement. Creating a large number
of path TIGs can increase memory usage and possibly increase runtime due to the extra
paths models that are created.

These paths are ignored by both PAR and timing analysis and do not show up in the timing
report. Also these paths are not included in the Connection Coverage statistic. For more
information, see “Ignored Paths (TIG)” in this chapter.
Constraints Guide www.xilinx.com 61
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

False Paths by Net
You can define false paths for all paths that pass through a particular net using the
following UCF syntax:

NET “net_name” TIG;

You can also define false paths for a specified set of paths that pass through a particular net
using the following UCF syntax:

NET “net_name” TIG = TSid_list;

where

• net_name is the name of the net that the paths are passing through

• TSid_list is a comma-delimited list of TIMESPEC identifiers to which the TIG applies

False Paths by Instance
You can define false paths for all paths that pass through a particular instance using the
following UCF syntax:

INST “inst_name” TIG;

You can also define false paths for a specified set of paths that pass through a particular
instance using the following UCF syntax:

INST “inst_name” TIG = TSid_list;

where

• inst_name is the name of the instance that the paths are passing through

• TSid_list is a comma-delimited list of TIMESPEC identifiers to which the TIG should
apply

False Paths by Pin
You can define false paths for all paths that pass through a particular instance pin using the
following UCF syntax:

PIN “instance.pin_name” TIG;

You can also define false paths for a specified set of paths that pass through a particular
instance pin using the following UCF syntax:

PIN “instance.pin_name” TIG = TSid_list;

where

• instance.pin_name is the name of the instance and the pin identifier separated by a
period that the paths are passing through

• TSid_list is a comma-delimited list of TIMESPEC identifiers to which the TIG should
apply

False Paths by Timing Path
You can create groups, use the FROM TO, FROM THRU TO, or open FROM or TO
constraints, and then specify TIG as the path value. For more information on syntax usage,
see “False Paths by Path”in this chapter. These paths show up in a timing analysis report,
62 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Multi-Cycle and Fast or Slow Timing Assignments
R

but the timing is not considered. These paths are also included in the connection coverage
statistics.

FROM TO TIG
Following is a FROM TO TIG example:

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” TIG;

where

• id is a user-specified unique identifier for the constraint

• from_grp and to_grp are TIMEGRPs

FROM THRU TO TIG
Following is a FROM THRU TO TIG example:

TIMESPEC “TSid” = FROM “from_grp” THRU “thru_pt” TO “to_grp” TIG;

where

• id is a user-specified unique identifier for the constraint

• from_grp and to_grp are TIMEGRPs

• thru_pt is a net, instance or pin

For more information on defining TPTHRU points, see “TPTHRU” in this chapter.

Asynchronous Set/Reset Paths

The tools do not automatically analyze asynchronous set/reset paths. Automatic analysis
is controlled by the path tracing controls. For more information, see the “Disable
(DISABLE)” and “Enable (ENABLE)” constraints.

Multi-Cycle and Fast or Slow Timing Assignments
These path assignments include multi-cycle paths and fast or slow exceptions. First create
timing groups to define start point and end points for the paths. These groups are used in
the FROM TO timing constraints to override the PERIOD constraints for these specific
paths. The following sections describe different exception types.

Cross-Clock Domain Constraining
The timing tools no longer include domain paths in the destination register clock domain
if the clocks are not defined as related. Related clock domains are defined in the system as
a function of other clock TIMESPECs. The TRANSLATE (NGDBuild) phase automatically
relates clocks from the outputs of a DLL/DCM. If the paths between two "related" clocks
are false, or if they require a different time requirement than calculated, create a FROM:TO
constraint with a TIG or the correct value.

If the clocks are unrelated but have valid paths between them, create FROM TO constraints
to constrain them. To constrain paths between two clocks and use the groups created by
each clock domain, create a FROM TO for each direction that paths pass between the two
clock domains, then specify the time requirement according to the path requirement. For
information about how the groups were created, see “Related Clocks Example” in this
chapter.
Constraints Guide www.xilinx.com 63
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

Following is a cross-clock domain TIMESPEC example:

TIMESPEC “TS_clock1_in_2_clock2_in” = FROM “clock1_in” TO “clock2_in”
10 ns;

User Group Creation
You can create groups to identify path end points. There are three basic methods for
creating groups:

• “Identifying Groups by Connectivity”

• “Identifying Groups by Hierarchy”

• “Identifying Groups by Element”

The types of elements that can be grouped are:

• FFS

• PADS

• RAMS

• BRAMS_PORTA

• BRAMS_PORTB

• CPUS

• MULTS

• HSIOS

• LATCHES

These are considered reserved keywords that define the types of synchronous elements in
FPGA devices and pads.

Identifying Groups by Connectivity

Identifying groups by connectivity allows you to group elements by specifying nets that
eventually drive synchronous elements and pads. This method is a good way to identify
multi-cycle paths elements that are controlled by a clock enable. This method uses
TNM_NET on a net.

The TNM_NET syntax for identifying groups by connectivity is:

NET “net_name” TNM_NET = qualifier “tnm_name”;

where

• net_name is the name of a net propagated by the tools to the element ends

• tnm_name is the user-assigned name for the group created by the TNM_NET. Multiple
nets can be assigned the same tnm_name

• An optional qualifier of FFS, PADS, RAMS, BRAMS_PORTA, BRAMS_PORTB, CPUS,
MULTS, HSIOS or LATCHES may be used when the net_name contains wildcards

Identifying Groups by Hierarchy

Identifying groups by hierarchy allows you to group by traversing the hierarchy of a
module and tagging all predefined elements with the TNM. This method uses a TNM on a
block.
64 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Specific OFFSET Constraints Using PAD and or Register Groups
R

The TNM syntax for identifying groups by hierarchy is:

INST “inst_name” TNM = qualifier “tnm_name”;

where

• inst_name is the hierarchical name of a macro or module to be traversed by the tools to
identify underlying elements for the group labeled by the tnm_name label

• An optional qualifier of FFS, PADS, RAMS, BRAMS_PORTA, BRAMS_PORTB, CPUS,
MULTS, HSIOS or LATCHES may be used

Identifying Groups by Element

You can identify groups by element in the following ways:

• “Identifying Specific Elements by Instance Name”

• “Identifying Elements for Groups Using Element Output Net Names”

Identifying Specific Elements by Instance Name

Identifying elements directly allows you to group by tagging predefined elements with a
TNM. Multiple instances can be given the same tnm_name.

The TNM syntax for identifying groups by instance is:

INST “inst_name” TNM = qualifier “tnm_name”;

where

• inst_name is the predefined instance name for the group labeled by the tnm_name label

• An optional qualifier of FFS, PADS, RAMS, BRAMS_PORTA, BRAMS_PORTB, CPUS,
MULTS, HSIOS or LATCHES may be used when the inst_name contains wildcards

Identifying Elements for Groups Using Element Output Net Names

This method is mainly used by schematic users who generally name nets, not instances.
Identifying elements individually is used for singling out elements or identifying elements
by output net name. This method uses TIMEGRP and allows the use of wildcards (*, ?) for
filtering elements. This method is best used for schematics where the instance names are
rarely known but the output nets generally are.

The TIMEGRP syntax for identifying groups by element output net name is:

TIMEGRP “tgrp_name” = qualifier (output_net_name);

where

• tgrp_name is the name assigned by you to the group

• qualifier is a (FFS, PADS, RAMS, BRAMS_PORTA, BRAMS_PORTB, CPUS, MULTS,
HSIOS, LATCHES) keyword

• output_net_name is the output net name for each element that you would like to group.
You can use wildcards with output_net_name

Specific OFFSET Constraints Using PAD and or Register Groups
You can use grouping with OFFSET. Grouping includes both register groups and pad
groups. Grouping allows you to group pads to set the same path delay requirements and
group registers for identifying paths that have different requirements from or to single
pads. You can group and constrain the single pads and registers all at once. This is useful
Constraints Guide www.xilinx.com 65
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

if a clock is used on the rising and falling edge for inputs or outputs. These two groups
require different constraints.

Group OFFSET IN Example
TIMEGRP “pad_group” OFFSET = IN time units BEFORE “clock_pad_net”
TIMEGRP “register_group”;

where

• pad_group is the user- created group of input pads

• time is the time allowed for the data to propagate from the pad to meet a setup
requirement to the clock. This value is in relationship to the clocks initial edge at the
pin of the chip. (The PERIOD constraint defines the clock initial edge.)

• units is ms, micro, ns (default) or ps

• clock_pad_net is the name of the clock using the net name attached to the pad

• register_group is the user-created group of synchronous elements

Group OFFSET OUT Example
TIMEGRP “pad_group” OFFSET = OUT time units AFTER “clock_pad_net”
TIMEGRP “register_group”;

where

• pad_group is the user- created group of output pads

• time is the time allowed for the data to propagate from the pad to meet a setup
requirement to the clock. This value is in relationship to the clocks initial edge at the
pin of the chip. (The PERIOD constraint defines the clock initial edge.)

• units is ms, micro, ns (default) or ps

• clock_pad_net is the name of the clock using the net name attached to the pad

• register_group is the user-created group of synchronous elements

FROM TO Syntax
This group includes FROM, TO, and FROM TO. FROM specifies the source group, and TO
specifies the destination group. Using just a FROM assumes all destinations are TO points
and using just a TO assumes all sources are FROM points.

The FROM TO syntax is used in the following path assignments, and is defined as follows
in the UCF:

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” value units;

where

• id is a user-specified unique identifier for the constraint

• from_grp and to_grp are TIMEGRPs

• value is a specific time, a (*,?) function of another TSid (that is, TS_01 *2), or TIG. The
allowable operations are: “*” (multiply) and “/” (divide).

• units is ms, micro, ns (default) or ps
66 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Special Case Path Constraining
R

Open FROM to TO Example

TIMESPEC “TSid” = FROM “from_grp” value units;

where

• id is a user specified unique identifier for the constraint

• from_grp is TIMEGRP

• value is the time requirement

• units is ms, micro, ns (default) or ps

FROM THRU TO Syntax
To further narrow down paths, use TPTHRU and FROM THRU TO. You can also specify
multiple THRUs. For more information, see “TPTHRU” in this chapter. FROM or TO are
optional.

Multi-Cycle Paths Assignments

To specify multi-cycle path assignments:

1. Identify the start point and end point groups.

2. Apply a FROM TO constraint for that path.

For elements controlled by clock enables, use a TNM_NET on the clock enable to identify
all of the elements. You can specify timing requirements as a function of the clock.

The units you use on the originating TSid affect the speed of the new clock specification:

• “MHz", "*" used as multiplication makes the new clock specification faster.

• "ns", "*" used as multiplication makes the new clock specification slower.

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” TS_01*2;

Slow or Fast Exception Paths

To specify slow or fast path assignments:

1. Identify the start point and end point groups.

2. Apply a FROM TO constraint with a specific value for that path.

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” value units;

False Paths by Path

Create groups, specify the FROM TO constraint, and then use TIG as the path value.

TIMESPEC “TSid” = FROM “from_grp” TO “to_grp” TIG;

Special Case Path Constraining
Special case path constraining allows you to further refine path specifications, or define
asynchronous points as a path endpoint. TPTHRU allows the further refinement of a
FROM TO path. With TPSYNC, you can specify an asynchronous point as a path start or
end point.
Constraints Guide www.xilinx.com 67
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

TPTHRU
TPTHRU narrows the paths constrained by a FROM TO constraint. It specifies nets or
instances that the paths must pass through. You can specify multiple TPTHRU points for a
set of paths.

TPTHRU Syntax
This section discusses TPTHRU syntax.

Forms

There are three forms of the TPTHRU syntax. These forms identify:

• THRU points that pass through nets

• THRU points through instances

• THRU points of specific instance pins

Be careful when placing TPTHRU points. They can become subsumed into components,
and may not resolve uniquely. You may need to use the KEEP attribute on the net to
preserve the TPTHRU tag.

NET Form (UCF)

NET “net_name” TPTHRU = “thru_name”;

where

• net_name is the name of the net the paths pass through

• thru_name is the user name for the THRU point

INSTANCE Form (UCF)

INST “inst_name” TPTHRU = “thru_name”;

where

• inst_name is the name of the instance the paths pass through

• thru_name is the user name for the THRU point

Pin Form (UCF)

PIN “instance.pin_name” TPTHRU = “thru_name”;

where

• instance.pin_name is the name of the specific instance pin the paths pass through

• thru_name is the user name for the THRU point

FROM THRU TO Syntax (UCF)

TIMESPEC “TSid” = FROM “from_grp” THRU “thru_point” TO “to_grp” value
units;

where

• id is a user specified unique identifier for the constraint

• from_grp and to_grp are TIMEGRPs
68 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Path Coverage Statistics
R

• thru_point is specified by the TPTHRU tag

• value is a number or a (*,/) function of another TSid (that is, TS_01 *2) or a TIG

• units is (ms, micro, ns (default) or ps)

You can specify multiple sequential THRU points for any FROM TO specification.

TPSYNC

TPSYNC identifies asynchronous points in the design as endpoints for paths. You may
want to use TPSYNC when specifying timing to a non-synchronous point in a path, such as
a TBUF or to black box macro pins. You can identify non-synchronous elements or pins as
a group, and then use either FROM or TO points.

TPSYNC Syntax

INST “inst_name” TPSYNC = “tpsync_name”;

PIN “inst_name.pin_name” TPSYNC = “tpsync_name”;

where

• tpsync_name represents the user label for the group that is created by the TPSYNC
statement

• pin_name must match the name used in the HDL code or from the library

Output Slew Rate Constraint

You can use a slew rate of FAST in architectures that support this feature. Outputs are
defined as SLOW by default. You can speed up timing by using the FAST property, but this
may cause ringing or noise problems.

Following is the slew rate syntax:

INST “pad_inst_name” FAST;

NET “pad_net_name” FAST;

where

• pad_inst_name is the name of the pad instance

• pad_net_name is the name of the pad net. (The port name in HDL code.)

Path Coverage Statistics
A connection is a driver/load pin combination, which is connected by a signal. There are
situations where connections are not valid, or do not show up in the coverage statistic.

Ignored Paths (TIG)
The most common reason for connection coverage not reaching 100% is that elements in
the design have NET TIGs. If the timing tool encounters a TIG’d element when tracing a
path, the trace stops there, possibly leaving connections on the "other side" of the element
uncovered. On the other hand, a FROM TO TIG on a path has all of its connections
accounted for in the coverage statistic, since those paths are enumerated in the timing
report.
Constraints Guide www.xilinx.com 69
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

STARTUP Paths
There are other reasons for less than 100% coverage. One is that the total number of
connections in a design includes some which cannot be covered by constraints. An
example is the connections on the STARTUP component.

Static Paths
A static pin can drive a LUT which combines with no other signals and then drives other
logic. This can happen at the start of a carry chain where a FORCE mode is used from a
logic 1 or 0.

In addition, if terms for carry logic are connected to a CLB, but are not used within the
CLB, these connections are never traced. These are just obscure cases that are not handled.

Certain categories of paths are turned off using path tracing controls. Paths that are turned
off due to path tracing controls are not covered. For more information, see the “Enable
(ENABLE)” constraint.

OFFSETs with Derived or Gated Clocks
If the clock that clocks a synchronous element does not come through an input pad -- for
example, it is derived from another clock -- then OFFSET does not return any paths. Use
FROM TOs for these paths, taking into account the clock delay.

Following is an example for pad to setup:

If the global clock delay is 1 ns, and the Pad to Setup requirement is 30 ns, then identify the
PADs and registers that are clocked by a derived or gated clock, and group them
accordingly.

Then create a timing constraint similar to the following:

TIMESPEC “TS_P2S_halfclock” = FROM “halfclock_pads” TO “halfclock_ffs”
31 ns;

Static Timing Analysis
You can perform timing analysis at several stages in the implementation flow to show your
design delays. You create or generate the following:

• A post-map timing report to evaluate the effects of logic delays on timing constraints

• A post-place-and-route timing report that incorporates both block and routing delays
as a final analysis of the design’s timing constraints

The Interactive Timing Analyzer tool produces detailed timing constraint, clock, and path
analysis for post-map or post-place-and-route implementations.

Static Timing Analysis After Map
Post-map timing reports can be very useful in evaluating timing performance. Although
route delays are not accounted for, the logic delays can provide valuable information about
the design.

If logic delays account for a significant portion (> 50%) of the total allowable delay of a
path, the path may not be able to meet your timing requirements when routing delays are
added.
70 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Static Timing Analysis
R

Routing Delays

Routing delays typically account for 45% to 65% of the total path delays. By identifying
problem paths, you can mitigate potential problems before investing time in place and
route. You can:

• Redesign the logic paths to use fewer levels of logic

• Tag the paths for specialized routing resources

• Move to a faster device

• Allocate more time for the path

Logic-Only Delays

If logic-only delays account for much less (<35%) than the total allowable delay for a path
or timing constraint, the place-and-route software can use very low placement effort levels.
In these cases, reducing effort levels allows you to decrease runtimes while still meeting
performance requirements.

Static Timing Analysis After PAR
Post-PAR timing reports incorporate all delays to provide a comprehensive timing
summary. If a placed and routed design has met all of your timing constraints, you can
proceed by creating configuration data and downloading a device.

If you identify problems in the timing reports, you can:

• Increase the placer effort level

• Use re-entrant routing

• Use multi-pass place and route

You can also:

• Redesign the logic paths to use fewer levels of logic

• Tag the paths for specialized routing resources

• Move to a faster device

• Allocate more time for the paths

Detailed Timing Analysis
To perform detailed timing analysis:

1. Open Project Navigator.

2. Select your project in the Sources window.

3. Double click Timing Analyzer under Launch Tools in the Processes window.

This allows you to:

• Specify specific paths for analysis

• Discover paths not affected by timing constraints

• Analyze the timing performance of the implementation based on another speed grade

For more information, see the Timing Analyzer help.
Constraints Guide www.xilinx.com 71
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

Synchronous Timing
Xilinx supports system synchronous and source synchronous timing. This section
describes both types of timing.

This section also describes the following keywords:

• INPUT_JITTER

• SYSTEM_JITTER

Note: For a syntax example of INPUT_JITTER and SYSTEM_JITTER, see “Syntax Examples,”
page 74.

System Synchronous Timing
In system synchronous timing, one clock source controls the data transmission and
reception of all devices. See the following figure.

Source Synchronous Timing
The section describes how to use SYSTEM_JITTER, and INPUT_JITTER for source
synchronous timing.

In the following example of source synchronous timing, one clock source controls the data
transmission of devices. The derived clocks control data reception. See the following
figure.

Table 4-1: Keyword Usage with Synchronous Timing

Keyword
 Can be used with system

synchronous timing
Can be used with source

synchronous timing

INPUT_JITTER Yes Yes

SYSTEM_JITTER Yes Yes

Figure 4-1: System Synchronous Timing

X9940

Clock

DATA

DATA
Device 1

DATA

DATA
Device 2 Device 3
72 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Synchronous Timing
R

Figure 4-2: Example of Source Synchronous Timing

In the preceding example, CLK1 and CLK2 are derived clocks that control data reception of
Device 2 and Device 3. The primary clock controls the data transmission for all three
devices.

You can use source synchronous timing constraints for Double Data Rate (DDR) or Single
Data Rate (SDR) inputs or outputs. The following figure shows an example of a timing
diagram for Dual Data Rate inputs for two flip-flops, one with an active High input, and
one with an active Low input.

Figure 4-3: Example of Timing Diagram for Dual Data Rate Inputs

X9941

Clock

CLK1

DATA
Device 1

TX

CLK2

DATA
Device 2
RX - TX

Device 3
RX

X10895

Data Valid
= 3 ns

Data Offset
= 1 ns

Data Uncertainty
= 2 ns

Input Jitter 1 ns

DATA

Period = 10 ns

QD

CLK

QD
Constraints Guide www.xilinx.com 73
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

Syntax Examples

The following steps show an example of how to use the PERIOD, OFFSET, and
SYSTEM_JITTER constraints for source synchronous timing for the example circuit.

1. Create Period

NET CLK TNM_NET = CLK_GRP;

TIMESPEC "TS_CLK" = PERIOD ”CLK_GRP" 10 ns INPUT_JITTER 1;

2. Create Groups

INST DATA_IN[*] TNM = DATA_IN;

TIMEGRP FF_RISING = RISING CLK_GRP ;

TIMEGRP FF_FALLING = FALLING CLK_GRP;

3. Create OFFSET constraint

TIMEGRP DATA_IN OFFSET = IN 1 VALID 3 BEFORE CLK TIMEGRP FF_RISING;

TIMEGRP DATA_IN OFFSET = IN -4 VALID 3 BEFORE CLK TIMEGRP FF_FALLING;

4. Create SYSTEM_JITTER constraint.

SYSTEM_JITTER=0.456 ns;

Directed Routing
Directed Routing is a means of supporting repeatable, locked routing functionality similar
to “exact guide” for a limited number of critical signals in a design via UCF constraints.
Directed Routing is also used on signals with a limited fanout between comps in close
proximity to one another, thereby avoiding the use of long-line resources.

Avoiding long-line resources in Directed Routing constraints is important for two reasons:

• Using such an “expensive” routing resource for a low fanout net is generally a bad
practice.

• Using long-line resources reduces routing flexibility as the design changes and grows
in the design process.

You set the value of the constraint in the FPGA Editor for Directed Routing.

About Directed Routing
Directed Routing is:

• A mechanism of locking the routing in order to maintain timing of nets in a design

• A potential work around for routing limitations

• A means of controlling route delays to a tighter tolerance than is possible via timing
constraints

How Directed Routing Works
A constraint describing the exact routing resources used to route between source COMP
pins and load COMP pins for the selected NET is created.

COMP placement constraints are required to maintain the relative positioning between all
COMPs attached to the NET. For SLICE COMPs, BEL constraints are also required.
74 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Directed Routing
R

When To Use Directed Routing
Use Directed Routing when:

• Timing must be maintained (less than 200 ps variation) between implementations on a
few nets

• Both the source and destination comps can be an (R)LOC and BEL constrained to
maintain relative placement

• Skew must be controlled between nets

• Creating a high-speed macro to limit timing variation between instances of the
MACRO

• Creating a high-speed macro to use in other devices of the same device family

When NOT To Use Directed Routing
Do not use Directed Routing when:

• Creating a MACRO that uses global resources, and which will be relocated in the
device or other devices in the same device family.

• Routing for hundreds of nets between COMPs must be maintained. Directed Routing
is NOT a replacement for Guide.

Related Constraints
• “BEL”

• “Location (LOC)”

• “Relative Location (RLOC)”

• “Relative Location Origin (RLOC_ORIGIN)”

• “U_SET”
Constraints Guide www.xilinx.com 75
10.1

http://www.xilinx.com

Chapter 4: Timing Constraint Strategies
R

76 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

R

Chapter 5

Xilinx Constraints

This chapter describes the individual constraints that can be used with Xilinx® FPGA and
CPLD devices, including, for each constraint, architecture support, applicable elements,
description, propagation rules, syntax examples, and, where necessary, additional
information for particular constraints. This chapter contains the following sections:

• “Constraint Information”

• “Alphabetized List of Xilinx Constraints”

Constraint Information
This chapter gives the following information for each constraint:

• Architecture Support

A device table shows whether the constraint may be used with that device.

• Applicable Elements

The elements to which the constraint may be applied.

• Description

A brief description of the constraint, including its usage and behavior.

• Propagation Rules

How the constraint is propagated.

• Syntax Examples

Syntax examples for using the constraint with particular tools or methods. Not every
tool or method is listed for every constraint. If a tool or method is not listed, the
constraint may not be used with it. Following are the available tools and methods.

Schematic VHDL

Verilog ABEL

NCF UCF

XCF Constraints Editor

PCF Floorplanner

PACE FPGA Editor

Project Navigator
Constraints Guide www.xilinx.com 77
10.1

http://www.xilinx.com

Chapter 5: Xilinx Constraints
R

• Additional Information

Additional information is provided for certain constraints.

Alphabetized List of Xilinx Constraints
This chapter contains information on the following constraints:

• Area Group (AREA_GROUP)

• Asynchronous Register (ASYNC_REG)

• BEL

• Block Name (BLKNM)

• BUFG (CPLD)

• Clock Dedicated Route

• Collapse (COLLAPSE)

• Component Group (COMPGRP)

• Configuration Mode (CONFIG_MODE)

• CoolCLOCK (COOL_CLK)

• Data Gate (DATA_GATE)

• DCI_CASCADE

• DCI_VALUE

• Directed Routing (DIRECTED_ROUTING)

• Disable (DISABLE)

• D rive (DRIVE)

• Drop Specifications (DROP_SPEC)

• Enable (ENABLE)

• Enable Suspend (ENABLE_SUSPEND)

• Fast (FAST)

• Feedback (FEEDBACK)

• File (FILE)

• Float (FLOAT)

• From Thru T o (FROM-THRU-TO)

• From To (FROM-TO)

• Hierarchical Block Name (HBLKNM)

• Hierarchical Lookup Table Name (HLUTNM)

• HU_SET

• Input Buffer Delay Value (IBUF_DELAY_VALUE)

• IFD_DELAY_VALUE

• Input Registers (INREG)

• IOB

• Input Output Block Delay (IOBDELAY)

• Input Output Standard (IOSTANDARD)

• Keep (KEEP)
78 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Alphabetized List of Xilinx Constraints
R

• Keeper (KEEPER)

• Keep Hierarchy (KEEP_HIERARCHY)

• Location (LOC)

• Locate (LOCATE)

• Lock Pins (LOCK_PINS)

• Lookup Table Name (LUTNM)

• Map (MAP)

• Maximum Delay (MAXDELAY)
• Maximum Product Terms (MAXPT)

• Maximum Skew (MAXSKEW)

• No Delay (NODELAY)

• No Reduce (NOREDUCE)

• Offset In (OFFSET IN)

• Offset Out (OFFSET OUT)

• Open Drain (OPEN_DRAIN)

• Optimizer Effort (OPT_EFFORT)

• Optimize (OPTIMIZE)

• Period (PERIOD)

• Pin (PIN)

• POST_CRC

• POST_CRC_ACTION

• POST_CRC_FREQ

• POST_CRC_SIGNAL

• Priority (PRIORITY)

• Prohibit (PROHIBIT)

• Pulldown (PULLDOWN)

• Pullup (PULLUP)

• Power Mode (PWR_MODE)

• Registers (REG)

• Relative Location (RLOC)

• Relative Location Origin (RLOC_ORIGIN)

• Relative Location Range (RLOC_RANGE)

• Save Net Flag (SAVE NET FLAG)

• Schmitt Trigger (SCHMITT_TRIGGER)

• Slew (SLEW)

• Slow (SLOW)

• Stepping (STEPPING)

• Suspend (SUSPEND)

• System Jitter (SYSTEM_JITTER)

• Temperature (TEMPERATURE)
Constraints Guide www.xilinx.com 79
10.1

http://www.xilinx.com

Chapter 5: Xilinx Constraints
R

• Timing Ignore (TIG)

• Timing Group (TIMEGRP)

• Timing Specifications (TIMESPEC)

• Timing Name (TNM)

• Timing Name Net (TNM_NET)

• Timing Point Synchronization (TPSYNC)

• Timing Thru Points (TPTHRU)

• Timing Specification Identifier (TSidentifier)

• U_SET

• Use Relative Location (USE_RLOC)

• Use Low Skew Lines (USELOWSKEWLINES)

• VCCAUX

• Voltage (VOLTAGE)

• VREF

• Wire And (WIREAND)

• XBLKNM
80 www.xilinx.com Constraints Guide
10.1

http://www.xilinx.com

Xilinx Constraints
R

Area Group (AREA_GROUP)

AREA_GROUP Architecture Support
The AREA_GROUP constraint applies to FPGA devices only.

AREA_GROUP Applicable Elements
• Logic blocks

• Timing groups

For more information, see “Defining From Timing Groups” in this chapter.

AREA_GROUP Description
AREA_GROUP is a design implementation constraint that enables partitioning of the
design into physical regions for mapping, packing, placement, and routing.

AREA_GROUP is attached to logical blocks in the design, and the string value of the
constraint identifies a named group of logical blocks that are to be packed together by
mapper and placed in the ranges if specified by PAR. If AREA_GROUP is attached to a
hierarchical block, all sub-blocks in the block are assigned to the group.

Once defined, an AREA_GROUP can have a variety of additional constraints associated
with it to control its implementation. For more information, see “AREA_GROUP Syntax”
in this chapter.

AREA_GROUP Propagation Rules
The following rules apply to AREA_GROUP.

• When attached to a design element, AREA_GROUP is propagated to all applicable
elements in the hierarchy below the component.

• It is illegal to attach AREA_GROUP to a net, signal, or pin.

AREA_GROUP Syntax
The basic UCF syntax for defining an area group is:

INST “X” AREA_GROUP=groupname;

The syntax to be used in attaching constraints to an area group is:

AREA_GROUP “groupname” RANGE=range;

or

AREA_GROUP “groupname” COMPRESSION=percent;

or

AREA_GROUP “groupname” IMPLEMENT={FORCE|AUTO};

or

AREA_GROUP “groupname” GROUP={OPEN|CLOSED};

or

AREA_GROUP “groupname” PLACE={OPEN|CLOSED};
Constraints Guide www.xilinx.com Area Group (AREA_GROUP) 81
10.1

http://www.xilinx.com

Xilinx Constraints
R

or

AREA_GROUP “groupname” MODE={RECONFIG};

where

• groupname is the name assigned to an implementation partition to uniquely define the
group

Each of these additional AREA_GROUP constraints is described below.

RANGE

RANGE defines the range of device resources that are available to place logic contained in
the AREA_GROUP, in the same manner ranges are defined for the LOC constraint.

For Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices, RANGE syntax is as follows:

RANGE=CLB_Rm1Cn1:CLB_rm2Cn2

RANGE=TBUF_Rm1Cn1:TBUF_rm2Cn2

RANGE=RAMB4_Rm1Cn1:RAMB4_rm2Cn2

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, RANGE syntax is as follows:

RANGE=SLICE_Xm1Yn1:SLICE_xm2Yn2

RANGE=TBUF_Xm1Yn1:TBUF_Xm2Yn2

RANGE=MULT18X18_Xm1Yn1:MULT18X18_Xm2Yn2

RANGE=RAMB16_Xm1Yn1:RAMB16_Xm2Yn2

TBUF is not supported by Spartan-3, Spartan-3A, Spartan-3E, Virtex-4, and Virtex-5
devices.

All FPGA devices and CLBs/SLICEs are supported. If an AREA_GROUP contains both
TBUFs (not applicable for Spartan-3, Spartan-3A, and Spartan-3E) and one for
CLBs/SLICEs, two separate AREA_GROUP RANGEs can be specified: one for TBUFs and
one for CLBs/SLICEs.

You can use the wildcard character for either the row number or column number. For
Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, you can use the wildcard character for either the X coordinate or the Y
coordinate.

COMPRESSION

COMPRESSION defines the compression factor for the AREA_GROUPs. The percent
values can be from 0 to 100. If the AREA_GROUP does not have a RANGE, only 0 (no
compression) and 1 (maximum compression) are meaningful. The mapper computes the
number of CLBs in the AREA_GROUP from the RANGE and attempts to compress the
logic into the percentage specified. Compression does not apply to TBUFs, BRAMs, or
multipliers.

The compression factor is similar to the -c option in MAP, except that it operates on the
AREA_GROUP instead of the whole design. AREA_GROUP compression interacts with
the -c map option as follows:

• Area groups with a compression factor are not affected by the -c option. (Logic that
is not part of an area group is not merged with grouped logic if the AREA_GROUP
has its own compression factor.)
Constraints Guide www.xilinx.com Area Group (AREA_GROUP) 82
10.1

http://www.xilinx.com

Xilinx Constraints
R

• Area groups without a compression factor are affected by the -c option. The mapper
may attempt to combine ungrouped logic with logic that is part of an area group
without a compression factor.

• At no time is the logic from two separate area groups combined.

• The -c map option does not force compression among slices in the same area group.

The Map Report (MRP) includes a section that summarizes AREA_GROUP processing.

If a symbol that is part of an AREA_GROUP contains a LOC constraint, the mapper
removes the symbol from the area group and processes the LOC constraint.

Logic that does not belong to any AREA_GROUP can be pulled into the region of logic
belonging to an area group, as well as being packed or merged with such logic to form
SLICES.

IMPLEMENT

For IMPLEMENT, the string value must be one of the following.

FORCE

Forces the AREA_GROUP logic to be re-implemented.

AUTO

Determines if the AREA_GROUP logic has changed and, if so, the logic is reimplemented.
The default is AUTO.

GROUP

GROUP controls the packing of logic into physical components (that is, slices) as follows.

CLOSED

Do not allow logic outside the AREA_GROUP to be combined with logic inside the
AREA_GROUP.

OPEN

Allow logic outside the AREA_GROUP to be combined with logic inside the
AREA_GROUP.

Default

The default value is GROUP=OPEN.

PLACE

PLACE controls the allocation of resources in the area group’s RANGE, as follows.

CLOSED

Do not allow comps that are not members of the AREA_GROUP to be placed within the
RANGE defined for the AREA_GROUP.

OPEN

Allow comps that are not members of the AREA_GROUP to be placed within the RANGE
defined for the AREA_GROUP.
Constraints Guide www.xilinx.com Area Group (AREA_GROUP) 83
10.1

http://www.xilinx.com

Xilinx Constraints
R

Default

The default value is PLACE=OPEN.

MODE

MODE is used to define a reconfigurable area group, as in the following example:

MODE=RECONFIG

AREA_GROUP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach AREA_GROUP=groupname to a valid instance.

• Attach RANGE =range to a CONFIG symbol.

• Attach COMPRESSION=percent to a CONFIG symbol.

• Attach IMPLEMENT={FORCE|AUTO} to a CONFIG symbol.

• Attach GROUP={OPEN|CLOSED} to a CONFIG symbol.

• Attach PLACE={OPEN|CLOSED} to a CONFIG symbol.

• Attach to a CONFIG symbol. For a value of TRUE, PLACE, and GROUP must both be
CLOSED.

• Attribute Names: AREA_GROUP, RANGE range, COMPRESSION percent,
IMPLEMENT={FORCE|AUTO}, GROUP={OPEN|CLOSED},
PLACE={OPEN|CLOSED}, and MODE={RECONFIG}.

• Attribute Values: groupname, range, percent, IMPLEMENT={FORCE|AUTO},
GROUP={OPEN|CLOSED}, PLACE={OPEN|CLOSED}, MODE={RECONFIG}

UCF and NCF Syntax Example

For architectures with slice-based XY designations (Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices only).

The following example assigns all the logical blocks in state_machine_X to the area group
"group1" and places CLB logic in the physical area between CLB 1,1 and CLB 10,10. It
places TBUFs in the physical area between TBUF 1,0 and TBUF 10,10. Unrelated logic
within "group1" is not compressed. Because compression is defined, ungrouped logic is
not combined with logic in "group1."

INST “state_machine_X” AREA_GROUP=group1;

AREA_GROUP “group1” COMPRESSION=0;

AREA_GROUP “group1” RANGE=CLB_R1C1:CLB_R10C10;

AREA_GROUP “group1” RANGE=TBUF_X6Y0:TBUF_X10Y22;

Note: Not applicable for architectures that do not contain internal tristate buffers.

The following example assigns all the logical blocks in state_machine_X to the area group,
"group1," and places logic in the physical area bounded by SLICE_X3Y1 in the lower left
corner and SLICE_X33Y33 in the upper left corner. It places TBUFs in the physical area
bounded by TBUF_X6Y0 and TBUF_X10Y22. Unrelated logic within "group1" not
Constraints Guide www.xilinx.com Area Group (AREA_GROUP) 84
10.1

http://www.xilinx.com

Xilinx Constraints
R

compressed. Because compression is defined, ungrouped logic not combined with logic in
"group1."

INST “state_machine_X” AREA_GROUP=group1;

AREA_GROUP “group1” COMPRESSION=0;

AREA_GROUP “group1” RANGE=SLICE_X3Y1:SLICE_X33Y33;

AREA_GROUP “group1” RANGE=TBUF_X6Y0:TBUF_X10Y22;

The following example assigns I$1, I$2, I$3, and I$4 to the area group "group2." Because
there is no compression, ungrouped logic may be combined within this area group.

INST “I$1” AREA_GROUP=group2;

INST “I$2” AREA_GROUP=group2;

INST “I$3” AREA_GROUP=group2;

INST “I$4” AREA_GROUP=group2;

Floorplanner Syntax Example

See the following topics in the Floorplanner help:

• “Using a Floorplanner UCF File in Project Navigator”

• “Creating and Editing Area Constraints”

PACE Syntax Example

The Pin AREA Constraints Editor (PACE) is mainly used to identify and assign areas to
hierarchical blocks of logic. You can access PACE from the Processes window in the Project
Navigator. Double-click Create Area Constraints. For more information, see the PACE
help, especially “Editing Area Constraints.”

Defining From Timing Groups
To create an area group based on a timing group, use the following UCF and NCF syntax:

TIMEGRP timing_group_name AREA_GROUP = area_group_name;

where

• timing_group_name is the name of a previously defined timing group

• area_group_name is the name of a new area group to be defined from the TIMEGRP
contents

This is equivalent to manually assigning each member of the timing group to
area_group_name. The area group name defined by this statement can be used in RANGE
constraints, just like any other area group name.

In the AREA_GROUP definition, the timing_group_name is generally TNM_NET group,
which allows area groups to be formed based on the loads of clock or other control nets.
Defining AREA_GROUPs from TIMEGRPs is useful for improving placement of designs
with many different clock domains in devices that have more clocks than clock regions.

You can also specify a TNM group name, or the name of a user group defined by a
TIMEGRP statement. Edge qualifiers used in the TIMEGRP definition are ignored when
determining area group membership. In all cases, the AREA_GROUP members are
determined after the TIMEGRP has been propagated to its target elements.

Since TIMEGRPs can contain only synchronous elements and pads, area groups defined
from timing groups also contain only these element types. If an AREA_GROUP is defined
Constraints Guide www.xilinx.com Area Group (AREA_GROUP) 85
10.1

http://www.xilinx.com

Xilinx Constraints
R

by a TIMEGRP that contains only flip-flops or latches, assigning a RANGE to that group
makes sense only if ungrouped logic is also allowed within the area. Therefore,
COMPRESSION should not be defined for such groups.

If a TNM_NET is used by a PERIOD specification, and is traced into a Virtex, Virtex-E,
Spartan-II, Spartan-IIE, CLKDLL or Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II
Pro, Virtex-II Pro X, Virtex, Virtex-4, or Virtex-5 devices, DCM, new TNM_NET groups and
PERIOD specifications are created at the CLKDLL or DCM outputs. If the original
TNM_NET is used to define an area group, and if more than one clock tap is used on the
CLKDLL or DCM, the area group is split into separate groups at each clock tap.

For example, assume you have the following UCF constraints:

NET "clk" TNM_NET="clock";

TIMESPEC "TS_clk" = PERIOD "clock" 10 MHz;

TIMEGRP "clock" AREA_GROUP="clock_area";

If the net clk is traced into a CLKDLL or DCM, a new group and PERIOD specification is
created at each clock tap. Likewise, a new area group is created at each clock tap, with a
suffix indicating the clock tap name. If the CLK0 and CLK2X taps were used, the
AREA_GROUPS clock_area_CLK0 and clock_area_CLK2X are defined automatically.

When AREA_GROUP definitions are split in this manner, NGDBuild issues an
informational message, showing the names of the new groups. These new group names,
rather than the originally specified one, should be used in RANGE constraints.

Defining from Area Groups
To create an area group based on an area group, use the following UCF and NCF syntax:

AREAGRP timing_group_name AREA_GROUP = area_group_name;

where

• area_group_name is the name of a previously defined timing group

• area_group_name is the name of a new area group to be defined from the TIMEGRP
contents
Constraints Guide www.xilinx.com Area Group (AREA_GROUP) 86
10.1

http://www.xilinx.com

Xilinx Constraints
R

Asynchronous Register (ASYNC_REG)

ASYNC_REG Architecture Support
The ASYNC_REG constraint applies to FPGA devices only.

ASYNC_REG Applicable Elements
The ASYNC_REG constraint can be attached to registers and latches only. It should be used
only on registers or latches with asynchronous inputs (D input or the CE input).

ASYNC_REG Description
The ASYNC_REG timing constraint improves the behavior of asynchronously clocked
data for simulation. Specifically, it disables 'X' propagation during timing simulation. In
the event of a timing violation, the previous value is retained on the output instead of
going unknown.

ASYNC_REG Propagation Rules
Applies to the register or latch to which it is attached

ASYNC_REG Syntax Examples
Following are syntax examples using the ASYNC_REG constraint with particular tools or
methods. If a tool or method is not listed, the constraint may not be used with it.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute ASYNC_REG : string;

Specify the VHDL constraint as follows:

attribute ASYNC_REG of instance_name: label is "{TRUE|FALSE}";

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* ASYNC_REG = "{TRUE|FALSE}" *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

INST “instance_name” ASYNC_REG = {TRUE|FALSE};

The default (if constraint is not applied) is FALSE. If no boolean value is supplied it is
considered TRUE.
Constraints Guide www.xilinx.com Asynchronous Register (ASYNC_REG) 87
10.1

http://www.xilinx.com

Xilinx Constraints
R

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints. You can set using the Misc tab.
Constraints Guide www.xilinx.com Asynchronous Register (ASYNC_REG) 88
10.1

http://www.xilinx.com

Xilinx Constraints
R

BEL

BEL Architecture Support
The BEL constraint applies to the following devices:

• Virtex™-II

• Virtex-4

• Virtex-5

• Spartan™-3

• Spartan-3A

• Spartan-3E

BEL Applicable Elements

BEL Description
BEL is an advanced placement constraint. It locks a logical symbol to a particular BEL site
in a slice, or an IOB. BEL differs from “Location (LOC)” in that LOC allows specification to
the comp level. BEL allows specification as to which particular BEL site of the slice or IOB
slice is to be used. The BEL constraint should always be used with an appropriate LOC or
RLOC attribute.

An IOB BEL constraint does not direct the mapper to pack the register into an IOB
component. Some other feature (the -pr switch, for example) must cause the packing.
Once the register is directed to an IOB, the BEL constraint causes the proper placement
within the IOB.

BEL Propagation Rules
It is only legal to place a BEL constraint on an appropriate instance with a valid LOC or
RLOC.

BEL Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: BEL

• Attribute Values: F, G, FFA, FFB, FFC, FFD, FFX, FFY, XORF, XORG, A6LUT, B6LUT,
C6LUT, D6LUT A5LUT, B5LUT, C5LUT, D5LUT

• Registers • Latches

• LUTRAMs

• RAMB18s

• SRLs
Constraints Guide www.xilinx.com BEL 89
10.1

http://www.xilinx.com

Xilinx Constraints
R

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute bel : string;

Specify the VHDL constraint as follows:

attribute bel of {component_name|label_name}: {component|label} is
“{F|G|FFA|FFB|FFC|FFD|FFX|FFY|XORF|XORG|A6LUT|B6LUT|C6LUT|D6LUT|A5LUT|
B5LUT|C5LUT|
D5LUT}”;

For a description of BEL values, see “UCF and NCF Syntax Example” in this chapter.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* BEL =
“{F|G|FFA|FFB|FFC|FFD|FFX|FFY|XORF|XORG|A6LUT|B6LUT|C6LUT|D6LUT|A5LUT|
B5LUT|C5LUT|
D5LUT}” *)

For a description of BEL values, see “UCF and NCF Syntax Example” in this chapter.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The syntax is:

INST “instance_name” BEL={F | G | FFA | FFB | FFC | FFD | FFX | FFY |
XORF | XORG | A6LUT | B6LUT | C6LUT | D6LUT | A5LUT | B5LUT | C5LUT |
D5LUT};

where

• F , G, A6LUT, B6LUT, C6LUT, D6LUT, A5LUT, B5LUT, C5LUT and D5LUT identify
specific LUTs, SRL16s, distributed RAM components in the slice

• FFX, FFY, FFA, FFB, FFC and FFD identify specific flip-flops, latches, and other
elements in a slice

• XORF and XORG identify XORCY elements in a slice

The syntax for the RAMB BEL instance is:

INST “upper_BRAM_instance_name” LOC = RAMB36_XnYn | BEL = UPPER;

INST "lower_BRAM_instance_name" LOC = RAMB36_XnYn | BEL = LOWER;

Example:

INST "ramb18_inst0" LOC = RAMB36_X0Y2 | BEL = UPPER;

INST "ramb18_inst1" LOC = RAMB36_X0Y2 | BEL = LOWER;

The following statement locks xyzzy to the FFX site on the slice.

INST “xyzzy” BEL=FFX;
Constraints Guide www.xilinx.com BEL 90
10.1

http://www.xilinx.com

Xilinx Constraints
R

Block Name (BLKNM)

BLKNM Architecture Support
The BLKNM constraint applies to FPGA devices only.

BLKNM Applicable Elements
The BLKNM constraint may be used with an FPGA device in one or more of the following
design elements, or categories of design elements. Not all device families support all these
elements. To see which design elements can be used with which device families, see the
Xilinx Libraries Guides. For more information, see the device data sheet.

• Flip-flop and latch primitives

• Any I/O element or pad

• FMAP

• BUFT

• ROM primitives

• RAMS and RAMD primitives

• Carry logic primitives

You can also attach BLKNM to the net connected to the pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that
it can be processed by the mapper. Use the following syntax:

NET “net_name” BLKNM=property_value;

BLKNM Description
BLKNM is an advanced mapping constraint. BLKNM assigns block names to qualifying
primitives and logic elements. If the same BLKNM constraint is assigned to more than one
instance, the software attempts to map them into the same block. Conversely, two symbols
with different BLKNM names are not mapped into the same block. Placing similar
BLKNM constraints on instances that do not fit within one block creates an error.

Specifying identical BLKNM constraints on FMAP tells the software to group the
associated function generators into a single SLICE. Using BLKNM, you can partition a
complete SLICE without constraining the SLICE to a physical location on the device.

BLKNM constraints, like LOC constraints, are specified from the design. Hierarchical
paths are not prefixed to BLKNM constraints, so BLKNM constraints for different SLICEs
must be unique throughout the entire design. For information on attaching hierarchy to
block names, see the “Hierarchical Block Name (HBLKNM)” constraint.

BLKNM allows any elements except those with a different BLKNM to be mapped into the
same physical component. Elements without a BLKNM can be packed with those that have
a BLKNM. For information on allowing only elements with the same XBLKNM to be
mapped into the same physical component, see the “XBLKNM” constraint.

BLKNM Propagation Rules
When attached to a design element, it is propagated to all applicable elements in the
hierarchy within the design element.
Constraints Guide www.xilinx.com Block Name (BLKNM) 91
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

BLKNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: BLKNM

• Attribute Value: block_name

VHDL Syntax Example

Declare the VHDL constraint with the following syntax:

attribute blknm: string;

Specify the VHDL constraint as follows:

attribute blknm of
{component_name|signal_name|entity_name|label_name}:
{component|signal|entity|label} is “block_name”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* BLKNM = “blk_name” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic UCF syntax is:

INST “instance_name” BLKNM=block_name;

where

• block_name is a valid block name for that type of symbol

For information on assigning hierarchical block names, see the “Hierarchical Block Name
(HBLKNM)”constraint.

The following statement assigns an instantiation of an element named block1 to a block
named U1358.

INST “$1I87/block1” BLKNM=U1358;

XCF Syntax Example

MODEL “entity_name” blknm = block_name;

BEGIN MODEL “entity_name”

 INST "instance_name" blknm = block_name;

END;
Constraints Guide www.xilinx.com Block Name (BLKNM) 92
10.1

http://www.xilinx.com

Xilinx Constraints
R

BUFG (CPLD)

BUFG (CPLD) Architecture Support
The BUFG (CPLD) applies to CPLD devices only.

BUFG (CPLD) Applicable Elements
Any input buffer (IBUF), input pad net, or internal net that drives a CLK, OE, SR,
DATA_GATE pin

BUFG (CPLD) Description
BUFG is an advanced fitter constraint and a synthesis constraint. When applied to an input
buffer or input pad net, the BUFG attribute maps the tagged signal to a global net. When
applied to an internal net, the tagged signal is either routed directly to a global net or
brought out to a global control pin to drive the global net, as supported by the target device
family architecture.

BUFG (CPLD) Propagation Rules
When attached to a net, BUFG has a net or signal form and so no special propagation is
required. When attached to a design element, BUFG is propagated to all applicable
elements in the hierarchy within the design element.

BUFG (CPLD) Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an IBUF instance of the input pad connected to an IBUF input

• Attribute Name: BUFG

• Attribute Values: CLK, OE, SR, DATA_GATE

• BUFG=CLK: maps to a global clock (GCK) line

• BUFG=OE: maps to a global 3-state control (GTS) line

• BUFG=SR: maps to a global set/reset control (GSR) line

• BUFG=DATA_GATE: maps to the DataGate latch enable control line

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute BUFG: string;

Specify the VHDL constraint as follows:

attribute BUFG of signal_name: signal is “{CLK|OE|SR|DATA_GATE}”;

BUFG=CLK: maps to a global clock (GCK) line.

BUFG=OE: maps to a global 3-state control (GTS) line.
Constraints Guide www.xilinx.com BUFG (CPLD) 93
10.1

http://www.xilinx.com

Xilinx Constraints
R

BUFG=SR: maps to a global set/reset control (GSR) line.

BUFG=DATA_GATE: maps to the DataGate latch enable control line.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify BUFG as follows:

(* BUFG = “{CLK|OE|SR|DATA_GATE}” *)

BUFG=CLK: maps to a global clock (GCK) line.

BUFG=OE: maps to a global 3-state control (GTS) line.

BUFG=SR: maps to a global set/reset control (GSR) line.

BUFG=DATA_GATE: maps to the DataGate latch enable control line.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'bufg={clk|oe|sr|DATA_GATE} signal_name';

UCF and NCF Syntax Example

The basic UCF syntax is

NET “net_name” BUFG={CLK | OE | SR | DATA_GATE};

INST “instance_name” BUFG={CLK | OE | SR | DATA_GATE};

where

• CLK designates a global clock pin (all CPLD families)

• OE designates a global 3-state control pin (all CPLD devices except CoolRunner) or
internal global 3-state control line (CoolRunner-II only).

• SR designates a global set/reset pin (all CPLD devices except CoolRunner)

• DATA_GATE maps to the DataGate latch enable control line

The following statement maps the signal named fastclk to a global clock net.

NET “fastclk” BUFG=CLK;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" BUFG = {CLK|OE|SR|DATA_GATE};

END;
Constraints Guide www.xilinx.com BUFG (CPLD) 94
10.1

http://www.xilinx.com

Xilinx Constraints
R

Clock Dedicated Route

CLOCK_DEDICATED_ROUTE Architecture Support
The CLOCK_DEDICATED_ROUTE constraint applies to the following devices:

• Spartan™-3

• Spartan-3E

• Spartan-3A

• Spartan-3A DSP

• Virtex™-4

• Virtex-5

CLOCK_DEDICATED_ROUTE Applicable Elements

CLOCK_DEDICATED_ROUTE Description
CLOCK_DEDICATED_ROUTE constraint is an advanced constraint that directs the tools
whether or not to follow clock placement rules for a specific architecture. If the constraint
is not used or set to TRUE, clock placement rules must be followed. Otherwise, placement
will error. If the constraint is set to FALSE, it directs the tools to ignore the specific clock
placement rule and continue with place and route. If possible, all clock placement rule
violations should be fixed in a design in order to ensure the best clocking performance.
This constraint is intended to be used only in limited situations when it is absolutely
necessary to violate a clock placement rule. Please see the Hardware User's Guide for more
details about specific clock placement rules.

CLOCK_DEDICATED_ROUTE Propagation Rules
Applies to the NET or INSTANCE PIN.

CLOCK_DEDICATED_ROUTE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: CLOCK_DEDICATED_ROUTE

• Nets

Input and output pins of the follwing primitives:

• BUFG
• BUFR
• DCM
• PLLPMCD

• GT11
• GT11 DUAL
• GT11 CLK
• GTP DUAL
Constraints Guide www.xilinx.com Clock Dedicated Route 95
10.1

http://www.xilinx.com

Xilinx Constraints
R

• TRUE, FALSE

UCF and NCF Syntax Example

The syntax is:

PIN "<BEL_INSTANCE_NAME.PIN>" CLOCK_DEDICATED_ROUTE = (TRUE|FALSE);

where

<BEL_INSTANCE_NAME.PIN>

is the specific input/output pin of the instance you want to constrain. An example is the
CLKIN input pin of a DCM instance.
Constraints Guide www.xilinx.com Clock Dedicated Route 96
10.1

http://www.xilinx.com

Xilinx Constraints
R

Collapse (COLLAPSE)

COLLAPSE Architecture Support
The COLLAPSE constraint applies to CPLD devices only.

COLLAPSE Applicable Elements
Any internal net.

COLLAPSE Description
COLLAPSE is an advanced fitter constraint. It forces a combinatorial node to be collapsed
into all of its fanouts.

COLLAPSE Propagation Rules
COLLAPSE is a net constraint. Any attachment to a design element is illegal.

COLLAPSE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a logic symbol or its output net

• Attribute Name: COLLAPSE

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute collapse: string;

Specify the VHDL constraint as follows:

attribute collapse of signal_name: signal is “{YES|NO|TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

 (* COLLAPSE = “{YES|NO|TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic UCF syntax is:

NET “net_name” COLLAPSE;

The following statement forces net $1N6745 to collapse into all its fanouts.
Constraints Guide www.xilinx.com Collapse (COLLAPSE) 97
10.1

http://www.xilinx.com

Xilinx Constraints
R

NET “$1I87/$1N6745” COLLAPSE;
Constraints Guide www.xilinx.com Collapse (COLLAPSE) 98
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com Component Group (COMPGRP) 99
10.1

Xilinx Constraints
R

Component Group (COMPGRP)

COMPGRP Architecture Support
The COMPGRP constraint applies to FPGA devices only.

COMPGRP Applicable Elements
Groups of components

COMPGRP Description
COMPGRP is an advanced grouping constraint that identifies a group of components.

COMPGRP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

PCF Syntax Example

COMPGRP “group_name”=comp_item1... comp_itemn [EXCEPT comp_group];

where

• comp_item is one of the following

♦ COMP “comp_name”

♦ COMPGRP “group_name”

http://www.xilinx.com

Xilinx Constraints
R

CoolCLOCK (COOL_CLK)

COOL_CLK Architecture Support
The COOL_CLK constraint applies to Coolrunner™-II devices only.

COOL_CLK Applicable Elements
Applies to any input pad or internal signal driving a register clock.

COOL_CLK Description
You can save power by combining clock division circuitry with the DualEDGE circuitry.
This capability is called COOL_CLK. It is designed to reduce clocking power within a
CPLD. Because the clock net can be a significant power drain, the clock power can be
reduced by driving the net at half frequency, then doubling the clock rate using DualEDGE
triggered macrocells.

COOL_CLK Propagation Rules
Applying COOL_CLK to a clock net is equivalent to passing the clock through a divide-by-
two clock divider (CLK_DIV2) and replacing all flip-flops controlled by that clock with
DualEDGE flip-flops. Using the COOL_CLK attribute does not alter your overall design
functionality.

Some restrictions apply:

• You cannot use COOL_CLK on a clock that triggers any flip-flop on the low-going
edge. The CoolRunner-II clock divider can be triggered only on the high-rising edge
of the clock signal.

• If there are any DualEDGE flip-flops in your design source, the clock that controls any
of them cannot be specified as a COOL_CLK.

• If there is already a clock divider in your design source, you cannot also use
COOL_CLK. CoolRunner-II devices contain only one clock divider.

COOL_CLK Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a input pad or internal signal driving a register clock

• Attribute Name: COOL_CLK

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute cool_clk: string;

Specify the VHDL constraint as follows:
Constraints Guide www.xilinx.com CoolCLOCK (COOL_CLK) 100
10.1

http://www.xilinx.com

Xilinx Constraints
R

attribute cool_clk of signal_name: signal is “{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

 (* COOL_CLK = “{TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'COOL_CLK signal_name';

UCF and NCF Syntax Example

NET “signal_name” COOL_CLK;
Constraints Guide www.xilinx.com CoolCLOCK (COOL_CLK) 101
10.1

http://www.xilinx.com

Xilinx Constraints
R

Configuration Mode (CONFIG_MODE)

CONFIG_MODE Architecture Support
The CONFIG_MODE constraint applies to the following devices:

• Virtex™

• Virtex-E

• Virtex-II

• Virtex-II Pro

• Virtex-4

• Spartan™-II

• Spartan-IIE

• Spartan-3

CONFIG_MODE Applicable Elements
Attaches to the CONFIG symbol.

CONFIG_MODE Description
This constraint communicates to PAR which of the dual purpose configuration pins can be
used as general purpose IOs.

This constraint is used by PAR to prohibit the use of Dual Purpose IOs if they are required
for CONFIG_MODE: S_SELECTMAP+READBACK OR M_SELECTMAP+READBACK.

In the case of CONFIG_MODE: S_SELECTMAP OR M_SELECTMAP, PAR uses the Dual
Purpose IOs as General Purpose IOs only if necessary.

CONFIG_MODE Propagation Rules
Applies to dual-purpose I/Os

CONFIG_MODE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

The basic UCF syntax is:

CONFIG CONFIG_MODE=string;

where

• string can be one of the following:

♦ S_SERIAL = Slave Serial Mode

♦ M_SERIAL = Master Serial Mode (The default value)

♦ S_SELECTMAP = Slave SelectMAP Mode

♦ M_SELECTMAP = Master SelectMAP Mode.
Constraints Guide www.xilinx.com Configuration Mode (CONFIG_MODE) 102
10.1

http://www.xilinx.com

Xilinx Constraints
R

♦ B_SCAN = Boundary Scan Mode

♦ S_SELECTMAP+READBACK = Slave SelectMAP Mode with Persist set to
support Readback and Reconfiguration.

♦ M_SELECTMAP+READBACK = Mater SelectMAP Mode with Persist set to
support Readback and Reconfiguration.

♦ B_SCAN+READBACK = Boundary Scan Mode with Persist set to support
Readback and Reconfiguration

♦ S_SELECTMAP32+READBACK

♦ S_SELECTMAP32
Constraints Guide www.xilinx.com Configuration Mode (CONFIG_MODE) 103
10.1

http://www.xilinx.com

Xilinx Constraints
R

Data Gate (DATA_GATE)

DATA_GATE Architecture Support
The DATA_GATE constraint only applies to Coolrunner™-II devices with 128 macrocells
or more.

DATA_GATE Applicable Elements
I/O pads and pins

DATA_GATE Description
The CoolRunner-II DataGate feature provides direct means of reducing power
consumption in your design. Each I/O pin input signal passes through a latch that can
block the propagation of incident transitions during periods when such transitions are not
of interest to your CPLD design. Input transitions that do not affect the CPLD design
function still consume power, if not latched, as they are routed among the device’s function
blocks. By asserting the DATA_GATE control I/O pin on the device, selected I/O pin
inputs become latched, thereby eliminating the power dissipation associated with external
transitions on those pins.

Applying the DATA_GATE attribute to any I/O pad indicates that the pass-through latch
on that device pin is to respond to the DataGate control line. Any I/O pad (except the
DATA_GATE control I/O pin itself), including clock input pads, can be configured to get
latched by applying the DATA_GATE attribute. All other I/O pads that do not have a
DATA_GATE attribute remain unlatched at all times. The DATA_GATE control signal
itself can be received from off-chip via the DATA_GATE I/O pin, or you can generate it in
your design based on inputs that remain unlatched (pads without DATA_GATE
attributes).

For more information on using DATA_GATE with Verilog and VHDL designs, see the
“BUFG (CPLD)” constraint.

DATA_GATE Propagation Rules
See “DATA_GATE Description” in this chapter.

DATA_GATE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to I/O pads and pins

• Attribute Name: DATA_GATE

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute DATA_GATE : string;
Constraints Guide www.xilinx.com Data Gate (DATA_GATE) 104
10.1

http://www.xilinx.com

Xilinx Constraints
R

Specify the VHDL constraint as follows:

attribute DATA_GATE of signal_name: signal is “{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

 (* DATA_GATE = “{TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'DATA_GATE signal_name';

NCF Syntax Example

Same as UCF

UCF Syntax Example

NET “signal_name” DATA_GATE;

XCF Syntax Example

BEGIN MODEL “entity_name”
NET “signal_name” data_gate={TRUE|FALSE}”;
END;
Constraints Guide www.xilinx.com Data Gate (DATA_GATE) 105
10.1

http://www.xilinx.com

Xilinx Constraints
R

DCI_CASCADE

DCI_CASCADE Architecture Support
The DCI_CASCADE constraint applies to Virtex™-5 devices only.

DCI_CASCADE Applicable Elements
A DCI_CASCADE attribute on the top level design block.

DCI_CASCADE Description
In Virtex-5 device families, IO banks that need DCI reference voltage can be cascaded with
other DCI IO banks. One set of VRN/VRP pins can be used to provide reference voltage to
several IO banks. This results in more usable pins and in reduced power usage because
fewer VR pins and DCI controllers are used. The DCI_CASCADE constraint is used to
identify a DCI master bank and its corresponding slave banks. There can be multiple
instances of this constraint for a design in order to specify multiple master-slave pairs.
BitGen uses information from this constraint to program DCI controllers for different
banks and have them cascade up or down. The placer will also use this information to
determine whether VR pins in slave banks can be used for other purposes.

Each instance of the DCI_CASCADE constraint must have one master bank and one or
more slave banks that can be entered as a space-separated list. The first value in the list is
the master bank and all subsequent values are slave banks that get DCI reference voltage
from the master bank. Cascaded banks must be in the same column (left, center or right)
and must have the same VCCO setting. See “UCF and NCF Syntax Example” for this
constraint for more rules.

DCI_CASCADE Propagation Rules
Placed as an attribute on the CONFIG block, and propagated to the physical design object.

DCI_CASCADE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

Not supported

VHDL Syntax Example

Not supported

Verilog Syntax Example

Not supported

ABEL Syntax Example

Not supported
Constraints Guide www.xilinx.com DCI_CASCADE 106
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF Syntax Example

The UCF and NCF syntax is:

CONFIG DCI_CASCADE = “<master> <slave1> <slave2> ...”;

where,

• <master> = [1...MAX_NUM_BANKS]

• <slave1> = [1...MAX_NUM_BANKS]

• <slave2> = [1...MAX_NUM_BANKS]

• All values in the list are legitimate IO banks in the Virtex-5 device.

• The master bank must have an IOB with an IO standard that requires DCI reference
voltage.

• All slave banks must have the same VCCO setting as the master bank.

• If there are banks between the master and slave, they should be able to cascade in the
required direction.

For Example:

CONFIG DCI_CASCADE = "11 13 15 17";

XCF Syntax Example

Not supported

Constraints Editor Syntax Example

Not supported

PCF Syntax Example

CONFIG DCI_CASCADE = “<master>, <slave1>, <slave2>, ...”

where,

• <master> = [1...MAX_NUM_BANKS]

• <slave1> = [1...MAX_NUM_BANKS]

• <slave2> = [1...MAX_NUM_BANKS]

Floorplanner Syntax Example

Not supported

PACE Syntax Example

Not supported

Floorplan Editor Syntax Example

Not supported

FPGA Editor Syntax Example

Not supported
Constraints Guide www.xilinx.com DCI_CASCADE 107
10.1

http://www.xilinx.com

Xilinx Constraints
R

Project Navigator Syntax Example

Not supported
Constraints Guide www.xilinx.com DCI_CASCADE 108
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com DCI_VALUE 109
10.1

Xilinx Constraints
R

DCI_VALUE

DCI_VALUE Architecture Support
The DCI_VALUE constraint applies to the following devices:

• Virtex™-II

• Virtex-II Pro

• Virtex-II Pro X

• Virtex-4

• Virtex-5

• Spartan™-3

DCI_VALUE Applicable Elements
IOBs

DCI_VALUE Description
DCI_VALUE determines which buffer behavioral models are associated with the IOBs of a
design in the generation of an IBS file using IBISWriter.

DCI_VALUE Propagation Rules
Applies to the IOB to which it is attached

DCI_VALUE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

INST pin_name DCI_VALUE = integer;

Legal values are integers 25 through 100 with an implied units of ohms. The default value
is 50 ohms.

http://www.xilinx.com

Xilinx Constraints
R

Directed Routing (DIRECTED_ROUTING)

DIRECTED_ROUTING Architecture Support
The DIRECTED_ROUTING constraint applies to the following devices:

• Virtex™-II

• Virtex-II Pro

• Virtex-4

• Virtex-5

• Spartan™-3

• Spartan-3A

• Spartan-3E

DIRECTED_ROUTING Applicable Elements
Applies only to nets.

DIRECTED_ROUTING Description
DIRECTED_ROUTING is a means of maintaining the routing and timing for a small
number of loads and sources. Use of directed routing requires that the relative position
between the sources and loads be maintained exactly the same.

DIRECTED_ROUTING Propagation Rules
Not applicable

DIRECTED_ROUTING Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

The following examples are for illustration only. They are not valid executables.
Formulation of a directed routing constraint requires the placement of the source and load
components in a fixed location relative to each other.

FPGA Editor Syntax Example

To generate directed routing constraints with FPGA Editor, select Tools > Directed
Routing Constraints. FPGA Editor provides the following three settings for the type of
placement constraint to be generated automatically on the sources and loads components.

• “Do Not Generate Placement Constraint”

• “Use Relative Location Constraint”

• “Use Absolute Location Constraint”
Constraints Guide www.xilinx.com Directed Routing (DIRECTED_ROUTING) 110
10.1

http://www.xilinx.com

Xilinx Constraints
R

Do Not Generate Placement Constraint

“Do Not Generate Placement Constraint” generates a constraint for the routing only. It is
designed to be used with existing RPMs.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;-
2091;1480;24!0;16;-8!}";

Use Relative Location Constraint

“Use Relative Location Constraint” generates an RPM for the source and load components
along with the routing constraint. The RPM can be relocated around the device letting the
Placer make the final decision on placement.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;-
2091;1480;24!0;16;-8!}";

INST "inst1" RLOC=X3Y0;

INST "inst1" RPM_GRID=GRID;

INST "inst1" U_SET=macro name;

INST "inst1" BEL="F";

INST "inst2" RLOC=X3Y0;

INST "inst2" U_SET=macro name;

INST "inst2" BEL="G";

In the above example, each RLOC reference signals the launch of a new instance.
Accordingly, there are three instances encompassed within this example.

Use Absolute Location Constraint

“Use Absolute Location Constraint” causes the source and load components attached to
the target net to be locked in place.

NET "net_name" ROUTE="{2;1;-4!-1;-53320;2920;14;90;200;30;13!0;-
2091;1480;24!0;16;-8!}";

INST "inst1" RLOC=X3Y0;

INST "inst1" RPM_GRID=GRID;

INST "inst1" RLOC_ORIGIN=X87Y200;

INST "inst1" U_SET=macro name;

INST "inst1" BEL="F";

INST "inst2" RLOC=X0Y1;

INST "inst2" U_SET=macro name;

INST "inst2" BEL="F";

INST "inst3" RLOC=X3Y0;

INST "inst3" U_SET=macro name;

INST "inst3" BEL="G";
Constraints Guide www.xilinx.com Directed Routing (DIRECTED_ROUTING) 111
10.1

http://www.xilinx.com

Xilinx Constraints
R

Disable (DISABLE)

DISABLE Architecture Support
The DISABLE constraint applies to FPGA devices only.

DISABLE Applicable Elements
Global in constraints file.

DISABLE Description
DISABLE is an advanced timing constraint. It controls path tracing. All path tracing
control statements from any source (netlist, UCF, or NCF) are passed forward to the PCF.
You cannot override a DISABLE in the netlist with an “Enable (ENABLE)” in the UCF.

DISABLE Propagation Rules
Disables timing analysis of specified block delay symbol

DISABLE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

DISABLE=delay_symbol_name;

where

• delay_symbol_name is the name of one of the standard block delay symbols for path
tracing or a specific delay name in the datasheet

These symbols are listed in the following table. Component delay names are also
supported in the PCF.

Table 20-1: Standard Block Delay Symbols for Path Tracing

Delay Symbol Name Path Type Default

reg_sr_o Asynchronous Set/Reset to
output propagation delay

Disabled

reg_sr_r Asynchronous Set/Reset to
recovery path

Disabled

reg_sr_clk Synchronous Set/Reset to
clock setup and hold checks

Enabled

lat_d_q Data to output transparent
latch delay

Disabled

ram_we_o RAM write enable to output
propagation delay

Enabled
Constraints Guide www.xilinx.com Disable (DISABLE) 112
10.1

http://www.xilinx.com

Xilinx Constraints
R

The following statement prevents timing analysis on any path that includes the I to O
delay on any TBUF component in the design.

DISABLE=tbuf_i_o;

PCF Syntax Example

Same as UCF

tbuf_t_o TBUF 3-state to output
propagation delay

Enabled

tbuf_i_o TBUF input to output
propagation delay

Enabled

io_pad_i IO pad to input propagation
delay

Enabled

io_t_pad IO 3-state to pad propagation
delay

Enabled

io_o_i IO output to input
propagation delay. Disabled
for 3-stated IOBs.

Enabled

io_o_pad IO output to pad
propagation delay.

Enabled

Table 20-1: Standard Block Delay Symbols for Path Tracing

Delay Symbol Name Path Type Default
Constraints Guide www.xilinx.com Disable (DISABLE) 113
10.1

http://www.xilinx.com

Xilinx Constraints
R

Drive (DRIVE)

DRIVE Architecture Support
The DRIVE constraint applies to FPGA devices only.

DRIVE Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. For which
design elements can be used with which device families, see the Xilinx Libraries Guides. For
more information, see the device data sheet.

• IOB output components (such as OBUF and OFD)

• SelectIO output buffers with IOSTANDARD = LVTTL, LVCMOS15, LVCMOS18,
LVCMOS25, or LVCMOS33

• Nets

DRIVE Description
DRIVE is a basic mapping directive that selects the output for the following devices:

• Virtex

• Virtex-E

• Virtex-II

• Virtex-II Pro

• Virtex-II Pro X

• Virtex-4

• Virtex-5

• Spartan-II

• Spartan-IIE

• Spartan-3

• Spartan-3A

• Spartan-3E

DRIVE selects output drive strength (mA) for the SelectIO buffers that use the LVTTL,
LVCMOS12, LVCMOS15, LVCMOS18, LVCMOS25, or LVCMOS33 interface I/O standard.

You cannot change the LVCMOS drive strengths for Virtex-E devices. Only the variable
LVTTL drive strengths are available for Spartan-IIE and Virtex-E devices.

DRIVE Propagation Rules
DRIVE is illegal when attached to a net or signal, except when the net or signal is
connected to a pad. In this case, DRIVE is treated as attached to the pad instance. When
attached to a design element, DRIVE is propagated to all applicable elements in the
hierarchy below the design element.
Constraints Guide www.xilinx.com D rive (DRIVE) 114
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

DRIVE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid IOB output component

• Attribute Name: DRIVE

• Attribute Values: see “UCF and NCF Syntax Example” in this chapter

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute drive: string;

Specify the VHDL constraint as follows:

attribute drive of {component_name|entity_name|label_name}:
{component|entity|label} is “value”;

See the “UCF and NCF Syntax Example” section in this chapter for valid values. For more
information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* DRIVE = “value” *)

See the “UCF and NCF Syntax Example” section in this chapter for valid values. For more
information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

IOB Output Components (UCF)

For Spartan-II, Spartan-IIE, Spartan-3, Spartan-3A, Spartan-3E, Virtex, Virtex-E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices:

INST “instance_name” DRIVE={2|4|6|8|12|16|24};

where

• 12 mA is the default

SelectIO Output Components (IOBUF_SelectIO, OBUF_SelectIO, and
OBUFT_SelectIO)

• For the LVTTL standard with Spartan-II, Spartan-IIE, Spartan-3, Spartan-3A, Spartan-
3E, Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5
devices:

INST “instance_name” DRIVE={2|4|6|8|12|16|24};

• For the LVCMOS12, LVCMOS15, and LVCMOS18 standards with Spartan-3, Spartan-
3A, Spartan-3E,Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices:

INST “instance_name” DRIVE={2|4|6|8|12|16};
Constraints Guide www.xilinx.com D rive (DRIVE) 115
10.1

http://www.xilinx.com

Xilinx Constraints
R

• For the LVCMOS25 and LVCMOS33 standards with Spartan-3, Spartan-3A, Spartan-
3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices:

INST “instance_name” DRIVE={2|4|6|8|12|16|24};

where

♦ 12 mA is the default for all architectures

XCF Syntax Example

MODEL “entity_name” drive={2|4|6|8|12|16|24};

BEGIN MODEL “entity_name”

NET “signal_name” drive={2|4|6|8|12|16|24};

END;

Constraints Editor Syntax Example

From the Project Navigator Processes window:

1. Double-click Create Timing Constraints under User Constraints.

2. In the Ports tab grid with I/O Configuration Options checked, click the DRIVE
column in the row with the desired output port name.

3. Choose a value from the drop-down list.
Constraints Guide www.xilinx.com D rive (DRIVE) 116
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com Drop Specifications (DROP_SPEC) 117
10.1

Xilinx Constraints
R

Drop Specifications (DROP_SPEC)

DROP_SPEC Architecture Support
The DROP_SPEC constraint applies to all FPGA and CPLD devices.

DROP_SPEC Applicable Elements
Timing constraints

DROP_SPEC Description
DROP_SPEC is an advanced timing constraint. It allows you to specify that a timing
constraint defined in the input design should be dropped from the analysis. You can use
DROP_SPEC when new specifications defined in a constraints file do not directly override
all specifications defined in the input design, and some of these input design specifications
need to be dropped. While this timing command is not expected to be used frequently in
an input netlist (or NCF file), it is legal. If defined in an input design DROP_SPEC must be
attached to TIMESPEC.

DROP_SPEC Propagation Rules
It is illegal to attach DROP_SPEC to nets or macros. DROP_SPEC removes a specified
timing specification.

DROP_SPEC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

TIMESPEC “TSidentifier”=DROP_SPEC;

where

• TSidentifier is the identifier name used for the timing specification that is to be
removed

The following statement cancels the input design specification TS67.

TIMESPEC “TS67”=DROP_SPEC;

PCF Syntax Example

“TSidentifier” DROP_SPEC;

http://www.xilinx.com

Xilinx Constraints
R

Enable (ENABLE)

ENABLE Architecture Support
The ENABLE constraint applies to FPGA devices only.

ENABLE Applicable Elements
Global in constraints file

ENABLE Description
ENABLE is an advanced timing constraint. It controls the types of paths analyzed during
static timing. See also “Disable (DISABLE).”

ENABLE Propagation Rules
Enables timing analysis for specified path delays

ENABLE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

ENABLE can be applied only to a global timespec. The path tracing syntax is as follows in
the UCF file.

ENABLE= delay_symbol_name;

where

• delay_symbol_name is the name of one of the standard block delay symbols for path
tracing symbols shown in the following table, or a specific delay name defined in the
datasheet

Table 23-1: Standard Block Delay Symbols for Path Tracing

Delay Symbol Name Path Type Default

reg_sr_o Asynchronous Set/Reset to output propagation delay Disabled

reg_sr_r Asynchronous Set/Reset to recovery path Disabled

reg_sr_clk Synchronous Set/Reset to clock setup and hold checks Enabled

lat_d_q Data to output transparent latch delay Disabled

ram_we_o RAM write enable to output propagation delay Enabled

tbuf_t_o TBUF 3-state to output propagation delay Enabled

tbuf_i_o TBUF input to output propagation delay Enabled

io_pad_i IO pad to input propagation delay Enabled

io_t_pad IO 3-state to pad propagation delay Enabled
Constraints Guide www.xilinx.com Enable (ENABLE) 118
10.1

http://www.xilinx.com

Xilinx Constraints
R

PCF Syntax Example

ENABLE=delay_symbol_name;

or

TIMEGRP name ENABLE=delay_symbol_name;

io_o_1 IO output to input propagation delay. Disabled for 3-stated IOBs Enabled

io_o_pad IO output to pad propagation delay Enabled

Table 23-1: Standard Block Delay Symbols for Path Tracing

Delay Symbol Name Path Type Default
Constraints Guide www.xilinx.com Enable (ENABLE) 119
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com Enable Suspend (ENABLE_SUSPEND) 120
10.1

Xilinx Constraints
R

Enable Suspend (ENABLE_SUSPEND)

ENABLE_SUSPEND Architecture Support
The ENABLE_SUSPEND constraint applies to Spartan™-3A devices only.

ENABLE_SUSPEND Applicable Elements
The ENABLE_SUSPEND attribute is a global attribute for the Spartan-3A device and is not
attached to any particular element.

ENABLE_SUSPEND Description
The ENABLE_SUSPEND constraint is used to define the behavior of the SUSPEND power-
reduction mode for the Spartan-3A device family. The acceptable values for this constraint
are NO, FILTERED or UNFILTERED where NO disables this feature, FILTERED activates
the suspend feature with the glitch filter being activated (requires longer pulse width to
activate), and UNFILTERED activates the feature with the filter bypassed (quicker
activation of SUSPEND). The default for this constraint, if not specified, is NO.

ENABLE_SUSPEND Propagation Rules
ENABLE_SUSPEND is a global attribute that is attached to the entire design.

ENABLE_SUSPEND Syntax Examples
The following is the syntax example using the constraint with particular tools or methods.
The only syntax example supported is the UCF. If a tool or method is not listed, the
constraint may not be used with it.

UCF Syntax Example

CONFIG ENABLE_SUSPEND=”value”;

where

• value is NO, FILTERED or UNFILTERED.

Example:

CONFIG ENABLE_SUSPEND=”FILTERED”;

http://www.xilinx.com

Xilinx Constraints
R

Fast (FAST)

FAST Architecture Support
The FAST constraint applies to all FPGA and CPLD devices.

FAST Applicable Elements
• Output primitives

• Output pads

• Bidirectional pads

You can also attach FAST to the net connected to the pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that
it can be processed by the mapper. Use the following syntax:

NET “net_name” FAST;

FAST Description
FAST is a basic mapping constraint. It increases the speed of an IOB output. While FAST
produces a faster output, it may increase noise and power consumption.

FAST Propagation Rules
FAST is illegal when attached to a net except when the net is connected to a pad. In this
instance, FAST is treated as attached to the pad instance. When attached to a macro,
module, or entity, FAST is propagated to all applicable elements in the hierarchy below the
module.

FAST Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: FAST

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute FAST: string;

Specify the VHDL constraint as follows:

attribute FAST of signal_name: signal is “{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.
Constraints Guide www.xilinx.com Fast (FAST) 121
10.1

http://www.xilinx.com

Xilinx Constraints
R

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* FAST = “{TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'FAST mysignal’;

UCF and NCF Syntax Example

The following statement increases the output speed of the element y2:

INST “$1I87/y2” FAST;

The following statement increases the output speed of the pad to which net1 is connected:

NET “net1” FAST;

XCF Syntax Example

BEGIN MODEL “entity_name”

NET “signal_name” fast={TRUE|FALSE};

END;
Constraints Guide www.xilinx.com Fast (FAST) 122
10.1

http://www.xilinx.com

Xilinx Constraints
R

Feedback (FEEDBACK)

FEEDBACK Architecture Support
The FEEDBACK constraint applies to FPGA devices only.

FEEDBACK Applicable Elements
Not applicable.

FEEDBACK Description
The FEEDBACK constraint is associated with the DCM. The constraint specifies the
external path delay that occurs when a DCM output drives off-chip and then back on-chip
into the DCM CLKFB input. This data is required for the timing tools to properly analyze
the path clocked for the DCM.

The basic UCF syntax is:

NET feedback_signal FEEDBACK = value units NET output_signal;

The FEEDBACK signal is the net that drives the CLKFB input of the DCM and the output
signal is the net that drives the output pad. The value provides the path delay from the
output pad to the input pad. If units are not specified, then ns is assumed.

FEEDBACK Propagation Rules
Both the feedback_signal and output_signal must correspond to pad nets. If attached to any
other net, an error results. The feedback_signal must be an input pad and output_signal must
be an output pad.

FEEDBACK Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

The basic UCF syntax is:

NET feedback_signal FEEDBACK =value units NEToutput_signal;

where

• feedback_signal is the name of the input pad net used as the feedback to the DCM

• value is the board trace delay calculated or measured by you

• units is either ns or ps. The default is ns.

• output_signal is the name of the output pad net driven by the DCM

XCF Syntax Example

BEGIN MODEL “entity_name”

NET feedback_signal FEEDBACK = value units NET output_signal;

END;
Constraints Guide www.xilinx.com Feedback (FEEDBACK) 123
10.1

http://www.xilinx.com

Xilinx Constraints
R

For a description of feedback_signal, value, units, and output_signal, see “UCF Syntax
Example” in this chapter.

PCF Syntax Example

{BEL |COMP} feedback_signal_pad FEEDBACK = value units {BEL |COMP}
output_signal;
Constraints Guide www.xilinx.com Feedback (FEEDBACK) 124
10.1

http://www.xilinx.com

Xilinx Constraints
R

File (FILE)

FILE Architecture Support
The FILE constraint applies to all FPGA and CPLD devices.

FILE Applicable Elements
Instance declaration where the definition is defined in the specified file.

FILE Description
When you instantiate a module that resides in another netlist, ngdbuild finds this file by
looking it up by the file name. This requires the netlist to have the same name as a module
that is defined in the file. If you want to name the netlist differently than the module name,
the FILE constraint can be attached to a instance declaration. This tells ngdbuild to look for
the module in the file specified.

Some Xilinx® constraints cannot be used in attributes, because they are also VHDL
keywords. To avoid this problem, use a constraint alias. Starting from the ISE™ 7.1 release,
each constraint has its own alias. The alias name is based on the original constraint name
with a “XIL” prefix. For example, the FILE constraint cannot be used in attributes directly.
You must use “XIL_FILE” instead. The existing XILFILE alias is still supported.

FILE Propagation Rules
Applicable only on instances

FILE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: FILE

• Attribute Values: file_name.extension

where

• file_name is the name of a file that represents the underlying logic for the element
carrying the constraint

Example file types include EDIF, EDN, NGC, and NMC.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute xilfile: string;

Specify the VHDL constraint as follows:

attribute xilfile of {instance_name|component_name} : {label|component}
is “file_name”;
Constraints Guide www.xilinx.com File (FILE) 125
10.1

http://www.xilinx.com

Xilinx Constraints
R

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* XIL_FILE = "file_name" *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

INST <instance definition> FILE= <filename definition is located in>;

Note: No valid syntax for UCF.
Constraints Guide www.xilinx.com File (FILE) 126
10.1

http://www.xilinx.com

Xilinx Constraints
R

Float (FLOAT)

FLOAT Architecture Support
The FLOAT constraint applies to Coolrunner™ devices only.

FLOAT Applicable Elements
Applies to nets or pins.

FLOAT Description
FLOAT is a basic mapping constraint. It allows 3-stated pads to float when not being
driven. This is useful when the default termination for applicable I/Os is set to PULLUP,
PULLDOWN, or KEEPER in Project Navigator.

FLOAT Propagation Rules
Applies to the net or pin to which it is attached.

FLOAT Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to a valid instance

• Attribute Name: FLOAT

• Attribute Value: None required. TRUE, FALSE. If attached, TRUE is assumed.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute FLOAT: string;

Specify the VHDL constraint as follows:

attribute FLOAT of signal_name : signal is “{TRUE|FALSE}”;

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* FLOAT = “{TRUE|FALSE}” *)

ABEL Syntax Example

XILINX PROPERTY 'FLOAT signal_name';

UCF and NCF Syntax Example

The basic UCF syntax is:

NET “signal_name” FLOAT;
Constraints Guide www.xilinx.com Float (FLOAT) 127
10.1

http://www.xilinx.com

Xilinx Constraints
R

XCF Syntax Example

BEGIN MODEL “entity_name”

NET "signal_name" FLOAT;

END;
Constraints Guide www.xilinx.com Float (FLOAT) 128
10.1

http://www.xilinx.com

Xilinx Constraints
R

From Thru To (FROM-THRU-TO)

FROM-THRU-TO Architecture Support
The FROM-THRU-TO constraint applies to FPGA devices only.

FROM-THRU-TO Applicable Elements
Predefined and user-defined groups

FROM-THRU-TO Description
FROM-THRU-TO is an advanced timing constraint, and is associated with the Period
constraint of the high or low time. From synchronous paths, a FROM-TO-THRU constraint
controls only the setup path, not the hold path. This constraint applies to a specific path
that begins at a source group, passes through intermediate points, and ends at a
destination group. The source and destination groups can be either user or predefined
groups. You must define an intermediate path using TPTHRU before using THRU.

FROM-THRU-TO Propagation Rules
Applies to the specified FROM-THRU-TO path only.

FROM-THRU-TO Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

TIMESPEC “TSidentifier”=FROM “source_group” THRU
“thru_pt1”...[THRU“thru_pt2”...] TO “destination_group” value
[Units]{DATAPATHONLY};

where

• identifier can consist of characters or underbars

• source_group and destination_group are user-defined or predefined groups

• thru_pt1 and thru_pt2 are intermediate points to define specific paths for timing
analysis

• value is the delay time

• units can be ps, ms, ns, or micro

The DATAPATHONLY keyword indicates that the FROM-TO constraint does not take
clock skew or phase information into consideration. This keyword results in only the data
path between the groups being constrained and analyzed.

TIMESPEC TS_MY_PathB = FROM “my_src_grp” THRU “my_thru_pt” TO
“my_dst_grp” 13.5 ns DATAPATHONLY;

FROM or TO is optional. You can have just a FROM or just a TO.

You are not required to have a FROM, THRU, and TO. You can basically have any
combination (FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM, FROM-THRU-
THRUTHRU-TO, FROM-THRU, and so on). There is no restriction on the number of
Constraints Guide www.xilinx.com From Thru T o (FROM-THRU-TO) 129
10.1

http://www.xilinx.com

Xilinx Constraints
R

THRU points. The source, THRU points, and destination can be a net, bel, comp, macro,
pin, or timegroup.

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

1. Identify the through points using the Create ... Timing THRU Points button from the
Advanced tab.

2. Set a FROM-THRU-TO constraint for groups of elements in the Advanced tab by
clicking Specify next to “Slow/Fast Path Exceptions” (to set explicit times) or Specify
next to “Multi-Cycle Paths“ (to set times relative to other time specifications).

3. Fill out the FROM/THRU/TO dialog box.

PCF Syntax Example

TSname=MAXDELAY FROM TIMEGRP "source" THRU TIMEGRP "thru_pt1" ...THRU
"thru_ptn" TO TIMEGRP "destination" {DATAPATHONLY};

You are not required to have a FROM, THRU, and TO. You can have almost any
combination (such as FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM, FROM-
THRU-THRU-THRU-TO, and FROM-THRU). There is no restriction on the number of
THRU points. The source, THRU points, and destination can be a net, bel, comp, macro,
pin, or timegroup.
Constraints Guide www.xilinx.com From Thru T o (FROM-THRU-TO) 130
10.1

http://www.xilinx.com

Xilinx Constraints
R

From To (FROM-TO)

FROM-TO Architecture Support
The FROM-TO constraint applies to all FPGA and CPLD devices.

FROM-TO Applicable Elements
Predefined and user-defined groups

FROM-TO Description
FROM-TO defines a timing constraint between two groups. It is associated with the Period
constraint of the high or low time. A group can be user-defined or predefined. From
synchronous paths, a FROM-TO constraint controls only the setup path, not the hold path.

For Virtex5, the FROM-TO constraint controls both setup and hold paths.

FROM-TO Propagation Rules
Applies to a path specified between two groups.

FROM-TO Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

TIMESPEC TSname=FROM “group1” TO “group2” value {DATAPATHONLY};

where

• TSname must always begin with “TS”. Any alphanumeric character or underscore
may follow.

• group1 is the origin path

• group2 is the destination path

• value iS ns by default. Other possible values are MHz or another timing specification
such as TS_C2S/2 or TS_C2S*2.

The DATAPATHONLY keyword indicates that the FROM-TO constraint does not take
clock skew or phase information into consideration. This keyword results in only the data
path between the groups being constrained and analyzed.

TIMESPEC TS_MY_PathA = FROM “my_src_grp” TO “my_dst_grp” 23.5 ns
DATAPATHONLY;

XCF Syntax Example

XST supports the FROM-TO constraint with the following limitations:

• FROM-THRU-TO is not supported

• Linked Specification is not supported

• Pattern matching for predefined groups is not supported:
Constraints Guide www.xilinx.com From To (FROM-TO) 131
10.1

http://www.xilinx.com

Xilinx Constraints
R

TIMESPEC TS_1 = FROM FFS(machine/*) TO FFS 2 ns;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Specify next to “Slow/Fast Path Exceptions” (to set explicit
times) or Specify next to “Multi-Cycle Paths“ (to set times relative to other time
specifications) and then fill out the FROM/THRU/TO dialog box.

PCF Syntax Example

TSname=MAXDELAY FROM TIMEGRP "group1" TO TIMEGRP "group2" value
{DATAPATHONLY};

You are not required to have a FROM, THRU, and TO. You can have almost any
combination (such as FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM, FROM-
THRU-THRU-THRU-TO, and FROM-THRU). There is no restriction on the number of thru
points. The source, thru points, and destination can be a net, bel, comp, macro, pin, or
timegroup.
Constraints Guide www.xilinx.com From To (FROM-TO) 132
10.1

http://www.xilinx.com

Xilinx Constraints
R

Hierarchical Block Name (HBLKNM)

HBLKNM Architecture Support
The HBLKNM constraint applies to FPGA devices only.

HBLKNM Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

1. Registers

2. I/O elements and pads

3. FMAP

4. BUFT

5. PULLUP

6. ACLK, GCLK

7. BUFG

8. BUFGS, BUFGP

9. ROM

10. RAMS and RAMD

11. Carry logic primitives

You can also attach HBLKNM to the net connected to the pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that
it can be processed by the mapper. Use the following syntax:

NET “net_name” HBLKNM=property_value;

HBLKNM Description
HBLKNM is an advanced mapping constraint. It assigns hierarchical block names to logic
elements and controls grouping in a flattened hierarchical design. When elements on
different levels of a hierarchical design carry the same block name, and the design is
flattened, NGDBuild prefixes a hierarchical path name to the HBLKNM value.

Like Block Name, HBLKNM forces function generators and flip-flops into the same CLB.
Symbols with the same HBLKNM constraint map into the same CLB, if possible.

However, using HBLKNM instead of Block Name has the advantage of adding hierarchy
path names during translation, and therefore the same HBLKNM constraint and value can
be used on elements within different instances of the same design element.

HBLKNM Propagation Rules
When attached to a design element, HBLKNM is propagated to all applicable elements in
the hierarchy within the design element.
Constraints Guide www.xilinx.com Hierarchical Block Name (HBLKNM) 133
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

HBLKNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: HBLKNM

• Attribute Values: block_name

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute hblknm: string;

Specify the VHDL constraint as follows:

attribute hblknm of
{entity_name|component_name|signal_name|label_name}:
{entity|component|signal|label} is “block_name”;

where

• block_name is a valid block name for that type of symbol

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

 (* HBLKNM = “block_name” *)

where

• block_name is a valid block name for that type of symbol

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Examples

The basic UCF syntax is:

NET “net_name” HBLKNM=property_value;

INST “instance_name” HBLKNM=block_name;

where

• block_name is a valid block name for that type of symbol

The following statement specifies that the element this_fmap is put into the block named
group1.

INST “$I13245/this_fmap” HBLKNM=group1;

The following statement attaches HBLKNM to the pad connected to net1.

NET “net1” HBLKNM=$COMP_0;
Constraints Guide www.xilinx.com Hierarchical Block Name (HBLKNM) 134
10.1

http://www.xilinx.com

Xilinx Constraints
R

Elements with the same HBLKNM are placed in the same logic block if possible. Otherwise
an error occurs. Conversely, elements with different block names are not put into the same
block.
Constraints Guide www.xilinx.com Hierarchical Block Name (HBLKNM) 135
10.1

http://www.xilinx.com

Xilinx Constraints
R

Hierarchical Lookup Table Name (HLUTNM)

HLUTNM Architecture Support
The HLUTNM constraint applies to Virtex™-5 devices only.

HLUTNM Applicable Elements
The HLUTNM constraint can be applied to two symbols that share a common hierarchy
and that are also unique within their level of hierarchy. The constraint can be applied to
two 5-input or smaller function generator symbols (LUT, ROM, or RAM) if the total
number of unique input pins required for both symbols does not exceed 5 pins. The
constraint can be applied to a 6-input read-only function generator symbol (LUT6,
ROM64) in conjunction with a 5-input read-only symbol (LUT5, ROM32) if the total
number of unique input pins required for both symbols does not exceed 6 inputs and the
lower 32 bits of the 6-input symbol programming matches all 32 bits of the 5-input symbol
programming.

HLUTNM Description
The HLUTNM constraint provides the ability to control the grouping of logical symbols
into the LUT sites of the Virtex-5 FPGA architectures. The HLUTNM constraint is a string
value property that is applied to two qualified symbols. The HLUTNM constraint value
must be applied uniquely to two symbols within a given level of hierarchy. These two
symbols will be implemented in a shared LUT site within a SLICE component.

This constraint is functionally similar to the Hierarchical Block Name (HBLKNM)
constraint.

HLUTNM Propagation Rules
The HLUTNM constraint can be applied to two symbols that share a common hierarchy
and that are also unique within their level of hierarchy.

HLUTNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid element or symbol type

• Attribute Name: HLUTNM

• Attribute Values: <user_defined>

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute hlutnm: string;

Specify the VHDL constraint as follows:

attribute hlutnm of {instance_name}: label is “string_value”;
Constraints Guide www.xilinx.com Hierarchical Lookup Table Name (HLUTNM) 136
10.1

http://www.xilinx.com

Xilinx Constraints
R

where

• instance_name is the instance name of an instantiated LUT, or LUTRAM.

• string_value is a value that is applied uniquely to two symbols within a given level of
hierarchy. No default value exists. A blank value means the constraint is ignored.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

 (* HLUTNM = “string_value” *)

where

• string_value is a value that is applied uniquely to two symbols within a given level of
hierarchy. No default value exists. A blank value means the constraint is ignored.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

Not supported

UCF and NCF Syntax Example

INST “symbol_name” HLUTNM=string_value;

where

• string_value is a value that is applied uniquely to two symbols within a given level of
hierarchy. No default value exists. A blank value means the constraint is ignored.

XCF Syntax Example

MODEL “symbol_name” hlutnm = string_value;

Constraints Editor Syntax Example

Not supported

PCF Syntax Example

Not supported

Floorplanner Syntax Example

Not supported

PACE Syntax Example

Not supported

Floorplan Editor Syntax Example

Not supported
Constraints Guide www.xilinx.com Hierarchical Lookup Table Name (HLUTNM) 137
10.1

http://www.xilinx.com

Xilinx Constraints
R

FPGA Editor Syntax Example

Not supported

Project Navigator Syntax Example

Not supported
Constraints Guide www.xilinx.com Hierarchical Lookup Table Name (HLUTNM) 138
10.1

http://www.xilinx.com

Xilinx Constraints
R

HU_SET

HU_SET Architecture Support
The HU_SET constraint applies to FPGA devices only.

HU_SET Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

1. Registers

2. FMAP

3. Macro Instance

4. ROM

5. RAMS, RAMD

6. BUFT

7. MULT18X18S

8. RAMB4_Sm_Sn, RAMB4_Sn

9. RAMB16_Sm_Sn, RAMB16_Sn

10. RAMB16

11. DSP48

HU_SET Description
HU_SET is an advanced mapping constraint. It is defined by the design hierarchy.
However, it also allows you to specify a set name. It is possible to have only one H_SET
within a given hierarchical element but by specifying set names, you can specify several
HU_SET sets.

NGDBuild hierarchically qualifies the name of the HU_SET as it flattens the design and
attaches the hierarchical names as prefixes.

The differences between an HU_SET constraint and an H_SET constraint include:

For background information about using the various set attributes, see “RLOC
Description” in the “Relative Location (RLOC)” constraint.

HU_SET H_SET

Has an explicit user-defined and
hierarchically qualified name for the set

Has only an implicit hierarchically
qualified name generated by the design-
flattening program

“Starts” with the symbols that are
assigned the HU_SET constraint

“Starts” with the instantiating macro one
level above the symbols with the RLOC
constraints
Constraints Guide www.xilinx.com HU_SET 139
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

HU_SET Propagation Rules
HU_SET is a design element constraint. Any attachment to a net is illegal.

HU_SET Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: HU_SET

• Attribute Values: set_name

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute HU_SET: string;

Specify the VHDL constraint as follows:

attribute HU_SET of {component_name|entity_name|label_name}:
{component|entity|label} is “set_name”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

 (* HU_SET = “set_name” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic UCF syntax is:

INST “instance_name” HU_SET=set_name;

where

• set_name is the identifier for the set

The variable set_name must be unique among all the sets in the design.

The following statement assigns an instance of the register FF_1 to a set named heavy_set.

INST “$1I3245/FF_1” HU_SET=heavy_set;

XCF Syntax Example

MODEL “entity_name” hu_set={yes|no};

BEGIN MODEL “entity_name”

 INST "instance_name" hu_set=yes;

END;
Constraints Guide www.xilinx.com HU_SET 140
10.1

http://www.xilinx.com

Xilinx Constraints
R

Input Buffer Delay Value (IBUF_DELAY_VALUE)

IBUF_DELAY_VALUE Architecture Support
The IBUF_DELAY_VALUE constraint applies to the following devices:

• Virtex™-4

• Virtex-5

• Spartan™-3A

• Spartan-3E

IBUF_DELAY_VALUE Applicable Elements
Any top-level I/O port.

IBUF_DELAY_VALUE Description
The IBUF_DELAY_VALUE constraint is a mapping constraint that adds additional static
delay to the input path of the FPGA array. This constraint can be applied to any input or bi-
directional signal that is not directly driving a clock or IOB (Input Output Block) register.
For more information regarding the constraint of signals driving clock and IOB registers,
see the “IFD_DELAY_VALUE” constraint. The IBUF_DELAY_VALUE constraint can be set
to an integer value from 0-16. The value 0 is the default value, and applies no additional
delay to the input path. A larger value for this constraint correlates to a larger delay added
to input path. These values do not directly correlate to a unit of time but rather additional
buffer delay. For more information, see the product data sheets.

IBUF_DELAY_VALUE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach a new property to the top-level port of the schematic

• Attribute Name-IBUF_DELAY_VALUE

• Attribute Values: 0-16

VHDL Syntax Example

Attach a VHDL attribute to the appropriate top-level port

attribute IBUF_DELAY_VALUE : string;

attribute IBUF_DELAY_VALUE of top_level_port_name: signal is "value";

where

♦ a valid value is from 0 to 16.

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1

attribute IBUF_DELAY_VALUE : string;

attribute IBUF_DELAY_VALUE of DataIn1: label is "5";
Constraints Guide www.xilinx.com Input Buffer Delay Value (IBUF_DELAY_VALUE) 141
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

Verilog Syntax Example

Attach a Verilog attribute to the appropriate top-level port

 (* IBUF_DELAY_VALUE="value" *) input top_level_port_name;

where

♦ a valid value is from 0 to 16.

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1

 (* IBUF_DELAY_VALUE="5" *) input DataIn1;

UCF and NCF Syntax Example

The basic UCF syntax is:

NET "top_level_port_name" IBUF_DELAY_VALUE = value;

where

♦ value is the numerical IBUF delay setting. A valid value is from 0 to 16.

The following statement assigns an IBUF_DELAY_VALUE increment of 5 to the net
DataIn1

NET "DataIn1" IBUF_DELAY_VALUE = 5;
Constraints Guide www.xilinx.com Input Buffer Delay Value (IBUF_DELAY_VALUE) 142
10.1

http://www.xilinx.com

Xilinx Constraints
R

IFD_DELAY_VALUE

IFD_DELAY_VALUE Architecture Support
The IFD_DELAY_VALUE constraint applies tothe following devices:

• Virtex™-4

• Virtex-5

• Spartan™-3A

• Spartan-3E

IFD_DELAY_VALUE Applicable Elements
Any top-level I/O port

IFD_DELAY_VALUE Description
The IFD_DELAY_VALUE constraint is a mapping constraint that adds additional static
delay to the input path of the FPGA array. This constraint can be applied to any input or bi-
directional signal which drives an IOB (Input Output Block) register. For more information
on the constraint of signals which do not drive IOB registers, see the “Input Buffer Delay
Value (IBUF_DELAY_VALUE)” constraint.

The IFD_DELAY_VALUE constraint can be set to an integer value from 0-8, and as AUTO.
The value AUTO is the default value, and is used to guarantee that the input hold time of
the destination register is met by automatically adding the appropriate amount of delay to
the data path.

When the IFD_DELAY_VALUE constraint is set to 0, the data path has no additional delay
added. The integers 1-8 correspond to increasing amounts of delay added to the data path.
These values do not directly correlate to a unit of time but rather additional buffer delay.
For more information, see the product data sheets.

IFD_DELAY_VALUE Propagation Rules
Although IFD_DELAY_VALUE is attached to an I/O symbol, it applies to the entire I/O
component.

IFD_DELAY_VALUE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net

• Attribute Name-IFD_DELAY_VALUE

• Attribute Values-0-8, AUTO

VHDL Syntax Example

Attach a VHDL attribute to the appropriate top-level port
Constraints Guide www.xilinx.com IFD_DELAY_VALUE 143
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

attribute IFD_DELAY_VALUE : string;

attribute IFD_DELAY_VALUE of top_level_port_name: signal is "value";

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net DataIn1

attribute IFD_DELAY_VALUE : string;

attribute IFD_DELAY_VALUE of DataIn1: label is "5";

Verilog Syntax Example

Attach a Verilog attribute to the appropriate top-level port

 (* IFD_DELAY_VALUE="value" *) input top_level_port_name;

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net DataIn1

 (* IFD_DELAY_VALUE="5" *) input DataIn1;

UCF and NCF Syntax Example

The basic UCF syntax is:

NET "top_level_port_name" IFD_DELAY_VALUE = value;

where

• value is the numerical IBUF delay setting

The following statement assigns an IFD_DELAY_VALUE increment of 5 to the net DataIn1

NET "DataIn1" IFD_DELAY_VALUE = 5;
Constraints Guide www.xilinx.com IFD_DELAY_VALUE 144
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com Input Registers (INREG) 145
10.1

Xilinx Constraints
R

Input Registers (INREG)

INREG Architecture Support
The INREG constraint applies to Coolrunner™ devices only.

INREG Applicable Elements
Applies to register and latch instances with their D-inputs driven by input pads or to the
Q-output nets of such registers or latches.

INREG Description
This constraint applies to register and latch instances with their D-inputs driven by input
pads, or to the Q-output nets of such registers and latches. By default, registers and latches
in a CoolRunner XPLA3 or CoolRunner-II design that have their D-inputs driven by input
pads are automatically implemented using the device's Fast Input path, where possible. If
you disable the Project Navigator property Use Fast Input for INREG for the Fit
(Implement Design) process, then only register and latches with the INREG attribute are
considered for Fast Input optimization.

INREG Propagation Rules
Applies to register or latch to which it is attached or to the Q-output nets of such registers
or latches

INREG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a register, latch, or net

• Attribute Name: INREG

• Attribute Values: None (TRUE by default)

ABEL Syntax Example

XILINX PROPERTY 'inreg signal_name';

UCF Syntax Example

NET “signal_name” INREG;

INST “register_name” INREG;

http://www.xilinx.com

Xilinx Constraints
R

IOB

IOB Architecture Support
The IOB constraint applies to FPGA devices only.

IOB Applicable Elements
• Non-INFF/OUTFF flip-flop and latch primitives

• Registers

IOB Description
IOB is a basic mapping and synthesis constraint. It indicates which flip-flops and latches
can be moved into the IOB. The mapper supports a command line option (-pr i | o | b) that
allows flip-flop or latch primitives to be pushed into the input IOB (i), output IOB (o), or
input/output IOB (b) on a global scale. The IOB constraint, when associated with a flip-
flop or latch, tells the mapper to pack that instance into an IOB type component if possible.
The IOB constraint has precedence over the mapper -pr command line option, however,
IOB constraints do not have precedence over LOC constraints.

XST considers the IOB constraint as an implementation constraint, and therefore
propagates it in the generated NGC file. XST also duplicates the flip-flops and latches
driving the Enable pin of output buffers, so that the corresponding flip-flops and latches
can be packed in the IOB.

IOB Propagation Rules
Applies to the design element to which it is attached

IOB Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a flip-flop or latch instance or to a register

• Attribute Name: IOB

• Attribute Values: TRUE, FALSE, AUTO

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute iob: string;

Specify the VHDL constraint as follows:

attribute iob of {component_name|entity_name|label_name}:
{component|entity|label} is “{TRUE|FALSE|AUTO}”;

where

• TRUE allows the flip-flop or latch to be pulled into an IOB
Constraints Guide www.xilinx.com IOB 146
10.1

http://www.xilinx.com

Xilinx Constraints
R

• FALSE indicates not to pull it into an IOB

• AUTO is used by XST only. XST takes into account timing constraints and
automatically decides to push or not to push flip-flops into IOBs

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* IOB = “{TRUE|FALSE|AUTO}” *)

See value definitions in “VHDL Syntax Example” above.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic syntax is:

INST “instance_name” IOB={TRUE|FALSE};

where

• TRUE allows the flip-flop or latch to be pulled into an IOB

• FALSE indicates not to pull it into an IOB

The following statement instructs the mapper from placing the foo/bar instance into an
IOB component.

INST “foo/bar” IOB=TRUE;

XCF Syntax Example

BEGIN MODEL “entity_name”

NET “signal_name” iob={true|false|auto};

INST “instance_name” iob={true|false|auto};

END;

Note: For the AUTO option, XST takes into account timing constraints and automatically decides to
push or not to push flip-flops into IOBs

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Misc tab, click Specify next to “Registers to be placed in IOBs“ and move the desired
register to the Registers for IOB packing list. This sets the IOB constraint to TRUE.

Project Navigator Syntax Example

Define globally with the Pack I/O Registers into IOBs option in the Xilinx Specific Options
tab of the Process Properties dialog box in Project Navigator. YES maps to TRUE. NO maps
to FALSE. With a design selected in the Sources window, right-click Synthesize in the
Processes window to access the Process Properties dialog box.
Constraints Guide www.xilinx.com IOB 147
10.1

http://www.xilinx.com

Xilinx Constraints
R

Input Output Block Delay (IOBDELAY)

IOBDELAY Architecture Support
The IOBDELAY constraint applies to FPGA devices only.

IOBDELAY Applicable Elements
Any I/O symbol (I/O pads, I/O buffers, or input pad nets)

IOBDELAY Description
IOBDELAY is a basic mapping constraint. It specifies how the input path delay elements in
Spartan™-II, Spartan-IIE, Spartan-3, Virtex™, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, Virtex-4, and Virtex-5 devices are to be programmed.

There are two possible destinations for input signals: the local IOB input FF or a load
external to the IOB. Spartan-II, Spartan-3, Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, Virtex-4, and Virtex-5 devices allow a delay element to delay the signal going to one
or both of these destinations.

IOBDELAY cannot be used concurrently with “No Delay (NODELAY).”

Note: IOBDELAY_TYPE and IOBDELAY_VALUE are library component attributes and therefor are
not documented in this guide. Details on these two attributes can be found within the descriptions of
the IDELAY, IODELAY, IDELAYCTRL and ISERDES components in the Libraries Guide for Virtex-4
and Virtex-5.

IOBDELAY Propagation Rules
Although IOBDELAY is attached to an I/O symbol, it applies to the entire I/O component.

IOBDELAY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an I/O symbol

• Attribute Name: IOBDELAY

• Attribute Values: NONE, BOTH, IBUF, IFD

Note: For the Spartan-3 family, the default is not set to NONE so the device can achieve a zero hold
time.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute iobdelay: string;

Specify the VHDL constraint as follows:

attribute iobdelay of {component_name|label_name}: {component|label} is
“{NONE|BOTH|IBUF|IFD}”;
Constraints Guide www.xilinx.com Input Output Block Delay (IOBDELAY) 148
10.1

http://www.xilinx.com

Xilinx Constraints
R

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* IOBDELAY = {NONE|BOTH|IBUF|IFD} *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic UCF syntax is:

INST “instance_name” IOBDELAY={NONE|BOTH|IBUF|IFD};

where

• NONE sets the delay OFF for both the IBUF and IFD paths.

Note: For the Spartan-3 family, the default is not set to NONE so the device can achieve a zero hold
time.

• BOTH sets the delay ON for both the IBUF and IFD paths.

• IBUF sets the delay to OFF for any register inside the I/O component and to ON for
the registers outside of the component if the input buffer drives a register D pin
outside of the I/O component.

• IFD sets the delay to ON for any register inside the I/O component and to OFF for the
registers outside the component if a register occupies the input side of the I/O
component, regardless of whether the register has the IOB=TRUE constraint.

The following statement sets the delay OFF for the IBUF and IFD paths.

INST “xyzzy” IOBDELAY=NONE.
Constraints Guide www.xilinx.com Input Output Block Delay (IOBDELAY) 149
10.1

http://www.xilinx.com

Xilinx Constraints
R

Input Output Standard (IOSTANDARD)

IOSTANDARD Architecture Support
The IOSTANDARD constraint applies to all FPGA and CPLD devices except Coolrunner™
XPLA3.

IOSTANDARD Applicable Elements
If “Yes” is shown next to the device name in the Architecture Support table, the constraint
may be used with that device in one or more of the following design elements, or
categories of design elements. Not all device families support all these elements. To see
which design elements can be used with which device families, see the Xilinx Libraries
Guides. For more information, see the device data sheet.

• IBUF, IBUFG, OBUF, OBUFT

• IBUFDS, IBUFGDS, OBUFDS, OBUFTDS

• Output Voltage Banks

IOSTANDARD Description
IOSTANDARD is a basic mapping constraint and synthesis constraint.

IOSTANDARD for FPGA Devices

Use IOSTANDARD to assign an I/O standard to an I/O primitive.

All components with IOSTANDARD must follow the same placement rules (banking
rules) as the SelectIO components. See the Xilinx Libraries Guides for information on the
banking rules for each architecture. For descriptions of the supported I/O standards, see
the device data sheet.

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, the recommended procedure is to attach IOSTANDARD to a buffer
component instead of using the SelectIO variants of a component. For example, use an
IBUF with the IOSTANDARD=HSTL_III constraint instead of the IBUF_HSTL_III
component.

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, differential signaling standards apply to IBUFDS, IBUFGDS, OBUFDS,
and OBUFTDS only (not IBUF or OBUF).

IOSTANDARD for CPLD Devices

You can apply IOSTANDARD to I/O pads of CoolRunner-II devices to specify both input
threshold and output VCCIO voltage. For supported values, see the device data sheet.

You can apply IOSTANDARD to outputs of XC9500XV devices to specify the VCCO
voltage. The IOSTANDARD names supported by XC9500XV are:

• LVTTL (VCCO=3.3V)

• LVCMOS2 (VCCO=2.5V)

• X25TO18 (VCCO=1.8V)
Constraints Guide www.xilinx.com Input Output Standard (IOSTANDARD) 150
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Xilinx Constraints
R

The X25TO18 setting is provided for generating 1.8V compatible outputs from a CPLD
normally operating in a 2.5V environment.

The CPLD fitter automatically groups outputs with compatible IOSTANDARD settings
into the same bank when no location constraints are specified.

IOSTANDARD Propagation Rules
It is illegal to attach IOSTANDARD to a net or signal except when the signal or net is
connected to a pad. In this case, IOSTANDARD is treated as attached to an IOB instance
(IBUF, OBUF, IOB FF). When attached to a design element, IOSTANDARD propagates to
all applicable elements in the hierarchy within the design element.

IOSTANDARD Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an I/O primitive

• Attribute Name: IOSTANDARD

• Attribute Values: iostandard_name

For more information, see “UCF and NCF Syntax Example” in this chapter.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute iostandard: string;

Specify the VHDL constraint as follows:

attribute iostandard of {component_name|label_name}: {component|label}
is “iostandard_name”;

For more information about iostandard_name, see “UCF and NCF Syntax Example” in this
chapter.

For CPLD devices you can also apply IOSTANDARD to the pad signal.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

 (* IOSTANDARD = “iostandard_name” *)

For a description of iostandard_name, see the UCF section.

For CPLD devices you can also apply IOSTANDARD to the pad signal.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'iostandard=iostandard_name mysignal';
Constraints Guide www.xilinx.com Input Output Standard (IOSTANDARD) 151
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF Syntax Example

The basic syntax is:

INST “instance_name” IOSTANDARD=iostandard_name;

NET “pad_net_name” IOSTANDARD=iostandard_name;

where

• iostandard_name is an IO Standard name as specified in the device data sheet

XCF Syntax Example

BEGIN MODEL “entity_name”

INST “instance_name” iostandard=string;

NET “signal_name” iostandard=string;

END;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with the I/O Configuration Options checked, click the IOSTANDARD
column in the row with the desired net name and choose a value from the drop-down list.

PACE Syntax Example

PACE is mainly used to assign location constraints to IOs. It can also be used to assign
certain IO properties such as IO Standards. You can access PACE from the Processes
window in the Project Navigator.

For more information, see the PACE help, especially the topics within Editing Pins and
Areas in the Procedures section.
Constraints Guide www.xilinx.com Input Output Standard (IOSTANDARD) 152
10.1

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets

Xilinx Constraints
R

Keep (KEEP)

KEEP Architecture Support
The KEEP constraint applies to all FPGA and CPLD devices.

KEEP Applicable Elements
Signals

KEEP Description
KEEP is an advanced mapping constraint and synthesis constraint. When a design is
mapped, some nets may be absorbed into logic blocks. When a net is absorbed into a block,
it can no longer be seen in the physical design database. This may happen, for example, if
the components connected to each side of a net are mapped into the same logic block. The
net may then be absorbed into the block containing the components. KEEP prevents this
from happening.

KEEP is translated into an internal constraint known as NOMERGE when targeting an
FPGA. Messaging from the implementation tools therefore refers to the system property
NOMERGE, not KEEP.

KEEP Propagation Rules
Applies to the signal to which it is attached

KEEP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net

• Attribute Name: KEEP

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute keep : string;

Specify the VHDL constraint as follows:

attribute keep of signal_name: signal is “{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* KEEP = “{TRUE|FALSE}” *)
Constraints Guide www.xilinx.com Keep (KEEP) 153
10.1

http://www.xilinx.com

Xilinx Constraints
R

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

mysignal NODE istype ‘keep’;

UCF and NCF Syntax Example

The following statement ensures that the net $SIG_0 remains visible.

NET “$1I3245/$SIG_0” KEEP;

XCF Syntax Example

BEGIN MODEL “entity_name”

NET “signal_name” keep={yes|no|true|false};

END;
Constraints Guide www.xilinx.com Keep (KEEP) 154
10.1

http://www.xilinx.com

Xilinx Constraints
R

Keeper (KEEPER)

KEEPER Architecture Support
The KEEPER constraint applies to all FPGA devices and only Coolrunner™-II CPLDs.

KEEPER Applicable Elements
Tristate input/output pad nets

KEEPER Description
KEEPER is a basic mapping constraint. It retains the value of the output net it is attached
to. For example, if logic 1 is being driven onto the net, KEEPER drives a weak/resistive 1
onto the net. If the net driver is then 3-stated, KEEPER continues to drive a weak/resistive
1 onto the net.

The KEEPER constraint must follow the same banking rules as the KEEPER component.
For more information on banking rules, see the Xilinx Libraries Guides.

KEEPER, PULLUP, and PULLDOWN are only valid on pad NETs, not on INSTs of any
kind.

For CoolRunner-II devices, the use of KEEPER and the use of PULLUP are mutually
exclusive across the whole device.

KEEPER Propagation Rules
KEEPER is illegal when attached to a net or signal except when the net or signal is
connected to a pad. In this case, KEEPER is treated as attached to the pad instance.

KEEPER Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic

• Attach to an output pad net

• Attribute Name: KEEPER

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute keeper: string;

Specify the VHDL constraint as follows:

attribute keeper of signal_name : signal is “{YES|NO|TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.
Constraints Guide www.xilinx.com Keeper (KEEPER) 155
10.1

http://www.xilinx.com

Xilinx Constraints
R

Verilog Syntax Example

(* KEEPER = "{YES|NO|TRUE|FALSE}" *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'KEEPER mysignal';

UCF and NCF Syntax Example

This statement configures the IO to use KEEPER for a NET.

NET "pad_net_name" KEEPER;

This statement configures KEEPER to be used globally.

DEFAULT KEEPER = TRUE;

XCF Syntax Example

BEGIN MODEL “entity_name”

NET “signal_name” keeper={yes|no|true|false};

END;
Constraints Guide www.xilinx.com Keeper (KEEPER) 156
10.1

http://www.xilinx.com

Xilinx Constraints
R

Keep Hierarchy (KEEP_HIERARCHY)

KEEP_HIERARCHY Architecture Support
The KEEP_HIERARCHY constraint applies to all FPGA and CPLD devices.

KEEP_HIERARCHY Applicable Elements
KEEP_HIERARCHY is attached to logical blocks, including blocks of hierarchy or
symbols.

KEEP_HIERARCHY Description
KEEP_HIERARCHY is a synthesis and implementation constraint. If hierarchy is
maintained during Synthesis, the Implementation tools use this constraint to preserve the
hierarchy throughout the implementation process and allow a simulation netlist to be
created with the desired hierarchy.

XST may flatten the design to get better results by optimizing entity or module boundaries.
You can set KEEP_HIERARCHY to true so that the generated netlist is hierarchical and
respects the hierarchy and interface of any entity or module of your design.

This option is related to the hierarchical blocks (VHDL entities, Verilog modules) specified
in the HDL design and does not concern the macros inferred by the HDL synthesizer.
Three values are available for this option:

• true

Allows the preservation of the design hierarchy, as described in the HDL project. If this
value is applied to synthesis, it is also propagated to implementation.

• false

Hierarchical blocks are merged in the top level module.

• soft

Allows the preservation of the design hierarchy in synthesis, but the
KEEP_HIERARCHY constraint is not propagated to implementation.

For CPLD devices, the default is true. For FPGA devices, the default is false.

Note: In XST, the KEEP_HIERARCHY constraint can be set to the following values: yes, true, no,
false, and soft. When used at the command line, only yes, no, and soft are accepted.

In general, an HDL design is a collection of hierarchical blocks, and preserving the
hierarchy gives the advantage of fast processing because the optimization is done on
separate pieces of reduced complexity. Nevertheless, very often, merging the hierarchy
blocks improves the fitting results (fewer PTerms and device macrocells, better frequency)
because the optimization processes (collapsing, factorization) are applied globally on the
entire logic.

The KEEP_HIERARCHY constraint enables or disables hierarchical flattening of user-
defined design units. Allowed values are true and false. By default, the user hierarchy
is preserved.
Constraints Guide www.xilinx.com Keep Hierarchy (KEEP_HIERARCHY) 157
10.1

http://www.xilinx.com

Xilinx Constraints
R

In the following figure, if KEEP_HIERARCHY is set to the entity or module I2, the
hierarchy of I2 is in the final netlist, but its contents I4, I5 are flattened inside I2. Also I1, I3,
I6, I7 are flattened.

Figure 42-1: KEEP_HIERARCHY EXAMPLE

KEEP_HIERARCHY Propagation Rules
Applies to the entity or module to which it is attached

KEEP_HIERARCHY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to the entity or module symbol

• Attribute Name: KEEP_HIERARCHY

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute keep_hierarchy : string;

Specify the VHDL constraint as follows:

attribute keep_hierarchy of architecture_name: architecture is
{TRUE|FALSE|SOFT};

The default is false for FPGA devices and true for CPLD devices.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

X9542

I0 I0

I2 KEEP HIERARCHY YES I2

I1 I3

I7 I6

I5 I4

Design View Netlist View

NGC FILE 1 (I0)
Constraints Guide www.xilinx.com Keep Hierarchy (KEEP_HIERARCHY) 158
10.1

http://www.xilinx.com

Xilinx Constraints
R

(* KEEP_HIERARCHY = "{TRUE|FALSE|SOFT}" *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

For instances:

INST “instance_name” KEEP_HIERARCHY={TRUE|FALSE|SOFT};

XCF Syntax Example

In XST, the KEEP_HIERARCHY constraint accepts the following values: yes, true, no,
false, and soft. When KEEP_HIERARCHY is used as a command-line switch, only
yes, no, and soft are accepted.

MODEL “entity_name” keep_hierarchy={yes|no|soft};

Project Navigator Syntax Example

Define globally with the Keep Hierarchy option in the Synthesis Options tab of the Process
Properties dialog box within the Project Navigator. With a design selected in the Sources
window, right-click Synthesize in the Processes window to access the Process Properties
dialog box.
Constraints Guide www.xilinx.com Keep Hierarchy (KEEP_HIERARCHY) 159
10.1

http://www.xilinx.com

Xilinx Constraints
R

Location (LOC)
This section contains the following:

• “LOC Architecture Support”

• “LOC Applicable Elements”

• “LOC Description”

• “LOC Propagation Rules”

• “LOC Syntax for FPGA Devices”

• “LOC Syntax for CPLD Devices”

• “LOC Syntax Examples”

• “BUFT Examples”

• “Delay Locked Loop (DLL) Constraint Examples”

• “Digital Clock Manager (DCM) Constraint Examples”

• “Flip-Flop Constraint Examples”

• “Global Buffer Constraint Examples”

• “I/O Constraint Examples”

• “IOB Constraint Examples”

• “Mapping Constraint Examples (FMAP)”

• “Multiplier Constraint Examples”

• “ROM Constraint Examples”

• “Block RAM (RAMBs) Constraint Examples”

• “Slice Constraint Examples”

LOC Architecture Support

The LOC constraint applies to all FPGA and CPLD devices.

LOC Applicable Elements
To see which design elements can be used with which device families, see the Xilinx
Libraries Guides. For more information, see the device data sheet.

LOC Description
LOC is a basic placement constraint and a synthesis constraint.

LOC Description for FPGA Devices

LOC defines where a design element can be placed within an FPGA. It specifies the
absolute placement of a design element on the FPGA die. It can be a single location, a range
of locations, or a list of locations. You can specify LOC from the design file and also direct
placement with statements in a constraints file.

To specify multiple locations for the same symbol, separate each location within the field
using a comma. The comma specifies that the symbols can be placed in any of the specified
locations. You can also specify an area in which to place a design element or group of
design elements.
Constraints Guide www.xilinx.com Location (LOC) 160
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

A convenient way to find legal site names is use the FPGA Editor, PACE, or Floorplanner.
The legal names are a function of the target part type. To find the correct syntax for
specifying a target location, load an empty part into the FPGA Editor (or look in
Floorplanner). Place the cursor on any block, then click the block to display its location in
the FPGA Editor history area. Do not include the pin name such as .I, .O, or .T as part of the
location.

You can use LOC for logic that uses multiple CLBs, IOBs, soft macros, or other symbols. To
do this, use LOC on a soft macro symbol, which passes the location information down to
the logic on the lower level. The location restrictions are automatically applied to all blocks
on the lower level for which LOCs are legal.

Spartan-II, Spartan-IIE, Virtex, and Virtex-E

The physical site specified in the location value is defined by the row and column numbers
for the array, with an optional extension to define the slice for a given row/column
location. A Spartan-II, Spartan-IIE, Virtex, Virtex-E slice is composed of:

• Two LUTs (which can be configured as RAM or shift registers)

• Two flip-flops (which can also be configured as latches)

• Two XORCYs

• Two MULT_ANDs

• One MUXF5

• One MUXF6

• One MUXCY

Only one MUXF6 can be used between the two adjacent slices in a specific row/column
location. The two slices at a specific row/column location are adjacent to one another.

The block RAMs (RAMB4s) have a different row/column grid specification than the CLB
and TBUFs. A block RAM located at RAMB4_R3C1 is not located at the same site as a flip-
flop located at CLB_R3C1. Therefore, the location value must start with "CLB," "TBUF," or
"RAMB4." The location cannot be shortened to reference only the row, column, and
extension. The optional extension specifies the left-most or right-most slice for the
row/column.

The location value for global buffers and DLL elements is the specific physical site name
for available locations

Spartan-3 and Higher Devices

In the Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4,
and Virtex-5 CLBs, there are four slices, arranged vertically, per CLB with the bottom two
slices on the left side of the CLB and the top two slices on the right side of the CLB. Each
slice is equivalent and contains two function generators (F and G), two storage elements,
arithmetic logic gates, large multiplexers, wide function capability, and two fast carry look-
ahead chains.

The Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4,
and Virtex-5 architectures diverge from the traditional Row/Column/Slice designators on
the CLB. Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-
4, and Virtex-5 devices use a Cartesian-based XY designator at the slice level. The slice-
based location specification uses the form: SLICE_XmYn. The XY slice grid starts as X0Y0
in the lower left CLB tile of the chip. The X values start at 0 and increase horizontally to the
right in the CLB row, with two different X values per CLB. The Y values start at 0 and
Constraints Guide www.xilinx.com Location (LOC) 161
10.1

http://www.xilinx.com

Xilinx Constraints
R

increase vertically up in the CLB column, with two different Y values per CLB. The XY slice
numbering scheme is shown in the following figure.

Following are examples of how to specify the slices in the XY coordinate system.

The Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4,
and Virtex-5 block RAMs, TBUFs, and multipliers have their own specification different
from the SLICE specifications. Therefore, the location value must start with "SLICE,"
"RAMB," "TBUF," or "MULT." The Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II
Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 block RAMs and multipliers have their own XY

Figure 43-1: Slice and TBUF Numbering in Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5

X9418

SLICE_X1Y3TBUF_X0Y3

SLICE_X1Y2

SLICE_X0Y3

SLICE_X0Y2

TBUF_X0Y2

SLICE_X1Y1TBUF_X0Y1

SLICE_X1Y0

SLICE_X0Y1

SLICE_X0Y0

TBUF_X0Y0
SLICE_X3Y1TBUF_X2Y1

SLICE_X3Y0

SLICE_X2Y1

SLICE_X2Y0

TBUF_X2Y0

First CLB in lower left
corner of Virtex2 Device

SLICE_X0Y0 First (bottom) slice of the CLB in the lower left corner of the chip

SLICE_X0Y1 Second slice of the CLB in the lower left corner of the chip

SLICE_X1Y0 Third slice of the CLB in the lower left corner of the chip

SLICE_X1Y1 Fourth (top) slice of the CLB in the lower left corner of the chip

SLICE_X0Y2 First slice of the second CLB in CLB column 1

SLICE_X2Y0 First (bottom) slice of the bottom CLB in CLB column 2

SLICE_X2Y1 Second slice of the bottom CLB in CLB column 2

SLICE _X50Y125 Slice located 125 slices up from and 50 slices to the right of
SLICE_X0Y0
Constraints Guide www.xilinx.com Location (LOC) 162
10.1

http://www.xilinx.com

Xilinx Constraints
R

grids different from the SLICE XY grid. A block RAM located at RAMB16_X2Y3 is not
located at the same site as a flip-flop located at SLICE_X2Y3. A multiplier located at
MULT18X18_X2Y3 is not located at the same site as a flip-flop located at SLICE_X2Y3 or at
the same site as a block RAM located at RAMB16_X2Y3. However, the two TBUFs in each
CLB follow the same XY grid as the SLICEs. A TBUF located at TBUF_X2Y3 is in the same
CLB as a flip-flop located at SLICE_X2Y3.

Because there are two TBUFs per CLB and four slices per CLB, the X value for a TBUF is
always an even integer or zero (for example, TBUF_X1Y1 is illegal).

The location values for global buffers and DLL elements is the specific physical site names
for available locations.

LOC Description for CPLD Devices

For CPLD devices, use the LOC=pin_name constraint on a PAD symbol or pad net to assign
the signal to a specific pin. The PAD symbols are IPAD, OPAD, IOPAD, and UPAD. You
can use the LOC=FBnn constraint on any instance or its output net to assign the logic or
register to a specific function block or macrocell, provided the instance is not collapsed.

The LOC=FBnn_mm constraint on any internal instance or output pad assigns the
corresponding logic to a specific function block or macrocell within the CPLD. If a LOC is
placed on a symbol that does not get mapped to a macrocell or is otherwise removed
through optimization, the LOC is ignored.

Pin assignment using the LOC constraint is not supported for bus pad symbols such as
OPAD8.

Location Specification Types for FPGA Devices

Use the following location types to define the physical location of an element.

Table 43-1: Location Specification Types for FPGA Devices

Element Types Location Examples Meaning

IOBs

P12 IOB location (chip carrier)

A12 IOB location (pin grid)

B, L, T, R Applies to IOBs and indicates edge locations
(bottom, left, top, right) for Spartan-II,
Spartan-IIE, Spartan-3, Spartan-3A, Spartan-
3E, Virtex, Virtex-E, Virtex-II, Virtex-II Pro,
Virtex-II Pro X, Virtex-4, and Virtex-5 devices

LB, RB, LT, RT, BR, TR, BL, TL Applies to IOBs and indicates half edges (for
example, left bottom, right bottom) for
Spartan-II, Spartan-IIE, Spartan-3, Spartan-
3A, Spartan-3E, Virtex, Virtex-E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices
Constraints Guide www.xilinx.com Location (LOC) 163
10.1

http://www.xilinx.com

Xilinx Constraints
R

Bank0, Bank1, Bank2, Bank3, Bank4, Bank5,
Bank6, Bank7

Applies to IOBs and indicates half edges
(banks) for Spartan-II, Spartan-IIE, Spartan-3,
Spartan-3A, Spartan-3E, Virtex, Virtex-E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-
4, and Virtex-5 devices

CLBs

CLB_R4C3 (or .S0 or .S1) CLB location for Spartan-II, Spartan-IIE,
Virtex, Virtex-E devices

CLB_R6C8.S0 (or .S1) Function generator or register slice for
Spartan-II, Spartan-IIE, Virtex, Virtex-E
devices

Slices

SLICE_X22Y3 SLICE_X22Y3 Slice location for Spartan-3,
Spartan-3A, Spartan-3E, Virtex-II, Virtex-II
Pro, Virtex-II Pro X, Virtex-4, and Virtex-5
devices

TBUFs

TBUF_R6C7 (or .0 or .1) TBUF location for Spartan-II, Spartan-IIE,
Virtex, Virtex-E devices

Block RAMs

RAMB4_R3C1 Block RAM location for Spartan-II, Spartan-
IIE, Virtex, Virtex-E devices

RAMB16_X2Y56 Block RAM location for Spartan-3, Spartan-
3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-
II Pro X, Virtex-4, and Virtex-5 devices

Multipliers

MULT18X18_X55Y82 Multiplier location for Spartan-3, Spartan-3A,
Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, Virtex-4, and Virtex-5 devices

Global Clocks

GCLKBUF0 (or 1, 2, or 3) Global clock buffer location for Spartan-II,
Spartan-IIE, Virtex, Virtex-E devices

GCLKPAD0 (or 1, 2, or 3) Global clock pad location for Spartan-II,
Spartan-IIE, Virtex, Virtex-E devices

Delay Locked Loops

DLL0P(or S) (or 1, 2, or 3) Delay Locked Loop element location for
Spartan-II, Spartan-IIE, Virtex, Virtex-E
devices

Digital Clock Manager

Table 43-1: Location Specification Types for FPGA Devices

Element Types Location Examples Meaning
Constraints Guide www.xilinx.com Location (LOC) 164
10.1

http://www.xilinx.com

Xilinx Constraints
R

The wildcard character (*) can be used to replace a single location with a range as shown in
the following example:

The following are not supported.

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G.

• Wildcard character for Spartan-II, Spartan-IIE, Spartan-3, Spartan-3A, Spartan-3E,
Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, or Virtex-5 global
buffer, global pad, or DLL locations.

LOC Priority

When specifying two adjacent LOCs on an input pad and its adjoining net, the LOC
attached to the net has priority. In the following diagram, LOC=11 takes priority over
LOC=38.

Figure 43-2: LOC Priority Example

LOC Propagation Rules
For all nets, LOC is illegal when attached to a net or signal except when the net or signal is
connected to a pad. In this case, LOC is treated as attached to the pad instance.

For CPLD nets, LOC attaches to all applicable elements that drive the net or signal.

When attached to a design element, LOC propagates to all applicable elements in the
hierarchy within the design element.

DCM_X[A]Y[B] Digital Clock Manager for Spartan-3, Spartan-
3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-
II Pro X, Virtex-4, and Virtex-5 devices

Phase Lock Loop

PLL_X[A]Y[B] Phase Lock Loop for Virtex-5

Table 43-1: Location Specification Types for FPGA Devices

Element Types Location Examples Meaning

CLB_R*C5 Any CLB in column 5 of a Spartan-II, Spartan-IIE, Virtex, or Virtex-E
device

SLICE_X*Y5 Any slice of a Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II
Pro, Virtex-II Pro X, Virtex-4, or Virtex-5 device whose Y coordinate is 5

X9531

IPAD IBUF

LOC=38 LOC=11
Constraints Guide www.xilinx.com Location (LOC) 165
10.1

http://www.xilinx.com

Xilinx Constraints
R

LOC Syntax for FPGA Devices
This section discusses LOC syntax for FPGA devices in:

• “Single Location”

• “Multiple Locations”

• “Range of Locations”

Single Location

The basic UCF syntax is:

INST “instance_name” LOC=location;

where

• location is a legal location for the part type

Examples of the syntax for single LOC constraints are given in the following table.

Table 43-2: Single LOC Constraint Examples

Constraint (UCF Syntax) Devices Description

INST “instance_name“LOC=P12; Place I/O at location P12.

INST
“instance_name“LOC=CLB_R3C5;

Spartan-II, Spartan-IIE, Virtex, and
Virtex-E

Place logic in either slice of the CLB
in row3, column 5.

INST
“instance_name“LOC=CLB_R3C5.S
0;

Spartan-II, Spartan-IIE, Virtex, and
Virtex-E

Place logic in the left slice of the
CLB in row 3, column 5.

INST “instance_name“
LOC=SLICE_X3Y2;

Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro
X, Virtex-4, and Virtex-5

Place logic in slice X3Y2 on the XY
SLICE grid.

INST “instance_name“
LOC=TBUF_R1C2.*;

Spartan-II, Spartan-IIE, Virtex, and
Virtex-E

Place both TBUFs in row 1, column
2.

INST “instance_name“
LOC=TBUF_X0Y6;

Virtex-II, Virtex-II Pro, and Virtex-II
Pro X, Virtex-4, and Virtex-5

Place logic in the BUFT located at
TBUF_ X0Y6 on the XY SLICE grid

INST “instance_name”
LOC=RAMB4_R*C1;

Spartan-II, Spartan-IIE, Virtex, and
Virtex-E

Specifies any block RAM in column
1 of the block RAM array

INST “instance_name“
LOC=RAMB16_X0Y6;

Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro
X, Virtex-4, and Virtex-5

Place the logic in the block RAM
located at RAMB16_X0Y6 on the XY
RAMB grid.

INST “instance_name“
LOC=MULT18X18_X0Y6;

Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro
X, Virtex-4, and Virtex-5

Place the logic in the multiplier
located at MULT18X18_X0Y6 on the
XY MULT grid.

INST “instance_name“
LOC=FIFO16_X0Y15;

Virtex-4, and Virtex-5 Place the logic in the FIFO located at
FIFO16_X0Y15 on the XY FIFO
grid.

INST “instance_name“
LOC=IDELAYCTRL_X0Y3;

Virtex-4, and Virtex-5 Place the logic in the IDELAYCTRL
located at the IDELAYCTRL_X0Y3
on the XY IDELAYCTRL grid.
Constraints Guide www.xilinx.com Location (LOC) 166
10.1

http://www.xilinx.com

Xilinx Constraints
R

5 or

0 on
Multiple Locations

LOC=location1,location2,...,locationx

Separating each such constraint by a comma specifies multiple locations for an element.
When you specify multiple locations, PAR can use any of the specified locations. Examples
of multiple LOC constraints are provided in the following table.

Currently, using a single constraint there is no way to constrain multiple elements to a
single location or multiple elements to multiple locations.

Range of Locations

The basic UCF syntax is:

INST “instance_name” LOC=location:location {SOFT};

You can define a range by specifying the two corners of a bounding box. Except for
Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-
4, and Virtex-5 devices, specify the upper left and lower right corners of an area in which
logic is to be placed. For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II, Virtex-II
Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices, specify the lower left and upper right
corners. Use a colon (:) to separate the two boundaries.

The logic represented by the symbol is placed somewhere inside the bounding box. The
default is to interpret the constraint as a “hard” requirement and to place it within the box.
If SOFT is specified, PAR may place the constraint elsewhere if better results can be
obtained at a location outside the bounding box. Examples of LOC constraints used to
specify a range are given in the following table.

Table 43-3: Multiple LOC Constraint Examples

Constraint Devices Description

INST “instance_name“
LOC=clb_r4c5.s1,
clb_r4c6.*;

Spartan-II, Spartan-IIE, Virtex,
and Virtex-E

Place the flip-flop in the right-most slice of CLB R4C
in either slice of CLB R4C6.

INST “instance_name“
LOC=SLICE_X2Y10,
SLICE_X1Y10;

Spartan-3, Spartan-3A,
Spartan-3E, Virtex-II, Virtex-II
Pro, Virtex-II Pro X, Virtex-4,
and Virtex-5

Place the logic in SLICE_X2Y10 or in SLICE_X1Y1
the XY SLICE grid.
Constraints Guide www.xilinx.com Location (LOC) 167
10.1

http://www.xilinx.com

Xilinx Constraints
R

LOC ranges can be supplemented with the keyword SOFT. Unlike AREA_GROUP, LOC
ranges do not influence the packing of symbols. LOC range is strictly a placement
constraint used by PAR.

LOC Syntax for CPLD Devices
The basic UCF syntax is:

INST “instance_name” LOC=pin_name;

or

INST “instance_name” LOC=FBff;

or

INST “instance_name” LOC=FBff_mm;

where

• pin_name is Pnn for numeric pin names or rc for row-column pin names

• ff is a function block number

• mm is a macrocell number within a function block

LOC Syntax Examples
For examples of legal placement constraints for each type of logic element in FPGA
designs, see “LOC Syntax for FPGA Devices” in this chapter, and the “Relative Location
(RLOC)” constraint. Logic elements include flip-flops, ROMs and RAMs, block RAMS,
FMAPs, BUFTs, CLBs, IOBs, I/Os, edge decoders, and global buffers.

Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an instance

• Attribute Name: LOC

• Attribute Values: value

For valid values, see “LOC Syntax for FPGA Devices” and “LOC Syntax for CPLD
Devices” in this chapter.

Table 43-4: LOC Range Constraint Examples

Constraint Devices Description

INST “instance_name“
LOC=CLB_R1C1:CLB_R4C4;

Spartan-II, Spartan-IIE, Virtex,
Virtex-E

Place logic in either slice in the top
left corner of the CLB bounded by
row 4, column 4.

INST “instance_name“
LOC=SLICE_X3Y5:SLICE_X5Y20;

Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro
X, Virtex-4, and Virtex-5

Place logic in any slice within the
rectangular area bounded by
SLICE_X3Y5 (the lower left corner)
and SLICE_X5Y20 (the upper right
corner) on the XY SLICE grid.
Constraints Guide www.xilinx.com Location (LOC) 168
10.1

http://www.xilinx.com

Xilinx Constraints
R

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute loc: string;

Specify the VHDL constraint as follows:

attribute loc of {signal_name|label_name}: {signal|label} is
“location”;

Set the LOC constraint on a bus as follows:

attribute loc of bus_name : signal is “location_1 location_2
location_3...”;

To constrain only a portion of a bus (CPLD devices only), use the following syntax:

attribute loc of bus_name : signal is “* * location_1 * location_2...”;

For more information about location, see “LOC Syntax for FPGA Devices” and “LOC
Syntax for CPLD Devices”in this chapter.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Examples

Specify the Verilog constraint as follows:

(* LOC = “location” *)

Set the LOC constraint on a bus as follows:

(* LOC = “location_1 location_2 location_3...” *)

To constrain only a portion of a bus (CPLD devices only), use the following syntax:

(* LOC = “* *location_1 location_2...” *)

For more information about location, see “LOC Syntax for FPGA Devices” and “LOC
Syntax for CPLD Devices” in this chapter.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Examples

Pin Assignment

mysignal PIN 12;

Internal Location Constraint

XILINX PROPERTY 'loc=fb1 mysignal’;

UCF and NCF Syntax Examples

The following statement specifies that each instance found under “FLIP_FLOPS” is to be
placed in any CLB in column 8.

INST “/FLIP_FLOPS/*” LOC=CLB_R*C8;

The following statement specifies that an instantiation of MUXBUF_D0_OUT be placed in
IOB location P110.

INST “MUXBUF_D0_OUT” LOC=P110;
Constraints Guide www.xilinx.com Location (LOC) 169
10.1

http://www.xilinx.com

Xilinx Constraints
R

The following statement specifies that the net DATA<1> be connected to the pad from IOB
location P111.

NET “DATA<1>” LOC=P111

XCF Syntax Examples

BEGIN MODEL “entity_name”

PIN “signal_name” loc=string;

INST “instance_name” loc=string;

END;

Constraints Editor Syntax Examples

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid, double-click the Location column in the row with the desired port
name and fill out the Location dialog box. This locks the selected signal to the specified pin.
You cannot set any other location constraints in the Constraints Editor.

PCF Syntax Examples

LOC writes out a LOCATE constraint to the PCF file. For more information, see the “Locate
(LOCATE)” constraint.

Floorplanner Syntax Examples

After you place your logic within Floorplanner, save the file as a UCF file to create a LOC
constraint. For more information, see the following topics in the Floorplanner help:

• Creating and Editing Area Constraints

• Using a Floorplanner UCF File in Project Navigator

PACE Syntax Examples

The Pin Assignments Editor is mainly used for assigning location constraints to IOs in
designs. You can access PACE from the Processes window in the Project Navigator.
Double-click Assign Package Pins or Create Area Constraints under User Constraints.

For more information, see the PACE help, especially the topics within Editing Pins and
Areas in the Procedures section.

BUFT Examples
You can constrain internal 3-state buffers (BUFTs) to an individual BUFT location, a list of
BUFT locations, or a rectangular block of BUFT locations. BUFT constraints all refer to
locations with a prefix of TBUF, which is the name of the physical element on the device.

BUFT constraints can be assigned from the schematic or through the UCF file. From the
schematic, LOC constraints are attached to the target BUFT. The constraints are then
passed into the EDIF netlist file and after mapping are read by PAR. Alternatively, in a
constraints file a BUFT is identified by a unique instance name.
Constraints Guide www.xilinx.com Location (LOC) 170
10.1

http://www.xilinx.com

Xilinx Constraints
R

Fixed Locations

This section describes fixed locations for:

• “Virtex, Virtex-E, Spartan-II, and Spartan-IIE”

• “Spartan-3 and Higher Devices”

Virtex, Virtex-E, Spartan-II, and Spartan-IIE

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE use the following syntax to denote fixed
locations.

TBUF_RrowCcol{.0|.1}

where

• row is the row location

• col is the column location

They can be any number between 0 and 99, inclusive. They must be less than or equal to
the number of CLB rows or columns in the target device.

A suffix of .0 or .1 is required.

The suffixes have the following meanings:

• 0 indicates at least one TBUF at the specific row/column

• 1 indicates the second TBUF at the specific row/column

Spartan-3 and Higher Devices

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II, Virtex-II Pro, Virtex-II Pro X,
Virtex-4, and Virtex-5 devices, use the following syntax to denote fixed locations:

TBUF_XmYn

where

• m and n represent XY values on the slice-based X0Y0 grid

The TBUFs are associated with the SLICE grid. Because there are two TBUFs per CLB and
four slices per CLB, the X value for a TBUF location can only be an even integer or zero.
The values must be less than or equal to the number of slices in the target device.

Range of Locations

For Spartan-II, Spartan-IIE, Virtex, or Virtex-E, use the following syntax to denote a range
of locations from the lowest to the highest.

TBUF_RrowCcol:TBUF_RrowCcol

Range of locations does not apply to Spartan-3 and higher devices.

Format of BUFT LOC Constraints

The following examples illustrate the format of BUFT LOC constraints. Specify LOC= and
the BUFT location.

LOC=TBUF_R1C1.0 (or .1) Spartan-II, Spartan-IIE, Virtex, and Virtex-E

LOC=TBUF_X2Y1 Virtex-II, Virtex-II Pro, and Virtex-II Pro X
Constraints Guide www.xilinx.com Location (LOC) 171
10.1

http://www.xilinx.com

Xilinx Constraints
R

The next statements place BUFTs at any location in the first column of BUFTs. The asterisk
(*) is a wildcard character.

The following statements place BUFTs within the rectangular block defined by the two
TBUFs/LOCs. For all architectures except Spartan-3, Spartan-3A, Spartan-3E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices, the first specified BUFT is in
the upper left corner and the second specified BUFT is in the lower right corner. For
Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, the first BUFT is the lower left corner and the second is the upper right
corner.

CLB-Based Row/Column/Slice Designations

The examples in this section apply to Spartan-II, Spartan-IIE, Virtex, and Virtex-E
architectures.

In the following examples, the instance names of two BUFTs are /top-72/rd0 and /top-
79/ed7. The examples are:

• “Example One: BUFT Adjacent to a Specific CLB”

• “Example Two: BUFT in a Specific Location”

• “Example Three: Column of BUFTs”

• “Example Four: Row of BUFTs”

Example One: BUFT Adjacent to a Specific CLB

The following example specifies a BUFT adjacent to a specific CLB.

Place the BUFT adjacent to CLB R1C5. In Spartan-II, Spartan-IIE, Virtex, and Virtex-E, PAR
places the BUFT in one of two slices of the CLB at row 1, column 5.

Example Two: BUFT in a Specific Location

The following example places a BUFT in a specific location.

Place the BUFT adjacent to CLB R1C5. In Spartan-II, Spartan-IIE, Virtex, and Virtex-E, the
.1 tag specifies the second TBUF in CLB R1C5.

LOC=TBUF_R*C0 Spartan-II, Spartan-IIE, Virtex, and Virtex-E

LOC=TBUF_X0Y* Virtex-II, Virtex-II Pro, and Virtex-II Pro X

LOC=TBUF_R1C1:TBUF_R2C8 Spartan-II, Spartan-IIE, Virtex, and Virtex-E

LOC=TBUF_X0Y1:TBUF_X2Y8 Virtex-II, Virtex-II Pro, and Virtex-II Pro X

Schematic LOC=TBUF_R1C5

UCF INST “/top-72/rd0” LOC=TBUF_R1C5;

Schematic LOC=TBUF_r1c5.1

UCF INST “/top-72/rd0” LOC=TBUF_r1c5.1;
Constraints Guide www.xilinx.com Location (LOC) 172
10.1

http://www.xilinx.com

Xilinx Constraints
R

BUFTs that drive the same signal must carry consistent constraints. If you specify .1 or .2
for one of the BUFTs that drives a given signal, you must also specify .1 or .2 on the other
BUFTs on that signal; otherwise, do not specify any constraints at all.

Example Three: Column of BUFTs

The following example specifies a column of BUFTs.

Place BUFTs in column 3 on any row. This constraint might be used to align BUFTs with a
common enable signal. You can use the wildcard (*) character in place of either the row or
column number to specify an entire row or column of BUFTs.

Example Four: Row of BUFTs

The following example specifies a row of BUFTs.

Place the BUFT on one of the longlines in row 7 for any column. You can use the wildcard
(*) character in place of either the row or column number to specify an entire row or
column of BUFTs.

Sliced-Based XY Coordinate Designations

The examples in this section apply to the Virtex-II, Virtex-II Pro, and Virtex-II Pro X
devices.

The examples are:

• “Example One: BUFT in a Specific Location”

• “Example Two: Column of BUFTs”

• “Example Three: Row of BUFTs”

Example One: BUFT in a Specific Location

The following example places a BUFT in a specific location.

Place the BUFT in TBUF_X4Y5 in the CLB containing SLICE_X4Y5.

BUFTs that drive the same signal must carry consistent constraints.

Schematic LOC=TBUF_r*c3

UCF INST “/top-72/rd0 /top-79/ed7”
LOC=TBUF_r*c3;

Schematic LOC=TBUF_r7c*

UCF INST “/top-79/ed7” LOC=TBUF_r7c*;

Schematic LOC=TBUF_X4Y5

UCF INST “/top-72/rd0” LOC=TBUF_X4Y5;
Constraints Guide www.xilinx.com Location (LOC) 173
10.1

http://www.xilinx.com

Xilinx Constraints
R

Example Two: Column of BUFTs

The following example specifies a column of BUFTs.

Place BUFTs in the column of CLBs that contains the TBUFs whose X coordinate is 6. This
constraint might be used to align BUFTs with a common enable signal. You can use the
wildcard (*) character in place of either the X or Y coordinate to specify an entire row (X*)
or column (Y*) of BUFTs.

Example Three: Row of BUFTs

The following example specifies a row of BUFTs.

Place the BUFT on one of the longlines in the row of CLBs that contains TBUFs whose Y
coordinate is 6. You can use the wildcard (*) character in place of either the X or Y
coordinate to specify an entire row (X*) or column (Y*) of TBUFs.

CLB Examples (CLB-Based Row/Column/Slice Architectures Only)

Note: This section applies only to the architecture that uses the CLB-based Row/Column/Slice
designations:

You can assign soft macros and flip-flops to a single CLB location, a list of CLB locations, or
a rectangular block of CLB locations. You can also specify the exact function generator or
flip-flop within a CLB. CLB locations are identified as CLB_RrowCcol for Spartan-II,
Spartan-IIE, Virtex, and Virtex-E. The upper left CLB is CLB_R1C1.

CLB Locations

CLB locations can be a fixed location or a range of locations.

Fixed Locations

Use the following syntax to denote fixed locations.

For Spartan-II, Spartan-IIE, Virtex, and Virtex-E:

CLB_RrowCcol{.S0 | .S1}

where

• row is the row location

• col is the column location

They can be any number between 0 and 99, inclusive, or *.

They must be less than or equal to the number of CLB rows or columns in the target device.

Schematic LOC=TBUF_X6Y*

UCF INST “/top-72/rd0 /top-79/ed7” LOC=TBUF_X6Y*;

Schematic LOC=TBUF_X*Y6

UCF INST “/top-79/ed7” LOC=TBUF_X*Y6;
Constraints Guide www.xilinx.com Location (LOC) 174
10.1

http://www.xilinx.com

Xilinx Constraints
R

The suffixes have the following meanings.

• .S0 means the right-most slice in the Spartan-II, Spartan-IIE, Virtex, and Virtex-E CLB

• .S1 means the left-most slice in the Spartan-II, Spartan-IIE, Virtex, and Virtex-E CLB

Range of Locations

Use the following syntax to denote a range of locations from the highest to the lowest.

CLB_Rrow1Ccol:CLB_Rrow2Ccol2

Format of CLB Constraints

The following examples illustrate the format of CLB constraints. Enter LOC= and the pin
or CLB location. If the target symbol represents a soft macro, the LOC constraint is applied
to all appropriate symbols (flip-flops, maps) contained in that macro. If the indicated logic
does not fit into the specified blocks, an error is generated.

• The following UCF statement places logic in the designated CLB.

INST “instance_name” LOC=CLB_R1C1.S0;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices)

• The following UCF statement places logic within the first column of CLBs. The
asterisk (*) is a wildcard character.

INST “instance_name” LOC=CLB_R*C1.S0;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices)

• The next two UCF statements place logic in any of the three designated CLBs. There is
no significance to the order of the LOC statements.

INST “instance_name” LOC=CLB_R1C1,CLB_R1C2,CLB_R1C3;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices)

• The following statement places logic within the rectangular block defined by the first
specified CLB in the upper left corner and the second specified CLB towards the
lower right corner.

INST “instance_name” LOC=CLB_R1C1:CLB_R8C5;

(Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices)

You can prohibit PAR from using a specific CLB, a range of CLBs, or a row or column of
CLBs. Such PROHIBIT constraints can be assigned only through the User Constraints File
(UCF). CLBs are prohibited by specifying a PROHIBIT constraint at the design level, as
shown in the following examples.

Example One

Do not place any logic in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner
of the device.

Schematic None

UCF CONFIG PROHIBIT=clb_r1c5;
Constraints Guide www.xilinx.com Location (LOC) 175
10.1

http://www.xilinx.com

Xilinx Constraints
R

Example Two

Do not place any logic in the rectangular area bounded by the CLB R1C1 in the upper left
corner and CLB R5C7 in the lower right.

Example Three

Do not place any logic in any row of column 3. You can use the wildcard (*) character in
place of either the row or column number to specify an entire row or column of CLBs.

Example Four

Do not place any logic in either CLB R2C4 or CLB R7C9.

Delay Locked Loop (DLL) Constraint Examples
This section applies to Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices only.

You can constrain DLL elements—CLKDLL, CLKDLLE, and CLKDLLHF—to a specific
physical site name. Specify LOC=DLL and a numeric value (0 through 3) to identify the
location.

Following is an example.

Digital Clock Manager (DCM) Constraint Examples
This section applies to Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, Virtex-4, and Virtex-5 devices only.

You can lock the DCM in the UCF file. The syntax is as follows:

INST “instance_name” LOC = DCM_XAYB;

A is the X coordinate, starting with 0 at the left-hand bottom corner. A increases in value as
you move across the device to the right.

B is the Y coordinate, starting with 0 at the left-hand bottom corner. B increases in value as
you move up the device.

For example:

INST “myinstance” LOC = DCM_X0Y0;

Schematic None

UCF CONFIG PROHIBIT=clb_r1c1:clb_r5c7;

Schematic None

UCF CONFIG PROHIBIT=clb_r*c3;

Schematic None

UCF CONFIG PROHIBIT=clb_r2c4, clb_r7c9;

Schematic LOC=DLL1P

UCF INST “buf1” LOC=DLL1P;
Constraints Guide www.xilinx.com Location (LOC) 176
10.1

http://www.xilinx.com

Xilinx Constraints
R

Flip-Flop Constraint Examples
Flip-flop constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach LOC constraints to the target flip-flop. The constraints are then
passed into the EDIF netlist and are read by PAR after the design is mapped.

The following examples show how the LOC constraint is applied to a schematic and to a
UCF (User Constraints File). The instance names of two flip-flops, /top-12/fdrd and /top-
54/fdsd, are used to show how you would enter the constraints in the UCF.

CLB-Based Row/Column/Slice Designations

The Virtex architecture uses CLB-based Row/Column/Slice designations.

Flip-flops can be constrained to a specific CLB, a range of CLBs, a row or column of CLBs,
or a specific half-CLB.

Example One

Place the flip-flop in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner of the
device.

Example Two

Place the flip-flop in the rectangular area bounded by the CLB R1C1 in the upper left
corner and CLB R5C7 in the lower right corner.

Example Three

Place the flip-flops in any row of column 3. You can use the wildcard (*) character in place
of either the row or column number to specify an entire row or column of CLBs.

Example Four

Place the flip-flop in either CLB R2C4 or CLB R7C9.

Schematic LOC=CLB_RlC5

UCF INST “/top-12/fdrd” LOC=CLB_R1C5;

Schematic LOC=CLB_R1C1:CLB_R5C7

UCF INST “/top-12/fdrd”
LOC=CLB_R1C1:CLB_R5C7;

Schematic LOC=CLB_R*C3

UCF INST “/top-12/fdrd/top-54/fdsd”
LOC=CLB_R*C3;

Schematic LOC=CLB_R2C4,CLB_R7C9

UCF INST “/top-54/fdsd”
LOC=CLB_R2C4,CLB_R7C9;
Constraints Guide www.xilinx.com Location (LOC) 177
10.1

http://www.xilinx.com

Xilinx Constraints
R

In Example Four, repeating the LOC constraint and separating each such constraint by a
comma specifies multiple locations for an element. When you specify multiple locations,
PAR can use any of the specified locations.

Example Five

Do not place the flip-flop in any column of row 5. You can use the wildcard (*) character in
place of either the row or column number to specify an entire row or column of CLBs.

Slice-Based XY Grid Designations

Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 are the only architectures that use slice-based XY grid designations.

Flip-flops can be constrained to a specific slice, a range of slices, a row or column of slices.

Example One

Place the flip-flop in SLICE_X1Y5. SLICE_X0Y0 is in the lower left corner of the device.

Example Two

Place the flip-flop in the rectangular area bounded by the SLICE_X1Y1 in the lower left
corner and SLICE_X5Y7 in the upper right corner.

Example Three

Place the flip-flops anywhere in the row of slices whose Y coordinate is 3. Use the wildcard
(*) character in place of either the X or Y value to specify an entire row (Y*) or column (X*)
of slices.

Example Four

Place the flip-flop in either SLICE_X2Y4 or SLICE_X7Y9.

Schematic PROHIBIT=CLB_R5C*

UCF CONFIG PROHIBIT=CLB_R5C*;

Schematic LOC=SLICE_XlY5

UCF INST “/top-12/fdrd” LOC=SLICE_X1Y5;

Schematic LOC=SLICE_R1C1:SLICE_R5C7

UCF INST “/top-12/fdrd” LOC=SLICE_X1Y1:SLICE_X5Y7;

Schematic LOC=SLICE_X*Y3

UCF INST “/top-12/fdrd/top-54/fdsd”
LOC=SLICE_X*Y3;

Schematic LOC=SLICE_X2Y4,SLICE_X7Y9

UCF INST “/top-54/fdsd” LOC=SLICE_X2Y4, SLICE_X7Y9;
Constraints Guide www.xilinx.com Location (LOC) 178
10.1

http://www.xilinx.com

Xilinx Constraints
R

In Example Four, repeating the LOC constraint and separating each such constraint by a
comma specifies multiple locations for an element. When you specify multiple locations,
PAR can use any of the specified locations.

Example Five

Do not place the flip-flop in the column of slices whose X coordinate is 5. Use the wildcard
(*) character in place of either the X or Y value to specify an entire row (Y*) or column (X*)
of slices.

Global Buffer Constraint Examples
This section applies to Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices only.

You can constrain a Spartan-II, Spartan-IIE, Virtex, and Virtex-E global buffer (BUFGP and
IBUFG_SelectIO variants) to a specific buffer site name or dedicated global clock pad in the
device model.

From the schematic, attach LOC constraints to the global buffer symbols. Specify LOC=
and GCLKBUF plus a number (0 through 3) to create a specific buffer site name in the
device model. Or, specify LOC= and GCLKPAD plus a number (0 through 3) to create a
specific dedicated global clock pad in the device model. The constraints are then passed
into the EDIF netlist and after mapping are read by PAR.

Example

I/O Constraint Examples
You can constrain I/Os to a specific IOB. You can assign I/O constraints from the
schematic or through the UCF file.

From the schematic, attach LOC constraints to the target PAD symbol. The constraints are
then passed into the netlist file and read by PAR after mapping.

Alternatively, in the UCF file a pad is identified by a unique instance name. The following
example shows how the LOC constraint is applied to a schematic and to a UCF (User
Constraints File). In the examples, the instance names of the I/Os are /top-102/data0_pad
and /top-117/q13_pad. The example uses a pin number to lock to one pin.

Place the I/O in the IOB at pin 17. For pin grid arrays, a pin name such as B3 or T1 is used.

Schematic PROHIBIT=SLICE_X5Y*

UCF CONFIG PROHIBIT=SLICE_X5Y*;

Schematic LOC=GCLKBUF1

UCF INST “buf1” LOC=GCLKBUF1;

Schematic LOC=GCLKPAD1

UCF INST “buf1” LOC=GCLKPAD1;

Schematic LOC=P17

UCF INST “/top-102/data0_pad” LOC=P17;
Constraints Guide www.xilinx.com Location (LOC) 179
10.1

http://www.xilinx.com

Xilinx Constraints
R

IOB Constraint Examples
You can assign I/O pads, buffers, and registers to an individual IOB location. IOB locations
are identified by the corresponding package pin designation.

The following examples illustrate the format of IOB constraints. Specify LOC= and the pin
location. If the target symbol represents a soft macro containing only I/O elements, for
example, INFF8, the LOC constraint is applied to all I/O elements contained in that macro.
If the indicated I/O elements do not fit into the specified locations, an error is generated.

The following UCF statement places the I/O element in location P13. For PGA packages,
the letter-number designation is used, for example, B3.

INST “instance_name” LOC=P13;

You can prohibit the mapper from using a specific IOB. You might take this step to keep
user I/O signals away from semi-dedicated configuration pins. Such PROHIBIT
constraints can be assigned only through the UCF file.

IOBs are prohibited by specifying a PROHIBIT constraint preceded by the CONFIG
keyword, as shown in the following example.

Do not place user I/Os in the IOBs at pins 36, 37, or 41. For pin grid arrays, pin names such
as D14, C16, or H15 are used.

Mapping Constraint Examples (FMAP)
Mapping constraints control the mapping of logic into CLBs. They have two parts. The first
part is an FMAP component placed on the schematic. The second is a LOC constraint that
can be placed on the schematic or in the constraints file.

FMAP controls the mapping of logic into function generators. This symbol does not define
logic on the schematic; instead, it specifies how portions of logic shown elsewhere on the
schematic should be mapped into a function generator.

The FMAP symbol defines mapping into a four-input (F) function generator. For Spartan-
II, Spartan-IIE, Virtex, and Virtex-E, the four-input function generator defined by the
FMAP is assigned to one of the two slices of the CLB.

For the FMAP symbol as with the CLBMAP primitive, MAP=PUC or PUO is supported, as
well as the LOC constraint. (Currently, pin locking is not supported. MAP=PLC or PLO is
translated into PUC and PUO, respectively.)

Example One

Place the FMAP symbol in the CLB at row 7, column 3.

Schematic None

UCF CONFIG PROHIBIT=p36, p37, p41;

Schematic LOC=CLB_R7C3

UCF INST “$1I323” LOC=CLB_R7C3;
Constraints Guide www.xilinx.com Location (LOC) 180
10.1

http://www.xilinx.com

Xilinx Constraints
R

Example Two

Place the FMAP symbol in either the CLB at row 2, column 4 or the CLB at row 3, column 4.

Example Three

Place the FMAP symbol in the area bounded by CLB R5C5 in the upper left corner and CLB
R10C8 in the lower right

Example Four (Virtex, Virtex-E, Spartan-II, and Spartan-IIE)

Place the FMAP in the right-most slice of the CLB in row 10, column 11.

Multiplier Constraint Examples
This section applies to Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, Virtex-4, and Virtex-5 devices only.

Multiplier constraints can be assigned from the schematic or through the UCF file. From
the schematic, attach the LOC constraints to a multiplier symbol. The constraints are then
passed into the netlist file and after mapping they are read by PAR. For more information
on attaching LOC constraints, see the application user guide. Alternatively, in the
constraints file a multiplier is identified by a unique instance name.

A Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 multiplier has a different XY grid specification than slices, block RAMs, and
TBUFs. It is specified using MULT18X18_XmYn where the X and Y coordinate values
correspond to the multiplier grid array. A multiplier located at MULT18X18_X0Y1 is not
located at the same site as a flip-flop located at SLICE_X0Y1 or a block RAM located at
RAMB16_X0Y1.

For example, assume you have a device with two columns of multipliers, each column
containing two multipliers, where one column is on the right side of the chip and the other
is on the left. The multiplier located in the lower left corner is MULT18X18_X0Y0. Because
there are only two columns of multipliers, the multiplier located in the upper right corner
is MULT18X18_X1Y1.

Schematic LOC=CLB_R2C4,CLB_R3C4

UCF INST “top/dec0011” LOC=CLB_R2C4,CLB_R3C4;

Schematic LOC=CLB_R5C5:CLB_R10C8

UCF INST “$3I27” LOC=CLB_R5C5:CLB_R10C8;

Schematic LOC=CLB_R10C11.S0

UCF INST “/top/done” LOC=CLB_R10C11.S0;

Schematic LOC=MULT18X18_X0Y0

UCF INST “/top-7/rq” LOC=MULT18X18_X0Y0;
Constraints Guide www.xilinx.com Location (LOC) 181
10.1

http://www.xilinx.com

Xilinx Constraints
R

ROM Constraint Examples
Memory constraints can be assigned from the schematic or through the UCF file.

From the schematic, attach the LOC constraints to the memory symbol. The constraints are
then passed into the netlist file and after mapping they are read by PAR. For more
information on attaching LOC constraints, see the application user guide.

Alternatively, in the constraints file memory is identified by a unique instance name. One
or more memory instances of type ROM can be found in the input file. All memory macros
larger than 16 x 1 or 32 x 1 are broken down into these basic elements in the netlist file.

In the following examples, the instance name of the ROM primitive is /top-7/rq.

CLB-Based Row/Column/Slice Designations

The Virtex architecture uses CLB-based Row/Column/Slice designations. You can
constrain a ROM to a specific CLB, a range of CLBs, a row or column of CLBs.

Example One

Place the memory in the CLB in row 1, column 5. CLB R1C1 is in the upper left corner of the
device. You can only apply a single-CLB constraint such as this to a 16 x 1 or 32 x 1 memory.

Example Two

Place the memory in either CLB R2C4 or CLB R7C9.

Example Three

Do not place the memory in any column of row 5. You can use the wildcard (*) character in
place of either the row or column number in the CLB name to specify an entire row or
column of CLBs.

Slice-Based XY Designations

Only Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4,
and Virtex-5 devices use slice-based XY grid designations. You can constrain a ROM to a
specific slice, a range of slices, or a row or column of slices.

Schematic LOC=clb_r1c5

UCF INST “/top-7/rq” LOC=clb_r1c5;

Schematic LOC=clb_r2c4, clb_r7c9

UCF INST “/top-7/rq” LOC=clb_r2c4, clb_r7c9;

Schematic PROHIBIT clb_r5c*

UCF CONFIG PROHIBIT=clb_r5c*;
Constraints Guide www.xilinx.com Location (LOC) 182
10.1

http://www.xilinx.com

Xilinx Constraints
R

Example One

Place the memory in the SLICE_X1Y1. SLICE_X1Y1 is in the lower left corner of the device.
You can apply a single-SLICE constraint such as this only to a 16 x 1 or 32 x 1 memory.

Example Two

Place the memory in either SLICE_X2Y4 or SLICE_X7Y9.

Example Three

Do not place the memory in column of slices whose X coordinate is 5. You can use the
wildcard (*) character in place of either the X or Y coordinate value in the SLICE name to
specify an entire row (Y*) or column (X*) of slices.

Block RAM (RAMBs) Constraint Examples
This section applies to Spartan-II, Spartan-IIE, Spartan-3, Spartan-3A, Spartan-3E, Virtex,
Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices only.

Block RAM constraints can be assigned from the schematic or through the UCF file. From
the schematic, attach the LOC constraints to the block RAM symbol. The constraints are
then passed into the netlist file. After mapping they are read by PAR. For more information
on attaching LOC constraints, see the application user guide. Alternatively, in the
constraints file a memory is identified by a unique instance name.

Spartan-II, Spartan-IIE, Virtex, and Virtex-E Devices

A Spartan-II, Spartan-IIE, Virtex, and Virtex-E block RAM has a different row/column grid
specification than CLBs and TBUFs. It is specified using RAMB4_RnCn where the numeric
row and column numbers refer to the block RAM grid array. A block RAM located at
RAMB4_R3C1 is not located at the same site as a flip-flop located at CLB_R3C1.

For example, assume you have a device with two columns of block RAM, each column
containing four blocks, where one column is on the right side of the chip and the other is on
the left. The block RAM located in the upper left corner is RAMB4_R0C0. Because there are
only two columns of block RAM, the block located in the upper right corner is
RAMB4_R0C1.

Schematic LOC=SLICE_X1Y1

UCF INST “/top-7/rq” LOC=SLICE_X1Y1;

Schematic LOC=SLICE_X2Y4, SLICE_X7Y9

UCF INST “/top-7/rq” LOC=SLICE_X2Y4, SLICE_X7Y9;

Schematic PROHIBIT SLICE_X5Y*

UCF CONFIG PROHIBIT=SLICE_X5Y*;

Schematic LOC=RAMB4_R0C0

UCF INST “/top-7/rq” LOC=RAMB4_R0C0;
Constraints Guide www.xilinx.com Location (LOC) 183
10.1

http://www.xilinx.com

Xilinx Constraints
R

Spartan-3 and Higher Devices

A Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 block RAM has a different XY grid specification than a slice, multiplier, or TBUF.
It is specified using RAMB16_XmYn where the X and Y coordinate values correspond to
the block RAM grid array. A block RAM located at RAMB16_X0Y1 is not located at the
same site as a flip-flop located at SLICE_X0Y1.

For example, assume you have a device with two columns of block RAM, each column
containing two blocks, where one column is on the right side of the chip and the other is on
the left. The block RAM located in the lower left corner is RAMB16_X0Y0. Because there
are only two columns of block RAM, the block located in the upper right corner is
RAMB16_X1Y1.

Slice Constraint Examples
This section applies only to Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro,
Virtex-II Pro X, Virtex-4, and Virtex-5 devices. These are currently the only architectures
that use the slice-based XY grid designations.

You can assign soft macros and flip-flops to a single slice location, a list of slice locations, or
a rectangular block of slice locations.

Slice locations can be a fixed location or a range of locations. Use the following syntax to
denote fixed locations.

SLICE_XmYn

where

• m and n are the X and Y coordinate values, respectively

They must be less than or equal to the number of slices in the target device. Use the
following syntax to denote a range of locations from the highest to the lowest.

SLICE_XmYn:SLICE_XmYn

Format of Slice Constraints

The following examples illustrate the format of slice constraints: LOC= and the slice
location. If the target symbol represents a soft macro, the LOC constraint is applied to all
appropriate symbols (flip-flops, maps) contained in that macro. If the indicated logic does
not fit into the specified blocks, an error is generated.

Slice Constraints Example One

The following UCF statement places logic in the designated slice for Spartan-3, Spartan-
3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices.

INST “instance_name” LOC=SLICE_X133Y10;

Schematic LOC=RAMB16_X0Y0

UCF INST “/top-7/rq” LOC=RAMB16_X0Y0;
Constraints Guide www.xilinx.com Location (LOC) 184
10.1

http://www.xilinx.com

Xilinx Constraints
R

Slice Constraints Example Two

The following UCF statement places logic within the first column of slices for Spartan-3,
Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5
devices. The asterisk (*) is a wildcard character

INST “instance_name” LOC=SLICE_X0Y*;

Slice Constraints Example Three

The following UCF statement places logic in any of the three designated slices for Spartan-
3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5
devices. There is no significance to the order of the LOC statements.

INST “instance_name” LOC=SLICE_X0Y3, SLICE_X67Y120, SLICE_X3Y0;

Slice Constraints Example Four

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, the following UCF statement places logic within the rectangular block
defined by the first specified slice in the lower left corner and the second specified slice
towards the upper right corner.

INST “instance_name” LOC=SLICE_X3Y22:SLICE_X10Y55;

Slices Prohibited

You can prohibit PAR from using a specific slice, a range of slices, or a row or column of
slices. Such prohibit constraints can be assigned only through the User Constraints File
(UCF). Slices are prohibited by specifying a PROHIBIT constraint at the design level, as
shown in the following examples.

Slices Prohibited Example One

Do not place any logic in the SLICE_X0Y0. SLICE_X0Y0 is at the lower left corner of the
device.

Slices Prohibited Example Two

Do not place any logic in the rectangular area bounded by SLICE_X2Y3 in the lower left
corner and SLICE_X10Y10 in the upper right.

Schematic None

UCF CONFIG PROHIBIT=SLICE_X0Y0;

Schematic None

UCF CONFIG PROHIBIT=SLICE_X2Y3:SLICE_X10Y10;
Constraints Guide www.xilinx.com Location (LOC) 185
10.1

http://www.xilinx.com

Xilinx Constraints
R

Slices Prohibited Example Three

Do not place any logic in a slice whose location has 3 as the X coordinate. This designates
a column of prohibited slices. You can use the wildcard (*) character in place of either the X
or Y coordinate to specify an entire row (X*) or column (Y*) of slices.

Example Four

Do not place any logic in either SLICE_X2Y4 or SLICE_ X7Y9.

Schematic None

UCF CONFIG PROHIBIT=SLICE_X3Y*;

Schematic None

UCF CONFIG PROHIBIT=SLICE_X2Y4, SLICE_X7Y9;
Constraints Guide www.xilinx.com Location (LOC) 186
10.1

http://www.xilinx.com

Xilinx Constraints
R

Locate (LOCATE)

LOCATE Architecture Support
The LOCATE constraint applies to FPGA devices only.

LOCATE Applicable Elements
• CLBs

• IOBs

• TBUFs

• DCMs

• Clock logic

• Macros

LOCATE Description
LOCATE is a basic placement constraint that specifies a single location, multiple single
locations, or a location range.

LOCATE Propagation Rules
When attached to a macro, the constraint propagates to all elements of the macro. When
attached to a primitive, the constraint applies to the entire primitive.

LOCATE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

PCF Syntax Examples

Single or multiple single locations

COMP “comp_name” LOCATE=[SOFT] “site_item1”... “site_itemn” [LEVEL n];
COMPGRP “group_name” LOCATE=[SOFT] “site_item1”... “site_itemn” [LEVEL
n];
MACRO name LOCATE=[SOFT] “site_item1”... “site_itemn” [LEVEL n];

Range of locations

COMP “comp_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name”
[LEVEL n];
COMPGRP “group_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name”
[LEVEL n];
MACRO “macro_name” LOCATE=[SOFT] SITE “site_name” : SITE “site_name”
[LEVEL n];

where

• site_name is a component site (that is, a CLB or IOB location)

• site_item is one of the following:

♦ SITE “site_name”
Constraints Guide www.xilinx.com Locate (LOCATE) 187
10.1

http://www.xilinx.com

Xilinx Constraints
R

♦ SITEGRP “site_group_name”

• n in LEVEL n is 0, 1, 2, 3, or 4
Constraints Guide www.xilinx.com Locate (LOCATE) 188
10.1

http://www.xilinx.com

Xilinx Constraints
R

Lock Pins (LOCK_PINS)

LOCK_PINS Architecture Support
The LOCK_PINS constraint applies to FPGA devices only.

LOCK_PINS Applicable Elements
The LOCK_PINS constraint is applied only to specific instances of LUT symbols.

LOCK_PINS Description
The LOCK_PINS constraint instructs the implementation tools to not swap the pins of the
LUT symbol to which it is attached. The LOCK_PINS constraint should not be confused
with the Lock Pins process in Project Navigator, which is used to preserve the existing
pinout of a CPLD design.

LOCK_PINS Propagation Rules
LOCK_PINS is applied only to a single LUT instance.

LOCK_PINS Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute lock_pins: string;

Specify the VHDL constraint as follows:

attribute lock_pins of {component_name|label_name} : {component|label}
is “all”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

(* LOCK_PINS = “all” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Examples

Using No Designator

INST “XSYM1” LOCK_PINS;

Using the ALL Attribute

INST “XSYM1” LOCK_PINS=’ALL’;
Constraints Guide www.xilinx.com Lock Pins (LOCK_PINS) 189
10.1

http://www.xilinx.com

Xilinx Constraints
R

Using a PIN Assignment List

INST I_589 LOCK_PINS=I0:A2;

INST I_894 LOCK_PINS=I3:A1,I2:A4;

INST tvAgy LOCK_PINS=I0:A4,I1:A3,I2:A2,I3:A1;
Constraints Guide www.xilinx.com Lock Pins (LOCK_PINS) 190
10.1

http://www.xilinx.com

Xilinx Constraints
R

Lookup Table Name (LUTNM)

LUTNM Architecture Support
The LUTNM constraint applies to Virtex™-5 devices only.

LUTNM Applicable Elements
The LUTNM constraint can be applied to two symbols that are unique within the design.
The constraint can be applied to two 5-input or smaller function generator symbols (LUT,
ROM, or RAM) if the total number of unique input pins required for both symbols does not
exceed 5 pins. The constraint can be applied to a 6-input read-only function generator
symbol (LUT6, ROM64) in conjunction with a 5-input read-only symbol (LUT5, ROM32) if
the total number of unique input pins required for both symbols does not exceed 6 inputs
and the lower 32 bits of the 6-input symbol programming matches all 32 bits of the 5-input
symbol programming.

LUTNM Description
The LUTNM constraint provides the ability to control the grouping of logical symbols into
the LUT sites of the Virtex-5 FPGA architectures. The LUTNM constraint is a string value
property that is applied to two qualified symbols. The LUTNM constraint value must be
applied uniquely to two symbols within the design. These two symbols are implemented
in a shared LUT site within a SLICE component.

This constraint is functionally similar to the Block Name (BLKNM) constraint.

LUTNM Propagation Rules
The LUTNM constraint can be applied to two symbols that are unique within the design.

LUTNM Syntax Examples
Following are syntax examples using this constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid element or symbol type

• Attribute Name: LUTNM

• Attribute Value: <user_defined>

VHDL Syntax Example

Before using LUTNM, declare it with the following syntax placed after the architecture
declaration, but before the begin statement in the top-level VHDL file:

attribute LUTNM: string;

After LUTNM has been declared, specify the VHDL constraint as follows:

attribute LUTNM of {LUT5_instance_name}: label is "value";

Where value is any chosen name under which you want to group the two elements.
Constraints Guide www.xilinx.com Lookup Table Name (LUTNM) 191
10.1

http://www.xilinx.com

Xilinx Constraints
R

Example:

architecture MY_DESIGN of top is

attribute LUTNM: string;

 attribute LUTNM of LUT5_inst1: label is "logic_group1";

 attribute LUTNM of LUT5_inst2: label is "logic_group1";

begin

-- LUT5: 5-input Look-Up Table

 -- Virtex-5

 -- Xilinx HDL Libraries Guide version 8.2i

LUT5_inst1 : LUT5

 generic map (

 INIT => X"a49b44c1")

 port map (

 O => aout, -- LUT output (1-bit)

 I0 => d(0), -- LUT input (1-bit)

 I1 => d(1), -- LUT input (1-bit)

 I2 => d(2), -- LUT input (1-bit)

 I3 => d(3), -- LUT input (1-bit)

 I4 => d(4) -- LUT input (1-bit)

);

-- End of LUT5_inst1 instantiation

-- LUT5: 5-input Look-Up Table

 -- Virtex-5

 -- Xilinx HDL Libraries Guide version 8.2i

LUT5_inst2 : LUT5

 generic map (

 INIT => X"649d610a")

 port map (

 O => bout, -- LUT output (1-bit)

 I0 => d(0), -- LUT input (1-bit)

 I1 => d(1), -- LUT input (1-bit)

 I2 => d(2), -- LUT input (1-bit)

 I3 => d(3), -- LUT input (1-bit)

 I4 => d(4) -- LUT input (1-bit)

);

-- End of LUT5_inst2 instantiation

END MY_DESIGN;

For a more detailed discussion of the basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Place the following attribute specification before the port declaration in the top-level
Verilog code:

(* LUTNM = "value" *)
Constraints Guide www.xilinx.com Lookup Table Name (LUTNM) 192
10.1

http://www.xilinx.com

Xilinx Constraints
R

Where value is any chosen name under which you want to group the two elements.

Example:

// LUT5: 5-input Look-Up Table

// Virtex-5

// Xilinx HDL Libraries Guide version 8.2i

(* LUTNM="logic_group1" *) LUT5 #(

 .INIT(32'ha49b44c1)

) LUT5_inst1 (

 .O(aout), // LUT output (1-bit)

 .I0(d[0]), // LUT input (1-bit)

 .I1(d[1]), // LUT input (1-bit)

 .I2(d[2]), // LUT input (1-bit)

 .I3(d[3]), // LUT input (1-bit)

 .I4(d[4]) // LUT input (1-bit)

);

// End of LUT5_inst1 instantiation

// LUT5: 5-input Look-Up Table

// Virtex-5

// Xilinx HDL Libraries Guide version 8.2i

(* LUTNM="logic_group1" *) LUT5 #(

 .INIT(32'h649d610a)

) LUT5_inst2 (

 .O(bout), // LUT output (1-bit)

 .I0(d[0]), // LUT input (1-bit)

 .I1(d[1]), // LUT input (1-bit)

 .I2(d[2]), // LUT input (1-bit)

 .I3(d[3]), // LUT input (1-bit)

 .I4(d[4]) // LUT input (1-bit)

);

// End of LUT5_inst2 instantiation

For a more detailed discussion of the basic Verilog syntax, see “Verilog” in Chapter 3.

UCF/NCF Syntax Example

Placed on the output, or bi-directional port:

INST "LUT5_instance_name" LUTNM="value";

Where value is any chosen name under which you want to group the two elements.

Example:

INST "LUT5_inst1" LUTNM="logic_group1";

INST "LUT5_inst2" LUTNM="logic_group1";
Constraints Guide www.xilinx.com Lookup Table Name (LUTNM) 193
10.1

http://www.xilinx.com

Xilinx Constraints
R

Map (MAP)

MAP Architecture Support
The MAP constraint applies to FPGA devices only.

MAP Applicable Elements
FMAP

MAP Description
MAP is an advanced mapping constraint. Place MAP on an FMAP to specify whether pin
swapping and the merging of other functions with the logic in the map are allowed. If
merging with other functions is allowed, other logic can also be placed within the CLB, if
space allows.

MAP Propagation Rules
Applies to the design element to which it is attached

MAP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Examples

The basic UCF syntax is:

INST “instance_name” MAP=[PUC | PUO | PLC | PLO];

where

the terms have the following meanings:

• PUC

The CLB pins are unlocked (U) and the CLB is closed (C).

• PUO

The CLB pins are unlocked (U) and the CLB is open (O).

• PLC

The CLB pins are locked (L) and the CLB is closed (C).

• PLO

The CLB pins are locked (L) and the CLB is open (O).

The default is PUO. Currently, only PUC and PUO are observed. PLC and PLO are
translated into PUC and PUO, respectively.

As used in these definitions, the following terms have the meanings indicated.

• Unlocked

The software can swap signals among the pins on the CLB.
Constraints Guide www.xilinx.com Map (MAP) 194
10.1

http://www.xilinx.com

Xilinx Constraints
R

• Locked

The software cannot swap signals among the pins on the CLB.

• Open

The software can add or remove logic from the CLB.

• Closed

The software cannot add or remove logic from the function specified by the MAP
symbol.

The following statement allows pin swapping, and ensures that no logic other than that
defined by the original map is mapped into the function generators.

INST “$1I3245/map_of_the_world” map=puc;
Constraints Guide www.xilinx.com Map (MAP) 195
10.1

http://www.xilinx.com

Xilinx Constraints
R

Maximum Delay (MAXDELAY)

MAXDELAY Architecture Support
The MAXDELAY constraint applies to FPGA devices only.

 MAXDELAY Applicable Elements
Nets

MAXDELAY Description
The MAXDELAY attribute defines the maximum allowable delay on a net.

MAXDELAY Propagation Rules
Applies to the net to which it is attached

 MAXDELAY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net

• Attribute Name: MAXDELAY

• Attribute Values: value units

where

♦ value is the numerical time delay

♦ units are micro, ms, ns, ps

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute maxdelay: string;

Specify the VHDL constraint as follows:

attribute maxdelay of signal_name: signal is “value [units]”;

where

• value is a positive integer

Valid units are ps, ns, micro, ms, GHz, MHz, and kHz. The default is ns.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Examples

Specify the Verilog constraint as follows:

(*MAXDELAY = “value [units]” *)
Constraints Guide www.xilinx.com Maximum Delay (MAXDELAY) 196
10.1

http://www.xilinx.com

Xilinx Constraints
R

where

• value is a positive integer

Valid units are ps, ns, micro, ms, GHz, MHz, and kHz. The default is ns.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Examples

NET “net_name” MAXDELAY=value units;

where

• value is the numerical time delay.

• units are micro, ns, ms, ps.

The following statement assigns a maximum delay of 1 micro to the net $SIG_4.

NET “$1I3245/$SIG_4” MAXDELAY=10 ns;

PCF Syntax Examples

item MAXDELAY = maxvalue [PRIORITY integer];

where

• item can be:

♦ ALLNETS

♦ NET name

♦ TIMEGRP name

♦ ALLPATHS

♦ PATH name

♦ path specification

• maxvalue can be:

♦ a numerical time value with units of micro, ms, ps, or ns

♦ a numerical frequency value with units of GHz, MHz, or KHz

♦ a TSidentifier

FPGA Editor Syntax Examples

To set MAXDELAY to all paths or nets, click Main Properties from the File menu and select
the Global Physical Constraints tab.

To set the constraint to a selected path or net, click Properties of Selected Items from the
Edit menu with a routed net selected and use the Physical Constraints tab.
Constraints Guide www.xilinx.com Maximum Delay (MAXDELAY) 197
10.1

http://www.xilinx.com

Xilinx Constraints
R

Maximum Product Terms (MAXPT)

MAXPT Architecture Support
The MAXPT constraint applies to CPLD devices only.

MAXPT Applicable Elements
Signals

MAXPT Description
MAXPT is an advanced ABEL constraint. It applies to CPLD devices only. MAXPT
specifies the maximum number of product terms the fitter is permitted to use when
collapsing logic into the node to which MAXPT is applied. MAXPT overrides the
Collapsing P-term Limit setting in Project Navigator for the attached node.

MAXPT Propagation Rules
Applies to the signal to which it is attached

MAXPT Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute maxpt: integer;

Specify the VHDL constraint as follows:

attribute maxpt of signal_name : signal is “integer”;

where

• integer is any positive integer

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* MAXPT = “integer” *)

where

• integer is any positive integer

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'maxpt=8 mysignal';

Valid values are any positive integers.
Constraints Guide www.xilinx.com Maximum Product Terms (MAXPT) 198
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF Syntax Example

Net “signal_name” maxpt=integer;
Constraints Guide www.xilinx.com Maximum Product Terms (MAXPT) 199
10.1

http://www.xilinx.com

Xilinx Constraints
R

Maximum Skew (MAXSKEW)

MAXSKEW Architecture Support
The MAXSKEW constraint applies to FPGA devices only.

MAXSKEW Applicable Elements
Nets

MAXSKEW Description
MAXSKEW is a timing constraint used to control the amount of skew on a net. Skew is
defined as the difference between the delays of all loads driven by the net. You can control
the maximum allowable skew on a net by attaching MAXSKEW directly to the net. It is
important to understand exactly what MAXSKEW defines. Consider the following
example.

In the preceding diagram, for ta(2), 2 ns is the maximum delay for the Register A clock. For
tb(4), 4 ns is the maximum delay for the Register B clock. MAXSKEW defines the maximum
of tb minus the maximum of ta, that is, 4-2=2.

In some cases, relative minimum delays are used on a net for setup and hold timing
analysis. When the MAXSKEW constraint is applied to network resources which use
relative minimum delays, the MAXSKEW constraint takes relative minimum delays into
account in the calculation of skew.

Overuse of this constraint, or too tight of a requirement (value), can cause long PAR
runtimes.

MAXSKEW Propagation Rules
Applies to the net to which it is attached

MAXSKEW Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net

Figure 50-1: MAXSKEW

X9540

BA

t (2)
a

t (4)
b

Data Delay (DD) = 2.5
Constraints Guide www.xilinx.com Maximum Skew (MAXSKEW) 200
10.1

http://www.xilinx.com

Xilinx Constraints
R

• Attribute Name: MAXSKEW

• Attribute Values: allowable_skew [units]

where

♦ allowable_skew is the timing requirement

♦ units are ms, micro, ns, or ps. The default is ns.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute maxskew: string;

Specify the VHDL constraint as follows:

attribute maxskew of signal_name : signal is “allowable_skew [units]”;

where

• allowable_skew is the timing requirement

• valid units are ms, micro, ns, or ps. The default is ns.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* MAXSKEW = “allowable_skew [units]” *)

where

• allowable_skew is the timing requirement

• valid units are ms, micro, ns, or ps. The default is ns.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

NET “net_name” MAXSKEW=allowable_skew [units];

where

• allowable_skew is the timing requirement

• units are ms, micro, ns, or ps. The default is ns.

The following statement specifies a maximum skew of 3 ns on net $SIG_6.

NET “$1I3245/$SIG_6” MAXSKEW=3 ns;

FPGA Editor Syntax Example

To set constraints in FPGA Editor, select Edit > Properties of Selected Items. With a routed
net selected, you can set MAXSKEW from the Physical Constraints tab.
Constraints Guide www.xilinx.com Maximum Skew (MAXSKEW) 201
10.1

http://www.xilinx.com

Xilinx Constraints
R

No Delay (NODELAY)

NODELAY Architecture Support
The NODELAY constraint applies to all FPGA devices except Virtex™-4 and Virtex-5.

For Virtex-4 and Virtex-5 devices, the supported constraint is IOBDELAY=NONE.
Although NODELAY can be used with FPGA devices other than Virtex-4 and Virtex-5
devices, IOBDELAY=NONE is preferable over NODELAY in supported FPGAs. For more
information, see “Input Output Block Delay (IOBDELAY).”

NODELAY Applicable Elements
Input register

You can also attach NODELAY to a net connected to a pad component in a UCF file.
NGDBuild transfers the constraint from the net to the pad instance in the NGD file so that
it can be processed by the mapper. Use the following UCF syntax:

NET “net_name” NODELAY;

NODELAY Description
NODELAY is an advanced mapping constraint. The default configuration of IOB flip-flops
in designs includes an input delay that results in no external hold time on the input data
path. This delay can be removed by placing NODELAY on input flip-flops or latches,
resulting in a smaller setup time but a positive hold time.

The input delay element is active in the default configuration for Spartan-II, Spartan-3,
Spartan-3A, Spartan-3E, Virtex, Virtex-II, Virtex-II Pro, and Virtex-II Pro X.

NODELAY can be attached to the I/O symbols and the special function access symbols
TDI, TMS, and TCK.

NODELAY Propagation Rules
NODELAY is illegal when attached to a net or signal except when the net or signal is
connected to a pad. In this case, NODELAY is treated as attached to the pad instance.

When attached to a design element, NODELAY is propagated to all applicable elements in
the hierarchy within the design element.

NODELAY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: NODELAY

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:
Constraints Guide www.xilinx.com No Delay (NODELAY) 202
10.1

http://www.xilinx.com

Xilinx Constraints
R

attribute nodelay: string;

Specify the VHDL constraint as follows:

attribute nodelay of {component_name|signal_name|label_name}:
{component|signal|label} is “{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* NODELAY = “{TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The following statement specifies that IOB register inreg67 not have an input delay.

INST “$1I87/inreg67” NODELAY;

The following statement specifies that there be no input delay to the pad that is attached to
net1.

NET “net1” NODELAY;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" nodelay=true;

 INST "instance_name" nodelay=true;

END;
Constraints Guide www.xilinx.com No Delay (NODELAY) 203
10.1

http://www.xilinx.com

Xilinx Constraints
R

No Reduce (NOREDUCE)

NOREDUCE Architecture Support
The NOREDUCE constraint applies to CPLD devices only.

NOREDUCE Applicable Elements
Any net

NOREDUCE Description
NOREDUCE is a fitter and synthesis constraint. It prevents minimization of redundant
logic terms that are typically included in a design to avoid logic hazards or race conditions.
NOREDUCE also identifies the output node of a combinatorial feedback loop to ensure
correct mapping. When constructing combinatorial feedback latches in a design, always
apply NOREDUCE to the latch’s output net and include redundant logic terms when
necessary to avoid race conditions.

NOREDUCE Propagation Rules
NOREDUCE is a net or signal constraint. Any attachment to a design element is illegal.

NOREDUCE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net

• Attribute Name: NOREDUCE

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute NOREDUCE: string;

Specify the VHDL constraint as follows:

attribute NOREDUCE of signal_name: signal is “{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* NOREDUCE = “{TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.
Constraints Guide www.xilinx.com No Reduce (NOREDUCE) 204
10.1

http://www.xilinx.com

Xilinx Constraints
R

ABEL Syntax Example

mysignal NODE istype 'retain’;

UCF and NCF Syntax Example

The following statement specifies that there be no Boolean logic reduction or logic collapse
from the net named $SIG_12 forward.

NET “$SIG_12” NOREDUCE;

XCF Syntax Example

BEGIN MODEL “entity_name”

NET “signal_name” noreduce={true|false};

END;
Constraints Guide www.xilinx.com No Reduce (NOREDUCE) 205
10.1

http://www.xilinx.com

Xilinx Constraints
R

Offset In (OFFSET IN)

OFFSET IN Architecture Support
The OFFSET IN constraint applies to all FPGA and CPLD devices.

OFFSET IN Applicable Elements
• Global

• Net-Specific

• Pad Time Group

OFFSET IN Description
The OFFSET IN constraint is used to specify the timing requirements of an input interface
to the FPGA. The constraint specifies the clock and data timing relationship at the external
pads of the FPGA. An OFFSET IN constraint specification checks the setup and hold
timing requirements of all synchronous elements associated with the constraint. The
following image shows the paths covered by the OFFSET IN constraint.

The OFFSET IN constraint is specified using a clock net name. The clock net associated
with the OFFSET IN constraint is the external clock pad. Because the constraint specifies
the clock and data relationship at the external pads of the FPGA, the OFFSET IN constraint
cannot be specified using an internal clock net. However, the OFFSET IN constraint
automatically accounts for any phase or delay adjustments on the clock path due to
components such as the DCM, PLL, or IDELAY when analyzing the setup and hold timing
requirements at the capturing synchronous element. In addition, the constraint propagates
through the clock network and automatically applies to all clocks derived from the original
external clock.

The OFFSET IN constraint is global in scope by default. In the global OFFSET IN
constraint, all synchronous elements that are clocked by the specified clock net, and
capture external data, are covered by the constraint. The scope of the synchronous
elements covered by the constraint can be restricted by specifying time groups on a subset
of input data pads, a subset of the capturing synchronous elements, or both.

OFFSET IN Syntax

Global Method:

The global method is the default OFFSET IN constraint. The global OFFSET IN constraint
applies to all synchronous elements that capture incoming data and are triggered by the
specified clock signal.

UCF Syntax:

OFFSET = IN “offset_time” [units] [VALID <datavalid_time> [UNITS]]
{BEFORE|AFTER} “clk_name” [{RISING | FALLING}];

PCF Syntax:

OFFSET = IN “offset_time” [units] [VALID <datavalid_time> [UNITS]]
{BEFORE|AFTER} COMP “clk_iob_name” [{RISING | FALLING}];
Constraints Guide www.xilinx.com Offset In (OFFSET IN) 206
10.1

http://www.xilinx.com

Xilinx Constraints
R

Where:

• “offset_time” [units] is the difference in time between the capturing clock edge and the
start of the data to be captured. The time can be specified with or without explicitly
declaring the units. If no units are specified, the default value is nanoseconds. The
valid values for this parameter are: ps, ns, micro, and ms.

• [VALID <datavalid_time> [UNITS]] is the valid duration of the data to be captured.
This field is required for an accurate hold time verification of the input interface. This
value can be specified with or without explicitly declaring the units. If no units are
specified, the default value is nanoseconds. The valid values for this field are: ps, ns,
micro, and ms.

• BEFORE|AFTER defines the timing relationship of the start of data to the clock edge.
The best method of defining the clock and data relationship is to use the BEFORE
option. BEFORE describes the time the data begins to be valid relative to the
capturing clock edge. Positive values of BEFORE indicate the data begins prior to the
capturing clock edge. Negative values of BEFORE indicate the data begins following
the capturing clock edge.

• “clk_name” defines the fully hierarchical name of the input clock pad net. This net
name must ne

• [{RISING | FALLING}] are the optional keywords used to define the capturing clock
edge in which the clock and data relationship is specified against. In addition, these
use of these keywords automatically partition rising and falling edge registers in dual
data rate (DDR) interfaces into separate groups for analysis.

Input Group Method:

When a group of inputs captured by the same clock have a shared timing requirement, the
inputs can be grouped together to create a single timing constraint. The inputs can be
grouped together by input signal names using pad groups, or by the synchronous
elements using register groups. By grouping separate signals together into a single time
group, the memory and runtime of the implementation tools is reduced. In addition, the
timing report will contain bus-based skew and clock centering information.

UCF Syntax:

[TIMEGRP “pad_groupname”] OFFSET = IN “offset_time” [units]

[VALID <datavalid_time> [UNITS]] {BEFORE|AFTER} “clk_name”

[TIMEGRP “reg_groupname”] [{RISING | FALLING}];

PCF Syntax:

[TIMEGRP “inputpad_grpname”] OFFSET = IN “offset_time” [units]

[VALID <datavalid_time> [UNITS]] {BEFORE|AFTER} COMP “clk_iob_name”
[TIMEGRP “reg_groupname”] [{RISING | FALLING}];
Constraints Guide www.xilinx.com Offset In (OFFSET IN) 207
10.1

http://www.xilinx.com

Xilinx Constraints
R

Where:

• [TIMEGRP “pad_groupname”] is the optional input pad time group. This time group
can be used to limit the scope of the OFFSET IN constraint to only the synchronous
elements fed by the input pad nets contained in the timegroup.

• [TIMEGRP “reg_groupname”] is the optional synchronous element time group. This
time group can be used to limit the scope of the OFFSET IN constraint to only the
synchronous elements which capture input data with the specified clock and are
contained in the time group.

Net Specific Method:

OFFSET IN can also be used to specify an input constraint for a specific data net in a
schematic, a specific input pad net in the UCF, or a specific input component in the PCF
file.

Schematic Syntax When Attached to a Net:

OFFSET = IN “offset_time” [units]

[VALID <datavalid_time> [UNITS]] {BEFORE|AFTER} “clk_name”

[TIMEGRP “reg_groupname”] [{RISING | FALLING}];

UCF Syntax:

NET “pad_net_name” OFFSET = IN “offset_time” [units]

[VALID <datavalid_time> [UNITS]] {BEFORE|AFTER} “clk_name”

[TIMEGRP “reg_groupname”] [{RISING | FALLING}];

PCF Syntax:

COMP “pad_net_name” OFFSET = IN “offset_time” [units]

[VALID <datavalid_time> [UNITS]] {BEFORE|AFTER} COMP “clk_iob_name”
[TIMEGRP “reg_groupname”] [{RISING | FALLING}];

where:

• “pad_net_name” is the name of the input data net attached to the pad.

• For the definition of the other variables and keywords, see “Global Method” above.

• The PCF specification uses IO Blocks (COMPs) instead of NETs.

• If the IOB COMP name is omitted in the PCF, or the NET name is omitted in the UCF,
the OFFSET IN specification is assumed to be global.
Constraints Guide www.xilinx.com Offset In (OFFSET IN) 208
10.1

http://www.xilinx.com

Xilinx Constraints
R

OFFSET IN Syntax Examples
The following are syntax examples using the constraint with particular tools or methods. If
a tool or method is not listed, the constraint may not be used with it. While UCF examples
are provided, the recommended method of specifying the OFFSET IN constraint is using
the Constraint Editor software tool.

UCF Source Synchronous DDR Edge Aligned Example:

The Source Synchronous Dual Data Rate (DDR) Edge aligned case consists of an interface
where the clock is sent from the transmitting device edge aligned with the data to the
FPGA. In a dual data rate interface, data is captured with both the rising and falling clock
edges. In the DDR case, separate OFFSET IN constraints must be defined for the rising and
falling clock edge registers capturing the data. The use of the RISING and FALLING
keywords with the OFFSET IN constraint simplifies this task.

Example Waveform:

In this example a dual data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The rising and falling data is valid for 2 ns and is centered in the high and low
portion of the clock waveform. This results in a 250 ps margin before and after data valid
window.

Rising Edge Constraints:

The rising edge OFFSET IN constraint defines the time that the data becomes valid prior to
rising clock edge used to capture the data. In this example, the data becomes valid 250 ps
after the rising clock edge. This results in an OFFSET IN BEFORE value of -250 ps with the
value negative because it begins after the clock edge. Once the data begins, it remains valid
for 2 ns. This results in a VALID value of 2 ns. The RISING keyword is used with this
constraint to indicate that the constraint applies to only the rising edge synchronous
elements, and that the OFFSET IN BEFORE value is specified to the rising clock edge.

Falling Edge Constraints:

The falling edge OFFSET IN constraint defines the time that the data becomes valid prior
to falling clock edge used to capture the data. In this example, the data becomes valid 250
ps after the falling clock edge. This results in an OFFSET IN BEFORE value of -250 ps with
the value negative because it begins after the clock edge. Once the data begins, it remains
valid for 2 ns. This results in a VALID value of 2 ns. The FALLING keyword is used with
this constraint to indicate that the constraint applies to only the falling edge synchronous
elements, and that the OFFSET IN BEFORE value is specified to the falling clock edge.

UCF Syntax Example:

The complete UCF syntax of the clock PERIOD and OFFSET IN constraint for the example
is shown below.

NET “clock” TNM<_NET = clock;

TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = IN -250 ps VALID 2 ns BEFORE clock RISING;

OFFSET = IN -250 ps VALID 2 ns BEFORE clock FALLING;
Constraints Guide www.xilinx.com Offset In (OFFSET IN) 209
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF Source Synchronous DDR Center Aligned Example:

The Source Synchronous Dual Data Rate (DDR) Center aligned case consists of an interface
where the clock is sent from the transmitting device aligned with the center of the data. In
a dual data rate interface, data is captured with both the rising and falling clock edges. In
the DDR case, separate OFFSET IN constraints must be defined for the rising and falling
clock edge registers capturing the data. The use of the RISING and FALLING keywords
with the OFFSET IN constraint simplifies this task.

Example Waveform:

In this example a dual data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The rising and falling data is valid for 2 ns and is centered over the high and
low clock edges. This results in a 250 ps margin before and after data valid window.

Rising Edge Constraints:

The rising edge OFFSET IN constraint defines the time that the data becomes valid prior to
rising clock edge used to capture the data. In this example, the data becomes valid 1 ns
before the rising clock edge. This results in an OFFSET IN BEFORE value of 1 ns with the
value positive because it begins before the clock edge. Once the data begins, it remains
valid for 2 ns. This results in a VALID value of 2 ns. The RISING keyword is used with this
constraint to indicate that the constraint applies to only the rising edge synchronous
elements, and that the OFFSET IN BEFORE value is specified to the rising clock edge.

Falling Edge Constraints:

The falling edge OFFSET IN constraint defines the time that the data becomes valid prior
to falling clock edge used to capture the data. In this example, the data becomes valid 1 ns
before the falling clock edge. This results in an OFFSET IN BEFORE value of 1 ns with the
value positive because it begins before the clock edge. Once the data begins, it remains
valid for 2 ns. This results in a VALID value of 2 ns. The FALLING keyword is used with
this constraint to indicate that the constraint applies to only the falling edge synchronous
elements, and that the OFFSET IN BEFORE value is specified to the falling clock edge.

UCF Syntax Example:

The complete UCF syntax of the clock PERIOD and OFFSET IN constraint for the example
is shown below.

NET “clock” TNM<_NET = clock;

TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = IN 1 ns VALID 2 ns BEFORE clock RISING;

OFFSET = IN 1 ns VALID 2 ns BEFORE clock FALLING;

UCF System Synchronous SDR Example:

The System Synchronous Single Data Rate (SDR) case consists of an interface where the
clock is sent from the transmitting device with one clock edge and captured by the FPGA
with the next clock edge. In the single data rate interface data is sent once per clock cycle
and requires only one OFFSET IN constraint.
Constraints Guide www.xilinx.com Offset In (OFFSET IN) 210
10.1

http://www.xilinx.com

Xilinx Constraints
R

Example Waveform:

In this example a single data rate interface is shown with a clock period of 5 ns and 50/50
duty cycle. The data is valid for 4 ns and begins 500 ps after the transmitting clock edge.

Input Constraints:

The OFFSET IN constraint defines the time that the data becomes valid prior to rising clock
edge used to capture the data. In this example, the data becomes valid 500 ps after the
transmitting clock edge, or 4.5 ns before the clock edge used to capture the data. This
results in an OFFSET IN BEFORE value of 4.5 ns with the value positive because it begins
before the clock edge. Once the data begins, it remains valid for 4 ns. This results in a
VALID value of 4 ns.

UCF Syntax Example:

The complete UCF syntax of the clock PERIOD and OFFSET IN constraint for the example
is shown below.

NET “clock” TNM<_NET = clock;

TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = IN 4.5 ns VALID 4 ns BEFORE clock;

Schematic Syntax Example

• Attach to a specific net

• Attribute Name: OFFSET

• Attribute Values: IN|OUT offset_time BEFORE|AFTER clk_pad_netname

VHDL Syntax Example:

Not applicable.

Verilog Syntax Example:

Not applicable.

XCF Syntax Example:

The XCF syntax is the same as the UCF syntax. However, the XCF syntax only supports
OFFSET IN BEFORE method.
Constraints Guide www.xilinx.com Offset In (OFFSET IN) 211
10.1

http://www.xilinx.com

Xilinx Constraints
R

Offset Out (OFFSET OUT)

OFFSET OUT Architecture Support
The OFFSET OUT constraint applies to all FPGA and CPLD devices.

OFFSET OUT Applicable Elements
• Global

• Nets

• Time groups

OFFSET OUT Description
The OFFSET OUT constraint is used to specify the timing requirements of an output
interface from the FPGA. The constraint specifies the time from the clock edge at the input
pin of the FPGA until data becomes valid at the outp pin of the FPGA.

The OFFSET OUT constraint is specified using a clock net name. The clock net associated
with the OFFSET OUT constraint is the external clock pad. Because the constraint specifies
the time from the clock edge at the input pin of the FPGA to the data at the output pin of
the FPGA, the OFFSET OUT constraint cannot be specified using an internal clock net.
However, the OFFSET OUT constraint automatically accounts for any phase or delay
adjustments on the clock path due to components such as the DCM, PLL, or IDELAY when
analyzing the output timing requirements. In addition, the constraint propagates through
the clock network and automatically applies to all clocks derived from the original external
clock.

The OFFSET OUT constraint is global in scope by default. In the global OFFSET OUT
constraint, all synchronous elements that are clocked by the specified clock net, and
transmit external data, are covered by the constraint. The scope of the synchronous
elements covered by the constraint can be restricted by specifying time groups on a subset
of output data pads, a subset of the transmitting synchronous elements, or both.

OFFSET OUT Syntax
Global Method:

The global method is the default OFFSET OUT constraint. The global OFFSET OUT
constraint applies to all synchronous elements that transmit outgoing data and are
triggered by the specified clock signal.

UCF Syntax:

OFFSET = OUT “offset_time” [units] {BEFORE|AFTER} “clk_name”
[REFERENCE_PIN “ref_pin”] [{RISING | FALLING}];

PCF Syntax:

OFFSET = OUT “offset_time” [units] {BEFORE|AFTER} COMP “clk_iob_name”
[REFERENCE_PIN “ref_pin”] [{RISING | FALLING}];
Constraints Guide www.xilinx.com Offset Out (OFFSET OUT) 212
10.1

http://www.xilinx.com

Xilinx Constraints
R

Where:

• [“offset_time” [units]] is and optional parameter that defines the time from the clock
edge at the input pin of the FPGA until data first becomes valid at the data output pin
of the FPGA. If an “offset_time” value is specified, a timing constraint will be applied
to these paths, and errors against that constraint will be reported. If the “offset_time”
is omitted, a timing constraint will not be generated, however, the output timing and
bus skew of the interface will reported. This report only option is best used in source
synchronous interfaces where the clock to output time is of a lesser concern that the
skew of the output bus.

• BEFORE|AFTER defines the timing relationship from the clock edge to the start of
data. The best method of defining the clock and data requirement is to use the AFTER
option. AFTER describes the time the data begins to be valid after the clock edge at
the pin of the FPGA.

• “clk_name” defines the fully hierarchical name of the input clock pad net.

• [REFERENCE_PIN “ref_pin”] is an optional keyword that is most commonly used in
source synchronous output interfaces where the clock is regenerated and sent with the
data. The REFERENCE_PIN keyword allows a bus skew analysis of the output
signals relative the “ref_pin” signal. If the REFERENCE_PIN keyword is not
specified, the bus skew report will be referenced to the signal with the minimum clock
to output delay.

• [{RISING | FALLING}] are the optional keywords used to define the transmitting
clock edge of the synchronous elements sending the data. In addition, these use of
these keywords automatically partitions rising and falling edge registers in dual data
rate (DDR) interfaces into separate groups for analysis.

Output Group Method:

When a group of output transmitted by the same clock have a shared timing requirement,
the outputs can be grouped together to create a single timing constraint. The outputs can
be grouped together by output signal names using pad groups, or by synchronous
elements using register groups. By grouping separate signals together into a single time
group, the memory and runtime of the implementation tools is reduced. In addition, the
timing report will contain bus-based skew and clock centering information.

UCF Syntax:

[TIMEGRP “pad_groupname”] OFFSET = OUT “offset_time” [units]

{BEFORE|AFTER} “clk_name” [TIMEGRP “reg_groupname”] [REFERENCE_PIN
“ref_pin”] [{RISING | FALLING}];

PCF Syntax:

[TIMEGRP “pad_groupname”] OFFSET = OUT “offset_time” [units]

{BEFORE|AFTER} COMP “clk_iob_name” [TIMEGRP “reg_groupname”]
[REFERENCE_PIN “ref_pin”] [{RISING | FALLING}];

where:

• The group specific method is identical to the general method with the additions noted
below. For the definition of the other variables and keywords, see “Global Method”
above.
Constraints Guide www.xilinx.com Offset Out (OFFSET OUT) 213
10.1

http://www.xilinx.com

Xilinx Constraints
R

• [TIMEGRP “pad_groupname”] is the optional output pad time group. This time group
can be used to limit the scope of the OFFSET OUT constraint to only the synchronous
elements feeding the output pad nets contained in the time group.

• [TIMEGRP “reg_groupname”] is the optional synchronous element time group. This
time group can be used to limit the scope of the OFFSET OUT constraint to only the
synchronous elements which transmit output data with the specified clock and are
contained in the time group.

Net Specific Method:

OFFSET OUT can also be used to specify an output constraint for a specific data net in a
schematic, a specific output pad net in the UCF, or a specific output component in the PCF
file.

Schematic Syntax When Attached to a Net:

OFFSET = OUT “offset_time” [units]

{BEFORE|AFTER} “clk_name” [TIMEGRP “reg_groupname”] [REFERENCE_PIN
“ref_pin”] [{RISING | FALLING}];

UCF Syntax:

NET “pad_net_name” OFFSET = OUT “offset_time” [units]

{BEFORE|AFTER} “clk_name” [TIMEGRP “reg_groupname”] [REFERENCE_PIN
“ref_pin”] [{RISING | FALLING}];

PCF Syntax:

COMP “pad_net_name” OFFSET = OUT “offset_time” [units]

{BEFORE|AFTER} “clk_name” [TIMEGRP “reg_groupname”] [REFERENCE_PIN
“ref_pin”] [{RISING | FALLING}];

where:

• The group specific method is identical to the general method with the additions noted
below. For the definition of the other variables and keywords, see “Global Method”
above.

• “pad_net_name” is the name of the output data net attached to the pad.

• The PCF specification uses IO Blocks (COMPs) instead of NETs.

• If the IOB COMP name is omitted in the PCF, or the NET name is omitted in the UCF,
the OFFSET OUT specification is assumed to be global.

OFFSET OUT Syntax Examples
The following are syntax examples covering the common use cases of the constraint. While
UCF examples are provided, the recommended method of specifying the OFFSET OUT
constraint is using the Constraint Editor software tool.

UCF Source Synchronous DDR Example:

The Source Synchronous Dual Data Rate (DDR) case consists of an interface where the
clock is regenerated inside the FPGA and sent with the data to the capturing device. In a
DDR interface, data is transmitted with both the rising and falling clock edges. In the DDR
case, separate OFFSET OUT constraints must be defined for the rising and falling clock
edge registers transmitting the data. The use of the RISING and FALLING keywords with
Constraints Guide www.xilinx.com Offset Out (OFFSET OUT) 214
10.1

http://www.xilinx.com

Xilinx Constraints
R

the OFFSET OUT constraint simplifies this task. Also, for a bus skew analysis relative to
the regenerated clock, the REFERENCE_PIN keyword is used.

Interface Information:

In this example a clock signal called “clock” enters the FPGA. This clock signal is used to
trigger the data output synchronous elements. In addition, a regenerated clock called
“TxClock” is created and sent along with the data. Because this is a source synchronous
interface, the absolute clock to output time is not required, and the OFFSET OUT AFTER
value is omitted to generate a report only constraint.

UCF Syntax Example:

The complete UCF syntax of the clock PERIOD and OFFSET OUT constraint for the
example is shown below.

NET “clock” TNM_NET = clock;

TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = OUT AFTER clock REFERENCE_PIN “TxClock” RISING;

OFFSET = OUT AFTER clock REFERENCE_PIN “TxClock” FALLING;

UCF System Synchronous SDR Example:

The System Synchronous Single Data Rate (SDR) case consists of an interface where the
input clock is used to transmit the data to the receiving device. In the SDR interface, data is
transmitted once per clock cycle. In this case a single OFFSET OUT requirement is needed
to constrain the interface.

Interface Information:

In this example a clock signal called “clock” enters the FPGA. This clock signal is used to
trigger the data output synchronous elements. Because this is a system synchronous
interface, the absolute clock to output time is required to constraint the interface. In this
case, a regenerated clock is not present, and the REFERENCE_PIN keyword is omitted to
request the default skew reporting.

UCF Syntax Example:

The complete UCF syntax of the clock PERIOD and OFFSET OUT constraint for the
example is shown below.

NET “clock” TNM_NET = clock;

TIMESPEC TS_CLK = PERIOD CLK 5.0 ns HIGH 50%;

OFFSET = OUT 5 ns AFTER “clock”;

Schematic Syntax Example

• Attach to a specific net

• Attribute Name: OFFSET

• Attribute Values: OUT offset_time BEFORE|AFTER clk_pad_netname
Constraints Guide www.xilinx.com Offset Out (OFFSET OUT) 215
10.1

http://www.xilinx.com

Xilinx Constraints
R

VHDL Syntax Example:

Not applicable.

Verilog Syntax Example:

Not applicable.

XCF Syntax Example:

The XCF syntax is the same as the UCF syntax. However, the XCF syntax only supports
OFFSET OUT AFTER method.
Constraints Guide www.xilinx.com Offset Out (OFFSET OUT) 216
10.1

http://www.xilinx.com

Xilinx Constraints
R

Open Drain (OPEN_DRAIN)

OPEN_DRAIN Architecture Support
The OPEN_DRAIN constraint applies to Coolrunner™-II devices only.

OPEN_DRAIN Applicable Elements
• Output pads

• Pad nets

OPEN_DRAIN Description
CoolRunner-II outputs can be configured to drive the primary macrocell output function
as an open-drain output signal on the pin. The OPEN_DRAIN constraint applies to non 3-
state (always active) outputs in the design. The output structure is configured as open-
drain so that a one state on the output signal in the design produces a high-Z on the device
pin instead of a driven High voltage.

The high-Z behavior associated with the OPEN_DRAIN constraint is not exhibited during
functional simulation, but is represented accurately during post-fit timing simulation.

The logically-equivalent alternative to using the OPEN_DRAIN constraint is to take the
original output-pad signal in the design and use it as a 3-state disable for a constant-zero
output data value. The CPLD Fitter automatically optimizes all 3-state outputs with
constant-zero data value in the design to take advantage of the open-drain capability of the
device.

OPEN_DRAIN Propagation Rules
The constraint is a net or signal constraint. Any attachment to a macro, entity, or module is
illegal.

OPEN_DRAIN Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an output pad net

• Attribute Name: OPEN_DRAIN

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute OPEN_DRAIN: string;

Specify the VHDL constraint as follows:

attribute OPEN_DRAIN of signal_name : signal is “{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.
Constraints Guide www.xilinx.com Open Drain (OPEN_DRAIN) 217
10.1

http://www.xilinx.com

Xilinx Constraints
R

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* OPEN_DRAIN = “{TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'OPEN_DRAIN mysignal';

UCF and NCF Syntax Example

NET “mysignal” OPEN_DRAIN;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" OPEN_DRAIN=true;

END;
Constraints Guide www.xilinx.com Open Drain (OPEN_DRAIN) 218
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com Optimizer Effort (OPT_EFFORT) 219
10.1

Xilinx Constraints
R

Optimizer Effort (OPT_EFFORT)

OPT_EFFORT Architecture Support
The OPT_EFFORT constraint applies to FPGA devices only.

OPT_EFFORT Applicable Elements
Any macro or hierarchy level

OPT_EFFORT Description
OPT_EFFORT is a basic placement and routing constraint. It defines an effort level used by
the optimizer.

OPT_EFFORT Propagation Rules
OPT_EFFORT is a macro, entity, module constraint. Any attachment to a net or signal is
illegal.

OPT_EFFORT Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a macro

• Attribute Name: OPT_EFFORT

• Attribute Values: Default (Low), Lowest, Low, Normal, High, Highest

UCF and NCF Syntax Example

The following statement attaches a High effort of optimization to all of the logic contained
within the module defined by instance $1I678/adder.

INST “$1I678/adder” OPT_EFFORT=HIGH;

Project Navigator Syntax Example

Define globally with the Place and Route Effort Level (Overall) option in the Place and
Route Properties tab of the Process Properties dialog box in the Project Navigator. The
default is Low.

With a design selected in the Sources window, right-click Implement Design in the
Processes window to access the appropriate Process Properties dialog box.

http://www.xilinx.com

Xilinx Constraints
R

Optimize (OPTIMIZE)

OPTIMIZE Architecture Support
The OPTIMIZE constraint applies to FPGA devices only.

OPTIMIZE Applicable Elements
Any macro, entity, module or hierarchy level

OPTIMIZE Description
OPTIMIZE is a basic mapping constraint. It defines whether optimization is performed on
the flagged hierarchical tree. OPTIMIZE has no effect on any symbol that contains no
combinatorial logic, such as an input or output buffer.

OPTIMIZE Propagation Rules
Applies to the macro, entity, or module to which it is attached

OPTIMIZE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a design element

• Attribute Name: OPTIMIZE

• Attribute Values: AREA, SPEED, BALANCE, OFF

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute optimize string;

Specify the VHDL constraint as follows:

attribute optimize of {entity_name:entity} is
“{AREA|SPEED|BALANCE|OFF}”

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify OPTIMIZE as follows:

 (* OPTIMIZE = “{AREA|SPEED|BALANCE|OFF}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The following statement specifies that no optimization be performed on an instantiation of
the macro CTR_MACRO.
Constraints Guide www.xilinx.com Optimize (OPTIMIZE) 220
10.1

http://www.xilinx.com

Xilinx Constraints
R

INST “/$1I678/CTR_MACRO” OPTIMIZE=OFF;

Project Navigator Syntax Example

Define globally with the Optimization Strategy (Cover Mode) option in the Map Properties
tab of the Process Properties dialog box in the Project Navigator. The default is Area.

With a design selected in the Sources window, right-click Implement Design in the
Processes window to access the appropriate Process Properties dialog box.
Constraints Guide www.xilinx.com Optimize (OPTIMIZE) 221
10.1

http://www.xilinx.com

Xilinx Constraints
R

Period (PERIOD)

PERIOD Architecture Support
The PERIOD constraint applies to FPGA devices only.

PERIOD Applicable Elements
Nets that feed forward to drive flip-flop clock pins

PERIOD Description
PERIOD is a basic timing constraint and synthesis constraint. A clock period specification
checks timing between all synchronous elements within the clock domain as defined in the
destination element group. The group may contain paths that pass between clock domains
if the clocks are defined as a function of one or the other.

The period specification is attached to the clock net. The definition of a clock period is
unlike a FROM-TO style specification because the timing analysis tools automatically take
into account any inversions of the clock net at register clock pins, lock phase, and includes
all synchronous item types in the analysis. It also checks for hold violations.

A PERIOD constraint on the clock net in the following figure would generate a check for
delays on all paths that terminate at a pin that has a setup or hold timing constraint relative
to the clock net. This could include the data paths CLB1.Q to CLB2.D, as well as the path
EN to CLB2.EC (if the enable were synchronous with respect to the clock).

The timing tools do not check pad-to-register paths relative to setup requirements. For
example, in the preceding figure, the path from D1 to Pin D of CLB1 is not included in the
PERIOD constraint. The same is true for CLOCK_TO_OUT.

Figure 58-1: Paths for PERIOD Constraint

Interconnect
and Logic

Interconnect
and Logic

D

CLB1

R
Q D

CLB2

EC

Q

D0

D1

OUT0

OUT1

CLK

EN
X8533

PERIOD=100:HIGH:50
Constraints Guide www.xilinx.com Period (PERIOD) 222
10.1

http://www.xilinx.com

Xilinx Constraints
R

Special rules apply when using TNM and TNM_NET with the PERIOD constraint for
DLLs, DCMs and PLLs. These rules are explained in “PERIOD Specifications on
CLKDLLs, DCMs and PLLs.”

Preferred Method

The preferred method for defining a clock period allows more complex derivative
relationships to be defined as well as a simple clock period. The following constraint is
defined using the TIMESPEC keyword in conjunction with a TNM constraint attached to
the relevant clock net.

UCF Syntax Example

TIMESPEC “TSidentifier”=PERIOD “TNM_reference” period {HIGH | LOW}
[high_or_low_time] INPUT_JITTER value;

where

• identifier is a reference identifier that has a unique name

• TNM_reference identifies the group of elements to which the period constraint applies.
This is typically the name of a TNM_NET that was attached to a clock net, but it can
be any TNM group or user group (TIMEGRP) that contains only synchronous
elements.

The following rules apply:

• The variable name period is the required clock period.

• The default units for period are nanoseconds, but the number can be followed by ps,
ns, micro, or ms. The period can also be specified as a frequency value, using units of
MHz, GHz, or kHZ.

• Units may be entered with or without a leading space.

• Units are case-insensitive.

• The HIGH|LOW keyword indicates whether the first pulse in the period is high or
low, and the optional high_or_low_time is the polarity of the first pulse. This defines
the initial clock edge and is used in the OFFSET constraint. HIGH is the default logic
level if the logic level is not specified.

• If an actual time is specified, it must be less than the period.

• If no high_or_low_time is specified the default duty cycle is 50%.

• The default units for high_or_low_time is ns, but the number can be followed by % or
by ps, ns, micro, or ms to specify an actual time measurement.

• INPUT_JITTER is the random, peak-to-peak jitter on an input clock. The default units
are picoseconds.

Examples

Clock net sys_clk has the constraint tnm=master_clk attached to it and the following
constraint is attached to TIMESPEC.

UCF Syntax Examples

TIMESPEC TS_master = PERIOD “master_clk” 50 HIGH 30 INPUT_JITTER 50;

This period constraint applies to the net master_clk, and defines a clock period of 50
nanoseconds, with an initial 30 nanosecond high time, and INPUT_JITTER at 50 ps.

TIMESPEC TS_clkinA = PERIOD “clkinA” 21 ns LOW 50% INPUT_JITTER 500 ps;
Constraints Guide www.xilinx.com Period (PERIOD) 223
10.1

http://www.xilinx.com

Xilinx Constraints
R

TIMESPEC TS_clkinB = PERIOD “clkinB” 21 ns HIGH 50% INPUT_JITTER 500 ps;

Another Method

Another method of defining a clock period is to attach the following constraint directly to
a net in the path that drives the register clock pins.

Schematic Syntax Example

PERIOD = period {HIGH|LOW} [high_or_low_time] INPUT_JITTER value;

UCF Syntax Example

NET “net_name” PERIOD = period {HIGH|LOW} [high_or_low_time]
INPUT_JITTER value;

The following rules apply:

• period is the required clock period. The default units are nanoseconds, but the timing
number can be followed by ps, ns, micro, or ms. The period can also be specified as a
frequency value, using units of MHz, GHz, or kHZ.

• Units may be entered with or without a leading space.

• Units are case-insensitive.

• The HIGH|LOW keyword indicates whether the first pulse in the period is high or
low, and the optional high_or_low_time is the duty cycle of the first pulse. HIGH is the
default logic level if the logic level is not specified.

• If an actual time is specified, it must be less than the period.

• If no high or low time is specified the default duty cycle is 50%.

• The default unit for high_or_low_time is ns, but the number can be followed by % or by
ps, ns, micro or ms to specify an actual time measurement.

The PERIOD constraint is forward traced in exactly the same way a TNM would be and
attaches itself to all of the synchronous elements that the forward tracing reaches. If a more
complex form of tracing behavior is required (for example, where gated clocks are used in
the design), you must place the PERIOD on a particular net or use the preferred method
described in the next section.

Specifying Derived Clocks

The preferred method of defining a clock period uses an identifier, allowing another clock
period specification to reference it. To define the relationship in the case of a derived clock,
use the following syntax:

UCF Syntax Example

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" "TSidentifier" [* or /]
factor PHASE [+ |-] phase_value [units];

where

• identifier is a reference identifier that has a unique name

• factor is a floating point number

Note: You can omit the [* or /] factor if the specification being defined has the same value as the
one being referenced (that is, they differ only in phase); this is the same as using "* 1".

• phase_value is a floating point number

• units are ps, ms, micro, or ns. The default is ns.
Constraints Guide www.xilinx.com Period (PERIOD) 224
10.1

http://www.xilinx.com

Xilinx Constraints
R

The following rules apply:

• If an actual time is specified it must be less than the period.

• If no high_or_low_time is specified, the default duty cycle is 50%.

• The default units for high_or_low_time is ns, but the number can be followed by % or
by ps, ns, micro, or ms to specify an actual time measurement.

Examples of a Primary Clock with Derived Clocks

Period for primary clock:

TIMESPEC “TS01” = PERIOD "clk0" 10.0 ns;

Period for clock phase-shifted forward by 180 degrees:

TIMESPEC “TS02” = PERIOD "clk180" TS01 PHASE + 5.0 ns;

Period for clock phase-shifted backward by 90 degrees:

TIMESPEC “TS03” = PERIOD "clk90" TS01 PHASE - 2.5 ns;

Period for clock doubled and phase-shifted forward by 180 degrees (which is 90 degrees
relative to TS01):

TIMESPEC “TS04” = PERIOD "clk180" TS01 / 2 PHASE + 2.5 nS;

PERIOD Specifications on CLKDLLs, DCMs and PLLs

When a TNM or TNM_NET property traces into an input pin on a DLL, DCM or PLL, it is
handled as described in the following paragraphs.

The checking and transformations described are performed by the logical TimeSpec
processing code, which is run during NGDBuild, or the translate process. (The checking
timing specifications status message indicates that the logical TimeSpec processing is being
run.) The modifications are saved in the built NGD, used by the Mapper and the Map
phase passed through the PCF file to the place and route (PAR) phase and TRACE.

However, note that the data saved in the built NGD is distinct from the original TimeSpec
user-applied properties, which are left unchanged by this process. Therefore, the
Constraints Editor does not see these new groups or specifications, but sees (and possibly
modifies) the original user-applied ones.

Conditions for Transformation

When a TNM_NET property is traced into the CLKIN pin of a DLL, DCM or PLL, the TNM
group and its usage are examined. The TNM is pushed through the CLKDLL, DCM or PLL
(as described below) only if the following conditions are met:

• The TNM group is used in exactly one PERIOD specification.

• The TNM group is not used in any FROM-TO or OFFSET specifications.

• The TNM group is not referenced in any user group definition.

If any of the above conditions are not met, the TNM is not be pushed through the
CLKDLL/DCM/PLL, and a warning message is issued. This does not prevent the TNM
from tracing into other elements in the standard fashion, but if it traces nowhere else, and
is used in a specification, an error results.

Definition of New PERIOD Specifications

If the CLK0 output on the CLKDLL, DCM or PLL is the only one being used (and neither
CLKIN_DIVIDE_BY_2 nor CLKOUT_PHASE_SHIFT=FIXED are used), the original
Constraints Guide www.xilinx.com Period (PERIOD) 225
10.1

http://www.xilinx.com

Xilinx Constraints
R

PERIOD specification is simply transferred to that clock output.

Otherwise, for each clock output pin used on the CLKDLL, DCM or PLL, a new TNM
group is created on the connected net, and a new PERIOD specification is created for that
group. The following table shows how the new PERIOD specifications is defined,
assuming an original PERIOD specification named TS_CLKIN.

Table 58-1: New PERIOD Specifications

Output Pin
New PERIOD Specification

Period Value Phase Shift Duty Cycle

CLK0

TS_CLKIN * 1

none

Copied from TS_CLKIN if
DUTY_CYCLE_
CORRECTION is FALSE.
Otherwise, 50%.

CLK90 PHASE +

(clk0_period * 1/4)

CLK180 PHASE +

(clk0_period * 1/2)

CLK270 PHASE +

(clk0_period * 3/4)

CLK2X

TS_CLKIN / 2

none

50%CLK2X180 PHASE +

(clk2X_period * 1/2)

CLKDV TS_CLKIN * clkdv_divide

where clkdv_divide is the value of
the CLKDV_DIVIDE property
(default 2.0)

none

50% except for non-integer
divides in high-frequency mode
(CLKDLLHF,

or DCM with
DLL_FREQUENCY_
MODE=HIGH):

CLKDV_DIVIDE

1.5 33.33% HIGH

2.5 40.00% HIGH

3.5 42.86% HIGH

4.5 44.44% HIGH

5.5 45.45% HIGH

6.5 46.15% HIGH

7.5 46.67% HIGH

CLKFX

TS_CLKIN / clkfx_factor

where clkfx_factor is the value of the

CLKFX_MULTIPLY
property (default 4.0)

divided by the value of the
CLKFX_DIVIDE

property (default 1.0).

none

CLKFX180

PHASE +

(clkfx_period * 1/2)

50%
Constraints Guide www.xilinx.com Period (PERIOD) 226
10.1

http://www.xilinx.com

Xilinx Constraints
R

The Period Value shown in this table assumes that the original specification, TS_CLKIN, is
expressed as a time. If TS_CLKIN is expressed as a frequency, the multiply or divide
operation is reversed.

If the DCM attribute FIXED_PHASE_SHIFT or VARIABLE_PHASE_SHIFT is used, the
amount of phase specified is also included in the PHASE value.

PERIOD Propagation Rules
Applies to the signal to which it is attached

PERIOD Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it. The following examples
are for the “simple method.”

Schematic Syntax Example

• Attach to a net. Following is an example of the syntax format.

• Attribute Name: PERIOD

• Attribute Values: period [units] [{HIGH|LOW} [high_or_low_time[hi_lo_units]]

VHDL Syntax Example

For XST, PERIOD applies only to a specific clock signal.

Declare the VHDL constraint as follows:

attribute period: string;

Specify the VHDL constraint as follows:

attribute period of signal_name : signal is “period [units]”;

• period is the required clock period

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ns, or micro to
indicate the intended units.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

For XST, PERIOD applies only to a specific clock signal.

Specify the Verilog constraint as follows:

(* PERIOD = “period [units]” *)

• period is the required clock period

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ns, or micro to
indicate the intended units.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.
Constraints Guide www.xilinx.com Period (PERIOD) 227
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF Syntax Example

TIMESPEC PERIOD Method (Primary Method) (Recommended)

UCF Syntax

TIMESPEC “TSidentifier”=PERIOD “TNM_reference period” [units] [{HIGH |
LOW} [high_or_low_time [hi_lo_units]]] INPUT_JITTER value [units];

where

• identifier is a reference identifier that has a unique name

• TNM_reference is the identifier name that is attached to a clock net (or a net in the clock
path) using the TNM or TNM_NET constraint

When a TNM_NET constraint is traced into the CLKIN input of a DLL, DCM or PLL
component, new PERIOD specifications may be created at the DLL/DCM/PLL outputs. If
new PERIOD specifications are created, new TNM_NET groups to use in those
specifications are also created.

Each new TNM_NET group is named the same as the corresponding DLL/DCM/PLL
output net (outputnetname). The new PERIOD specification becomes
"TS_outputnetname=PERIOD outputnetname value units."

The new TNM_NET groups are then traced forward from the DLL/DCM/PLL output net
to tag all synchronous elements controlled by that clock signal. The new groups and
specifications are shown in the timing analysis reports.

Rules

The following rules apply:

• period is the required clock period.

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ms, micro, or % to
indicate the intended units.

• HIGH or LOW indicates whether the first pulse is to be High or Low.

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no
high_or_low_time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the high_or_low_time number can be followed by ps, micro, ms,
or % if the High or Low time is an actual time measurement.

The following statement assigns a clock period of 40 ns to the net named CLOCK, with the
first pulse being High and having a duration of 25 nanoseconds.

NET “CLOCK” PERIOD=40 HIGH 25;

NET PERIOD Method (Secondary Method) (Not Recommended)

NET “net_name” PERIOD=period [units] [{HIGH|LOW}
[high_or_low_time[hi_lo_units]]];

where

• period is the required clock period
Constraints Guide www.xilinx.com Period (PERIOD) 228
10.1

http://www.xilinx.com

Xilinx Constraints
R

• units is an optional field to indicate the units for a clock period. The default is
nanoseconds (ns), but the timing number can be followed by ps, ns, or micro to
indicate the intended units.

• HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low.

• hi_lo_units can be ns, ps, or micro. The default is ns.

The following rules apply:

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword.

• If an actual time is specified, it must be less than the period.

• If no high_or_low_time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle.

• The default is nanoseconds (ns), but the high_or_low_time number can be followed by
ps, micro, ms, or % if the High or Low time is an actual time measurement.

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Global tab grid, double-click the Period column in the row with the desired clock
name and fill out the PERIOD dialog box.

XCF Syntax Example

Same as UCF syntax

Both the simple and preferred are supported with the following limitation: HIGH/LOW
values are not taken into account during timing estimation/optimization and only
propagated to the final netlist if WRITE_TIMING_CONSTRAINTS = yes.

PCF Syntax Example

“TSidentifier”=PERIOD perioditem periodvalue INPUT_JITTER value;

perioditem can be:

• NET name

• TIMEGRP name

periodvalue can be:

• TSidentifier PHASE [+ | -] time

• TSidentifier PHASE time

• TSidentifier PHASE [+ | -] time [LOW | HIGH] time

• TSidentifier PHASE time [LOW | HIGH] time

• TSidentifier PHASE [+ | -] time [LOW | HIGH] percent

• TSidentifier PHASE time [LOW | HIGH] percent
Constraints Guide www.xilinx.com Period (PERIOD) 229
10.1

http://www.xilinx.com

Xilinx Constraints
R

FPGA Editor Syntax Example

To set constraints, in the FPGA Editor main window, click Properties of Selected Items
from the Edit menu. To set PERIOD constraint, click Properties of Selected Items from the
Edit menu with a net selected. You can set the constraint from the Physical Constraints tab.
Constraints Guide www.xilinx.com Period (PERIOD) 230
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com Pin (PIN) 231
10.1

Xilinx Constraints
R

Pin (PIN)

PIN Architecture Support
The PIN constraint applies to FPGA devices only.

PIN Applicable Elements
Nets

PIN Description
The PIN constraint in conjunction with LOC defines a net location.

The PIN/LOC UCF constraint has the following syntax:

PIN "module.pin" LOC="location";

This UCF constraint is used in creating design flows. This UCF constraint is translated into
a COMP/LOCATE constraint in the PCF file. This constraint has the following syntax in
the PCF file:

COMP "name" LOCATE = SITE "location";

This constraint specifies that the pseudo component that is created for the pin on the
module should be located in the site location. Pseudo logic is created only when a net
connects from a pin on one module to a pin on another module.

PIN Propagation Rules
Not applicable.

PIN Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

PIN “module.pin” LOC=location;

PIN mod.pin TIG;

http://www.xilinx.com

Xilinx Constraints
R

POST_CRC

POST_CRC Architecture Support
The POST_CRC constraint applies to Virtex™-5 and Spartan™-3A devices only.

POST_CRC Applicable Elements
This constraint relates to the entire device and is not specified on any particular design
element.

POST_CRC Description
The POST_CRC constraint enables or disables the configuration logic CRC error detection
feature allowing for notification of any possible change to the configuration memory. In
the case of Spartan-3A, it also has the affect of reserving the multi-use INIT pin for
signaling of a configuration CRC failure. This also allows the banking rules used by PACE,
PAR, and BitGen to refrain from using the IOB that drives the INIT pin. During
configuration, the INIT pin operates as normal. After configuration, if POST_CRC analysis
is enabled, the INIT pin serves as a CRC status pin. If comparison of the real-time
computed CRC differs from the pre-computed CRC, a configuration memory change has
been detected and the INIT pin is driven low.

The following table lists the values for POST_CRC:

POST_CRC Propagation Rules
This constraint applies to the entire design/device.

POST_CRC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

CONFIG POST_CRC = [ENABLE|DISABLE];

PCF Syntax Example

CONFIG POST_CRC = [ENABLE|DISABLE];

Value Description

ENABLE Enables the Post CRC
checking feature.

DISABLE Disables the Post CRC
checking features.
(Default)
Constraints Guide www.xilinx.com POST_CRC 232
10.1

http://www.xilinx.com

Xilinx Constraints
R

Constraints Guide www.xilinx.com POST_CRC 233
10.1

http://www.xilinx.com

Xilinx Constraints
R

POST_CRC_ACTION

POST_CRC_ACTION Architecture Support
The POST_CRC_ACTION constraint applies to Spartan™-3A devices only.

POST_CRC_ACTION Applicable Elements
This constraint relates to the entire device and is not specified on any particular design
element.

POST_CRC_ACTION Description
Spartan-3A devices support a configuration logic CRC error detection mode called
POST_CRC in which a pre-computed CRC for the configuration bitstream is compared
against a CRC computed by internal logic based on periodic readback of the configuration
memory cells. POST_CRC_ACTION determines whether a CRC mismatch detection
continues or whether the CRC operation is halted. This constraint is only applicable when
POST_CRC is set to ENABLE.

The following table lists the values for POST_CRC_ACTION:

POST_CRC_ACTION Propagation Rules
This constraint applies to the entire design/device.

POST_CRC_ACTION Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Value Description

HALT If a CRC mismatch is
detected, cease reading
back the bitstream,
computing the comparison
CRC, and making the
comparison against the pre-
computed CRC.

CONTINUE If a CRC mismatch is
detected by the CRC
comparison, continue
reading back the bitstream,
computing the comparison
CRC, and making the
comparison against the pre-
computed CRC.
(Default)
Constraints Guide www.xilinx.com POST_CRC_ACTION 234
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF Syntax Example

CONFIG POST_CRC_ACTION = [HALT|CONTINUE];

PCF Syntax Example

CONFIG POST_CRC_ACTION = [HALT|CONTINUE];
Constraints Guide www.xilinx.com POST_CRC_ACTION 235
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com POST_CRC_FREQ 236
10.1

Xilinx Constraints
R

POST_CRC_FREQ

POST_CRC_FREQ Architecture Support
The POST_CRC_FREQ constraint applies to Spartan™-3A devices only.

POST_CRC_FREQ Applicable Elements
This constraint relates to the entire device and is not specified on any particular design
element.

POST_CRC_FREQ Description
Spartan-3A devices support a configuration logic CRC error detection mode called
POST_CRC in which a pre-computed CRC for the configuration bitstream is compared
against a CRC computed by internal logic based on periodic readback of the configuration
memory cells. POST_CRC_FREQ controls the frequency with which the configuration
CRC check is performed within a Spartan-3A device. This constraint is only applicable
when POST_CRC is set to ENABLE.

The frequency range represented by these 10 bits are from 1 to 100 MHz, and the steps are
1, 3, 6, 7, 8, 10, 12, 13, 17, 22, 25, 27, 33, 44, 50 and 100 MHz. The default value is 1 MHz.

POST_CRC_FREQ Propagation Rules
This constraint applies to the entire design/device.

POST_CRC_FREQ Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

CONFIG POST_CRC_FREQ =
[1|3|6|7|8|10|12|13|17|22|25|27|33|44|50|100];

PCF Syntax Example

CONFIG POST_CRC_FREQ =
[1|3|6|7|8|10|12|13|17|22|25|27|33|44|50|100];

http://www.xilinx.com

Xilinx Constraints
R

POST_CRC_SIGNAL

POST_CRC_SIGNAL Architecture Support
The POST_CRC_SIGNAL constraint applies to Virtex™-5 devices only.

POST_CRC_SIGNAL Applicable Elements
This constraint relates to the entire device and is not specified on any particular design
element.

POST_CRC_SIGNAL Description
Virtex-5 devices support a configuration logic CRC error detection mode called
POST_CRC in which a pre-computed CRC for the configuration bitstream is compared
against a CRC computed by internal logic based on periodic readback of the configuration
memory cells. POST_CRC_SIGNAL determines whether the Virtex-5 INIT_B pin is a
source of the CRC error signal. POST_CRC allows you to disable the INIT_B pin as the
readback CRC error status output pin. The error condition is still available from the
FRAME_ECC_VIRTEX5 site. This constraint is only applicable when POST_CRC is set to
ENABLE.

Virtex™ No

Virtex-E No

Virtex-II No

Virtex-II Pro No

Virtex-II Pro X No

Virtex-4 No

Virtex-5 Yes

Spartan™-II No

Spartan-IIE No

Spartan-3 No

Spartan-3A No

Spartan-3E No

XC9500™, XC9500XL, XC9500XV No

CoolRunner™ XPLA3 No

CoolRunner-II No
Constraints Guide www.xilinx.com POST_CRC_SIGNAL 237
10.1

http://www.xilinx.com

Xilinx Constraints
R

The following table lists the values for POST_CRC_SIGNAL:

POST_CRC_SIGNAL Propagation Rules
This constraint applies to the entire design/device.

POST_CRC_SIGNAL Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

CONFIG POST_CRC_SIGNAL = [FRAME_ECC_ONLY|INIT_AND_FRAME_ECC];

PCF Syntax Example

CONFIG POST_CRC_SIGNAL = [FRAME_ECC_ONLY|INIT_AND_FRAME_ECC];

Value Description

FRAME_ECC_ONLY Disables the use of the
INIT_B pin, with the
FRAME_ECC site as the
sole source of the CRC error
signal.

INIT_AND_FRAME_ECC Leaves the INIT_B pin
enabled as a source of the
CRC error signal.
(Default)
Constraints Guide www.xilinx.com POST_CRC_SIGNAL 238
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com Priority (PRIORITY) 239
10.1

Xilinx Constraints
R

Priority (PRIORITY)

PRIORITY Architecture Support
The PRIORITY constraint applies to all FPGA and CPLD devices.

PRIORITY Applicable Elements
TIMESPECs

PRIORITY Description
PRIORITY is an advanced timing constraint keyword. There may be situations where there
is a conflict between two timing constraints that cover the same path. The lower the
PRIORITY value, the higher the priority. This value does not affect which paths are placed
and routed first. It only affects which constraint controls the path when two constraints of
equal priority cover the same path.

PRIORITY Propagation Rules
Not applicable

PRIORITY Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

Defines the priority of a timing constraint using the following syntax.

normal_timespec_syntax PRIORITY integer;

where

• normal_timespec_syntax is a legal timing specification

• integer represents the priority (the smaller the number, the higher the priority)

The number can be positive, negative, or zero, and the value only has meaning when
compared with other PRIORITY values. The lower the value, the higher the priority.

TIMESPEC “TS01”=FROM “GROUPA” TO “GROUPB” 40 PRIORITY 4;

PCF Syntax Example

Same as UCF

http://www.xilinx.com

Xilinx Constraints
R

Prohibit (PROHIBIT)

PROHIBIT Architecture Support
The PROHIBIT constraint applies to all FPGA and CPLD devices.

PROHIBIT Applicable Elements
Sites

PROHIBIT Description
PROHIBIT is a basic placement constraint that disallows the use of a site within PAR,
FPGA Editor, and the CPLD fitter.

Location Types for FPGA Devices

For an FPGA, use the following location types to define the physical location of an element.

Table 65-1: Location Types for FPGA Devices

Element
Type

Location Specification Meaning

IOB P12 IOB location (chip carrier)

A12 IOB location (pin grid)

T, B, L, R Applies to IOBs and indicates edge locations (bottom, left, top, right)
for Spartan-II, Spartan-IIE, Spartan-3, Spartan-3A, Spartan-3E,
Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices

LB, RB, LT, RT, BR, TR, BL,
TL

Applies to IOBs and indicates half edges (for example, left bottom,
right bottom) for Spartan-II, Spartan-IIE, Spartan-3, Spartan-3A,
Spartan-3E, Virtex, Virtex-E, Virtex-II, Virtex-II Pro, Virtex-II Pro X,
Virtex-4, and Virtex-5 devices

Bank 0, Bank 1, Bank 2,
Bank 3, Bank 4, Bank 5,
Bank 6, Bank 7

Applies to IOBs and indicates half edges (banks) for Spartan-II,
Spartan-IIE, Spartan-3, Spartan-3A, Spartan-3E, Virtex, Virtex-E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices

CLB CLB_R4C3 (or .S0 or .S1) CLB location for Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices

CLB_R6C8.S0 (or .S1) Function generator or register slice for Spartan-II, Spartan-IIE,
Virtex, and Virtex-E devices

Slice SLICE_X22Y3 Slice location for Spartan-3, Spartan-3A, Spartan-3E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices

TBUF TBUF_R6C7 (or .0 or .1) TBUF location for Spartan-II, Spartan-IIE, Virtex, and Virtex-E
devices

block RAM RAMB4_R3C1 Block RAM location for Spartan-II, Spartan-IIE, Virtex, and Virtex-E
devices

RAMB16_X2Y56 Block RAM location for Spartan-3, Spartan-3A, Spartan-3E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices
Constraints Guide www.xilinx.com Prohibit (PROHIBIT) 240
10.1

http://www.xilinx.com

Xilinx Constraints
R

You can use the wildcard character (*) to replace a single location with a range as shown in
the following examples.

The following are not supported:

• Dot extensions on ranges. For example, LOC=CLB_R0C0:CLB_R5C5.G.

• The wildcard character for Spartan-II, Spartan-IIE, Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, or Virtex-5 global buffer or
DLL locations.

Location Types for CPLD Devices

CPLD devices support only the location type pin_name

where

• pin_name is Pnn for numeric pin names or rc for row-column pin names

PROHIBIT Propagation Rules
It is illegal to attach PROHIBIT to a net, signal, entity, module, or macro.

Multiplier MULT18X18_X55Y82 Multiplier location for Spartan-3, Spartan-3A, Spartan-3E, Virtex-II,
Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices

Global
Clock

GCLKBUF0 (or 1, 2, or 3) Global clock buffer location for Spartan-II, Spartan-IIE, Virtex, and
Virtex-E devices

GCLKPAD0 (or 1, 2, or 3) Global clock pad location for Spartan-II, Spartan-IIE, Virtex, and
Virtex-E devices

BUFGMUX0P Global clock buffer location for Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices

Delay
Locked
Loops
(DLL)

DLL0 (or 1, 2, or 3) Delay Locked Loop element location for Spartan-II, Spartan-IIE,
Virtex, and Virtex-E devices

Digital
Clock
Manager
(DCM)

DCM_X[A]Y[B] Digital Clock Manager for Spartan-3, Spartan-3A, Spartan-3E,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices

Phase Lock
Loop (PLL)

PLL_X[A]Y[B] Phase Lock Loop for Virtex-5.

Table 65-1: Location Types for FPGA Devices

CLB_R*C5 Any CLB in column 5 of a Spartan-II, Spartan-IIE, Virtex, and
Virtex-E

SLICE_X*Y5 Any slice of a Spartan-3, Spartan-3A, Spartan-3E, Virtex-II,
Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, or Virtex-5
device whose Y-coordinate is 5
Constraints Guide www.xilinx.com Prohibit (PROHIBIT) 241
10.1

http://www.xilinx.com

Xilinx Constraints
R

PROHIBIT Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

In a UCF file, PROHIBIT must be preceded by the keyword CONFIG.

Single Location

CONFIG PROHIBIT=location;

Multiple Single Locations

CONFIG PROHIBIT=location1, location2, ... ,locationn;

Range of Locations

CONFIG PROHIBIT=location1:location2;

where

• location is a legal location type for the part type

For more information, see “Location Types for FPGA Devices” and “Location Types for
CPLD Devices” in this chapter. For examples of using the location types, see the “Location
(LOC)” constraint. CPLD devices do not support the "Range of locations" form of
PROHIBIT.

The following statement prohibits use of the site P45.

CONFIG PROHIBIT=P45;

For CLB-based Row/Column/Slice Designations

The following statement prohibits use of the CLB located in Row 6, Column 8.

CONFIG PROHIBIT=CLB_R6C8;

The following statement prohibits use of the site TBUF_R5C2.2.

CONFIG PROHIBIT=TBUF_R5C2.2;

For Slice-based XY Coordinate Designations

The following statement prohibits use of the slice at the SLICE_X6Y8 site.

CONFIG PROHIBIT=SLICE_X6Y8;

The following statement prohibits use of the TBUF at the TBUF_X6Y2 site.

CONFIG PROHIBIT=TBUF_X6Y2;

PCF Syntax Example

For single or multiple single locations:

COMP “comp_name” PROHIBIT = [SOFT] “site_group”...”site_group”;

COMPGRP “group_name” PROHIBIT = [SOFT] “site_group”...”site_group”;

MACRO “name” PROHIBIT = [SOFT] “site_group”...”site_group”;

For a range of locations:

COMP “comp_name” PROHIBIT = [SOFT] “site_group”... “site_group”;
Constraints Guide www.xilinx.com Prohibit (PROHIBIT) 242
10.1

http://www.xilinx.com

Xilinx Constraints
R

COMPGRP “group_name” PROHIBIT = [SOFT] “site_group”... “site_group”;

MACRO “name” PROHIBIT = [SOFT] “site_group”...”site_group”;

where

• site_group is one of the following

♦ SITE “site_name”

♦ SITEGRP “site_group_name”

• site_name is a component site (that is, a CLB or IOB location)

Floorplanner Syntax Example

The Floorplanner supports PROHIBIT. For more information, see the Prohibit command
section in the Floorplanner help.

PACE Syntax Example

The Pin Assignments Editor (PACE) can be used to set PROHIBIT. For more information,
see the Prohibit Mode command section in the PACE help.

FPGA Editor Syntax Example

FPGA Editor supports PROHIBIT. For more information, see the Prohibit Constraint topic
in the FPGA Editor help. The constraint is written to the PCF file by the Editor.
Constraints Guide www.xilinx.com Prohibit (PROHIBIT) 243
10.1

http://www.xilinx.com

Xilinx Constraints
R

Pulldown (PULLDOWN)

PULLDOWN Architecture Support
The PULLDOWN constraint applies to all FPGA devices and the Coolrunner™-II CPLD
only.

PULLDOWN Applicable Elements
• Input

• Tristate outputs

• Bidirectional pad nets

PULLDOWN Description
PULLDOWN is a basic mapping constraint. It guarantees a logic Low level to allow 3-
stated nets to avoid floating when not being driven.

KEEPER, PULLUP, and PULLDOWN are only valid on pad NETs, not on INSTs of any
kind.

PULLDOWN Propagation Rules
PULLDOWN is a net constraint. Any attachment to a design element is illegal.

PULLDOWN Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a pad net

• Attribute Name: PULLDOWN

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute PULLDOWN: string;

Specify the VHDL constraint as follows:

attribute PULLDOWN of signal_name: signal is “{YES|NO|TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* PULLDOWN = “{YES|NO|TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.
Constraints Guide www.xilinx.com Pulldown (PULLDOWN) 244
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF Syntax Example

The following statement configures the IO to use a PULLDOWN.

NET "pad_net_name" PULLDOWN;

This statement configures PULLDOWN to be used globally.

DEFAULT PULLDOWN = TRUE;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" pulldown=true;

END;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with I/O Configuration Options checked, click the
PULLUP/PULLDOWN column in the row with the desired port name and choose
PULLDOWN from the drop-down list.
Constraints Guide www.xilinx.com Pulldown (PULLDOWN) 245
10.1

http://www.xilinx.com

Xilinx Constraints
R

Pullup (PULLUP)

PULLUP Architecture Support
The PULLUP constraint applies to all FPGA devices and the Coolrunner™ XPLA3 and
Coolrunner-II CPLDs.

PULLUP Applicable Elements
• Input

• Tristate outputs

• Bidirectional pad nets

PULLUP Description
PULLUP is a basic mapping constraint. It guarantees a logic High level to allow 3-stated
nets to avoid floating when not being driven.

KEEPER, PULLUP, and PULLDOWN are only valid on pad NETs, not on INSTs of any
kind.

For CoolRunner-II designs, the use of KEEPER and the use of PULLUP are mutually
exclusive across the whole device.

PULLUP Propagation Rules
PULLUP is a net constraint. Any attachment to a design element is illegal.

PULLUP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a pad net

• Attribute Name: PULLUP

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute PULLUP: string;

Specify the VHDL constraint as follows:

attribute PULLUP of signal_name: signal is “{YES|NO|TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:
Constraints Guide www.xilinx.com Pullup (PULLUP) 246
10.1

http://www.xilinx.com

Xilinx Constraints
R

(* PULLUP = “{YES|NO|TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'PULLUP mysignal';

UCF and NCF Syntax Example

The following statement configures the IO to use a PULLUP.

NET "pad_net_name" PULLUP;

This statement configures PULLUP to be used globally.

DEFAULT PULLUP = TRUE;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" pullup=true;

END;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with I/O Configuration Options checked, click the
PULLUP/PULLDOWN column in the row with the desired port name and choose
PULLUP from the drop-down list.
Constraints Guide www.xilinx.com Pullup (PULLUP) 247
10.1

http://www.xilinx.com

Xilinx Constraints
R

Power Mode (PWR_MODE)

PWR_MODE Architecture Support
The PWR_MODE constraint applies to the following devices:

• XC9500™

• XC9500XL

• XC9500XV

PWR_MODE Applicable Elements
• Nets

• Any instance

PWR_MODE Description
PWR_MODE is an advanced fitter constraint. It defines the mode, Low power or High
performance (standard power), of the macrocell that implements the tagged element.

If the tagged function is collapsed forward into its fanouts, PWR_MODE is not applied.

PWR_MODE Propagation Rules
When attached to a net, PWR_MODE attaches to all applicable elements that drive the net.

When attached to a design element, PWR_MODE propagates to all applicable elements in
the hierarchy within the design element.

PWR_MODE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net or an instance

• Attribute Name: PWR_MODE

• Attribute Values: LOW, STD

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute PWR_MODE: string;

Specify the VHDL constraint as follows:

attribute PWR_MODE of {signal_name|component_name|label_name}:
{signal|component|label} is “{LOW|STD}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.
Constraints Guide www.xilinx.com Power Mode (PWR_MODE) 248
10.1

http://www.xilinx.com

Xilinx Constraints
R

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* PWR_MODE = “{LOW|STD} *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'pwr_mode={low|std} mysignal';

UCF and NCF Syntax Example

The following statement specifies that the macrocell that implements the net $SIG_0 is in
Low power mode.

NET “$1187/$SIG_0” PWR_MODE=LOW;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" PWR_MODE={LOW|STD};

 INST "instance_name" PWR_MODE={LOW|STD};

END;
Constraints Guide www.xilinx.com Power Mode (PWR_MODE) 249
10.1

http://www.xilinx.com

Xilinx Constraints
R

Registers (REG)

REG Architecture Support
The REG constraint applies to CPLD devices only.

REG Applicable Elements
Registers

REG Description
REG is a basic fitter constraint. It specifies how a register is to be implemented in the CPLD
macrocell.

REG Propagation Rules
When attached to a design element, REG propagates to all applicable elements in the
hierarchy within the design element.

REG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a flip-flop instance or macro containing flip-flops

• Attribute Name: REG

• Attribute Values: CE, TFF

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute REG: string;

Specify the VHDL constraint as follows:

attribute REG of signal_name: signal is “{CE|TFF}”;

For more information on CE and TFF, see “UCF and NCF Syntax Example” in this chapter.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* REG = {CE|TFF} *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'REG={CE|TFF} mysignal';
Constraints Guide www.xilinx.com Registers (REG) 250
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF Syntax Example

The basic UCF syntax is:

INST “instance_name” REG = {CE | TFF};

where

• CE, when applied to a flip-flop primitive with a CE input, forces the CE input to be
implemented using a clock enable product term in the macrocell. Normally the fitter
uses the register CE input only if all logic on the CE input can be implemented using
the single CE product term. Otherwise the fitter decomposes the CE input into the D
(or T) logic expression unless REG=CE is applied. CE product terms are not available
in XC9500 devices (REG=CE is ignored). In XC9500XL and XC9500XV devices, the CE
product term is available only for registers that do not use both the CLR and PRE
inputs.

• TFF indicates that the register is to be implemented as a T-type flip-flop in the CPLD
macrocell. If applied to a D-flip-flop primitive, the D-input expression is transformed
to T-input form and implemented with a T-flip-flop. Automatic transformation
between D and T flip-flops is normally performed by the CPLD fitter.

The following statement specifies that the CE pin input be implemented using the clock
enable product term of the XC9500XL or XC9500XV macrocell.

INST “Q1” REG=CE;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" REG={CE|TFF};

END;
Constraints Guide www.xilinx.com Registers (REG) 251
10.1

http://www.xilinx.com

Xilinx Constraints
R

Relative Location (RLOC)

RLOC Architecture Support
The RLOC constraint applies to FPGA devices only.

RLOC Applicable Elements
To see which design elements can be used with which device families, see the Xilinx
Libraries Guides. For more information, see the device data sheet.

1. Registers

2. ROM

3. RAMS, RAMD

4. BUFT
Can be used only if the associated RPM has an RLOC_ORIGIN that causes the RLOC
values in the RPM to be changed to LOC values.

5. LUTs, MUXF5, MUXF6, MUXCY, XORCY, MULT_AND, SRL16, SRL16E, MUXF7
Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X only

6. MUXF8
Spartan™-3, Spartan-3A, Spartan-3E, Virtex™-II, Virtex-II Pro, Virtex-II Pro X, Virtex-
4, and Virtex-5 only

7. Block RAMs

8. Multipliers

9. DSP48

RLOC Description
Relative location (RLOC) is a basic mapping and placement constraint. It is also a synthesis
constraint. RLOC constraints group logic elements into discrete sets and allow you to
define the location of any element within the set relative to other elements in the set,
regardless of eventual placement in the overall design.

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, the RLOC constraint must include
the extension that defines in which of the two slices of a CLB the element is placed (.S0,
.S1).

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, the RLOC constraint is specified using the slice-based XY coordinate
system.

Benefits and Limitations of RLOC Constraints

RLOC constraints allow you to place logic blocks relative to each other to increase speed
and use die resources efficiently. They provide an order and structure to related design
elements without requiring you to specify their absolute placement on the FPGA die. They
allow you to replace any existing hard macro with an equivalent that can be directly
simulated.

In the Unified Libraries, you can use RLOC constraints with BUFT- and CLB-related
primitives, that is, FMAP. You can also use them on non-primitive macro symbols. There
are some restrictions on the use of RLOC constraints on BUFT symbols. For more
Constraints Guide www.xilinx.com Relative Location (RLOC) 252
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

information, see “Set Modifiers” in this chapter. You cannot use RLOC constraints with
decoders or clocks. LOC constraints, on the other hand, can be used on all primitives:
BUFTs, CLBs, IOBs, decoders, and clocks.

The following symbols (primitives) accept RLOCs.

• Registers

• ROM

• RAMS, RAMD

• BUFT

• LUTs, MUXCY, XORCY, MULT_AND, SRL16, SRL16E

• DSP48

• MULT18x18

Guidelines for Specifying Relative Locations

There are two different coordinate designations:

• Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices use the CLB-based coordinate
system.

• Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4,
and Virtex-5 devices use the slice-based coordinate system.

CLB-based Row/Column/Slice Designations

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, the general syntax for assigning
elements to relative locations is

RLOC=[element]RmCn[.extension]

where

• m and n are relative row numbers and column numbers, respectively

• extension uses the LOC extension syntax and can take all the values that are available
with the absolute LOC syntax: S0, S1, 0, 1, 2, and 3 as appropriate for the architecture
and element the RLOC is attached to.

The extension is required for Virtex, Virtex-E, Spartan-II, and Spartan-IIE designs to
specify the spatial relationship of the objects in the RPM (.S0, .S1).

The row and column numbers can be any positive or negative integer including zero.
Absolute die locations, in contrast, cannot have zero as a row or column number. Because
row and column numbers in RLOC constraints define only the order and relationship
between design elements and not their absolute die locations, their numbering can include
zero or negative numbers. Even though you can use any integer in numbering rows and
columns for RLOC constraints, it is recommended that you use small integers for clarity
and ease of use.

It is not the absolute values of the row and column numbers that is important in RLOC
specifications but their relative values or differences. For example, if design element A has
an RLOC=R3C4 constraint and design element B has an RLOC=R6C7 constraint, the
absolute values of the row numbers (3 and 6) are not important in themselves. However,
the difference between them is important; in this case, 3 (6 -3) specifies that the location of
design element B is three rows down from the location of design element A.

To capture this information, a normalization process is used and column-wise the design
element B is 3 (7-4) columns on the right of element A. In the example just given,
Constraints Guide www.xilinx.com Relative Location (RLOC) 253
10.1

http://www.xilinx.com

Xilinx Constraints
R

normalization would reduce the RLOC on design element A to R0C0, and the RLOC on
design element B to R3C3.

In CLB-based programs, row/column rows are numbered in increasing order from top to
bottom, and columns are numbered in increasing order from left to right. RLOC
constraints follow this numbering convention.

Figure 70-1 demonstrates the use of RLOC constraints. Figure 70-1 applies only to Virtex,
Virtex-E, Spartan-II, and Spartan-IIE devices.

Slice-Based XY Coordinate Designations

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, the general syntax for assigning elements to relative locations is

RLOC=XmYn

where

• m and n are the relative X-axis (left/right) value and the relative Y-axis (up/down)
value, respectively

• the X and Y numbers can be any positive or negative integer including zero

Because the X and Y numbers in RLOC constraints define only the order and relationship
between design elements and not their absolute die locations, their numbering can include
negative numbers. Even though you can use any integer for RLOC constraints, it is
recommended that you use small integers for clarity and ease of use.

It is not the absolute values of the X and Y numbers that is important in RLOC
specifications but their relative values or differences. For example, if design element A has
an RLOC=X3Y4 constraint and design element B has an RLOC=X6Y7 constraint, the
absolute values of the X numbers (3 and 6) are not important in themselves. However, the
difference between them is important; in this case, 3 (6 -3) specifies that the location of
design element B is three slices away from the location of design element A.

Figure 70-1: RLOC Specifications for Eight Flip-Flop Primitives

A and B
RLOC = R0C0.S0

C and D
RLOC = R0C0.S1

X9831

A

B

C

D

E and F
RLOC = R1C0.S0

G and H
RLOC = R1C0.S1

E

F

G

H

Constraints Guide www.xilinx.com Relative Location (RLOC) 254
10.1

http://www.xilinx.com

Xilinx Constraints
R

To capture this information, a normalization process is used and y coordinate-wise,
element B is 3 (7-4) slices above element A. In the example just given, normalization would
reduce the RLOC on design element A to X0Y0, and the RLOC on design element B to
X3Y3.

In Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, slices are numbered on an XY grid beginning in the lower left corner of
the chip. X ascends in value horizontally to the right. Y ascends in value vertically up.
RLOC constraints follow the cartesian-based convention.

Figure 70-2 demonstrates the use of RLOC constraints. In (a) in Figure 70-2 four flip-flop
primitives named A, B, C, and D are assigned RLOC constraints as shown. These RLOC
constraints require each flip-flop to be placed in a different slice with the slices stacked in
the order shown: A below B, C, and D.

If you want to place more than one of these flip-flop primitives per slice, you can specify
the RLOCs as shown in (b) in Figure 70-2. The arrangement in the figure requires that A
and B be placed in a single slice and that C and D be placed in another slice immediately to
the right of the AB slice. Figure 70-2 applies only to Virtex-II, Virtex-II Pro, and Virtex-II
Pro X, Virtex-4, Virtex-5, Spartan-3, Spartan-3A, and Spartan-3E devices.
Constraints Guide www.xilinx.com Relative Location (RLOC) 255
10.1

http://www.xilinx.com

Xilinx Constraints
R

RLOC Sets

RLOC constraints give order and structure to related design elements. This section
describes RLOC sets, which are groups of related design elements to which RLOC
constraints have been applied. For example, the eight flip-flops in Figure 70-1 and the four
flip-flops in Figure 70-2 are related by RLOC constraints and form a set. Elements in a set
are related by RLOC constraints to other elements in the same set. Each member of a set
must have an RLOC constraint, which relates it to other elements in the same set. You can
create multiple sets, but a design element can belong to one set only.

Sets can be defined explicitly through the use of a set parameter or implicitly through the
structure of the design hierarchy.

Figure 70-2: Different RLOC Specifications for Four Flip-Flop Primitives

X9419

RLOC=X0Y6D

RLOC=X0Y4C RLOC=X1Y0B

RLOC=X0Y0

RLOC=X3Y0D

RLOC=X2Y0A C

RLOC=X0Y2B

RLOC=X0Y0A

(a) (b)
Constraints Guide www.xilinx.com Relative Location (RLOC) 256
10.1

http://www.xilinx.com

Xilinx Constraints
R

Four distinct types of rules are associated with each set.

• Definition rules define the requirements for membership in a set.

• Linkage rules specify how elements can be linked to other elements to form a single
set.

• Modification rules dictate how to specify parameters that modify RLOC values of all
the members of the set.

• Naming rules specify the nomenclature of sets.

These rules are discussed in the sections that follow.

The following sections discuss three different set constraints: U_SET, H_SET, and HU_SET.
Elements must be tagged with both the RLOC constraint and one of these set constraints to
belong to a set.

U_SET

U_SET constraints enable you to group into a single set design elements with attached
RLOC constraints that are distributed throughout the design hierarchy. The letter U in the
name U_SET indicates that the set is user-defined.

U_SET constraints allow you to group elements, even though they are not directly related
by the design hierarchy. By attaching a U_SET constraint to design elements, you can
explicitly define the members of a set.

The design elements tagged with a U_SET constraint can exist anywhere in the design
hierarchy; they can be primitive or non-primitive symbols. When attached to non-
primitive symbols, the U_SET constraint propagates to all the primitive symbols with
RLOC constraints that are below it in the hierarchy.

The syntax of the U_SET constraint is:

U_SET=set_name

where

• set_name is the user-specified identifier of the set

All design elements with RLOC constraints tagged with the same U_SET constraint name
belong to the same set. Names therefore must be unique among all the sets in the design.

H_SET

In contrast to the U_SET constraint, which you explicitly define by tagging design
elements, the H_SET (hierarchy set) is defined implicitly through the design hierarchy. The
combination of the design hierarchy and the presence of RLOC constraints on elements
defines a hierarchical set, or H_SET set.

You are not able to use an H_SET constraint to tag the design elements to indicate their set
membership. The set is defined automatically by the design hierarchy.

All design elements with RLOC constraints at a single node of the design hierarchy are
considered to be in the same H_SET set unless they are tagged with another type of set
constraint such as RLOC_ORIGIN or RLOC_RANGE. If you explicitly tag any element
with an RLOC_ORIGIN, RLOC_RANGE, U_SET, or HU_SET constraint, it is removed
from an H_SET set.

Most designs contain only H_SET constraints, since they are the underlying mechanism for
relationally placed macros. The RLOC_ORIGIN or RLOC_RANGE constraints are
discussed further in “Set Modifiers”in this chapter.
Constraints Guide www.xilinx.com Relative Location (RLOC) 257
10.1

http://www.xilinx.com

Xilinx Constraints
R

NGDBuild recognizes the implicit H_SET set, derives its name, or identifier, attaches the
H_SET constraint to the correct members of the set, and writes them to the output file.

HU_SET

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). Like H_SET,
HU_SET is defined by the design hierarchy. However, you can use the HU_SET constraint
to assign a user-defined name to the HU_SET.

The syntax of the HU_SET constraint is:

HU_SET=set_name

where

• set_name is the identifier of the set. It must be unique among all the sets in the design

This user-defined name is the base name of the HU_SET set. Like the H_SET set, in which
the base name of “h_set” is prefixed by the hierarchical name of the lowest common
ancestor of the set elements, the user-defined base name of an HU_SET set is prefixed by
the hierarchical name of the lowest common ancestor of the set elements.

You must define the base names to ensure unique hierarchically qualified names for the
sets before the mapper resolves the design and attaches the hierarchical names as prefixes.

The HU_SET constraint defines the start of a new set. All design elements at the same node
that have the same user-defined value for the HU_SET constraint are members of the same
HU_SET set. Along with the HU_SET constraint, elements can also have an RLOC
constraint.

The presence of an RLOC constraint in an H_SET constraint links the element to all
elements tagged with RLOCs above and below in the hierarchy. However, in the case of an
HU_SET constraint, the presence of an RLOC constraint along with the HU_SET constraint
on a design element does not automatically link the element to other elements with RLOC
constraints at the same hierarchy level or above.
Constraints Guide www.xilinx.com Relative Location (RLOC) 258
10.1

http://www.xilinx.com

Xilinx Constraints
R

Note: In Figure 70-3 and the other related figures shown in the subsequent sections, the italicized
text prefixed by => is added by NGDBuild during the design flattening process. You add all other text.

Figure 70-3 demonstrates a typical use of the implicit H_SET (hierarchy set). The figure
shows only the first “RLOC” portion of the constraint. In a real design, the RLOC
constraint must be specified completely with RLOC=RmCn or, for Spartan-3, Spartan-3A,
Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 RLOC=XmYn. In
this example, macro A is originally designed with RLOC constraints on four flip-flops: A,
B, C, and D. The macro is then instantiated twice in the design: Inst1 and Inst2.

When the design is flattened, two different H_SET sets are recognized because two distinct
levels of hierarchy contain elements with RLOC constraints. NGDBuild creates and
attaches the appropriate H_SET constraint to the set members: H_SET=Inst1/h_set for the
macro instantiated in Inst1, and H_SET=Inst2/h_set for the macro instantiated in Inst2.
The design implementation programs place each of the two sets individually as a unit with
relative ordering within each set specified by the RLOC constraints. However, the two sets
are regarded to be completely independent of each other.

The name of the H_SET set is derived from the symbol or node in the hierarchy that
includes all the RLOC elements. In Figure 70-3, Inst1 is the node (instantiating macro) that
includes the four flip-flop elements with RLOCs shown on the left of the figure. Therefore,
the name of this H_SET set is the hierarchically qualified name of “Inst1” followed by
“h_set.”

Figure 70-3: Macro A Instantiated Twice

Design-top

RLOC
= >H_SET = Inst2/hsetA

X4294

B

C

D

Inst1 Inst2

M
ac

ro
 A

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst2/hset

RLOC
= >H_SET = Inst1/hsetA

B

C

D

M
ac

ro
 A

RLOC
= >H_SET = Inst1/hset

RLOC
= >H_SET = Inst1/hset

RLOC
= >H_SET = Inst1/hset
Constraints Guide www.xilinx.com Relative Location (RLOC) 259
10.1

http://www.xilinx.com

Xilinx Constraints
R

The Inst1 symbol is considered the “start” of the H_SET, which gives a convenient handle
to the entire H_SET and attaches constraints that modify the entire H_SET. Constraints that
modify sets are discussed in the “Save Net Flag (SAVE NET FLAG)” constraint.

Figure 70-3, page 259 demonstrates the simplest use of a set that is defined and confined to
a single level of hierarchy. Through linkage and modification, you can also create an
H_SET set that is linked through two or more levels of hierarchy.

Linkage allows you to link elements through the hierarchy into a single set. On the other
hand, modification allows you to modify RLOC values of the members of a set through the
hierarchy.

RLOC Set Summary

The following table summarizes the RLOC set types and the constraints that identify
members of these sets.

RLOC Propagation Rules
RLOC is a design element constraint and any attachment to a net is illegal. When attached
to a design element, RLOC propagates to all applicable elements in the hierarchy within
the design element.

RLOC Syntax

For Architectures Using CLB-based Row/Column/Slice Specifications

This section applies to Virtex, and Virtex-E, Spartan-II, and Spartan-IIE devices only.

RLOC=RmCn.extension

where

• m and n are integers (positive, negative, or zero) representing relative row numbers
and column numbers, respectively

Table 70-1: Summary of Set Types

Type Definition Naming Linkage Modification

U_SET= name All elements with
the same user-
tagged U_SET
constraint value are
members of the
same U_SET set.

The name of the set
is the same as the
user-defined name
without any
hierarchical
qualification.

U_SET links
elements to all other
elements with the
same value for the
U_SET constraint.

U_SET is modified by
applying RLOC_ORIGIN
or RLOC_RANGE
constraints on, at most,
one of the U_SET
constraint-tagged
elements.

HU_SET=
name

All elements with
the same
hierarchically
qualified name are
members of the
same set.

The lowest common
ancestor of the
members is prefixed
to the user-defined
name to obtain the
name of the set.

HU_SET links to
other elements at the
same node with the
same HU_SET
constraint value. It
links to elements
with RLOC
constraints below.

The start of the set is made
up of the elements on the
same node that are tagged
with the same HU_SET
constraint value. An
RLOC_ORIGIN or an
RLOC_RANGE can be
applied to, at most, one of
these start elements of an
HU_SET set.
Constraints Guide www.xilinx.com Relative Location (RLOC) 260
10.1

http://www.xilinx.com

Xilinx Constraints
R

• extension uses the LOC extension syntax as appropriate. It can take all the values that
are available with the current absolute LOC syntax

For Virtex, Virtex-E, Spartan-II and Spartan-IIE, extension is required to define the spatial
relationships (.S0 is the right-most slice; .S1 is the left-most slice) of the objects in the RPM.

The RLOC value cannot specify a range or a list of several locations; it must specify a single
location. For more information, see “RLOC Description” in this chapter.

For Architectures Using a Slice-Based XY Coordinate System

This section applies to Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, Virtex-4, and Virtex-5 devices only.

RLOC=XmYn

where

• m and n are integers (positive, negative, or zero) representing relative X and Y
coordinates, respectively

Set Linkage

The example Figure 70-4, page 262 explains and illustrates the process of linking together
elements through the design hierarchy. Again, the complete RLOC specification,
RLOC=RmCn or RLOC=XmXn, is required for a real design.
Constraints Guide www.xilinx.com Relative Location (RLOC) 261
10.1

http://www.xilinx.com

Xilinx Constraints
R

Note: In this and other illustrations in this section, the sets are shaded differently to distinguish one
set from another.

Figure 70-4: Three H_SET Sets

RLOC

= > H_SET = A/hset

X4295

Design-top

A

G

F

B

C D ERLOC RLOC

H

I

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/hset

K

J

RLOC

= > H_SET = A/hset

L

RLOC

= > H_SET = A/hset

P

O

RLOC

= > H_SET = A/hset

RLOC

= > H_SET = A/D/L/hsetQ

RLOC

= > H_SET = A/D/L/hsetR

S

RLOC

= > H_SET = A/E/hset

N

M

RLOC

= > H_SET = A/E/hset
Constraints Guide www.xilinx.com Relative Location (RLOC) 262
10.1

http://www.xilinx.com

Xilinx Constraints
R

As noted previously, all design elements with RLOC constraints at a single node of the
design hierarchy are considered to be in the same H_SET set unless they are assigned
another type of set constraint, an RLOC_ORIGIN constraint, or an RLOC_RANGE
constraint. In Figure 70-4, page 262, RLOC constraints have been added on primitives and
non-primitives C, D, F, G, H, I, J, K, M, N, O, P, Q, and R. No RLOC constraints were placed
on B, E, L, or S. Macros C and D have an RLOC constraint at node A, so all the primitives
below C and D that have RLOCs are members of a single H_SET set.

The name of this H_SET set is “A/h_set” because it is at node A that the set starts. The start
of an H_SET set is the lowest common ancestor of all the RLOC-tagged constraints that
constitute the elements of that H_SET set.

Because element E does not have an RLOC constraint, it is not linked to the A/h_set set.
The RLOC-tagged elements M and N, which lie below element E, are therefore in their own
H_SET set. The start of that H_SET set is A/E, giving it the name “A/E/h_set.”

Similarly, the Q and R primitives are in their own H_SET set because they are not linked
through element L to any other design elements. The lowest common ancestor for their
H_SET set is L, which gives it the name “A/D/L/h_set.” After the flattening, NGDBuild
attaches H_SET=A/h_set to the F, G, H, O, P, J, and K primitives; H_SET=A/D/L/h_set to
the Q and R primitives; and H_SET=A/E/h_set to the M and N primitives.

Consider a situation in which a set is created at the top of the design. In Figure 70-4,
page 262, there would be no lowest common ancestor if macro A also had an RLOC
constraint, since A is at the top of the design and has no ancestor. In this case, the base
name “h_set” would have no hierarchically qualified prefix, and the name of the H_SET
set would simply be “h_set.”

Set Modification

The RLOC constraint assigns a primitive an RLOC value (the row and column numbers
with the optional extensions), specifies its membership in a set, and links together
elements at different levels of the hierarchy. In Figure 70-4, page 262, the RLOC constraint
on macros C and D links together all the objects with RLOC constraints below them. An
RLOC constraint is also used to modify the RLOC values of constraints below it in the
hierarchy. In other words, RLOC values of elements affect the RLOC values of all other
member elements of the same H_SET set that lie below the given element in the design
hierarchy.

The Effect of the Hierarchy on Set Modification

The following sections describe the effect of the hierarchy on set modification for the CLB-
based Row/Column/Slice designations and for the slice-based XY coordinate
designations (Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X,
Virtex-4, and Virtex-5 devices).

CLB-Based Row/Column/Slice Designations

When the design is flattened, the row and column numbers of an RLOC constraint on an
element are added to the row and column numbers of the RLOC constraints of the set
members below it in the hierarchy. This feature gives you the ability to modify existing
RLOC values in submodules and macros without changing the previously assigned RLOC
values on the primitive symbols.

This modification process also applies to the optional extension field. However, when
using extensions for modifications, you must ensure that inconsistent extensions are not
attached to the RLOC value of a design element that may conflict with RLOC extensions
placed on underlying elements.
Constraints Guide www.xilinx.com Relative Location (RLOC) 263
10.1

http://www.xilinx.com

Xilinx Constraints
R

For example, if an element has an RLOC constraint with the S0 extension, all the
underlying elements with RLOC constraints must either have the same extension, in this
case S0, or no extension at all; any underlying element with an RLOC constraint and an
extension different from S0, such as S1, is flagged as an error.

After resolving all the RLOC constraints, extensions that are not valid on primitives are
removed from those primitives. For example, if NGDBuild generates an S0 extension to be
applied on a primitive after propagating the RLOC constraints, it applies the extension if
and only if the primitive is a flip-flop. If the primitive is an element other than a flip-flop,
the extension is ignored. Only the extension is ignored in this case, not the entire RLOC
constraint.

Figure 70-5, page 265 illustrates the process of adding RLOC values down the hierarchy.
The row and column values between the parentheses show the addition function
performed by the mapper. The italicized text prefixed by => is added by MAP during the
design resolution process and replaces the original RLOC constraint that you added. For
Sn, the value n is either a 1 or a 0.
Constraints Guide www.xilinx.com Relative Location (RLOC) 264
10.1

http://www.xilinx.com

Xilinx Constraints
R

The ability to modify RLOC values down the hierarchy is particularly valuable when
instantiating the same macro more than once. Typically, macros are designed with RLOC
constraints that are modified when the macro is instantiated. Figure 70-6, page 266 is a
variation of the sample design in Figure 70-3, page 259. The RLOC constraint on Inst1 and
Inst2 now link all the objects in one H_SET set.

Because the RLOC=R0C0 modifier on the Inst1 macro does not affect the objects below it,
the mapper adds only the H_SET tag to the objects and leaves the RLOC values as they are.

Figure 70-5: Adding RLOC Values Down the Hierarchy (CLB-based
Row/Column/Slice)

A

Design-top

RLOC = R2C3

RLOC = R0C0 (+R2C3)

= >RLOC = R2C3

E

B

RLOC = R0C0 (+R5C3.FFX)
= >RLOC = R5C3.FFXF

G

X10523

C

D

RLOC = R1C0 (+R2C3)

= >RLOC = R3C3

RLOC = R2C0 (+R2C3)

= >RLOC = R4C3

RLOC = R3C0.FFX (+R2C3)

= >RLOC = R5C3.FFX

NGDBuild adds
R5C3.FFX below to
create new RLOC

RLOC = R1C0 (+R5C3.FFX)
= >RLOC = R6C3.FFX

NGDBuild adds
R2C3 below to
create new RLOC
Constraints Guide www.xilinx.com Relative Location (RLOC) 265
10.1

http://www.xilinx.com

Xilinx Constraints
R

However, the RLOC=R0C1 modifier on the Inst2 macro causes MAP to change the RLOC
values on objects below it, as well as to add the H_SET tag, as shown in the italicized text.

Slice-Based XY Designations

When the design is flattened, the XY values of an RLOC constraint on an element are
added to the XY values of the RLOC constraints of the set members below it in the
hierarchy. This feature gives you the ability to modify existing RLOC values in
submodules and macros without changing the previously assigned RLOC values on the
primitive symbols.

Figure 70-7, page 267 illustrates the process of adding RLOC values down the hierarchy.
The row and column values between the parentheses show the addition function
performed by the mapper. The italicized text prefixed by => is added by MAP during the
design resolution process and replaces the original RLOC constraint that you added.

Figure 70-6: Modifying RLOC Values of Same Macro and Linking Together as One
Set (CLB-based Row/Column/Slice)

Design-top

RLOC = R0C1

RLOC = R0C0 (+R0C1)

= >H_SET = hsetA

X4297

B

C

add R0C1 to shift
the set 1 column
to the right

D

RLOC = R0C0

Inst1 Inst2

= >RLOC = R0C1

RLOC = R1C0 (+R0C1)

= >H_SET = hset
= >RLOC = R1C1

RLOC = R2C0 (+R0C1)

= >H_SET = hset
= >RLOC = R2C1

RLOC = R3C0 (+R0C1)

= >H_SET = hset
= >RLOC = R3C1

M
ac

ro
 A

RLOC = R0C0

= >H_SET = hsetA

B

C

D

M
ac

ro
 A

RLOC = R1C0

= >H_SET = hset

RLOC = R2C0

= >H_SET = hset

RLOC = R3C0

= >H_SET = hset

add R0C0—no
change
Constraints Guide www.xilinx.com Relative Location (RLOC) 266
10.1

http://www.xilinx.com

Xilinx Constraints
R

The ability to modify RLOC values down the hierarchy is particularly valuable when
instantiating the same macro more than once. Typically, macros are designed with RLOC
constraints that are modified when the macro is instantiated. Figure 70-8, page 268 is a
variation of the sample design in Figure 70-7, page 267. The RLOC constraint on Inst1 and
Inst2 now link all the objects in one H_SET set.

Because the RLOC=X0Y0 modifier on the Inst1 macro does not affect the objects below it,
the mapper adds only the H_SET tag to the objects and leaves the RLOC values as they are.
However, the RLOC=X1Y0 modifier on the Inst2 macro causes MAP to change the RLOC
values on objects below it, as well as to add the H_SET tag, as shown in the italicized text.

Figure 70-7: Adding RLOC Values Down the Hierarchy Example
(Slice-based XY Designations)

X9420

A

Design-top

RLOC = X2Y3

RLOC = X0Y0 (+X2Y3)
= >RLOC = X2Y3

E

B

C

D

RLOC = X0Y1 (+X2Y3)
= >RLOC = X2Y4

RLOC = X0Y2 (+X2Y3)
= >RLOC = X2Y5

RLOC = X-1Y-1 (+X2Y3)
= >RLOC = X1Y2

NGDBuild adds
X2Y3 below to
create new RLOC
Constraints Guide www.xilinx.com Relative Location (RLOC) 267
10.1

http://www.xilinx.com

Xilinx Constraints
R

Separating Elements from H_SET Sets

The HU_SET constraint is a variation of the implicit H_SET (hierarchy set). The HU_SET
constraint defines the start of a new set. Like H_SET, HU_SET is defined by the design
hierarchy. However, you can use the HU_SET constraint to assign a user-defined name to
the HU_SET.

Figure 70-9, page 269 demonstrates how HU_SET constraints designate elements as set
members, break links between elements tagged with RLOC constraints in the hierarchy to
separate them from H_SET sets, and generate names as identifiers of these sets.

Figure 70-8: Modifying RLOC Values of Same Macro and Linking Together as One
Set (Slice-based XY Designations)

X9452

Design-top

RLOC = X1Y0

RLOC = X0Y0 (+X1Y0)
= >H_SET = hsetA

B

C

add X1Y0 to shift the
set 1 slice to the right

D

RLOC = X0Y0

Inst1 Inst2

= >RLOC = X1Y0

RLOC = X0Y1 (+X1Y0)
= >H_SET = hset
= >RLOC = X1Y1

RLOC = X0Y2 (+X1Y0)
= >H_SET = hset
= >RLOC = X1Y2

RLOC = X0Y3 (+X1Y0)
= >H_SET = hset
= >RLOC = X1Y3

M
ac

ro
 A

RLOC = X0X0
= >H_SET = hsetA

B

C

D

M
ac

ro
 A

RLOC = X0Y1
= >H_SET = hset

RLOC = X0Y2
= >H_SET = hset

RLOC = X0Y3
= >H_SET = hset

add X0Y0-no
change
Constraints Guide www.xilinx.com Relative Location (RLOC) 268
10.1

http://www.xilinx.com

Xilinx Constraints
R

The user-defined HU_SET constraint on E separates its underlying design elements,
namely H, I, J, K, L, and M from the implicit H_SET=A/h_set that contains primitive

Figure 70-9: HU_SET Constraint Linking and Separating Elements from H_SET
Sets

RLOC

= > H_SET = A/hset

X4298

Design-top

A

C

B

D

RLOC

= > H_SET = A/hset

RLOC E HU_SET = bar

RLOC

= > H_SET = A/hset

G

F

RLOC

= > H_SET = A/hset

RLOC

= > HU_SET = A/bar

I

H

J

RLOC

= > HU_SET = A/bar

RLOC K HU_SET = bar

RLOC

= > HU_SET = A/bar
L RLOC

= > HU_SET = A/E/bar
M

Constraints Guide www.xilinx.com Relative Location (RLOC) 269
10.1

http://www.xilinx.com

Xilinx Constraints
R

members B, C, F, and G. The HU_SET set that is defined at E includes H, I, and L (through
the element J).

The mapper hierarchically qualifies the name value “bar” on element E to be A/bar, since
A is the lowest common ancestor for all the elements of the HU_SET set, and attaches it to
the set member primitives H, I, and L. An HU_SET constraint on K starts another set that
includes M, which receives the HU_SET=A/E/bar constraint after processing by the
mapper.

In Figure 70-9, page 269, the same name field is used for the two HU_SET constraints, but
because they are attached to symbols at different levels of the hierarchy, they define two
different sets.

Figure 70-10, page 270 shows how HU_SET constraints link elements in the same node
together by naming them with the same identifier. Because of the same name, “bar,” on
two elements, D and E, the elements tagged with RLOC constraints below D and E become
part of the same HU_SET.

Figure 70-10: Linking Two HU_SET Sets

A

Design-top

RLOC

= > H_SET = A/hset

RLOC

HU_SET = barD E

C

B

RLOC

= > HU_SET = A/bar

RLOC

= > HU_SET = A/bar

G

F RLOC

= > HU_SET = A/bar

RLOC

= > HU_SET = A/bar

H

I

X4299

= > H_SET = A/hset

HU_SET = bar
Constraints Guide www.xilinx.com Relative Location (RLOC) 270
10.1

http://www.xilinx.com

Xilinx Constraints
R

Set Modifiers

A modifier, as its name suggests, modifies the RLOC constraints associated with design
elements. Since it modifies the RLOC constraints of all the members of a set, it must be
applied in a way that propagates it to all the members of the set easily and intuitively. For
this reason, the RLOC modifiers of a set are placed at the start of that set. The following set
modifiers apply to RLOC constraints.

• RLOC

The RLOC constraint associated with a design element modifies the values of other
RLOC constraints below the element in the hierarchy of the set. Regardless of the set
type, RLOC values (row, column, extension or XY values) on an element always
propagate down the hierarchy and are added at lower levels of the hierarchy to RLOC
constraints on elements in the same set.

• “Relative Location Origin (RLOC_ORIGIN)”

• “Relative Location Range (RLOC_RANGE)”

Using RLOCs with Xilinx Macros

Xilinx-supplied flip-flop macros include an RLOC=R0C0 constraint on the underlying
primitive, which allows you to attach an RLOC to the macro symbol. (For Spartan-3,
Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5
devices, the macros include an RLOC=X0Y0 constraint.) This symbol links the underlying
primitive to the set that contains the macro symbol.

Simply attach an appropriate RLOC constraint to the instantiation of the actual Xilinx flip-
flop macro. The mapper adds the RLOC value that you specified to the underlying
primitive so that it has the desired value.

For example, in Figure 70-11, page 272, the RLOC = R1C1 constraint is attached to the
instantiation (Inst1) of an example macro. It is added to the R0C0 value of the RLOC
constraint on the flip-flop within the macro to obtain the new RLOC values. This functions
the same for Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X,
Virtex-4, and Virtex-5 macros except that the RLOC constraint uses XY designations.

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, if the RLOC=X1Y1 constraint is attached to Inst1 of a macro, the X0Y0
value of the RLOC constraint on the flip-flop within the macro would be used to obtain the
new RLOC values.
Constraints Guide www.xilinx.com Relative Location (RLOC) 271
10.1

http://www.xilinx.com

Xilinx Constraints
R

If you do not put an RLOC constraint on the flip-flop macro symbol, the underlying
primitive symbol is the lone member of a set. The mapper removes RLOC constraints from
a primitive that is the only member of a set or from a macro that has no RLOC objects
below it.

LOC and RLOC Propagation through Design Flattening

NGDBuild continues to propagate LOC constraints down the design hierarchy. It adds this
constraint to appropriate objects that are not members of a set. While RLOC constraint
propagation is limited to sets, the LOC constraint is applied from its start point all the way
down the hierarchy.

When the design is flattened, the row and column numbers of an RLOC constraint on an
element are added to the row and column numbers of the RLOC constraints of the set
members below it in the hierarchy. This feature gives you the ability to modify existing
RLOC values in submodules and macros without changing the previously assigned RLOC
values on the primitive symbols.

Specifying RLOC constraints to describe the spatial relationship of the set members to
themselves allows the members of the set to float anywhere on the die as a unit. You can,
however, fix the exact die location of the set members. The RLOC_ORIGIN constraint
allows you to change the RLOC values into absolute LOC constraints that respect the
structure of the set.

The design resolution program, NGDBuild, translates the RLOC_ORIGIN constraint into
LOC constraints. The row and column values of the RLOC_ORIGIN are added

Figure 70-11: Typical Use of a Xilinx Macro

FD

RLOC=R0C0

QCE

D
R
C

FD

RLOC = R0C0 (+R1C1)

= > RLOC = R1C1

RLOC = R1C1

Inst 1

Propagate R1C1

FDRE Macro

F
D

R
E

X4304
Constraints Guide www.xilinx.com Relative Location (RLOC) 272
10.1

http://www.xilinx.com

Xilinx Constraints
R

individually to the members of the set after all RLOC modifications have been made to
their row and column values by addition through the hierarchy. The final values are then
turned into LOC constraints on individual primitives.

Fixing Members of a Set at Exact Die Locations

As noted in the previous section, you can fix the members of a set at exact die locations
with the RLOC_ORIGIN constraint. You must use the RLOC_ORIGIN constraint with sets
that include BUFT symbols. However, for sets that do not include BUFT symbols, you can
limit the members of a set to a certain range on the die.

In this case, the set could “float” as a unit within the range until a final placement. Since
every member of the set must fit within the range, it is important that you specify a range
that defines an area large enough to respect the spatial structure of the set.

CLB-Based Row/Column/Slice Designations

The syntax of this constraint is:

RLOC_RANGE=Rm1Cn1:Rm2Cn2

where

• the relative row numbers (m1, m2) and column numbers (n1, n2) can be:

♦ non-zero positive numbers

♦ the wildcard (*) character

This syntax allows for three kinds of range specifications as follows.

• Rr1Cc1:Rr2Cc2
A rectangular region enclosed by rows r1, r2, and columns c1, c2

• R*Cc1:R*Cc2
A region enclosed by the columns c1 and c2 (any row number)

• Rr1C*:Rr2C*
A region enclosed by the rows r1 and r2 (any column number)

For the second and third kinds of specifications with wildcards, applying the wildcard
character (*) differently on either side of the separator colon creates an error. For example,
specifying R*C1:R2C* is an error since the wildcard asterisk is applied to rows on one side
and to columns on the other side of the separator colon.

Slice-Based XY Designations

The syntax of this constraint is:

RLOC_RANGE=Xm1Yn1:Xm2Yn2

where

• the relative X values (m1, m2) and Y values (n1, n2) can be:

♦ non-zero positive numbers

♦ the wildcard (*) character

This syntax allows for three kinds of range specifications:

• Xm1Yn1:Xm2Yn2
A rectangular region bounded by the corners Xm1Yn1 and Xm2Yn2

• X*Yn1:X*Ym2
The region on the Y-axis between n1 and n2 (any X value)
Constraints Guide www.xilinx.com Relative Location (RLOC) 273
10.1

http://www.xilinx.com

Xilinx Constraints
R

• Xm1Y*:Xm2Y*
A region on the X-axis between m1 and m2 (any Y value)

For the second and third kinds of specifications with wildcards, applying the wildcard
character (*) differently on either side of the separator colon creates an error. For example,
specifying X*Y1:X2Y* is an error since the wildcard asterisk is applied to the X value on one
side and to the Y value on the other side of the separator colon.

Specifying a Range

To specify a range, use the following syntax, which is equivalent to placing an
RLOC_RANGE constraint on the schematic.

• For CLB-based Row/Column/Slice Designations

set_name RLOC_RANGE=Rm1Cn1:Rm2Cn2

The range identifies a rectangular area. You can substitute a wildcard (*) character for
either the row number or the column number of both corners of the range.

• For Slice-based XY Designations

set_name RLOC_RANGE=Xm1Yn1:Xm2Yn2

The range identifies a rectangular area. You can substitute a wildcard (*) character for
either the X value or the Y value of both corners of the range.

The bounding rectangle applies to all elements in a relationally placed macro, not just to
the origin of the set.

The values of the RLOC_RANGE constraint are not simply added to the RLOC values of
the elements. In fact, the RLOC_RANGE constraint does not change the values of the
RLOC constraints on underlying elements. It is an additional constraint that is attached
automatically by the mapper to every member of a set.

The RLOC_RANGE constraint is attached to design elements in exactly the same way as
the RLOC_ORIGIN constraint. The values of the RLOC_RANGE constraint, like
RLOC_ORIGIN values, must be non-zero positive numbers since they directly correspond
to die locations.

If a particular RLOC set is constrained by an RLOC_ORIGIN or an RLOC_RANGE
constraint in the design netlist and is also constrained in the UCF file, the UCF file
constraint overrides the netlist constraint.

Toggling the Status of RLOC Constraints

Another important set modifier is the USE_RLOC constraint. It turns the RLOC constraints
on and off for a specific element or section of a set. USE_RLOC can be either TRUE or
FALSE.

The application of the USE_RLOC constraint is strictly based on hierarchy. A USE_RLOC
constraint attached to an element applies to all its underlying elements that are members of
the same set. If it is attached to a symbol that defines the start of a set, the constraint is
applied to all the underlying member elements, which represent the entire set.

However, if it is applied to an element below the start of the set (for example, E in
Figure 70-12, page 275), only the members of the set (H and I) below the specified element
are affected. You can also attach the USE_RLOC constraint directly to a primitive symbol
so that it affects only that symbol.

When the USE_RLOC=FALSE constraint is applied, the RLOC and set constraints are
removed from the affected symbols in the NCD file. This process is different than that
followed for the RLOC_ORIGIN constraint. For RLOC_ORIGIN, the mapper generates
Constraints Guide www.xilinx.com Relative Location (RLOC) 274
10.1

http://www.xilinx.com

Xilinx Constraints
R

and outputs a LOC constraint in addition to all the set and RLOC constraints in the PCF
file. The mapper does not retain the original constraints in the presence of a
USE_RLOC=FALSE constraint because these cannot be turned on again in later programs.

Figure 70-12, page 275 illustrates the use of the USE_RLOC constraint to mask an entire set
as well as portions of a set.

Applying the USE_RLOC constraint on U_SET sets is a special case because of the lack of
hierarchy in the U_SET set. Because the USE_RLOC constraint propagates strictly in a
hierarchical manner, the members of a U_SET set that are in different parts of the design
hierarchy must be tagged separately with USE_RLOC constraints; no single USE_RLOC
constraint is propagated to all the members of the set that lie in different parts of the
hierarchy.

Figure 70-12: Using the USE_RLOC Constraint to Control RLOC Application on
H_SET and HU_SET Sets

A

Design-top

USE_RLOC = FALSE

RLOC = R0C0

= > H SET = A/hset

RLOC = R1C0

= > H SET = A/hset

HU_SET = bar

Parameters removed

Parameters removed

RLOC = R0C1
HU_SET = bar

USE_RLOC = FALSE
D E

C

B

RLOC = R0C0

= > HU_SET = A/bar

RLOC = R1C0

= HU_SET = A/bar

G

F RLOC = R0C0

= > HU_SET = A/bar

RLOC = R1C0

= > HU_SET = A/bar

Parameters
removed

Parameters
removed

H

I

X4302

propagate
USE_RLOC
and remove
set parameters
below

apply
USE_RLOC
to H_SET
Constraints Guide www.xilinx.com Relative Location (RLOC) 275
10.1

http://www.xilinx.com

Xilinx Constraints
R

If you create a U_SET set through an instantiating macro, you can attach the USE_RLOC
constraint to the instantiating macro to allow it to propagate hierarchically to all the
members of the set.

You can create this instantiating macro by placing a U_SET constraint on a macro and
letting the mapper propagate that constraint to every symbol with an RLOC constraint
below it in the hierarchy.

Figure 70-13, page 276 illustrates an example of the use of the USE_RLOC=FALSE
constraint. The USE_RLOC=FALSE on primitive E removes it from the U_SET set, and
USE_RLOC=FALSE on element F propagates to primitive G and removes it from the
U_SET set.

While propagating the USE_RLOC constraint, the mapper ignores underlying USE_RLOC
constraints if it encounters elements higher in the hierarchy that already have USE_RLOC
constraints. For example, if the mapper encounters an underlying element with a
USE_RLOC=TRUE constraint during the propagation of a USE_RLOC=FALSE constraint,
it ignores the newly encountered TRUE constraint.

Choosing an RLOC Origin when Using Hierarchy Sets

To specify a single origin for an RLOC set, use the following syntax, which is equivalent to
placing an RLOC_ORIGIN constraint on the schematic.

• For CLB-based Row/Column/Slice Designations

set_name RLOC_ORIGIN=RmCn

where

♦ set_name can be the name of any type of RLOC set: a U_SET, an HU_SET, or a
system-generated H_SET

Figure 70-13: Using the USE_RLOC Constraint to Control RLOC Application on U_SET Sets

Design-top

X4303

G

A

U_SET = bar
RLOC = R0C0C

D

E
U_SET = bar

RLOC = R2C0

B

U_SET = bar
RLOC = R1C0

USE_RLOC = FALSE

F
U_SET = bar

USE_RLOC = FALSE

U_SET = bar

RLOC = R3C0

propagate USE_RLOC
and remove set parameters
below

Parameters
removed

Parameters
removed
Constraints Guide www.xilinx.com Relative Location (RLOC) 276
10.1

http://www.xilinx.com

Xilinx Constraints
R

♦ The origin itself is expressed as a row number and a column number representing
the location of the elements at RLOC=R0C0

• For Slice-based XY Designations

set_name RLOC_ORIGIN=XmYn

where

♦ set_name can be the name of any type of RLOC set: a U_SET, an HU_SET, or a
system-generated H_SET

♦ The origin itself is expressed as an X and Y value representing the location of the
elements at RLOC=X0Y0

When RLOC_ORIGIN is used in conjunction with an implicit H_SET (hierarchy set), it
must be placed on the element that is the start of the H_SET set, that is, on the lowest
common ancestor of all the members of the set.

If you apply RLOC_ORIGIN to an HU_SET constraint, place it on the element at the start
of the HU_SET set, that is, on an element with the HU_SET constraint.

However, since there could be several elements linked together with the HU_SET
constraint at the same node, the RLOC_ORIGIN constraint can be applied to only one of
these elements to prevent more than one RLOC_ORIGIN constraint from being applied to
the HU_SET set.

Similarly, when used with a U_SET constraint, the RLOC_ORIGIN constraint can be
placed on only one element with the U_SET constraint. If you attach the RLOC_ORIGIN
constraint to an element that has only an RLOC constraint, the membership of that element
in any set is removed, and the element is considered the start of a new H_SET set with the
specified RLOC_ORIGIN constraint attached to the newly created set.

In Figure 70-14, page 278, the elements B, C, D, F, and G are members of an H_SET set with
the name A/h_set. This figure is the same as Figure 70-5, page 265 except for the presence
of an RLOC_ORIGIN constraint at the start of the H_SET set (at A).

The RLOC_ORIGIN values are added to the resultant RLOC values at each of the member
elements to obtain the values that are then converted by the mapper to LOC constraints.
For example, the RLOC value of F, given by adding the RLOC value at E (R0C1) and that at
F (R0C0), is added to the RLOC_ORIGIN value (R2C3) to obtain the value of (R2C4), which
is then converted to a LOC constraint, LOC = CLB_R2C4.
Constraints Guide www.xilinx.com Relative Location (RLOC) 277
10.1

http://www.xilinx.com

Xilinx Constraints
R

Figure 70-15, page 279 shows an example of an RLOC_ORIGIN constraint modifying an
HU_SET constraint. The start of the HU_SET A/bar is given by element D or E. The
RLOC_ORIGIN attached to E, therefore, applies to this HU_SET set. On the other hand, the
RLOC_ORIGIN at A, which is the start of the H_SET set A/h_set, applies to elements B
and C, which are members of the H_SET set.

Figure 70-14: Using an RLOC_ORIGIN Constraint to Modify an H_SET Set

RLOC = R0C0 (+R2C3)

RLOC = R0C0 (+R0C1 + R2C3)

X6950

RLOC = R1C0 (+R2C3)

RLOC = R2C0 (+R2C3)

A

Design-top

RLOC_ORIGIN = R2C3

= >LOC = CLB_R2C3

RLOC = R0C1E

B

= >LOC = CLB_R2C4
F

G

Mapper adds ROC1 and
RLOC_ORIGIN
(R2C3) below to get final
LOC constraint

RLOC = R1C0 (+R0C1 + R2C3)

= >LOC = CLB_R3C4

= >LOC = CLB_R3C3C

= >LOC = CLB_R4C3D

Mapper adds RLOC_ORIGIN
(R2C3) below to get final
LOC constraint
Constraints Guide www.xilinx.com Relative Location (RLOC) 278
10.1

http://www.xilinx.com

Xilinx Constraints
R

RLOC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an instance

• Attribute Name: RLOC

• Attribute Values: See “RLOC Syntax” in this chapter.

Figure 70-15: Using an RLOC_ORIGIN to Modify H_SET and HU_SET Sets

A

Design-top

RLOC_ORIGIN = R1C2

RLOC = R0C0 (+R1C2)
= > H_SET = A/hset

RLOC = R1C0 (+R1C2)

= > LOC = CLB_R2C2

HU_SET = bar RLOC_ORIGIN = R3C3
HU_SET = bar

RLOC = R0C1
D E

C

B

RLOC = R0C0 (+R3C3)
= > HU_SET = A/bar

RLOC = R1C0 (+R3C3)
= > HU_SET = A/bar

G

F RLOC = R0C0 (+R0C1 + R3C3)
= > HU_SET = A/bar

RLOC = R1C0 (+R0C1 + R3C3)
= > HU_SET = A/bar

H

I

X9614

add RLOC_ORIGIN
and RLOC below

add RLOC_ORIGIN
to H_SET

= > LOC = CLB_R1C2

= > H_SET = A/hset

= > LOC = CLB_R3C3

= > LOC = CLB_R4C3 = > LOC = CLB_R4C4

= > LOC = CLB_R3C4

add RLOC_ORIGIN
to HU_SET
Constraints Guide www.xilinx.com Relative Location (RLOC) 279
10.1

http://www.xilinx.com

Xilinx Constraints
R

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute rloc: string;

Specify the VHDL constraint as follows for Virtex, Virtex-E, Spartan-II, and Spartan-IIE:

attribute rloc of {component_name|entity_name|label_name}:
{component|entity|label} is “[element]RmCn[.extension]”;

Specify the VHDL constraint as follows for Spartan-3, Spartan-3A, Spartan-3E, Virtex-II,
Virtex-II Pro, and Virtex-II Pro X, Virtex-4, and Virtex-5 devices:

attribute rloc of {component_name|entity_name|label_name}:
{component|entity|label} is “[element]XmYn[.extension]”;

For descriptions of valid values, see “Guidelines for Specifying Relative Locations” in this
chapter.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

The following code sample shows how to use RLOCs with a VHDL generate statement.
The code is a simple example showing how to auto-generate the RLOCs for several
instantiated FDEs. This methodology can be used with virtually any primitive.

LEN:for i in 0 to bits-1 generate
constant row :natural:=((width-1)/2)-(i/2);
constant column:natural:=0;
constant slice:natural:=0;
constant rloc_str : string := "R" & itoa(row) & "C" & itoa(column) &

".S" & itoa(slice);
attribute RLOC of U1: label is rloc_str;

begin
U1: FDE port map (

Q => dd(j),
D => ff_d,
C => clk,
CE =>lcl_en(en_idx));

end generate LEN;

Verilog Syntax Example

Specify as follows for Virtex, Virtex-E, Spartan-II and Spartan-IIE:

(* RLOC = “[element]RmCn[.extension]“ *)

Specify as follows for Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro,
Virtex-II Pro X, Virtex-4, and Virtex-5 devices:

(* RLOC = “[element]XmYn[.extension]” *)

For descriptions of valid value, see “Guidelines for Specifying Relative Locations” in this
chapter. For more information about Verilog syntax, see“Verilog” in this chapter.

UCF and NCF Syntax Example

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, the following statement specifies
that an instantiation of FF1 be placed in the CLB at row 4, column 4.

INST “/Virtex/design/FF1” RLOC=R4C4;

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, the following statement specifies
that an instantiation of elemA be placed in the X flip-flop in the CLB at row 0, column 1.
Constraints Guide www.xilinx.com Relative Location (RLOC) 280
10.1

http://www.xilinx.com

Xilinx Constraints
R

INST “/$1I87/elemA” RLOC=r0cl.S0;

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, the following statement specifies that an instantiation of FF1 be placed in
a slice that is +4 X coordinates and +4 Y coordinates relative to the origin slice.

INST “/V2/design/FF1” RLOC=X4Y4;

XCF Syntax Example

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices:

BEGIN MODEL “entity_name”

 INST "instance_name" rloc=[element]RmCn[.extension];

END;

For Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 devices:

BEGIN MODEL “entity_name”

 INST "instance_name" rloc=[element]XmYn[.extension];

END;

Floorplanner Syntax Example

D rag logic to locations on the Floorplan view. To write out RLOCs, save the constraints to
an NCF file via the Write RPM to NCF... command on the File pulldown menu. For more
information, see “Write RPM to NCF Command” in the Floorplanner help.
Constraints Guide www.xilinx.com Relative Location (RLOC) 281
10.1

http://www.xilinx.com

Xilinx Constraints
R

Relative Location Origin (RLOC_ORIGIN)

RLOC_ORIGIN Architecture Support
The RLOC_ORIGIN constraint applies to FPGA devices only.

RLOC_ORIGIN Applicable Elements
Instances or macros that are members of sets

RLOC_ORIGIN Propagation Rules
RLOC_ORIGIN is a macro constraint and any attachment to a net is illegal.

RLOC_ORIGIN Description
RLOC_ORIGIN is a placement constraint. It fixes the members of a set at exact die
locations. RLOC_ORIGIN must specify a single location, not a range or a list of several
locations. For more information, see “Set Modifiers” in the “Relative Location (RLOC)”
constraint.

RLOC_ORIGIN is required for a set that includes BUFT symbols. RLOC_ORIGIN cannot
be attached to a BUFT instance.

RLOC_ORIGIN Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an instance that is a member of a set

• Attribute Name: RLOC_ORIGIN

• Attribute Values: See “UCF and NCF Syntax Example” in this chapter.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute rloc_origin: string;

Specify the VHDL constraint as follows:

attribute rloc_origin of {component_name|entity_name|label_name}:
{component|entity|label} is “value”;

For Virtex, Virtex-E, Spartan-II, and Spartan-II E devices, value is RmCn.

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, value is XmYn.

For a description of valid values, see “UCF and NCF Syntax Example” in this chapter.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.
Constraints Guide www.xilinx.com Relative Location Origin (RLOC_ORIGIN) 282
10.1

http://www.xilinx.com

Xilinx Constraints
R

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* RLOC_ORIGIN = “value” *)

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, value is RmCn.

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, value is XmYn.

For a description of valid values, see “UCF and NCF Syntax Example” in this chapter.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

RLOC_ORIGIN Syntax for Architectures Using CLB-based Row/Column/Slice
Specifications

RLOC_ORIGIN=RmCn

where

• m and n are positive or negative integers (including zero) representing relative row
and column numbers, respectively

The following statement specifies that any RLOC statement applied to FF1 uses the CLB at
R4C4 as its reference point. For example, if RLOC=R0C2 for FF1, then the instantiation of
FF1 is placed in the CLB that occupies row 4 (R0 + R4), column 6 (C2 + C4).

INST “/archive/designs/FF1” RLOC_ORIGIN=R4C4;

RLOC_ORIGIN Syntax for Architectures Using Slice-Based XY Coordinates

This section applies to Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II
Pro X, Virtex-4, and Virtex-5 devices only.

RLOC_ORIGIN=XmYn

where

• m and n are positive or negative integers (including zero) representing relative X and
Y coordinates, respectively

The following statement specifies that an instantiation of FF1, which is a member of a set,
be placed in the slice at X4Y4 relative to FF1. For example, if RLOC=X0Y2 for FF1, then the
instantiation of FF1 is placed in the slice that is 0 rows to the right of X4 and 2 rows up from
Y4 (X4Y6).

INST “/archive/designs/FF1” RLOC_ORIGIN=X4Y4;

Floorplanner Syntax Example

See “Writing RPM to UCF” in the Floorplanner help.
Constraints Guide www.xilinx.com Relative Location Origin (RLOC_ORIGIN) 283
10.1

http://www.xilinx.com

Xilinx Constraints
R

Relative Location Range (RLOC_RANGE)

RLOC_RANGE Architecture Support
The RLOC_RANGE constraint applies to FPGA devices only.

RLOC_RANGE Applicable Elements
Instances or macros that are members of sets

RLOC_RANGE Description
RLOC_RANGE is a placement constraint. It is similar to RLOC_ORIGIN except that it
limits the members of a set to a certain range on the die. The range or list of locations is
meant to apply to all applicable elements with RLOCs, not just to the origin of the set.

RLOC_RANGE Propagation Rules
RLOC_RANGE is a macro constraint and any attachment to a net is illegal.

RLOC_RANGE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an instance that is a member of a set

• Attribute Name: RLOC_RANGE

• Attribute Values: See “UCF and NCF Syntax Example” in this chapter.

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute rloc_range: string;

Specify the VHDL constraint as follows:

attribute rloc_range of {component_name|entity_name|label_name}:
{component|entity|label} is “value”;

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE, value is Rm1Cn1:Rm2Cn2.

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices value is Xm1Yn1:Xm2Yn2.

For a description of valid values, see “UCF and NCF Syntax Example” in this chapter.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* RLOC_RANGE = “value” *)
Constraints Guide www.xilinx.com Relative Location Range (RLOC_RANGE) 284
10.1

http://www.xilinx.com

Xilinx Constraints
R

For Virtex, Virtex-E, Spartan-II, and Spartan-IIE devices, value is Rm1Cn1:Rm2Cn2.

For Spartan-3, Spartan-3A, Spartan-3E, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and
Virtex-5 devices, value is Xm1Yn1:Xm2Yn2.

For a description of valid values, see “UCF and NCF Syntax Example” in this chapter.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

For Architectures Using CLB-Based Row/Column/Slice Specifications

This section is applicable to Virtex, Virtex-E, Spartan-II and Spartan-IIE devices only.

RLOC_RANGE=Rm1Cn1:Rm2Cn2

where

• the relative row numbers (m1 and m2) and column numbers (n1 and n2) can be
positive integers (including zero)

• the wildcard (*) character

This syntax allows three kinds of range specifications, which are defined in “Set
Modifiers.”

The following statement specifies that an instantiation of the macro MACRO4 be placed
within a region that is enclosed by the rows R4-R10 and the columns C4-C10.

INST “/archive/designs/MACRO4” RLOC_RANGE=R4C4:R10C10;

For Architectures Using Slice-Based XY Specifications

This section is applicable to Spartan-3 devices and up, and Virtex-II devices and up.

RLOC_RANGE=Xm1Yn1:Xm2Yn2

where

• the relative X values (m1 and m2) and Y values (n1 and n2) can be:

♦ positive integers (including zero)

♦ the wildcard (*) character

This syntax allows three kinds of range specifications, which are defined in “Set
Modifiers.”

The following statement specifies that an instantiation of the macro MACRO4 be placed
relative to other members of the set within a region that is bounded by X4Y4 in the lower
left corner and by X10Y10 in the upper right corner.

INST “/archive/designs/MACRO4” RLOC_RANGE=X4Y4:X10Y10;

XCF Syntax Example

MODEL “entity_name” rloc_range=value;

BEGIN MODEL “entity_name”

 INST "instance_name" rloc_range=value;

END;
Constraints Guide www.xilinx.com Relative Location Range (RLOC_RANGE) 285
10.1

http://www.xilinx.com

Xilinx Constraints
R

PCF Syntax Example

RLOC_RANGE translates to a LOCATE constraint that has a range of sites. For example,
locate CLB_R1C1:CLB_R10C2
Constraints Guide www.xilinx.com Relative Location Range (RLOC_RANGE) 286
10.1

http://www.xilinx.com

Xilinx Constraints
R

Save Net Flag (SAVE NET FLAG)

SAVE NET FLAG Architecture Support
The SAVE NET FLAG constraint applies to FPGA devices only.

SAVE NET FLAG Applicable Elements
• Nets

• Signals

SAVE NET FLAG Description
SAVE NET FLAG is a basic mapping constraint. Attaching the Save Net flag to nets or
signals affects the mapping, placement, and routing of the design by preventing the
removal of unconnected signals.

The flag prevents the removal of loadless or driverless signals. For loadless signals, the S
constraint acts as a dummy OBUF load connected to the signal. For driverless signals the S
constraint acts as a dummy IBUF driver connected to the signal.

If you do not have the S constraint on a net, any signal that cannot be observed or
controlled via a path to an I/O primitive is removed.

The S constraint may prevent the trimming of logic connected to the signal. SAVE NET
FLAG can be abbreviated S NET FLAG.

SAVE NET FLAG Propagation Rules
SAVE NET FLAG is a net or signal constraint. Any attachment to a design element is
illegal.

SAVE NET FLAG prevents the removal of unconnected signals. If you do not have the S
constraint on a net, any signal not connected to logic or an I/O primitive is removed.

SAVE NET FLAG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net or signal

• Attribute Name: S

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute S: string;

Specify the VHDL constraint as follows:

attribute S of signal_name: signal is “{YES|NO|TRUE|FALSE}”;
Constraints Guide www.xilinx.com Save Net Flag (SAVE NET FLAG) 287
10.1

http://www.xilinx.com

Xilinx Constraints
R

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* S = “{YES|NO|TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The following statement specifies that the net or signal named $SIG_9 should not be
removed.

NET “$SIG_9” S;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" s=true;

END;
Constraints Guide www.xilinx.com Save Net Flag (SAVE NET FLAG) 288
10.1

http://www.xilinx.com

Xilinx Constraints
R

Schmitt Trigger (SCHMITT_TRIGGER)

SCHMITT_TRIGGER Architecture Support
The SCHMITT_TRIGGER constraint applies to the Coolrunner™-II CPLD only.

SCHMITT_TRIGGER Applicable Elements
All input pads and pad nets

SCHMITT_TRIGGER Description
This constraint causes the attached input pad to be configured with Schmitt Trigger
(hysteresis). This constraint applies to any input pad in the design.

SCHMITT_TRIGGER Propagation Rules
The constraint is a net or signal constraint. Any attachment to a macro, entity, or module is
illegal.

SCHMITT_TRIGGER Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net

• Attribute Name: SCHMITT_TRIGGER

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute SCHMITT_TRIGGER: string;

Specify the VHDL constraint as follows:

attribute SCHMITT_TRIGGER of signal_name: signal is “{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* SCHMITT_TRIGGER = “{TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'SCHMITT_TRIGGER mysignal';
Constraints Guide www.xilinx.com Schmitt Trigger (SCHMITT_TRIGGER) 289
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF Syntax Example

NET “mysignal” SCHMITT_TRIGGER;

XCF Syntax Example

BEGIN MODEL “entity_name”

 NET "signal_name" SCHMITT_TRIGGER=true;

END;
Constraints Guide www.xilinx.com Schmitt Trigger (SCHMITT_TRIGGER) 290
10.1

http://www.xilinx.com

Xilinx Constraints
R

Slew (SLEW)

SLEW Architecture Support
The SLEW constraint applies to all FPGA and CPLD devices.

SLEW Applicable Elements
The SLEW attribute should only be placed on a top-level output or bi-directional port.

SLEW Description
The SLEW constraint is used to define the slew rate (rate of transition) behavior of each
individual output to the device. This attribute may be placed on any output or bi-
directional port to specify the port slew rate to be SLOW (default), FAST, or QUIETIO
(Spartan-3A and Spartan-3A DSP). Use the slowest SLEW attribute available to the device
while still allowing applicable I/O timing to be met in order to minimize any possible
signal integrity issues.

The LVCMOS SLEW cannot be changed for Virtex-E and Spartan-IIE devices.

SLEW Propagation Rules
The SLEW attribute should only be placed on a top-level output or bi-directional port.

SLEW Syntax Examples
Following are syntax examples using this constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

Specify a new attribute to an output port, or bi-directional port:

• Attribute Name: SLEW

• Attribute Values: FAST, SLOW, QUIETIO (Spartan-3A only)

VHDL Syntax Example

Before using SLEW, declare it with the following syntax placed after the architecture
declaration, but before the begin statement in the top-level VHDL file:

attribute SLEW: string;

After SLEW has been declared, specify the VHDL constraint as follows:

attribute SLEW of {top_level_port_name}: signal is "value";

Where value is SLOW, FAST, QUIETIO (Spartan-3A only)

Example:

entity top is

 port (FAST_OUT: out std_logic);

end top;

architecture MY_DESIGN of top is
Constraints Guide www.xilinx.com Slew (SLEW) 291
10.1

http://www.xilinx.com

Xilinx Constraints
R

attribute SLEW: string;

 attribute SLEW of FAST_OUT: signal is "FAST";

begin

For a more detailed discussion of the basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Place the following attribute specification before the port declaration in the top-level
Verilog code:

(* SLEW="value" *)

Where value is SLOW, FAST, QUIETIO (Spartan-3A only)

Example:

module top (

 (* SLEW="FAST" *) output FAST_OUT

);

For a more detailed discussion of the basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

Placed on output or bi-directional port:

NET "top_level_port_name" SLEW="value";

Where value is SLOW, FAST, QUIETIO (Spartan-3A only).

Example:

NET "FAST_OUT" SLEW="FAST";

PACE Syntax Example

The SLEW attribute can be set from within the PACE (Assign Package Pins) tool by
selecting the appropriate value for the desired pin from the Design Objects window.
Constraints Guide www.xilinx.com Slew (SLEW) 292
10.1

http://www.xilinx.com

Xilinx Constraints
R

Slow (SLOW)

SLOW Architecture Support
The SLOW constraint applies to all FPGA and CPLD devices.

SLOW Applicable Elements
• Output primitives

• Output pads

• Bidirectional pads

You can also attach SLOW to the net connected to the pad component in a UCF file.
NGDBuild transfers SLOW from the net to the pad instance in the NGD file so that it can be
processed by the mapper. Use the following UCF syntax:

NET “net_name” SLOW;

SLOW Description
SLOW is a basic fitter constraint. It stipulates that the slew rate limited control should be
enabled.

SLOW Propagation Rules
SLOW is illegal when attached to a net except when the net is connected to a pad. In this
case, SLOW is treated as attached to the pad instance.

When attached to a design element, SLOW propagates to all applicable elements in the
hierarchy within the design element.

SLOW Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: SLOW

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute SLOW : string;

Specify the VHDL constraint as follows:

attribute SLOW of {signal_name|entity_name}: {signal|entity} is
“{TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.
Constraints Guide www.xilinx.com Slow (SLOW) 293
10.1

http://www.xilinx.com

Xilinx Constraints
R

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* SLOW = “{TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

ABEL Syntax Example

XILINX PROPERTY 'SLOW mysignal';

UCF and NCF Syntax Example

The following statement establishes a slow slew rate for an instantiation of the element y2.

INST “$1I87/y2” SLOW;

The following statement establishes a slow slew rate for the pad to which net1 is
connected.

NET “net1” SLOW;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Ports tab grid with I/O Configuration Options checked, click the FAST/SLOW
column in the row with the desired output port name and choose SLOW from the drop-
down list.
Constraints Guide www.xilinx.com Slow (SLOW) 294
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com Stepping (STEPPING) 295
10.1

Xilinx Constraints
R

Stepping (STEPPING)

STEPPING Architecture Support
The STEPPING constraint applies to the following devices:

• Virtex™-II

• Virtex-II Pro

• Virtex-II Pro X

• Virtex-4

• Virtex-5

• Spartan™-3A

• Spartan-3E

• CoolRunner™-II

STEPPING Applicable Elements
The STEPPING attribute is a global CONFIG constraint and is not attached to any instance
or signal name.

STEPPING Description
The STEPPING constraint is assigned a value that matches the step level marking on the
silicon; the step level identifies specific device capabilities. Xilinx recommends that the
step level be set for the design using the STEPPING constraint, otherwise, the software
uses a default target device.

For more information on STEPPING, see Xilinx Answer Record 20947, “Stepping FAQs.”

STEPPING Propagation Rules
The CONFIG STEPPING constraints applies to an entire design.

STEPPING Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

CONFIG STEPPING=”n”;

where

♦ n is the target stepping level (ES, SCD1, 1, 2, 3, ...)

For example:

CONFIG STEPPING="1";

http://www.xilinx.com
http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=answer+record&sub=20947

Xilinx Constraints
R

Suspend (SUSPEND)

SUSPEND Architecture Support
The SUSPEND constraint applies to Spartan™-3A devices only.

SUSPEND Applicable Elements
The SUSPEND attribute should only be placed on a top-level output or bi-directional port
targeting a Spartan-3A device.

SUSPEND Description
The SUSPEND constraint is used to define the behavior of each individual output to the
device when the FPGA is placed in the SUSPEND power-reduction mode. This attribute
may be placed on any output or bi-directional port to specify the port to be 3-stated
(3STATE), pulled high (3STATE_PULLUP), or low (3STATE_PULLDOWN), or driven to
the last value (3STATE_KEEPER or DRIVE_LAST_VALUE). The default value is 3STATE.

SUSPEND Propagation Rules
The SUSPEND attribute should only be placed on a top-level output or bi-directional port.

SUSPEND Syntax Examples
Following are syntax examples using this constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

Specify a new attribute to an output port or bidirectional port:

• Attribute Name: SUSPEND

• Attribute Values: DRIVE_LAST_VALUE, 3STATE, 3STATE_PULLUP,
3STATE_PULLDOWN or 3STATE_KEEPER

VHDL Syntax Example

Before using SUSPEND, declare it with the following syntax placed after the architecture
declaration but before the begin statement in the top-level VHDL file:

attribute SUSPEND: string;

After SUSPEND has been declared, specify the VHDL constraint as follows:

attribute SUSPEND of {top_level_port_name}: signal is "value";

Where value is DRIVE_LAST_VALUE, 3STATE, 3STATE_PULLUP, 3STATE_PULLDOWN
or 3STATE_KEEPER

Example:

entity top is

 port (STATUS: out std_logic);

end top;
Constraints Guide www.xilinx.com Suspend (SUSPEND) 296
10.1

http://www.xilinx.com

Xilinx Constraints
R

architecture MY_DESIGN of top is

attribute SUSPEND: string;

 attribute SUSPEND of STATUS: signal is "DRIVE_LAST_VALUE";

begin

For a more detailed discussion of the basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Place the following attribute specification before the port declaration in the top-level
Verilog code:

(* SUSPEND="value" *)

Where value is DRIVE_LAST_VALUE, 3STATE, 3STATE_PULLUP, 3STATE_PULLDOWN
or 3STATE_KEEPER

Example:

module top (

(* SUSPEND="DRIVE_LAST_VALUE" *) output STATUS

);

For a more detailed discussion of the basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

Placed on output or bi-directional port:

NET "top_level_port_name" SUSPEND="value";

Where value is DRIVE_LAST_VALUE, 3STATE, 3STATE_PULLUP, 3STATE_PULLDOWN
or 3STATE_KEEPER

Example:

NET "STATUS" SUSPEND="DRIVE_LAST_VALUE";

Pace Syntax Example

The SUSPEND attribute can be set from within the Pace (Assign Package Pins) tool by
selecting the appropriate value for the desired pin from the Design Objects window.
Constraints Guide www.xilinx.com Suspend (SUSPEND) 297
10.1

http://www.xilinx.com

Xilinx Constraints
R

System Jitter (SYSTEM_JITTER)

SYSTEM_JITTER Architecture Support
The SYSTEM_JITTER constraint applies to FPGA devices only.

SYSTEM_JITTER Applicable Elements
Applies globally to the entire design

SYSTEM_JITTER Description
This constraint specifies the system jitter of the design. SYSTEM_JITTER depends on
various design conditions -- for example, the number of flip-flops changing at one time
and the number of I/Os changing. The SYSTEM_JITTER constraint applies to all of the
clocks within a design. It can be combined with the INPUT_JITTER keyword on the
PERIOD constraint to generate the Clock Uncertainty value that is shown in the timing
report.

SYSTEM_JITTER Propagation Rules
Not applicable

SYSTEM_JITTER Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: SYSTEM_JITTER

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute SYSTEM_JITTER: string;

Specify the VHDL constraint as follows:

attribute SYSTEM_JITTER of
{component_name|signal_name|entity_name|label_name}:
{component|signal|entity|label} is “value ps”;

where

• value is a numerical value. The default is ps.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* SYSTEM_JITTER = “value ps” *)
Constraints Guide www.xilinx.com System Jitter (SYSTEM_JITTER) 298
10.1

http://www.xilinx.com

Xilinx Constraints
R

where

• value is a numerical value. The default is ps.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic UCF syntax is:

SYSTEM_JITTER= value ps;

where

• value is a numerical value. The default is ps.

XCF Syntax Example

MODEL “entity_name” SYSTEM_JITTER = value ps;
Constraints Guide www.xilinx.com System Jitter (SYSTEM_JITTER) 299
10.1

http://www.xilinx.com

Xilinx Constraints
R

Temperature (TEMPERATURE)

TEMPERATURE Architecture Support
The TEMPERATURE constraint applies to FPGA devices only.

TEMPERATURE Applicable Elements
Global

TEMPERATURE Description
TEMPERATURE is an advanced timing constraint. It allows the specification of the
operating junction temperature. TEMPERATURE provides a means of device delay
characteristics based on the specified temperature. Prorating is a scaling operation on
existing speed file delays and is applied globally to all delays.

Note: Newer devices may not support Temperature prorating until the timing information (speed
files) are marked as production status.

Each architecture has its own specific range of valid operating temperatures. If the entered
temperature does not fall within the supported range, TEMPERATURE is ignored and an
architecture-specific worst-case value is used instead. Also note that the error message for
this condition does not appear until static timing.

TEMPERATURE Propagation Rules
It is illegal to attach TEMPERATURE to a net.

TEMPERATURE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

TEMPERATURE=value [C |F| K];

where

• value is a real number specifying the temperature

• C, K, and F are the temperature units

♦ F is degrees Fahrenheit

♦ K is degrees Kelvin

♦ C is degrees Celsius, the default

The following statement specifies that the analysis for everything relating to speed file
delays assumes a junction temperature of 25 degrees Celsius.

TEMPERATURE=25 C;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.
Constraints Guide www.xilinx.com Temperature (TEMPERATURE) 300
10.1

http://www.xilinx.com

Xilinx Constraints
R

In the Misc tab, click Specify next to Temperature and fill out the temperature dialog box.
Constraints Guide www.xilinx.com Temperature (TEMPERATURE) 301
10.1

http://www.xilinx.com

Xilinx Constraints
R

Timing Ignore (TIG)

TIG Architecture Support
The TIG constraint applies to FPGA devices only.

TIG Applicable Elements
• Nets

• Pins

• Instances

TIG Description
TIG (Timing IGnore) is a basic timing constraint and a synthesis constraint. It causes paths
that fan forward from the point of application (of TIG) to be treated as if they do not exist
(for the purposes of the timing model) during implementation.

You may apply a TIG relative to a specific timing specification.

The value of TIG may be any of the following:

• Empty (global TIG that blocks all paths)

• A single TSid to block

• A comma separated list of TSids to block, for example

NET “RESET” TIG=TS_fast, TS_even_faster;

XST fully supports the TIG constraint.

TIG Propagation Rules
If TIG is attached to a net, primitive pin, or macro pin, all paths that fan forward from the
point of application of the constraint are treated as if they do not exist for the purposes of
timing analysis during implementation. In the following figure, NET C is ignored.
Constraints Guide www.xilinx.com Timing Ignore (TIG) 302
10.1

http://www.xilinx.com

Xilinx Constraints
R

However, note that the lower path of NET B that runs through the two OR gates would not
be ignored.

The following constraint would be attached to a net to inform the timing analysis tools that
it should ignore paths through the net for specification TS43:

Schematic syntax

TIG = TS43

UCF syntax

NET “net_name” TIG = TS43;

You cannot perform path analysis in the presence of combinatorial loops. Therefore, the
timing tools ignore certain connections to break combinatorial loops. You can use the TIG
constraint to direct the timing tools to ignore specified nets or load pins, consequently
controlling how loops are broken.

Figure 81-1: TIG Example

D Q

D Q

D Q

D Q

TIG

Ignored Paths

NET C

NET B

NET A

X8529
Constraints Guide www.xilinx.com Timing Ignore (TIG) 303
10.1

http://www.xilinx.com

Xilinx Constraints
R

TIG Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Note: The TIG constraint does not have any affect on the timing reported at the bottom of the XST
report. TIG only applies to the timing reported by Timing Analyzer.

Schematic Syntax Example

• Attach to a net or pin.

• Attribute Name: TIG

• Attribute Values: value

UCF and NCF Syntax Example

The basic UCF syntax is:

NET “net_name” TIG;

PIN “ff_inst.RST” TIG=TS_1;

INST “instance_name” TIG=TS_2;

TIG=TSidentifier1,..., TSidentifiern

where

• identifier refers to a timing specification that should be ignored

When attached to an instance, TIG is pushed to the output pins of that instance. When
attached to a net, TIG pushes to the drive pin of the net. When attached to a pin, TIG
applies to the pin.

The following statement specifies that the timing specifications TS_fast and
TS_even_faster is ignored on all paths fanning forward from the net RESET.

 NET “RESET” TIG=TS_fast, TS_even_faster;

XCF Syntax Example

Same as UCF syntax

XST fully supports the TIG constraint. TIG can be applied to the nets, situated in the CORE
files (EDIF, NGC) as well.

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Specify next to “False Paths (FROM TO TIG)” and fill out the
FROM/THRU/TO dialog box or click Specify next to “False Paths by Net (NET TIG)” and
fill out the Timing Ignore dialog box.
Constraints Guide www.xilinx.com Timing Ignore (TIG) 304
10.1

http://www.xilinx.com

Xilinx Constraints
R

PCF Syntax Example

item TIG;

item TIG = ;

item TIG = TSidentifier;

where

• item is:

♦ PIN name

♦ PATH name

♦ path specification

♦ NET name

♦ TIMEGRP name

♦ BEL name

♦ COMP name

♦ MACRO name
Constraints Guide www.xilinx.com Timing Ignore (TIG) 305
10.1

http://www.xilinx.com

Xilinx Constraints
R

Timing Group (TIMEGRP)

TIMEGRP Architecture Support
The TIMEGRP constraint applies to all FPGA and CPLD devices.

TIMEGRP Applicable Elements
• Design elements

• Nets

TIMEGRP Description
TIMEGRP is a basic grouping constraint. In addition to naming groups using the TNM
identifier, you can also define groups in terms of other groups. You can create a group that
is a combination of existing groups by defining a TIMEGRP constraint.

You can place TIMEGRP constraints in a constraints file (UCF and NCF).

You can use TIMEGRP attributes to create groups using the following methods.

• “Combining Multiple Groups into One”

• “Creating Groups by Exclusion”

• “Defining Flip-Flop Subgroups by Clock Sense”

Combining Multiple Groups into One
You can define a group by combining other groups. The following syntax example
illustrates the simple combining of two groups:

UCF Syntax Example One

TIMEGRP “big_group”=”small_group” “medium_group”;

In this syntax example, small_group and medium_group are existing groups defined using a
TNM or TIMEGRP attribute.

UCF Syntax Example Two

A circular definition, as shown below, causes an error when you run your design through
NGDBuild:

TIMEGRP “many_ffs”=”ffs1” “ffs2”;
TIMEGRP “ffs1”=”many_ffs” “ffs3”;

Creating Groups by Exclusion
You can define a group that includes all elements of one group except the elements that
belong to another group, as illustrated by the following syntax examples:

UCF Syntax Example One

TIMEGRP “group1”=”group2” EXCEPT “group3”;

where
Constraints Guide www.xilinx.com Timing Group (TIMEGRP) 306
10.1

http://www.xilinx.com

Xilinx Constraints
R

• group1 represents the group being defined. It contains all of the elements in group2
except those that are also in group3.

• group2 and group3 can be a:

♦ valid TNM

♦ predefined group

♦ TIMEGRP attribute

UCF Syntax Example Two

As illustrated by the following example, you can specify multiple groups to include or
exclude when creating the new group.

TIMEGRP “group1”=”group2” “group3” EXCEPT “group4” “group5”;

The example defines a group1 that includes the members of group2 and group3, except for
those members that are part of group4 or group5. All of the groups before the keyword
EXCEPT are included, and all of the groups after the keyword are excluded.

Defining Flip-Flop Subgroups by Clock Sense
You can create subgroups using the keywords RISING and FALLING to group flip-flops
triggered by rising and falling edges.

UCF Syntax Example One

TIMEGRP “group1”=RISING FFS;

TIMEGRP “group2”=RISING “ffs_group”;

TIMEGRP “group3”=FALLING FFS;

TIMEGRP “group4”=FALLING “ffs_group”;

where

• group1 to group4 are new groups being defined. The ffs_group must be a group that
includes only flip-flops.

Keywords, such as EXCEPT, RISING, and FALLING, appear in the documentation in
upper case; however, you can enter them in either lower or upper case. You cannot enter
them in a combination of lower and upper case.

UCF Syntax Example Two

The following example defines a group of flip-flops that switch on the falling edge of the
clock.

TIMEGRP “falling_ffs”=FALLING FFS;

Defining Latch Subgroups by Gate Sense
Groups of type LATCHES (no matter how these groups are defined) can be easily
separated into transparent high and transparent low subgroups. The TRANSHI and
TRANSLO keywords are provided for this purpose and are used in TIMEGRP statements
like the RISING and FALLING keywords for flip-flop groups.
Constraints Guide www.xilinx.com Timing Group (TIMEGRP) 307
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF Syntax Example

TIMEGRP “lowgroup”=TRANSLO “latchgroup”;

TIMEGRP “highgroup”=TRANSHI “latchgroup”;

Creating Groups by Pattern Matching
When creating groups, you can use wildcard characters to define groups of symbols whose
associated net names match a specific pattern. This is typically used in schematic designs
where net names are specified, not instance names. Synthesis plans typically use
INST/TNM syntax. For more information, see the “Timing Name (TNM)” constraint.

How to Use Wildcards to Specify Net Names

The wildcard characters, asterisk (*) and question mark (?), enable you to select a group of
symbols whose output net names match a specific string or pattern. The asterisk (*)
represents any string of zero or more characters. The question mark (?) indicates a single
character.

For example, DATA* indicates any net name that begins with “DATA,” such as DATA,
DATA1, DATA22, and DATABASE. The string NUMBER? specifies any net names that
begin with ‘‘NUMBER” and end with one single character, for example, NUMBER1 or
NUMBERS, but not NUMBER or NUMBER12.

You can also specify more than one wildcard character. For example, *AT? specifies any net
names that begin with any series of characters followed by ‘‘AT” and end with any one
character such as BAT1, CAT2, and THAT5. If you specify *AT*, you would match BAT11,
CAT26, and THAT50.

Pattern Matching Syntax

UCF Syntax Example

The syntax for creating a group using pattern matching is:

TIMEGRP “group_name”=predefined_group(“pattern”);

where

• predefined_group can be one of the following predefined groups only: FFS, LATCHES,
PADS, RAMS, CPUS, HSIOS, DSPS, BRAM_PORTA, BRAM_PORTB, or MULTS. For
information on the definition of these groups, see “UCF and NCF Syntax Example” in
the “Timing Name Net (TNM_NET)” constraint.

• pattern is any string of characters used in conjunction with one or more wildcard
characters.

When specifying a net name, you must use its full hierarchical path name so PAR can find
the net in the flattened design.

For FFS, RAMs, LATCHES, PADS, CPUS, DSPS, HSIOS, and MULTS, specify the output
net name. For pads, specify the external net name.

UCF Syntax Example

The following example illustrates a group that includes the flip-flops that source nets
whose names begin with $1I3/FRED.

TIMEGRP “group1”=FFS(“$1I3/FRED*”);
Constraints Guide www.xilinx.com Timing Group (TIMEGRP) 308
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF Syntax Example

The following example illustrates a group that excludes certain flip-flops whose output net
names match the specified pattern.

TIMEGRP “this_group”=FFS EXCEPT FFS(“a*”);

where

• this_group includes all flip-flops except those whose output net names begin with the
letter “a”

UCF Syntax Example

The following example defines a group named “some_latches.”

TIMEGRP “some_latches”=latches(“$113/xyz*”);

where

• the group some_latches contains all input latches whose output net names start with
“$1I3/xyz”

Additional Pattern Matching Details

In addition to using pattern matching when you create timing groups, you can specify a
predefined group qualified by a pattern any place you specify a predefined group. The
syntax below illustrates how pattern matching can be used within a timing specification.

UCF Syntax Example

TIMESPEC “TSidentifier”=FROM predefined_group(“pattern”) TO
predefined_group
(“pattern”) value;

Instead of specifying one pattern, you can specify a list of patterns separated by a colon.

UCF Syntax Example

TIMEGRP “some_ffs”=FFS(“a*:b?:c*d”);

where

• The group some_ffs contains flip-flops whose output net names adhere to one of the
following rules.

♦ Start with the letter “a”

♦ Contain two characters; the first character is “b”

♦ Start with “c” and end with “d”

Defining Area Groups Using Timing Groups

For more information, see “Defining From Timing Groups” in the “Area Group
(AREA_GROUP)” constraint.

TIMEGRP Propagation Rules
Applies to all elements or nets within the group
Constraints Guide www.xilinx.com Timing Group (TIMEGRP) 309
10.1

http://www.xilinx.com

Xilinx Constraints
R

TIMEGRP Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF Syntax Example

Following are TIMEGRP UCF Syntax Examples.

Example One

TIMEGRP “newgroup”=”existing_grp1” “existing_grp2” [“existing_grp3” .
. .];

where

• newgroup is a newly created group that consists of:

♦ existing groups created via TNMs

♦ predefined groups

♦ other TIMEGRP attributes

Example Two

TIMEGRP “GROUP1” = “gr2” “GROUP3”;
TIMEGRP “GROUP3” = FFS except “grp5”;

XCF Syntax Example

XST supports TIMEGRP with the following limitations:

• Groups Creation by Exclusion is not supported

• When a group is defined on the basis of another user group with pattern matching;

 TIMEGRP TG1 = FFS (machine*); # Supported

 TIMEGRP TG2 = TG1 (machine_clk1*); # Not supported

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Create next to “Group elements by element output net name”
and fill out the Time Group dialog box.

PCF Syntax Example

TIMEGRP name;

TIMEGRP name = list of elements;
Constraints Guide www.xilinx.com Timing Group (TIMEGRP) 310
10.1

http://www.xilinx.com

Xilinx Constraints
R

Timing Specifications (TIMESPEC)

TIMESPEC Architecture Support
The TIMESPEC constraint applies to all FPGA and CPLD devices.

TIMESPEC Applicable Elements
TS identifiers

TIMESPEC Description
TIMESPEC is a basic timing related constraint. TIMESPEC serves as a placeholder for
timing specifications, which are called TS attribute definitions. Every TS attribute begins
with the letters ‘‘TS” and ends with a unique identifier that can consist of letters, numbers,
or the underscore character (_).

TIMESPEC Propagation Rules
Not applicable

TIMESPEC Syntax Examples

UCF Syntax Example

A TS attribute defines the allowable delay for paths in your design. The basic syntax for a
TS attribute is:

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" value [units];

where

• TSidentifier is a unique name for the TS attribute

• value is a numerical value

• units can be ms, micro, ps, ns

TIMESPEC "TSidentifier"=PERIOD "timegroup_name" "TSidentifier" [* or /]
factor PHASE [+ |-] phase_value [units];

Syntax Rules

The following syntax rules apply.

Value Parameter

The value parameter defines the maximum delay for the attribute. Nanoseconds are the
default units for specifying delay time in TS attributes. You can also specify delay using
other units, such as picoseconds or megahertz.

Keywords

Keywords, such as FROM, TO, and TS, appear in the documentation in upper case.
However, you can enter them in the TIMESPEC primitive in either upper or lower case.
The characters in the keywords must be all upper case or all lower case. Examples of
acceptable keywords are:
Constraints Guide www.xilinx.com Timing Specifications (TIMESPEC) 311
10.1

http://www.xilinx.com

Xilinx Constraints
R

• FROM

• PERIOD

• TO

• from

• to

Examples of unacceptable keywords are:

• From

• To

• fRoM

• tO

TSidentifier Name

If a TSidentifier name is referenced in a property value, it must be entered in upper case
letters. For example, the TSID1 in the second constraint below must be entered in upper
case letters to match the TSID1 name in the first constraint.

TIMESPEC “TSID1” = FROM “gr1” TO “gr2” 50;
TIMESPEC “TSMAIN” = FROM “here” TO “there” TSID1 /2

Separators

A colon may be used as a separator instead of a space in all timing specifications.

TIMESPEC FROM-TO Syntax
Within TIMESPEC, you use the following UCF syntax to specify timing requirements
between specific end points.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group” value
units;

TIMESPEC “TSidentifier”=FROM “source_group” value units;

TIMESPEC “TSidentifier”=TO “dest_group” value units;

Unspecified FROM or TO, as in the second and third syntax statements, implies all points.

Note: Although you can use a FROM or TO statement to imply all points, you cannot use an
unspecified THRU statement by itself to imply all points.

The From-To statements are TS attributes that reside in the TIMESPEC primitive. The
parameters source_group and dest_group must be one of the following:

• Predefined groups

• Previously created TNM identifiers

• Groups defined in TIMEGRP symbols

• TPSYNC groups

Predefined groups consist of FFS, LATCHES, RAMS, PADS, CPUS, DSPS, HSIOS,
BRAMS_PORTA, BRAMS_PORTB, and MULTS. These groups are defined in the section
entitled “UCF and NCF Syntax Example,” in the discussion of TNM_NET, and are
discussed in “Grouping Constraints” of the Constraints Type chapter.
Constraints Guide www.xilinx.com Timing Specifications (TIMESPEC) 312
10.1

http://www.xilinx.com

Xilinx Constraints
R

Keywords, such as FROM, TO, and TS appear in the documentation in upper case.
However, you use them TIMESPEC in either upper or lower case. You cannot enter them in
a combination of lower and upper case.

The value parameter defines the maximum delay for the attribute. Nanoseconds are the
default units for specifying delay time in TS attributes. You can also specify delay using
other units, such as picoseconds or megahertz.

TIMESPEC Examples of FROM-TO TS Attributes
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Examples

TIMESPEC “TS_master”=PERIOD “master_clk” 50 HIGH 30;

TIMESPEC “TS_THIS”=FROM FFS TO RAMS 35;

TIMESPEC “TS_THAT”=FROM PADS TO LATCHES 35;

Constraints Editor Syntax Examples

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints. In the help index for the
Constraints Editor, double-click “TIMESPEC.”
Constraints Guide www.xilinx.com Timing Specifications (TIMESPEC) 313
10.1

http://www.xilinx.com

Xilinx Constraints
R

Timing Name (TNM)

TNM Architecture Support
The TNM constraint applies to all FPGA and CPLD devices.

TNM Applicable Elements
You can attach TNM constraints to a net, an element pin, a primitive, or a macro.

 You can attach the TNM constraint to the net connected to the pad component in a UCF
file. NGDBuild transfers the constraint from the net to the pad instance in the NGD file so
that it can be processed by the mapper. Use the following UCF syntax:

NET “net_name” TNM=”property_value”;

TNM Description
TNM is a basic grouping constraint. Use TNM (Timing Name) to identify the elements that
make up a group which you can then use in a timing specification.

TNM tags specific FFS, RAMs, LATCHES, PADS, CPUS, HSIOS, and MULTS as members
of a group to simplify the application of timing specifications to the group.

The RISING and FALLING keywords may also be used with TNMs.

TNM Propagation Rules
When attached to a net or signal, TNM propagates to all synchronous elements driven by
that net. No special propagation is required.

When attached to a design element, TNM propagates to all applicable elements in the
hierarchy within the design element.

The following rules apply to TNMs.

• TNMs applied to pad nets do not propagate forward through IBUFs. The TNM is
applied to the external pad. This case includes the net attached to the D input of an
IFD. See “Timing Name Net (TNM_NET)” if you want the TNM to trace forward from
an input pad net.

• TNMs applied to an IBUF instance are illegal.

• TNMs applied to the output pin of an IBUF propagate the TNM to the next
appropriate element.

• TNMs applied to an IBUF element stay attached to that element.

• TNMs applied to a clock-pad-net does not propagate forward through the clock
buffer.

• When TNM is applied to a macro, all the elements in the macro have that timing
name.

Special rules apply when using TNM with the PERIOD constraint for Virtex, Virtex-II,
Spartan-II CLKDLLs and CLKDLLHFs, and related architectures.
Constraints Guide www.xilinx.com Timing Name (TNM) 314
10.1

http://www.xilinx.com

Xilinx Constraints
R

Placing TNMs on Nets

You can place TNM on any net in the design. The constraint indicates that the TNM value
should be attached to all valid elements fed by all paths that fan forward from the tagged
net. Forward tracing stops at FFS, RAMS, LATCHES, PADS, CPUS, HSIOS, and MULTS.
TNMs do not propagate across IBUFs if they are attached to the input pad net.

Placing TNMs on Macro or Primitive Pins

You can place TNM on any macro or component pin in the design if the design entry
package allows placement of constraints on macro or primitive pins. The constraint
indicates that the TNM value should be attached to all valid elements fed by all paths that
fan forward from the tagged pin. Forward tracing stops at FFS, RAMS, LATCHES, PADS,
CPUS, HSIOS, and MULTS. The following illustration shows the valid elements for a TNM
attached to the schematic of a macro pin.

The syntax for the UCF file is:

PIN “pin_name” TNM=”FLOPS”;

Figure 84-1: TNM Placed on a Macro Pin

EN
D Q

EN

D Q
I

0

DI DO

ADDRS
WE

DI DO

ADDRS
WE

D

X8528

TNM=FFS:FLOPS

MEM

WE
A0
A1
A2
A3

O

FLOPS

DI DO

FLOPS
Constraints Guide www.xilinx.com Timing Name (TNM) 315
10.1

http://www.xilinx.com

Xilinx Constraints
R

Placing TNMs on Primitive Symbols

You can group individual logic primitives explicitly by flagging each symbol, as illustrated
by the following figure.

In the figure, the flip-flops tagged with the TNM form a group called “‘FLOPS.” The
untagged flip-flop on the right side of the drawing is not part of the group.

Place only one TNM on each symbol, driver pin, or macro driver pin.

Schematic Syntax Example

TNM=FLOPS;

UCF Syntax Example

INST “instance_name” TNM=FLOPS;

Placing TNMs on Macro Symbols

A macro is an element that performs some general purpose higher level function. It
typically has a lower level design that consists of primitives, other macros, or both,
connected together to implement the higher level function. An example of a macro
function is a 16-bit counter.

A TNM constraint attached to a macro indicates that all elements inside the macro (at all
levels of hierarchy below the tagged macro) are part of the named group.

When a macro contains more than one symbol type and you want to group only a single
type, use the TNM identifier in conjunction with one of the predefined groups: FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, DSPS, BRAM_PORTA, BRAM_PORTB, and MULTS as
indicated by the following syntax examples.

Figure 84-2: TNM on Primitive Symbols

D

TNM=FLOPS

TNM=FLOPS

Q

D Q

D Q

LOGIC

LOGIC

X8532

CLK
Constraints Guide www.xilinx.com Timing Name (TNM) 316
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF Syntax Example

INST “instance_name” TNM=FFS identifier;

INST “instance_name” TNM=RAMS identifier;

INST “instance_name” TNM=LATCHES identifier;

INST “instance_name” TNM=PADS identifier;

INST “instance_name” TNM=CPUS identifier;

INST “instance_name” TNM=HSIOS identifier;

INST “instance_name” TNM=MULTS identifier;

If multiple symbols of the same type are contained in the same hierarchical block, you can
simply flag that hierarchical symbol, as illustrated by the following figure. In the figure, all
flip-flops included in the macro are tagged with the TNM ‘‘FLOPS.” By tagging the macro
symbol, you need not tag each underlying symbol individually.

Figure 84-3: TNM on Macro Symbol

EN
D Q

EN

D Q
I

O

DI DO

ADDRS

TNM=FFS:FLOPS;RAMS:MEM

WE

DI DO

ADDRS
WE

Q5
Q4
Q3
Q2
Q1
Q0
EN

POS
PH0
PH1
PH2
PH3
NEG

X4678
Constraints Guide www.xilinx.com Timing Name (TNM) 317
10.1

http://www.xilinx.com

Xilinx Constraints
R

Placing TNMs on Nets or Pins to Group Flip-Flops and Latches

You can easily group flip-flops, latches, or both by flagging a common input net, typically
either a clock net or an enable net. If you attach a TNM to a net or driver pin, that TNM
applies to all flip-flops and input latches that are reached through the net or pin. That is,
that path is traced forward, through any number of gates or buffers, until it reaches a flip-
flop or input latch. That element is added to the specified TNM group.

The following figure illustrates the use of a TNM on a net that traces forward to create a
group of flip-flops. In the figure, the constraint TNM=FLOPS traces forward to the first
two flip-flops, which form a group called FLOPS. The bottom flip-flop is not part of the
group FLOPS.

Figure 84-4: TNM on Net Used to Group Flip-Flops

AND

FD Q

O

Pxx

X8553

FD Q

FD Q

Pxx

Pxx O

O

O

D1 D

C

D

C

D

C

IBUF
TNM=FLOPS

IBUF

GCLK

O

O

O CLK

XNOR

INV

INV

CLKNI

IPAD

IPAD

IPAD
I ICLKIN

I

I AIN0

BIN0

I

I

A0

B0

1

2

1

2

OBUF

OBUF

OBUF

I O
OPAD

OPAD

OPAD

I O

I O

BIT00

BIT01

BIT02

O

O

O

BIT0

BIT1

BIT2

D3

D2

Pxx

Pxx

Pxx
Constraints Guide www.xilinx.com Timing Name (TNM) 318
10.1

http://www.xilinx.com

Xilinx Constraints
R

The following figure illustrates placing a TNM on a clock net, which traces forward to all
three flip-flops and forms the group Q_FLOPS.

The TNM parameter on nets or pins is allowed to have a qualifier. For example, on
schematics:

TNM=FFS data;

TNM=RAMS fifo;

TNM=LATCHES capture;

In UCF files:

{NET|PIN} “net_or_pin_name” TNM=FFS data;

{NET|PIN} “net_or_pin_name” TNM=RAMS fifo;

{NET|PIN} “net_or_pin_name” TNM=LATCHES capture;

A qualified TNM is traced forward until it reaches the first storage element (FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, and MULTS). If that type of storage element matches the
qualifier, the storage element is given that TNM value. Whether or not there is a match, the
TNM is not traced through that storage element.

TNM parameters on nets or pins are never traced through a storage element (FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, and MULTS).

TNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net or a macro

Figure 84-5: TNM on Clock Pin Used to Group Flip-Flops

D Q

Q1

D Q

CLOCK

TNM=Q_FLOPS

D Q
D1

D3

D2 Q2

Q3

X8531
Constraints Guide www.xilinx.com Timing Name (TNM) 319
10.1

http://www.xilinx.com

Xilinx Constraints
R

• Attribute Name: TNM

• Attribute Values: identifier

For a discussion of identifier, see “UCF and NCF Syntax Example” in this chapter.

ABEL Syntax Example

XILINX PROPERTY 'TNM=identifier mysignal';

UCF and NCF Syntax Example

{NET|INST|PIN} “net_or_pin_or_inst_name” TNM=[predefined_group]
identifier;

where

• predefined_group can be:

♦ All of the members of a predefined group using the keywords FFS, RAMS,
LATCHES, PADS, CPUS, HSIOS, and MULTS as follows:

- FFS refers to all CLB and IOB flip-flops. Flip-flops built from function
generators are not included.

- RAMS refers to all RAMs for architectures with RAMS. This includes LUT
RAMS and BLOCK RAMS.

- PADS refers to all I/O pads.

- LATCHES refers to all CLB or IOB latches. Latches built from function
generators are not included.

- MULTS group the Spartan-3, Spartan-3A, and Spartan-3E and Virtex-II
registered multiplier.

- CPUS group the Virtex-II Pro or Virtex-II Pro X processor.

- HSIOS to group the Virtex-II Pro or Virtex-II Pro X gigabit transceiver.

♦ A subset of elements in a predefined_group can be defined as follows:

predefined_group (name_qualifier1... name_qualifiern)

where

- name_qualifiern can be any combination of letters, numbers, or underscores.
The name_qualifier type (net or instance) is based on the element type that
TNM is placed on. If the TNM is on a NET, the name_qualifier is a net name. If
the TNM is an instance (INST), the name_qualifier is an instance name.

For example:

NET clk TNM = FFS (my_flop) Grp1;

INST clk TNM = FFS (my_macro) Grp2;

• identifier can be any combination of letters, numbers, or underscores.

The identifier cannot be any the following reserved words: FFS, RAMS, LATCHES, PADS,
CPUS, HSIOS, MULTS, RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT.
Constraints Guide www.xilinx.com Timing Name (TNM) 320
10.1

http://www.xilinx.com

Xilinx Constraints
R

In addition, do not use the constraints in the table below, which are also reserved words, as
identifiers.

You can specify as many groups of end points as are necessary to describe the performance
requirements of your design. However, to simplify the specification process and reduce the
place and route time, use as few groups as possible.

XCF Syntax Example

See “UCF and NCF Syntax Example” in this chapter.

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Create next to “Group elements by instance name” or Create
next to “Group elements by hierarchy” and fill out the Time Name dialog box.

Table 84-1: Reserved Words (Constraints)

ADD ALU ASSIGN

BEL BLKNM CAP

CLKDV_DIVIDE CLBNM CMOS

CYMODE DECODE DEF

DIVIDE1_BY DIVIDE2_BY DOUBLE

DRIVE DUTY_CYCLE_
CORRECTION

FAST

FBKINV FILE F_SET

HBLKNM HU_SET H_SET

INIT INIT OX INTERNAL

IOB IOSTANDARD LIBVER

LOC LOWPWR MAP

MEDFAST MEDSLOW MINIM

NODELAY OPT OSC

RES RLOC RLOC_ORIGIN

RLOC_RANGE SCHNM SLOW

STARTUP_WAIT SYSTEM TNM

TRIM TS TTL

TYPE USE_RLOC U_SET
Constraints Guide www.xilinx.com Timing Name (TNM) 321
10.1

http://www.xilinx.com

Xilinx Constraints
R

Timing Name Net (TNM_NET)

TNM_NET Architecture Support
The TNM_NET constraint applies to FPGA devices only.

TNM_NET Applicable Elements
Nets

TNM_NET Description
TNM_NET is a basic grouping constraint. TNM_NET (timing name for nets) identifies the
elements that make up a group, which can then be used in a timing specification.
TNM_NET is essentially equivalent to TNM on a net except for input pad nets.

Special rules apply when using TNM_NET with the PERIOD constraint for
DLL/DCM/PLLs. For more information, see “PERIOD Specifications on CLKDLLs,
DCMs and PLLs” in the “Period (PERIOD)” constraint.

A TNM_NET is a property that you normally use in conjunction with an HDL design to tag
a specific net. All downstream synchronous elements and pads tagged with the TNM_NET
identifier are considered a group.

TNM_NET (Timing Name - Net) tags specific synchronous elements, pads, and latches as
members of a group to simplify the application of timing specifications to the group.
NGDBuild never transfers a TNM_NET constraint from the attached net to an input pad,
as it does with the TNM constraint.

TNM_NET Rules
The following rules apply to TNM_NET:

• TNM_NETs applied to pad nets propagate forward through the IBUF or OBUF and
any other combinatorial logic to synchronous logic or pads.

• TNM_NETs applied to a clock-pad-net propagate forward through the clock buffer.

• Special rules apply when using TNM_NET with the PERIOD constraint for Virtex™,
Spartan™-II, Virtex-II, Virtex-II Pro, Virtex-II Pro X, Virtex-4, and Virtex-5 DLLs,
DCMs, and PLLs.

Use TNM_NET to define certain types of nets that cannot be adequately described by the
TNM constraint.
Constraints Guide www.xilinx.com Timing Name Net (TNM_NET) 322
10.1

http://www.xilinx.com

Xilinx Constraints
R

For example, consider the following design

Figure 85-1: TNM Associated with the IPAD

In the preceding design, a TNM associated with the IPAD symbol includes only the PAD
symbol as a member in a timing analysis group. For example, the following UCF file entry
creates a time group that includes the IPAD symbol only.

NET “PADCLK” TNM= “PADGRP”; (UCF file example)

However, using TNM to define a time group for the net PADCLK creates an empty time
group.

NET “PADCLK” TNM=FFS “FFGRP”;(UCF file example)

All properties that apply to a pad are transferred from the net to the PAD symbol. Since the
TNM is transferred from the net to the PAD symbol, the qualifier, “FFS” does not match the
PAD symbol.

To overcome this obstacle for schematic designs using TNM, you can create a time group
for the INTCLK net.

NET “INTCLK” TNM=FFS FFGRP;(UCF file example)

However, for HDL designs, the only meaningful net names are the ones connected directly
to pads. Then, use TNM_NET to create the FFGRP time group.

NET PADCLK TNM_NET=FFS FFGRP;(UCF file example)

NGDBuild does not transfer a TNM_NET constraint from a net to an IPAD as it does with
TNM.

You can use TNM_NET in NCF or UCF files as a property attached to a net in an input
netlist (EDIF or NGC). TNM_NET is not supported in PCF files.

You can use TNM_NET with nets or instances. If TNM_NET is used with any other object
such as a pin or symbol, a warning is generated and the TNM_NET definition is ignored.

TNM_NET Propagation Rules
It is illegal to attach TNM_NET to a design element.

C
INTCLK

BUFG

PADCLK

FFA

C

FFB

X8437

IPAD
Constraints Guide www.xilinx.com Timing Name Net (TNM_NET) 323
10.1

http://www.xilinx.com

Xilinx Constraints
R

TNM_NET Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net

• Attribute Name: TNM_NET

• Attribute Values: identifier

For a discussion of identifier, see “UCF and NCF Syntax Example” in this chapter.

UCF and NCF Syntax Example

{NET|INST} “net_name” TNM_NET=[predefined_group:]identifier;

where

• predefined_group can be:

♦ All of the members of a predefined group using the keywords FFS, RAMS, PADS,
MULTS, HSIOS, CPUS, DSPS, BRAMS_PORTA, BRAMS_PORTB or LATCHES as
follows:

- FFS refers to all CLB and IOB flip-flops. Flip-flops built from function
generators are not included.

- RAMS refers to all RAMs for architectures with RAMS. This includes LUT
RAMS and BLOCK RAMS.

- PADS refers to all I/O pads.

- MULTS group the Spartan-3, Spartan-3A, and Spartan-3E and Virtex-II
registered multiplier.

- CPUS group the Virtex-II Pro or Virtex-II Pro X processor.

- DSPS is used to group DSP elements like the Virtex-4 DSP48.

- HSIOS group the Virtex-II Pro or Virtex-II Pro X gigabit transceiver.

- LATCHES refers to all CLB or IOB latches. Latches built from function
generators are not included.

♦ A subset of elements in a predefined_group can be defined as follows:

predefined_group (name_qualifier1... name_qualifiern)

where

- name_qualifiern can be any combination of letters, numbers, or underscores.
The name_qualifier type (net or instance) is based on the element type that
TNM_NET is placed on. If the TNM_NET is on a NET, the name_qualifier is a
net name. If the TNM_NET is an instance (INST), the name_qualifier is an
instance name.

For example:

NET clk TNM_NET = FFS (my_flop) Grp1;

INST clk TNM_NET = FFS (my_macro) Grp2;

• identifier can be any combination of letters, numbers, or underscores.

The identifier cannot be any the following reserved words: FFS, RAMS, LATCHES, PADS,
CPUS, HSIOS, MULTS, RISING, FALLING, TRANSHI, TRANSLO, or EXCEPT.
Constraints Guide www.xilinx.com Timing Name Net (TNM_NET) 324
10.1

http://www.xilinx.com

Xilinx Constraints
R

In addition, do not use the constraints/reserved words located in Table 84-1, page 321 as
identifiers.

The following statement identifies all flip-flops fanning out from the PADCLK net as a
member of the timing group GRP1.

NET “PADCLK” TNM_NET=FFS ”GRP1”;

XCF Syntax Example

XST supports TNM_NET with the following limitation: only a single pattern supported for
predefined groups.

The following command syntax is supported:

NET “PADCLK” TNM_NET=FFS ”GRP1”;

The following command syntax is not supported:

NET “PADCLK” TNM_NET = FFS(machine/*:xcounter/*) TG1;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Create next to “Group elements associated by Nets” and fill out
the Time Name dialog box.
Constraints Guide www.xilinx.com Timing Name Net (TNM_NET) 325
10.1

http://www.xilinx.com

Xilinx Constraints
R

Timing Point Synchronization (TPSYNC)

TPSYNC Architecture Support
The TPSYNC constraint applies to FPGA devices only.

TPSYNC Applicable Elements
• Nets

• Instances

• Pins

TPSYNC Description
TPSYNC is an advanced grouping constraint. It flags a particular point or a set of points
with an identifier for reference in subsequent timing specifications. You can use the same
identifier on several points, in which case timing analysis treats the points as a group.

When the timing of a design must be designed from or to a point that is not a synchronous
element or I/O pad, the following rules apply if a TPSYNC timing point is attached to a
net, macro pin, output or input pin of a primitive, or an instance.

• A net: the source of the net is identified as a potential source or destination for timing
specifications.

• A macro pin: all of the sources inside the macro that drive the pin to which the
constraint is attached are identified as potential sources or destinations for timing
specifications. If the macro pin is an input pin (that is, if there are no sources for the
pin in the macro), then all of the load pins in the macro are flagged as synchronous
points.

 In the following diagram, POINTY applies to the inverter.

D Q

Q1

D Q

CLOCK

D Q
D1

D3

D2 Q2

Q3

X8551

TPSYNC=POINTX

TPSYNC=POINTY
Constraints Guide www.xilinx.com Timing Point Synchronization (TPSYNC) 326
10.1

http://www.xilinx.com

Xilinx Constraints
R

Figure 86-1: TPSYNCs Attached to Macro Pins

• The output pin of a primitive — the primitive’s output is flagged as a potential source
or destination for timing specifications.

• The input pin of a primitive — the primitive’s input is flagged as a potential source or
destination for timing specifications.

• An instance — the output of that element is identified as a potential source or
destination for timing specifications.

• A primitive symbol—Attached to a primitive symbol, TPSYNC identifies the outputs
of that element as a potential source or destination for timing specifications. See the
following figure.

Figure 86-2: TPSYNC Attached to a Primitive Symbol

The use of a TPSYNC timing point to define a synchronous point in a design implies that
the flagged point cannot be merged into a function generator. For example, consider the
following diagram.

Figure 86-3: Working with Two Gates

In this example, because of the TPSYNC definition, the two gates cannot be merged into a
single function generator.

TPSYNC=POINTX

X8552

TPSYNC=FOO

Function
Generator

Function
Generator

X8758
Constraints Guide www.xilinx.com Timing Point Synchronization (TPSYNC) 327
10.1

http://www.xilinx.com

Xilinx Constraints
R

TPSYNC Propagation Rules
See “TPSYNC Description.”

TPSYNC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attached to a net, instance, or pin

• Attribute Name: TPSYNC

• Attribute Values: identifier

where

• identifier is a name that is used in timing specifications in the same way that groups
are used

UCF and NCF Syntax Example

NET “net_name” TPSYNC=identifier;

INST “instance_name” TPSYNC=identifier;

PIN “pin_name” TPSYNC=identifier;

where

• identifier is a name that is used in timing specifications in the same way that groups
are used

All flagged points are used as a source or destination or both for the specification where
the TPSYNC identifier is used.

The name for the identifier must be unique to any identifier used for a TNM or TNM_NET
grouping constraint.

The following statement identifies latch as a potential source or destination for timing
specifications for the net logic_latch.

NET “logic_latch” TPSYNC=latch;
Constraints Guide www.xilinx.com Timing Point Synchronization (TPSYNC) 328
10.1

http://www.xilinx.com

Xilinx Constraints
R

Timing Thru Points (TPTHRU)

TPTHRU Architecture Support
The TPTHRU constraint applies to FPGA devices only.

TPTHRU Applicable Elements
• Nets

• Pins

• Instances

TPTHRU Description
TPTHRU is an advanced grouping constraint. It flags a particular point or a set of points
with an identifier for reference in subsequent timing specifications. If you use the same
identifier on several points, timing analysis treats the points as a group. For more
information, see the “Timing Specifications (TIMESPEC)” constraint.

Use the TPTHRU constraint when it is necessary to define intermediate points on a path to
which a specification applies. For more information, see the “Timing Specification
Identifier (TSidentifier)” constraint.

TPTHRU Propagation Rules
Not applicable

TPTHRU Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net, instance, or pin

• Attribute Name: TPTHRU

• Attribute Values: identifier

For a discussion of identifier, see “UCF and NCF Syntax Example” in this chapter.

UCF and NCF Syntax Example

The basic UCF syntax is as follows:

NET “net_name” TPTHRU=identifier;

INST “instance_name” TPTHRU=identifier;

PIN “instance_name.pin_name” TPTHRU=”thru_group_name”;

where

• identifier is a name used in timing specifications for further qualifying timing paths
within a design
Constraints Guide www.xilinx.com Timing Thru Points (TPTHRU) 329
10.1

http://www.xilinx.com

Xilinx Constraints
R

The name for the identifier must be different from any identifier used for a TNM
constraint.

Using TPTHRU in a FROM TO Constraint

It is sometimes convenient to define intermediate points on a path to which a specification
applies. This defines the maximum allowable delay and has the syntax shown in the
following sections.

UCF Syntax with TIMESPEC

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point”] TO “dest_group” allowable_delay [units];

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point”] allowable_delay [units];

where

• identifier is an ASCII string made up of the characters A..Z, a..z, 0..9, and underscore
(_)

• source_group and dest_group are user-defined groups, predefined groups or TPSYNCs

• thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
constraint

• allowable_delay is the timing requirement

• units is an optional field to indicate the units for the allowable delay. Default units are
nanoseconds, but the timing number can be followed by ps, ns, micro, ms, GHz, MHz,
or KHz to indicate the intended units.

The example shows how to use the TPTHRU constraint with the THRU constraint on a
schematic. The UCF syntax is as follows.

INST “FLOPA” TNM=”A”;

INST “FLOPB” TNM=”B”;

NET “MYNET” TPTHRU=”ABC”;

TIMESPEC “TSpath1”=FROM “A” THRU “ABC” TO “B” 30;

The following statement identifies the net on_the_way as an intermediate point on a path
to which the timing specification named “here” applies.

NET “on_the_way” TPTHRU=”here”;

Note: The following NCF construct is not supported.

TIMESPECT “TS_1”=THRU “Thru_grp” 30.0

XCF Syntax Example

Not supported

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Advanced tab, click Create next to “Timing THRU Points (TPTHRU)” and then fill
out the Timing THRU Point dialog box.
Constraints Guide www.xilinx.com Timing Thru Points (TPTHRU) 330
10.1

http://www.xilinx.com

Xilinx Constraints
R

PCF Syntax Example

PATH "name"=FROM "source" THRU "thru_pt1" ...THRU "thru_ptn" TO
"destination";

You are not required to have a FROM, THRU, and TO. You can have almost any
combination (such as FROM-TO, FROM-THRU-TO, THRU-TO, TO, FROM, FROM-
THRU-THRU-THRU-TO, and FROM-THRU). There is no restriction on the number of
THRU points. The source, thru points, and destination can be a net, bel, comp, macro, pin,
or timegroup.
Constraints Guide www.xilinx.com Timing Thru Points (TPTHRU) 331
10.1

http://www.xilinx.com

Xilinx Constraints
R

Timing Specification Identifier (TSidentifier)

TSidentifier Architecture Support
The TSindentifier constraint applies to all FPGA and CPLD devices.

TSidentifier Applicable Elements
TIMESPEC keywords

TSidentifier Description
TSidentifier is a basic timing constraint. TSidentifier properties beginning with the letters
“TS” are used with the TIMESPEC keyword in a UCF file. The value of TSidentifier
corresponds to a specific timing specification that can then be applied to paths in the
design.

TSidentifier Propagation Rules
It is illegal to attach TSidentifier to a net, signal, or design element.

All the following syntax definitions use a space as a separator. The use of a colon (:) as a
separator is optional.

TSidentifier Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Examples

Following are the UCF and NCF syntax examples:

• “Defining a Maximum Allowable Delay”

• “Defining Intermediate Points (UCF)”

• “Defining a Linked Specification”

• “Defining a Clock Period”

• “Specifying Derived Clocks”

• “Ignoring Paths”

Defining a Maximum Allowable Delay

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group”
allowable_delay [units];

Defining Intermediate Points (UCF)

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point1”... “thru_pointn”] TO “dest_group” allowable_delay
[units];

where

• identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _
Constraints Guide www.xilinx.com Timing Specification Identifier (TSidentifier) 332
10.1

http://www.xilinx.com

Xilinx Constraints
R

• source_group and dest_group are user-defined or predefined groups

• thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
constraint

• allowable_delay is the timing requirement value

• units is an optional field to indicate the units for the allowable delay. The default units
are nanoseconds (ns), but the timing number can be followed by ps, ns, micro, ms,
GHz, MHz, or kHz to indicate the intended units.

Defining a Linked Specification

This allows you to link the timing number used in one specification to another
specification.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group”
another_TSid [/ | *] number;

where

• identifier is an ASCII string made up of the characters A-Z, a-z, 0-9, and _

• source_group and dest_group are user-defined or predefined groups

• another_Tsid is the name of another timespec

• number is a floating point number

Defining a Clock Period

This allows more complex derivative relationships to be defined as well as a simple clock
period.

TIMESPEC “TSidentifier”=PERIOD “TNM_reference” value [units] [{HIGH |
LOW} [high_or_low_time [hi_lo_units]]] INPUT_JITTER value;

where

• identifier is a reference identifier with a unique name

• TNM_reference is the identifier name attached to a clock net (or a net in the clock path)
using a TNM constraint

• value is the required clock period

• units is an optional field to indicate the units for the allowable delay. The default units
are nanoseconds (ns), but the timing number can be followed by micro, ms, ps, ns,
GHz, MHz, or kHz to indicate the intended units

• HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, micro, ms,
ns or % if the High or Low time is an actual time measurement.

Specifying Derived Clocks

TIMESPEC “TSidentifier”=PERIOD “TNM_reference”
“another_PERIOD_identifier” [/ | *] number [{HIGH | LOW}
[high_or_low_time [hi_lo_units]]] INPUT_JITTER value;

where
Constraints Guide www.xilinx.com Timing Specification Identifier (TSidentifier) 333
10.1

http://www.xilinx.com

Xilinx Constraints
R

• TNM_reference is the identifier name attached to a clock net (or a net in the clock path)
using a TNM constraint

• another_PERIOD_identifier is the name of the identifier used on another period
specification

• number is a floating point number

• HIGH or LOW can be optionally specified to indicate whether the first pulse is to be
High or Low

• high_or_low_time is the optional High or Low time, depending on the preceding
keyword. If an actual time is specified, it must be less than the period. If no High or
Low time is specified, the default duty cycle is 50 percent.

• hi_lo_units is an optional field to indicate the units for the duty cycle. The default is
nanoseconds (ns), but the High or Low time number can be followed by ps, micro, ms,
or % if the High or Low time is an actual time measurement.

Ignoring Paths

Note: This form is not supported for CPLD devices.

There are situations in which a path that exercises a certain net should be ignored because
all paths through the net, instance, or instance pin are not important from a timing
specification point of view.

TIMESPEC “TSidentifier”=FROM “source_group” TO “dest_group” TIG;

or

TIMESPEC “TSidentifier”=FROM “source_group” THRU “thru_point” [THRU
“thru_point1”... “thru_pointn”] TO “dest_group” TIG;

where

• identifier is an ASCII string made up of the characters A-Z, a-z 0-9, and _

• source_group and dest_group are user-defined or predefined groups

• thru_point is an intermediate point used to qualify the path, defined using a TPTHRU
constraint

The following statement says that the timing specification TS_35 calls for a maximum
allowable delay of 50 ns between the groups “here” and “there”.

TIMESPEC “TS_35”=FROM “here” TO “there” 50;

The following statement says that the timing specification TS_70 calls for a 25 ns clock
period for clock_a, with the first pulse being High for a duration of 15 ns.

TIMESPEC “TS_70”=PERIOD “clock_a” 25 high 15;

For more information, see “Logical Constraints” and “Physical Constraints” in Chapter 2,
“Constraint Types.”

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

You can enter clock period timing constraints in the Global tab. Input setup time and clock-
to-output delay can be entered for specific pads in the Ports tab, or for all pads related to a
given clock in the Global tab. Combinatorial pad-to-pad delays can be entered in the
Advanced tab, or for all pad-to-pad paths in the Global tab.
Constraints Guide www.xilinx.com Timing Specification Identifier (TSidentifier) 334
10.1

http://www.xilinx.com

Xilinx Constraints
R

PCF Syntax Example

The same as the UCF syntax without the TIMESPEC keyword.

FPGA Editor Syntax Example

To set constraints, in the FPGA Editor main window, click Properties of Selected Items
from the Edit menu. With a component, net, path, or pin selected, you can set a TSid from
the Physical Constraints tab.
Constraints Guide www.xilinx.com Timing Specification Identifier (TSidentifier) 335
10.1

http://www.xilinx.com

Xilinx Constraints
R

U_SET

U_SET Architecture Support
The U_SET constraint applies to FPGA devices only.

U_SET Applicable Elements
To see which design elements can be used with which device families, see the Xilinx®
Libraries Guides. For more information, see the device data sheet.

1. Registers

2. FMAP

3. Macro Instance

4. ROM

5. RAMS, RAMD

6. BUFT

7. MULT18X18S

8. RAMB4_Sm_Sn, RAMB4_Sn

9. RAMB16_Sm_Sn, RAMB16_Sn

10. RAMB16

11. DSP48

U_SET Description
U_SET is an advanced mapping constraint. It groups design elements with attached RLOC
constraints that are distributed throughout the design hierarchy into a single set. The
elements that are members of a U_SET can cross the design hierarchy. You can arbitrarily
select objects without regard to the design hierarchy and tag them as members of a U_SET.
For more information, see “U_SET” in this chapter.

U_SET Propagation Rules
U_SET is a macro constraint and any attachment to a net is illegal.

U_SET Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: U_SET

• Attribute Values: name

where
Constraints Guide www.xilinx.com U_SET 336
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

• name is the identifier of the set

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute U_SET: string;

Specify the VHDL constraint as follows:

attribute U_SET of {component_name|label_name}: {component|label} is
“name”;

where

• name is the identifier of the set

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* U_SET = “name” *)

where

• name is the identifier of the set

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic UCF syntax is:

INST “instance_name” U_SET=name;

where

• name is the identifier of the set

This name is absolute. It is not prefixed by a hierarchical qualifier.

The following statement specifies that the design element ELEM_1 be in a set called
JET_SET.

INST “$1I3245/ELEM_1” U_SET=JET_SET;

XCF Syntax Example

BEGIN MODEL “entity_name”

 INST "instance_name" U_SET=uset_name;

END;
Constraints Guide www.xilinx.com U_SET 337
10.1

http://www.xilinx.com

Xilinx Constraints
R

Use Relative Location (USE_RLOC)

USE_RLOC Architecture Support
The USE_RLOC constraint applies to FPGA devices only.

USE_RLOC Applicable Elements
Instances or macros that are members of sets

USE_RLOC Description
USE_RLOC is an advanced mapping and placement constraint. It turns RLOC on or off for
a specific element or section of a set. For more information about USE_RLOC, see
“Toggling the Status of RLOC Constraints” in the “Relative Location (RLOC)” constraint.

USE_RLOC Propagation Rules
It is illegal to attach USE_RLOC to a net. When attached to a design element, U_SET
propagates to all applicable elements in the hierarchy within the design element.

USE_RLOC Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a member of a set

• Attribute Name: USE_RLOC

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute USE_RLOC: string;

Specify the VHDL constraint as follows:

attribute USE_RLOC of entity_name: entity is “{TRUE|FALSE}”;

where

• TRUE turns on the RLOC constraint for a specific element

• FALSE turns it off

The default is TRUE.

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* USE_RLOC = “{TRUE|FALSE}” *)
Constraints Guide www.xilinx.com Use Relative Location (USE_RLOC) 338
10.1

http://www.xilinx.com

Xilinx Constraints
R

where

• TRUE turns on the RLOC constraint for a specific element

• FALSE turns it off

The default is TRUE.

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic UCF syntax is:

INST “instance_name” USE_RLOC={TRUE|FALSE};

where

• TRUE turns on the RLOC constraint for a specific element

• FALSE turns it off

The default is TRUE.

XCF Syntax Example

MODEL “entity_name” use_rloc={true|false};
Constraints Guide www.xilinx.com Use Relative Location (USE_RLOC) 339
10.1

http://www.xilinx.com

Xilinx Constraints
R

Use Low Skew Lines (USELOWSKEWLINES)

USELOWSKEWLINES Architecture Support
The USELOWSKEWLINES constraint applies to the following devices:

• Virtex™

• Virtex-E

• Spartan™-II

• Spartan-IIE

USELOWSKEWLINES Applicable Elements
Nets

USELOWSKEWLINES Description
USELOWSKEWLINES is a PAR routing constraint.

The Spartan-II, Spartan-IIE, Virtex, and Virtex-E devices have 24 horizontal low skew
resources which are intended to drive slower secondary clocks and may be used for high
fanout nets. These 24 horizontal resources connect to the 12 vertical longlines in the
column. The USELOWSKEWLINES constraint specifies the use of low skew routing
resources for any net. You can use these resources for both internally generated and
externally generated signals. Externally generated signals are those driven by IOBs.

USELOWSKEWLINES on a net directs PAR to route the net on one of the low skew
resources. When this constraint is used, the timing tool automatically accounts for and
reports skew on register-to-register paths that utilize those low skew resources. Specify
USELOWSKEWLINES only when all four primary global clocks have been used.

USELOWSKEWLINES Propagation Rules
Applies to attached net

USELOWSKEWLINES Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to an output net

• Attribute Name: USELOWSKEWLINES

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute USELOWSKEWLINES: string;

Specify the VHDL constraint as follows:
Constraints Guide www.xilinx.com Use Low Skew Lines (USELOWSKEWLINES) 340
10.1

http://www.xilinx.com

Xilinx Constraints
R

attribute USELOWSKEWLINES of signal_name : signal is
“{YES|NO|TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* USELOWSKEWLINES = “{YES|NO|TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

This statement forces net $1I87/1N6745 to be routed on one of the device’s low skew
resources.

NET “$1I87/$1N6745” USELOWSKEWLINES;

XCF Syntax Example

BEGIN MODEL “entity_name”

NET “signal_name” uselowskewlines={yes|true};

END;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Misc tab, click Identify next to “Nets to use low Skew resources”. Complete the Low
Skew Resource dialog box.

PCF Syntax Example

Same as UCF syntax
Constraints Guide www.xilinx.com Use Low Skew Lines (USELOWSKEWLINES) 341
10.1

http://www.xilinx.com

Constraints Guide www.xilinx.com VCCAUX 342
10.1

Xilinx Constraints
R

VCCAUX

VCCAUX Architecture Support
The VCCAUX constraint applies to Spartan™-3A devices only.

VCCAUX Applicable Elements
The VCCAUX attribute is a global attribute for the Spartan-3A device and is not attached
to any particular element.

VCCAUX Description
The VCCAUX constraint is used to define the voltage value of the VCCAUX pin for the
device. The valid values for this attribute is 2.5 (default) or 3.3. This attribute affects the
banking rules for I/O placement within the automated placer, as well as in the Pace pin
assignments tool. It also affects the end-generated bitstream for the device.

VCCAUX Syntax Examples
Following are syntax examples using this constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

Placed on output or bi-directional port:

CONFIG VCCAUX="value";

Where value is 2.5 or 3.3

Example:

CONFIG VCCAUX=3.3;

http://www.xilinx.com

Xilinx Constraints
R

Voltage (VOLTAGE)

VOLTAGE Architecture Support
The VOLTAGE constraint applies to FPGA devices only.

VOLTAGE Applicable Elements
Global

VOLTAGE Description
VOLTAGE is an advanced timing constraint. It allows the specification of the operating
voltage, which provides a means of prorating delay characteristics based on the specified
voltage. Prorating is a scaling operation on existing speed file delays and is applied
globally to all delays.

Note: Newer devices may not support Voltage prorating until the timing information (speed files) are
marked as production status.

Each architecture has its own specific range of supported voltages. If the entered voltage
does not fall within the supported range, the constraint is ignored and an architecture-
specific default value is used instead. Also note that the error message for this condition
appears during static timing.

VOLTAGE Propagation Rules
It is illegal to attach VOLTAGE to a net, signal, or design element.

VOLTAGE Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

UCF and NCF Syntax Example

VOLTAGE=value [V];

where

• value is real number specifying the voltage

• V indicates volts, the default voltage unit

The following statement specifies that the analysis for everything relating to speed file
delays assumes an operating power of 5 volts.

VOLTAGE=5;

Constraints Editor Syntax Example

From the Project Navigator Processes window, access the Constraints Editor by double-
clicking Create Timing Constraints under User Constraints.

In the Misc tab, click Specify next to “Voltage” and then fill out the Voltage dialog box.
Constraints Guide www.xilinx.com Voltage (VOLTAGE) 343
10.1

http://www.xilinx.com

Xilinx Constraints
R

PCF Syntax Example

Same as UCF
Constraints Guide www.xilinx.com Voltage (VOLTAGE) 344
10.1

http://www.xilinx.com

Xilinx Constraints
R

VREF

VREF Architecture Support
The VREF constraint applies to CoolRunner™-II devices with 128 macrocells and larger.

VREF Applicable Elements
Global

VREF Description
VREF applies to the design as a global attribute (not directly applicable to any element in
the design). The constraint configures listed pins as VREF supply pins to be used in
conjunction with other I/O pins designated with one of the SSTL or HSTL I/O Standards.

Because VREF is selectable on any I/O in CoolRunner-II designs, this constraint allows
you to select which pins are VREF pins. Make sure you double-check pin assignment in the
report (RPT) file. If you do not specify any VREF pins for the differential I/O standards,
HSTL and SSTL, or if you do not specify sufficient VREF pins within the required
proximity of differential I/O pins, the fitter automatically assigns sufficient VREF.

VREF Propagation Rules
Configures listed pins as VREF supply pins to be used in conjunction with other I/O pins
designated with one of the SSTL or HSTL I/O Standards.

VREF Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

VREF=value_list (on CONFIG symbol)

The legal values are:

• Pnn

where

♦ nn is a numeric pin number

• rc

where

♦ r=alphabetic row

♦ c=numeric column

UCF and NCF Syntax Example

CONFIG VREF=value_list;

The legal values are:

• Pnn
Constraints Guide www.xilinx.com VREF 345
10.1

http://www.xilinx.com

Xilinx Constraints
R

where

♦ nn is a numeric pin number

• rc

where

♦ r=alphabetic row

c=numeric column

CONFIG VREF=P12,P13;
Constraints Guide www.xilinx.com VREF 346
10.1

http://www.xilinx.com

Xilinx Constraints
R

Wire And (WIREAND)

WIREAND Architecture Support
The WIREAND constraint applies the following devices:

• XC9500™

• XC9500XL

• XC9500XV

WIREAND Applicable Elements
Any net

WIREAND Description
WIREAND is an advanced fitter constraint. It forces a tagged node to be implemented as a
wired AND function in the interconnect (UIM and Fastconnect).

WIREAND Propagation Rules
WIREAND is a net constraint. Any attachment to a design element is illegal.

WIREAND Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a net

• Attribute Name: WIREAND

• Attribute Values: TRUE, FALSE

VHDL Syntax Example

Declare the VHDL constraint as follows:

attribute WIREAND: string;

Specify the VHDL constraint as follows:

attribute WIREAND of signal_name : signal is “{YES|NO|TRUE|FALSE}”;

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* WIREAND = “{YES|NO|TRUE|FALSE}” *)

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.
Constraints Guide www.xilinx.com Wire And (WIREAND) 347
10.1

http://www.xilinx.com

Xilinx Constraints
R

UCF and NCF Syntax Example

The following statement specifies that the net named SIG_11 be implemented as a wired
AND when optimized.

NET “$I16789/SIG_11” WIREAND;
Constraints Guide www.xilinx.com Wire And (WIREAND) 348
10.1

http://www.xilinx.com

Xilinx Constraints
R

XBLKNM

XBLKNM Architecture Support
The XBLKNM constraint applies to FPGA devices only.

XBLKNM Applicable Elements
To see which design elements can be used with which device families, see the Xilinx
Libraries Guides. For more information, see the device data sheet.

XBLKNM Description
XBLKNM is an advanced mapping constraint. It assigns block names to qualifying
primitives and logic elements. If the same XBLKNM attribute is assigned to more than one
instance, the software attempts to pack logic with the same block name into one or more
CLBs. Conversely, two symbols with different XBLKNM names are not mapped into the
same block. Placing the same XBLKNMs on instances that do not fit within one block
creates an error.

Specifying identical XBLKNM attributes on FMAP symbols tells the software to group the
associated function generators into a single CLB. Using XBLKNM, you can partition a
complete CLB without constraining the CLB to a physical location on the device.

Hierarchical paths are not prefixed to XBLKNM attributes, so XBLKNM attributes for
different CLBs must be unique throughout the entire design.

The BLKNM attribute allows any elements except those with a different BLKNM to be
mapped into the same physical component. XBLKNM, however, allows only elements
with the same XBLKNM to be mapped into the same physical component. Elements
without an XBLKNM cannot be not mapped into the same physical component as those
with an XBLKNM.

XBLKNM Propagation Rules
Applies to the design element to which it is attached

XBLKNM Syntax Examples
Following are syntax examples using the constraint with particular tools or methods. If a
tool or method is not listed, the constraint may not be used with it.

Schematic Syntax Example

• Attach to a valid instance

• Attribute Name: XBLKNM

• Attribute Values: block_name

where

• block_name is a valid block name for that type of symbol

VHDL Syntax Example

Declare the VHDL constraint as follows:
Constraints Guide www.xilinx.com XBLKNM 349
10.1

http://www.xilinx.com/cgi-bin/SW_Docs_Redirect/sw_docs_redirect?locale=en&topic=list+all+data+sheets
http://www.xilinx.com

Xilinx Constraints
R

attribute XBLKNM: string;

Specify the VHDL constraint as follows:

attribute XBLKNM of {component_name|label_name}: {component|label} is
“block_name”;

where

• block_name is a valid block name for that type of symbol

For more information on basic VHDL syntax, see “VHDL” in Chapter 3.

Verilog Syntax Example

Specify the Verilog constraint as follows:

(* XBLKNM = “block_name” *)

where

• block_name is a valid block name for that type of symbol

For more information on basic Verilog syntax, see “Verilog” in Chapter 3.

UCF and NCF Syntax Example

The basic UCF syntax is:

INST “instance_name” XBLKNM=block_name;

where

• block_name is a valid block name for that type of symbol

The following statement assigns an instantiation of an element named flip_flop2 to a block
named U1358.

INST “$1I87/flip_flop2” XBLKNM=U1358;

XCF Syntax Example

BEGIN MODEL “entity_name”

 INST "instance_name" xblknm=xblknm_name;

END;
Constraints Guide www.xilinx.com XBLKNM 350
10.1

http://www.xilinx.com

	Software Manuals
	Constraints Guide
	About This Guide
	Guide Contents
	Additional Resources
	Conventions
	Typographical
	Online Document

	Table of Contents
	1 Introduction
	What’s New
	Supported Architectures

	2 Constraint Types
	Attributes and Constraints
	Attributes
	Synthesis Constraints
	Implementation Constraints

	CPLD Fitter
	Grouping Constraints
	Using Predefined Groups
	Predefined Group Examples
	BRAMS_PORTA and BRAMS_PORTB Examples

	Logical Constraints
	Physical Constraints
	Mapping Directives
	Placement Constraints
	Relative Location (RLOC) Constraints
	Placement Constraints

	Routing Directives
	Synthesis Constraints
	Timing Constraints
	XST Timing Constraints
	Command Line Switch
	Constraints File

	UCF Timing Constraint Support
	From-To
	OFFSET IN
	OFFSET OUT
	TIG
	TIMEGRP
	TNM
	TNM Net

	Timing Model
	Priority
	Timing and Grouping Constraints

	Configuration Constraints

	3 Entry Strategies for Xilinx Constraints
	Constraints Entry Methods
	Constraints Entry Table
	Schematic Design
	VHDL
	Verilog
	ABEL
	UCF
	UCF Flow
	Manual Entry of Timing Constraints

	UCF and NCF File Syntax
	General Rules
	Conflict in Constraints
	Syntax
	Specifying Attributes for TIMEGRP and TIMESPEC
	Using Reserved Words
	Wildcards
	Traversing Hierarchies
	Entering Multiple Constraints
	File Name
	Instances and Blocks

	PCF
	NCF
	Constraints Editor
	Input/Output
	Starting Constraints Editor
	From Project Navigator
	As a Standalone
	From the Command Line

	UCF Syntax
	Group Elements Associated by Nets (TNM_NET)
	Group Elements by Instance Name (TNM)
	Definition
	UCF Syntax

	Group Elements by Element Output Net Name Schematic Users (TIMEGRP)
	Definition
	UCF Syntax

	Timing THRU Points (TPTHRU)
	Definition

	Pad to Setup
	Definition
	UCF Syntax

	Clock to Pad
	Definition
	UCF Syntax

	FROM TO
	Definition
	UCF Syntax

	FROM/THRU/TO
	Definition
	UCF Syntax

	FROM TO TIG
	Definition
	UCF Syntax

	Net TIG
	Definition
	UCF Syntax

	Period
	Definition
	UCF Syntax

	VOLTAGE
	Definition
	UCF Syntax

	TEMPERATURE
	Definition
	UCF Syntax

	Project Navigator
	Floorplanner
	Using Area Constraints
	Creating UCF Constraints from IOB Placement

	Floorplan Editor
	PACE
	LOC Constraints
	IOs
	Global Logic

	IOSTANDARD Constraints
	PROHIBIT Constraints
	AREA Constraints Editor

	Partial Design Pin Preassignment
	Verilog Example
	UCF Example

	FPGA Editor
	Locked Nets and Components
	Interaction Between Constraints

	Constraints Priority
	File Priorities
	Timing Specification Priorities
	FROM THRU TO and FROM TO Statement Priorities
	OFFSET Priorities
	Net Delay and Net Skew Priorities
	Constraints Priority Exceptions

	4 Timing Constraint Strategies
	Basic Implementation Tools Constraining Methodology
	Global Timing Assignments
	Assigning Definitions for Clocks Driven by Pads
	Related Clocks Example
	PHASE Related Clocks Example
	Assigning Definitions for DLL/DCM/PLL Clocks
	DCM PERIOD Propagation Example
	Assigning Definitions for Derived and Gated Clocks
	Assigning Input and Output Requirements
	Global Inputs Requirements
	Global Outputs Requirements
	Assigning Global Pad to Pad Requirements

	Specific Timing Assignments
	False Paths by Net
	False Paths by Instance
	False Paths by Pin
	False Paths by Timing Path
	FROM TO TIG
	FROM THRU TO TIG
	Asynchronous Set/Reset Paths

	Multi-Cycle and Fast or Slow Timing Assignments
	Cross-Clock Domain Constraining
	User Group Creation
	Identifying Groups by Connectivity
	Identifying Groups by Hierarchy
	Identifying Groups by Element

	Specific OFFSET Constraints Using PAD and or Register Groups
	Group OFFSET IN Example
	Group OFFSET OUT Example
	FROM TO Syntax
	Open FROM to TO Example

	FROM THRU TO Syntax
	Multi-Cycle Paths Assignments

	Special Case Path Constraining
	TPTHRU
	TPTHRU Syntax
	Forms
	NET Form (UCF)
	INSTANCE Form (UCF)
	Pin Form (UCF)
	FROM THRU TO Syntax (UCF)
	TPSYNC
	TPSYNC Syntax
	Output Slew Rate Constraint

	Path Coverage Statistics
	Ignored Paths (TIG)
	STARTUP Paths
	Static Paths
	OFFSETs with Derived or Gated Clocks

	Static Timing Analysis
	Static Timing Analysis After Map
	Routing Delays
	Logic-Only Delays

	Static Timing Analysis After PAR
	Detailed Timing Analysis

	Synchronous Timing
	System Synchronous Timing
	Source Synchronous Timing
	Syntax Examples

	Directed Routing
	About Directed Routing
	How Directed Routing Works
	When To Use Directed Routing
	When NOT To Use Directed Routing
	Related Constraints

	5 Xilinx Constraints
	Constraint Information
	Alphabetized List of Xilinx Constraints
	Area Group (AREA_GROUP)
	AREA_GROUP Architecture Support
	AREA_GROUP Applicable Elements
	AREA_GROUP Description
	AREA_GROUP Propagation Rules
	AREA_GROUP Syntax
	RANGE
	COMPRESSION
	IMPLEMENT
	GROUP
	PLACE
	MODE

	AREA_GROUP Syntax Examples
	Schematic Syntax Example
	UCF and NCF Syntax Example
	Floorplanner Syntax Example
	PACE Syntax Example

	Defining From Timing Groups
	Defining from Area Groups

	Asynchronous Register (ASYNC_REG)
	ASYNC_REG Architecture Support
	ASYNC_REG Applicable Elements
	ASYNC_REG Description
	ASYNC_REG Propagation Rules
	ASYNC_REG Syntax Examples
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	Constraints Editor Syntax Example

	BEL
	BEL Architecture Support
	BEL Applicable Elements
	BEL Description
	BEL Propagation Rules
	BEL Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example

	Block Name (BLKNM)
	BLKNM Architecture Support
	BLKNM Applicable Elements
	BLKNM Description
	BLKNM Propagation Rules
	BLKNM Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	BUFG (CPLD)
	BUFG (CPLD) Architecture Support
	BUFG (CPLD) Applicable Elements
	BUFG (CPLD) Description
	BUFG (CPLD) Propagation Rules
	BUFG (CPLD) Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Clock Dedicated Route
	CLOCK_DEDICATED_ROUTE Architecture Support
	CLOCK_DEDICATED_ROUTE Applicable Elements
	CLOCK_DEDICATED_ROUTE Description
	CLOCK_DEDICATED_ROUTE Propagation Rules
	CLOCK_DEDICATED_ROUTE Syntax Examples
	Schematic Syntax Example
	UCF and NCF Syntax Example

	Collapse (COLLAPSE)
	COLLAPSE Architecture Support
	COLLAPSE Applicable Elements
	COLLAPSE Description
	COLLAPSE Propagation Rules
	COLLAPSE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example

	Component Group (COMPGRP)
	COMPGRP Architecture Support
	COMPGRP Applicable Elements
	COMPGRP Description
	COMPGRP Syntax Examples
	PCF Syntax Example

	CoolCLOCK (COOL_CLK)
	COOL_CLK Architecture Support
	COOL_CLK Applicable Elements
	COOL_CLK Description
	COOL_CLK Propagation Rules
	COOL_CLK Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example

	Configuration Mode (CONFIG_MODE)
	CONFIG_MODE Architecture Support
	CONFIG_MODE Applicable Elements
	CONFIG_MODE Description
	CONFIG_MODE Propagation Rules
	CONFIG_MODE Syntax Examples
	UCF Syntax Example

	Data Gate (DATA_GATE)
	DATA_GATE Architecture Support
	DATA_GATE Applicable Elements
	DATA_GATE Description
	DATA_GATE Propagation Rules
	DATA_GATE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	NCF Syntax Example
	UCF Syntax Example
	XCF Syntax Example

	DCI_CASCADE
	DCI_CASCADE Architecture Support
	DCI_CASCADE Applicable Elements
	DCI_CASCADE Description
	DCI_CASCADE Propagation Rules
	DCI_CASCADE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example
	Floorplanner Syntax Example
	PACE Syntax Example
	Floorplan Editor Syntax Example
	FPGA Editor Syntax Example
	Project Navigator Syntax Example

	DCI_VALUE
	DCI_VALUE Architecture Support
	DCI_VALUE Applicable Elements
	DCI_VALUE Description
	DCI_VALUE Propagation Rules
	DCI_VALUE Syntax Examples
	UCF and NCF Syntax Example

	Directed Routing (DIRECTED_ROUTING)
	DIRECTED_ROUTING Architecture Support
	DIRECTED_ROUTING Applicable Elements
	DIRECTED_ROUTING Description
	DIRECTED_ROUTING Propagation Rules
	DIRECTED_ROUTING Syntax Examples
	UCF and NCF Syntax Example
	FPGA Editor Syntax Example

	Disable (DISABLE)
	DISABLE Architecture Support
	DISABLE Applicable Elements
	DISABLE Description
	DISABLE Propagation Rules
	DISABLE Syntax Examples
	UCF and NCF Syntax Example
	PCF Syntax Example

	D rive (DRIVE)
	DRIVE Architecture Support
	DRIVE Applicable Elements
	DRIVE Description
	DRIVE Propagation Rules
	DRIVE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example

	Drop Specifications (DROP_SPEC)
	DROP_SPEC Architecture Support
	DROP_SPEC Applicable Elements
	DROP_SPEC Description
	DROP_SPEC Propagation Rules
	DROP_SPEC Syntax Examples
	UCF and NCF Syntax Example
	PCF Syntax Example

	Enable (ENABLE)
	ENABLE Architecture Support
	ENABLE Applicable Elements
	ENABLE Description
	ENABLE Propagation Rules
	ENABLE Syntax Examples
	UCF and NCF Syntax Example
	PCF Syntax Example

	Enable Suspend (ENABLE_SUSPEND)
	ENABLE_SUSPEND Architecture Support
	ENABLE_SUSPEND Applicable Elements
	ENABLE_SUSPEND Description
	ENABLE_SUSPEND Propagation Rules
	ENABLE_SUSPEND Syntax Examples
	UCF Syntax Example

	Fast (FAST)
	FAST Architecture Support
	FAST Applicable Elements
	FAST Description
	FAST Propagation Rules
	FAST Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Feedback (FEEDBACK)
	FEEDBACK Architecture Support
	FEEDBACK Applicable Elements
	FEEDBACK Description
	FEEDBACK Propagation Rules
	FEEDBACK Syntax Examples
	UCF Syntax Example
	XCF Syntax Example
	PCF Syntax Example

	File (FILE)
	FILE Architecture Support
	FILE Applicable Elements
	FILE Description
	FILE Propagation Rules
	FILE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example

	Float (FLOAT)
	FLOAT Architecture Support
	FLOAT Applicable Elements
	FLOAT Description
	FLOAT Propagation Rules
	FLOAT Syntax Examples
	Schematic
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	From Thru T o (FROM-THRU-TO)
	FROM-THRU-TO Architecture Support
	FROM-THRU-TO Applicable Elements
	FROM-THRU-TO Description
	FROM-THRU-TO Propagation Rules
	FROM-THRU-TO Syntax Examples
	UCF and NCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example

	From To (FROM-TO)
	FROM-TO Architecture Support
	FROM-TO Applicable Elements
	FROM-TO Description
	FROM-TO Propagation Rules
	FROM-TO Syntax Examples
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example

	Hierarchical Block Name (HBLKNM)
	HBLKNM Architecture Support
	HBLKNM Applicable Elements
	HBLKNM Description
	HBLKNM Propagation Rules
	HBLKNM Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Examples

	Hierarchical Lookup Table Name (HLUTNM)
	HLUTNM Architecture Support
	HLUTNM Applicable Elements
	HLUTNM Description
	HLUTNM Propagation Rules
	HLUTNM Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example
	Floorplanner Syntax Example
	PACE Syntax Example
	Floorplan Editor Syntax Example
	FPGA Editor Syntax Example
	Project Navigator Syntax Example

	HU_SET
	HU_SET Architecture Support
	HU_SET Applicable Elements
	HU_SET Description
	HU_SET Propagation Rules
	HU_SET Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Input Buffer Delay Value (IBUF_DELAY_VALUE)
	IBUF_DELAY_VALUE Architecture Support
	IBUF_DELAY_VALUE Applicable Elements
	IBUF_DELAY_VALUE Description
	IBUF_DELAY_VALUE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example

	IFD_DELAY_VALUE
	IFD_DELAY_VALUE Architecture Support
	IFD_DELAY_VALUE Applicable Elements
	IFD_DELAY_VALUE Description
	IFD_DELAY_VALUE Propagation Rules
	IFD_DELAY_VALUE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example

	Input Registers (INREG)
	INREG Architecture Support
	INREG Applicable Elements
	INREG Description
	INREG Propagation Rules
	INREG Syntax Examples
	Schematic Syntax Example
	ABEL Syntax Example
	UCF Syntax Example

	IOB
	IOB Architecture Support
	IOB Applicable Elements
	IOB Description
	IOB Propagation Rules
	IOB Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	Project Navigator Syntax Example

	Input Output Block Delay (IOBDELAY)
	IOBDELAY Architecture Support
	IOBDELAY Applicable Elements
	IOBDELAY Description
	IOBDELAY Propagation Rules
	IOBDELAY Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example

	Input Output Standard (IOSTANDARD)
	IOSTANDARD Architecture Support
	IOSTANDARD Applicable Elements
	IOSTANDARD Description
	IOSTANDARD for FPGA Devices
	IOSTANDARD for CPLD Devices

	IOSTANDARD Propagation Rules
	IOSTANDARD Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	PACE Syntax Example

	Keep (KEEP)
	KEEP Architecture Support
	KEEP Applicable Elements
	KEEP Description
	KEEP Propagation Rules
	KEEP Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Keeper (KEEPER)
	KEEPER Architecture Support
	KEEPER Applicable Elements
	KEEPER Description
	KEEPER Propagation Rules
	KEEPER Syntax Examples
	Schematic
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Keep Hierarchy (KEEP_HIERARCHY)
	KEEP_HIERARCHY Architecture Support
	KEEP_HIERARCHY Applicable Elements
	KEEP_HIERARCHY Description
	KEEP_HIERARCHY Propagation Rules
	KEEP_HIERARCHY Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Project Navigator Syntax Example

	Location (LOC)
	LOC Architecture Support
	LOC Applicable Elements
	LOC Description
	LOC Description for FPGA Devices
	LOC Description for CPLD Devices
	Location Specification Types for FPGA Devices
	LOC Priority

	LOC Propagation Rules
	LOC Syntax for FPGA Devices
	Single Location
	Multiple Locations
	Range of Locations

	LOC Syntax for CPLD Devices
	LOC Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Examples
	ABEL Syntax Examples
	UCF and NCF Syntax Examples
	XCF Syntax Examples
	Constraints Editor Syntax Examples
	PCF Syntax Examples
	Floorplanner Syntax Examples
	PACE Syntax Examples

	BUFT Examples
	Fixed Locations
	Range of Locations
	Format of BUFT LOC Constraints
	CLB-Based Row/Column/Slice Designations
	Sliced-Based XY Coordinate Designations
	CLB Examples (CLB-Based Row/Column/Slice Architectures Only)
	CLB Locations
	Format of CLB Constraints

	Delay Locked Loop (DLL) Constraint Examples
	Digital Clock Manager (DCM) Constraint Examples
	Flip-Flop Constraint Examples
	CLB-Based Row/Column/Slice Designations
	Slice-Based XY Grid Designations

	Global Buffer Constraint Examples
	I/O Constraint Examples
	IOB Constraint Examples
	Mapping Constraint Examples (FMAP)
	Multiplier Constraint Examples
	ROM Constraint Examples
	CLB-Based Row/Column/Slice Designations
	Slice-Based XY Designations

	Block RAM (RAMBs) Constraint Examples
	Spartan-II, Spartan-IIE, Virtex, and Virtex-E Devices
	Spartan-3 and Higher Devices

	Slice Constraint Examples
	Format of Slice Constraints
	Slices Prohibited

	Locate (LOCATE)
	LOCATE Architecture Support
	LOCATE Applicable Elements
	LOCATE Description
	LOCATE Propagation Rules
	LOCATE Syntax Examples
	PCF Syntax Examples

	Lock Pins (LOCK_PINS)
	LOCK_PINS Architecture Support
	LOCK_PINS Applicable Elements
	LOCK_PINS Description
	LOCK_PINS Propagation Rules
	LOCK_PINS Syntax Examples
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Examples

	Lookup Table Name (LUTNM)
	LUTNM Architecture Support
	LUTNM Applicable Elements
	LUTNM Description
	LUTNM Propagation Rules
	LUTNM Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF/NCF Syntax Example

	Map (MAP)
	MAP Architecture Support
	MAP Applicable Elements
	MAP Description
	MAP Propagation Rules
	MAP Syntax Examples
	UCF and NCF Syntax Examples

	Maximum Delay (MAXDELAY)
	MAXDELAY Architecture Support
	MAXDELAY Applicable Elements
	MAXDELAY Description
	MAXDELAY Propagation Rules
	MAXDELAY Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Examples
	UCF and NCF Syntax Examples
	PCF Syntax Examples
	FPGA Editor Syntax Examples

	Maximum Product Terms (MAXPT)
	MAXPT Architecture Support
	MAXPT Applicable Elements
	MAXPT Description
	MAXPT Propagation Rules
	MAXPT Syntax Examples
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example

	Maximum Skew (MAXSKEW)
	MAXSKEW Architecture Support
	MAXSKEW Applicable Elements
	MAXSKEW Description
	MAXSKEW Propagation Rules
	MAXSKEW Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	FPGA Editor Syntax Example

	No Delay (NODELAY)
	NODELAY Architecture Support
	NODELAY Applicable Elements
	NODELAY Description
	NODELAY Propagation Rules
	NODELAY Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	No Reduce (NOREDUCE)
	NOREDUCE Architecture Support
	NOREDUCE Applicable Elements
	NOREDUCE Description
	NOREDUCE Propagation Rules
	NOREDUCE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Offset In (OFFSET IN)
	OFFSET IN Architecture Support
	OFFSET IN Applicable Elements
	OFFSET IN Description
	OFFSET IN Syntax
	Global Method:
	Input Group Method:
	Net Specific Method:

	OFFSET IN Syntax Examples
	UCF Source Synchronous DDR Edge Aligned Example:
	UCF Source Synchronous DDR Center Aligned Example:
	UCF System Synchronous SDR Example:
	Schematic Syntax Example
	VHDL Syntax Example:
	Verilog Syntax Example:
	XCF Syntax Example:

	Offset Out (OFFSET OUT)
	OFFSET OUT Architecture Support
	OFFSET OUT Applicable Elements
	OFFSET OUT Description
	OFFSET OUT Syntax
	Output Group Method:
	Net Specific Method:

	OFFSET OUT Syntax Examples
	UCF Source Synchronous DDR Example:
	UCF Syntax Example:
	UCF System Synchronous SDR Example:
	UCF Syntax Example:
	Schematic Syntax Example
	VHDL Syntax Example:
	Verilog Syntax Example:
	XCF Syntax Example:

	Open Drain (OPEN_DRAIN)
	OPEN_DRAIN Architecture Support
	OPEN_DRAIN Applicable Elements
	OPEN_DRAIN Description
	OPEN_DRAIN Propagation Rules
	OPEN_DRAIN Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Optimizer Effort (OPT_EFFORT)
	OPT_EFFORT Architecture Support
	OPT_EFFORT Applicable Elements
	OPT_EFFORT Description
	OPT_EFFORT Propagation Rules
	OPT_EFFORT Syntax Examples
	Schematic Syntax Example
	UCF and NCF Syntax Example
	Project Navigator Syntax Example

	Optimize (OPTIMIZE)
	OPTIMIZE Architecture Support
	OPTIMIZE Applicable Elements
	OPTIMIZE Description
	OPTIMIZE Propagation Rules
	OPTIMIZE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	Project Navigator Syntax Example

	Period (PERIOD)
	PERIOD Architecture Support
	PERIOD Applicable Elements
	PERIOD Description
	Preferred Method
	Another Method
	Specifying Derived Clocks
	PERIOD Specifications on CLKDLLs, DCMs and PLLs

	PERIOD Propagation Rules
	PERIOD Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	Constraints Editor Syntax Example
	XCF Syntax Example
	PCF Syntax Example
	FPGA Editor Syntax Example

	Pin (PIN)
	PIN Architecture Support
	PIN Applicable Elements
	PIN Description
	PIN Propagation Rules
	PIN Syntax Examples
	UCF Syntax Example

	POST_CRC
	POST_CRC Architecture Support
	POST_CRC Applicable Elements
	POST_CRC Description
	POST_CRC Propagation Rules
	POST_CRC Syntax Examples
	UCF Syntax Example
	PCF Syntax Example

	POST_CRC_ACTION
	POST_CRC_ACTION Architecture Support
	POST_CRC_ACTION Applicable Elements
	POST_CRC_ACTION Description
	POST_CRC_ACTION Propagation Rules
	POST_CRC_ACTION Syntax Examples
	UCF Syntax Example
	PCF Syntax Example

	POST_CRC_FREQ
	POST_CRC_FREQ Architecture Support
	POST_CRC_FREQ Applicable Elements
	POST_CRC_FREQ Description
	POST_CRC_FREQ Propagation Rules
	POST_CRC_FREQ Syntax Examples
	UCF Syntax Example
	PCF Syntax Example

	POST_CRC_SIGNAL
	POST_CRC_SIGNAL Architecture Support
	POST_CRC_SIGNAL Applicable Elements
	POST_CRC_SIGNAL Description
	POST_CRC_SIGNAL Propagation Rules
	POST_CRC_SIGNAL Syntax Examples
	UCF Syntax Example
	PCF Syntax Example

	Priority (PRIORITY)
	PRIORITY Architecture Support
	PRIORITY Applicable Elements
	PRIORITY Description
	PRIORITY Propagation Rules
	PRIORITY Syntax Examples
	UCF and NCF Syntax Example
	PCF Syntax Example

	Prohibit (PROHIBIT)
	PROHIBIT Architecture Support
	PROHIBIT Applicable Elements
	PROHIBIT Description
	Location Types for FPGA Devices
	Location Types for CPLD Devices

	PROHIBIT Propagation Rules
	PROHIBIT Syntax Examples
	UCF Syntax Example
	PCF Syntax Example
	Floorplanner Syntax Example
	PACE Syntax Example
	FPGA Editor Syntax Example

	Pulldown (PULLDOWN)
	PULLDOWN Architecture Support
	PULLDOWN Applicable Elements
	PULLDOWN Description
	PULLDOWN Propagation Rules
	PULLDOWN Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example

	Pullup (PULLUP)
	PULLUP Architecture Support
	PULLUP Applicable Elements
	PULLUP Description
	PULLUP Propagation Rules
	PULLUP Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example

	Power Mode (PWR_MODE)
	PWR_MODE Architecture Support
	PWR_MODE Applicable Elements
	PWR_MODE Description
	PWR_MODE Propagation Rules
	PWR_MODE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Registers (REG)
	REG Architecture Support
	REG Applicable Elements
	REG Description
	REG Propagation Rules
	REG Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Relative Location (RLOC)
	RLOC Architecture Support
	RLOC Applicable Elements
	RLOC Description
	Benefits and Limitations of RLOC Constraints
	Guidelines for Specifying Relative Locations
	RLOC Sets

	RLOC Propagation Rules
	RLOC Syntax
	For Architectures Using CLB-based Row/Column/Slice Specifications
	For Architectures Using a Slice-Based XY Coordinate System
	Set Linkage
	Set Modification
	Set Modifiers

	RLOC Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Floorplanner Syntax Example

	Relative Location Origin (RLOC_ORIGIN)
	RLOC_ORIGIN Architecture Support
	RLOC_ORIGIN Applicable Elements
	RLOC_ORIGIN Propagation Rules
	RLOC_ORIGIN Description
	RLOC_ORIGIN Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	Floorplanner Syntax Example

	Relative Location Range (RLOC_RANGE)
	RLOC_RANGE Architecture Support
	RLOC_RANGE Applicable Elements
	RLOC_RANGE Description
	RLOC_RANGE Propagation Rules
	RLOC_RANGE Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	PCF Syntax Example

	Save Net Flag (SAVE NET FLAG)
	SAVE NET FLAG Architecture Support
	SAVE NET FLAG Applicable Elements
	SAVE NET FLAG Description
	SAVE NET FLAG Propagation Rules
	SAVE NET FLAG Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Schmitt Trigger (SCHMITT_TRIGGER)
	SCHMITT_TRIGGER Architecture Support
	SCHMITT_TRIGGER Applicable Elements
	SCHMITT_TRIGGER Description
	SCHMITT_TRIGGER Propagation Rules
	SCHMITT_TRIGGER Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Slew (SLEW)
	SLEW Architecture Support
	SLEW Applicable Elements
	SLEW Description
	SLEW Propagation Rules
	SLEW Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	PACE Syntax Example

	Slow (SLOW)
	SLOW Architecture Support
	SLOW Applicable Elements
	SLOW Description
	SLOW Propagation Rules
	SLOW Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	Constraints Editor Syntax Example

	Stepping (STEPPING)
	STEPPING Architecture Support
	STEPPING Applicable Elements
	STEPPING Description
	STEPPING Propagation Rules
	STEPPING Syntax Examples
	UCF Syntax Example

	Suspend (SUSPEND)
	SUSPEND Architecture Support
	SUSPEND Applicable Elements
	SUSPEND Description
	SUSPEND Propagation Rules
	SUSPEND Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	Pace Syntax Example

	System Jitter (SYSTEM_JITTER)
	SYSTEM_JITTER Architecture Support
	SYSTEM_JITTER Applicable Elements
	SYSTEM_JITTER Description
	SYSTEM_JITTER Propagation Rules
	SYSTEM_JITTER Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Temperature (TEMPERATURE)
	TEMPERATURE Architecture Support
	TEMPERATURE Applicable Elements
	TEMPERATURE Description
	TEMPERATURE Propagation Rules
	TEMPERATURE Syntax Examples
	UCF and NCF Syntax Example
	Constraints Editor Syntax Example

	Timing Ignore (TIG)
	TIG Architecture Support
	TIG Applicable Elements
	TIG Description
	TIG Propagation Rules
	TIG Syntax Examples
	Schematic Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example

	Timing Group (TIMEGRP)
	TIMEGRP Architecture Support
	TIMEGRP Applicable Elements
	TIMEGRP Description
	Combining Multiple Groups into One
	UCF Syntax Example One
	UCF Syntax Example Two

	Creating Groups by Exclusion
	UCF Syntax Example One
	UCF Syntax Example Two

	Defining Flip-Flop Subgroups by Clock Sense
	UCF Syntax Example One
	UCF Syntax Example Two

	Defining Latch Subgroups by Gate Sense
	UCF Syntax Example

	Creating Groups by Pattern Matching
	How to Use Wildcards to Specify Net Names
	Pattern Matching Syntax
	Additional Pattern Matching Details
	Defining Area Groups Using Timing Groups

	TIMEGRP Propagation Rules
	TIMEGRP Syntax Examples
	UCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example

	Timing Specifications (TIMESPEC)
	TIMESPEC Architecture Support
	TIMESPEC Applicable Elements
	TIMESPEC Description
	TIMESPEC Propagation Rules
	TIMESPEC Syntax Examples
	UCF Syntax Example
	Syntax Rules

	TIMESPEC FROM-TO Syntax
	TIMESPEC Examples of FROM-TO TS Attributes
	UCF and NCF Syntax Examples
	Constraints Editor Syntax Examples

	Timing Name (TNM)
	TNM Architecture Support
	TNM Applicable Elements
	TNM Description
	TNM Propagation Rules
	Placing TNMs on Nets
	Placing TNMs on Macro or Primitive Pins
	Placing TNMs on Primitive Symbols
	Placing TNMs on Macro Symbols
	Placing TNMs on Nets or Pins to Group Flip-Flops and Latches

	TNM Syntax Examples
	Schematic Syntax Example
	ABEL Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example

	Timing Name Net (TNM_NET)
	TNM_NET Architecture Support
	TNM_NET Applicable Elements
	TNM_NET Description
	TNM_NET Rules
	TNM_NET Propagation Rules
	TNM_NET Syntax Examples
	Schematic Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example

	Timing Point Synchronization (TPSYNC)
	TPSYNC Architecture Support
	TPSYNC Applicable Elements
	TPSYNC Description
	TPSYNC Propagation Rules
	TPSYNC Syntax Examples
	Schematic Syntax Example
	UCF and NCF Syntax Example

	Timing Thru Points (TPTHRU)
	TPTHRU Architecture Support
	TPTHRU Applicable Elements
	TPTHRU Description
	TPTHRU Propagation Rules
	TPTHRU Syntax Examples
	Schematic Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example

	Timing Specification Identifier (TSidentifier)
	TSidentifier Architecture Support
	TSidentifier Applicable Elements
	TSidentifier Description
	TSidentifier Propagation Rules
	TSidentifier Syntax Examples
	UCF and NCF Syntax Examples
	Constraints Editor Syntax Example
	PCF Syntax Example
	FPGA Editor Syntax Example

	U_SET
	U_SET Architecture Support
	U_SET Applicable Elements
	U_SET Description
	U_SET Propagation Rules
	U_SET Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Use Relative Location (USE_RLOC)
	USE_RLOC Architecture Support
	USE_RLOC Applicable Elements
	USE_RLOC Description
	USE_RLOC Propagation Rules
	USE_RLOC Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

	Use Low Skew Lines (USELOWSKEWLINES)
	USELOWSKEWLINES Architecture Support
	USELOWSKEWLINES Applicable Elements
	USELOWSKEWLINES Description
	USELOWSKEWLINES Propagation Rules
	USELOWSKEWLINES Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example

	VCCAUX
	VCCAUX Architecture Support
	VCCAUX Applicable Elements
	VCCAUX Description
	VCCAUX Syntax Examples
	UCF and NCF Syntax Example

	Voltage (VOLTAGE)
	VOLTAGE Architecture Support
	VOLTAGE Applicable Elements
	VOLTAGE Description
	VOLTAGE Propagation Rules
	VOLTAGE Syntax Examples
	UCF and NCF Syntax Example
	Constraints Editor Syntax Example
	PCF Syntax Example

	VREF
	VREF Architecture Support
	VREF Applicable Elements
	VREF Description
	VREF Propagation Rules
	VREF Syntax Examples
	Schematic Syntax Example
	UCF and NCF Syntax Example

	Wire And (WIREAND)
	WIREAND Architecture Support
	WIREAND Applicable Elements
	WIREAND Description
	WIREAND Propagation Rules
	WIREAND Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example

	XBLKNM
	XBLKNM Architecture Support
	XBLKNM Applicable Elements
	XBLKNM Description
	XBLKNM Propagation Rules
	XBLKNM Syntax Examples
	Schematic Syntax Example
	VHDL Syntax Example
	Verilog Syntax Example
	UCF and NCF Syntax Example
	XCF Syntax Example

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

