Cypress CapSense na układach PSoC5LP

wersja 0.1, kwiecień 2017

Prezentacja przygotowana na podstawie dokumentów:

[1] <u>www.cypress.com</u> - AN64846 Getting Started with CapSense

[2] <u>www.cypress.com</u> - AN75400 PSoC3 and PSoC5 CapSense Design Guide

[3] <u>http://www.cypress.com/products/32-bit-arm-cortex-m3-psoc-5lp</u> - strona domowa układów z rodziny PSoC5LP

Plan prezentacji:

 Podstawy działania systemu CapSense
Przykład na płytce CY8CKIT-050 PSoC5LP Development Kit

CapSense – pomiar zmian pojemności

- Mikrokontrolery/specjalistyczne układy mierzą zmiany pojemności w celu wykrywania obecności palca na płytce drukowanej lub w jej pobliżu.
- Detekcja obecności palca jest wykorzystywana do zamiany mechanicznych przycisków, linijek i pól na niemechaniczne odpowiedniki.

Przykład użycia czujnika pojemnościowego [1].

Składniki niezbędne do realizacji CapSense [1]:

Elementy sprzętowe: ścieżki i pola na PCB oraz kontroler (układ PSoC lub inny).

Elementy programowe: oprogramowanie kontrolera

Elementy sprzętowe [1]

Elementy sprzętowe – PCB [1]

Elementy programowe – przykład użycia [1]

Dwa rodzaje czujników pojemnościowych - pomiar pojemności własnej i wzajemnej [1]

Mutual Capacitance

Pojemność własna [1]

 C_P – pojemnośo pasożasożyza, pojemnośo wyprowadzenia IC, ścieżek i pola czujnika w stosubku do masy

$$C_F = \frac{\mathcal{E}_0 \mathcal{E}_r A}{D}$$

 $C_{\scriptscriptstyle F}$ – pojemność przysuniętego palca

 ε_{0} – przenikalność elektryczna próżni

 ε_r – stała dielektryczna wartswy ochronnej (overlay)

- A powierzchna wspólna palca i pola czujnika
- D grubość warstwy ochronnej

PSoC5LP używa pomiarów pojemności własnej

 $C_s = C_p + C_F$ – pojemność łączna po zbliżeniu palca

Pojemność wzajemna [1]

Pomiar pojemności wzajemnej najlepiej nadaje się do ekranów dotykowych i trackpadów. Aby zastosować taką technikę należy użyć innego, specjalizowanego kontrolera (np. Cypress – TrueTouch).

Technika pomiaru pojemności własnej CapSense [1]:

Kontroler CapSense zamienia wartość pojemności własnej w liczbę nazywaną tutaj "raw count". Większa liczba oznacza większa pojemność, czułość kontrolera wyraża się w jednostkach liczby na pF [1/pF].

CapSense – Sigma Delta Modulator (CSD) [1]:

Modulator CSD jest układem S.C., który zamienia pojemność własną (Cp+Cf) na równoważną rezystancję. Następnie wartość tej rezystancji, przy użyciu konwertera ADC typu deltasigma oraz pętli sprzężenia zwrotnego zamieniana jest na liczbę reprezentującą mierzoną pojemność. Sprzężenie zwrotne utrzymuje stałą wartość napięcia **Vref** na szynie AMUXBus (ok. 1,2V). Rezystor szeregowy Rs (typowo 560R) zwiększą odporność układu na zakłócenia.

CapSense – Sigma Delta Modulator (CSD) c.d. [1]:

$$R_{EQ} = \frac{1}{C_s F_{SW}}$$

$$I_{\rm CS} = C_{\rm S} F_{\rm SW} V_{\rm REF}$$

 $Raw count = (2^{N} - 1) \frac{V_{REF} F_{SW}}{I_{MOD}} C_{S} \qquad dla przetwornika z jednym IDAC$

Raw count = $(2^{N} - 1) \frac{V_{REF} F_{SW}}{I_{MOD}} C_{S} - (2^{N} - 1) \frac{I_{COMP}}{I_{MOD}}$ dla przetwornika z dwoma IDAC N = Scan resolution of the Sigma-Delta modulator in bits. CSD supports up to 16-bit resolution.

CapSense – porównanie dostępnych architektur [1]:

Feature	Third-Generation CapSense	Fourth-Generation CapSense	Advantages of Fourth-Generation over Third-Generation CapSense
Sensing Modes	Self-Cap and Mutual Cap	Self-Cap, Mutual Cap and ADC mode	Multiple functionality
IDAC Modes	Sourcing or Sinking Mode	Sourcing Mode	<i></i>
Self-Cap Range	5 pF – 60 pF	5 pF – 200 pF	Supports high-CP-design applications
VREF	1.2 V	0.6 V to VDDA-0.6 V	Improved SNR
IDAC LSB Size	1.2 μA, 2.4 μA	37.5 nA, 300 nA, 2.4 µA	Improved Sensitivity
Split IDAC Capability	Requires two IDACs	Requires one IDAC ¹	Improved Sensitivity
EMI Reduction - Digital	-	Spread Spectrum - CSD Controlled	Spread Spectrum clock is generated by hardware and CPU is completely free.
10-bit ADC	No	Yes	ADC using CSD hardware
HW State Machine	No	Yes	CPU no longer required for Initialization or for Spread Spectrum SenseClk generation

PSoC5 – stałe Vref=1.024V z 1 IDAC

Dostrajanie bloku CapSense [1]

Dostrajanie polega na zmianie parametrów bloku CapSense w celu uzyskania dobrej czułości na dotyk i kompensacji dokładności wykonania i zmian środowiskowych. Reguluje się takie parametry bloku jak: częstotliwość przełączania, progi przełączania. Możliwe rozwiązania praktyczne układu:

- bez dostrajania,
- ręczne dostrajanie,
- automatyczne dostrajanie SmartSense Auto-Tuning.

2.4.2.2 What Does SmartSense Do?

SmartSense tunes each CapSense sensor automatically at power-up and then monitors and maintains optimum sensor performance during runtime. The number of parameters to be tuned is reduced from 17 in CSD to 4 with SmartSense.

- Power-up tuning: SmartSense tunes the parameters of each sensor based on the individual sensor parasitic capacitance to get the desired sensitivity for the sensor.
- Runtime tuning: Noise in the system is measured dynamically. The thresholds are adjusted accordingly for each sensor to overcome false triggering due to dynamic variations in noise in the CapSense system.

16

Dostrajanie bloku CapSense [1]-c.d.

17

Dostrajanie – ustawianie poziomów przełączania i histerezy [1]

Możliwe rodzaje przycisków [2]

Przyciski

Suwak liniowy

Suwak kołowy

Tablica przycisków

Touchpad

Czujnik zbliżeniowy

Uwagi dotyczące projektu mozaiki ścieżek PCB [1]

Button diameter can range from 5 mm to 15 mm, with 10 mm being suitable for the majority of applications. A larger diameter helps with thicker overlays.

Uwagi dotyczące projektu mozaiki ścieżek PCB c.d. [1]

Table 3-9. Linear Slider Dimensions

Parameter	Acrylic Overlay Thickness	Minimum	Maximum	Recommended	
c	1 mm	2 mm	-		
Width of the Segment (W)	3 mm	4 mm	-	8 mm²	
	4 mm	6 mm	-		
Height of the Segment (H)	-	7 mm ^b	15 mm	12 mm	
Air-gap between Segments (A)	-	0.5 mm	2 mm	0.5 mm	
Air-gap between hatch and slider $(\mathrm{A}_{\mathrm{HS}})$	-	0.5 mm	2 mm	Equal to overlay thickness	

Uwagi dotyczące projektu mozaiki ścieżek PCB c.d. [1]

Uwagi dotyczące warstwy ochronnej (overlay) [1]

Table 3-1. Dielectric Constants of Common Materials

Material	δr	
Air	1.0	
Formica®	4.6-4.9	
Glass (Standard)	7.6-8.0	
Glass (Ceramic)	6.0	
PET Film (Mylar®)	3.2	
Polycarbonate (Lexan®)	2.9-3.0	
Acrylic (Plexiglass®)	2.8	
ABS	2.4-4.1	
Wood Table and Desktop	1.2-2.5	
Gypsum (Drywall)	2.5-6.0	

Table 3-2. Maximum Overlay Thickness with an Acrylic Overlay Material

Design Element	Max. Overlay Thickness (mm)	
Button	5	
Slider	5	
Touchpad	0.5	

Uwagi dotyczące warstwy ochronnej (overlay) c.d. [1]

Material	Breakdown Voltage (V/mm)	Min. Overlay Thickness at 12 kV (mm)	
Air	1200-2800	10	
Wood – dry	3900	3	
Glass – common	7900	1.5	
Glass – Borosilicate (Pyrex [®])	13,000	0.9	
PMMA Plastic (Plexiglass)	13,000	0.9	
ABS	16,000	0.8	
Polycarbonate (Lexan)	16,000	0.8	
Formica	18,000	0.7	
FR-4	28,000	0.4	
PET Film (Mylar)	280,000	0.04	
Polymide film (Kapton [®])	290,000	0.04	

Table 3-3. Overlay Material Dielectric Strength

Zapobieganie kroplom wody [2]

Figure 3-2. Shield Electrode and Guard Sensor

Przykład na płytce PSoC5LP

Przykład implementacji można wczytać jako projekt przykładowy, należy wybrać projekt o nazwie:

• CapSense_CSD_Design – prosty projekt zawierający 2 przyciski i suwak, (trzeba projekt przystosować do płytki dostępnej na zajęciach poprzez zmianę przypisań I/O)

lub

• CapSense_CSD_DesignWithTuner – taki sam projekt zawierający zamiast LEDów i LCD możliwość obserwacji wartości CSD poprzez MiniProg3 (też trzeba zmienić piny I/O).