

USBUART in PSoC® 3 / PSoC 5

June 20, 2011 Document No. 001-60246 Rev. *E 1

Objective

CE60246 demonstrates the use of a custom developed USBUART component with PSoC
®
 3 / PSoC 5.

Overview

The USBUART component uses a USB interface to emulate a COM port. This custom component is based on a
standard USB component, modified to enumerate and act as a CDC USB device. High-level communication
functions are available on the PSoC device side and the PC communicates through a standard terminal program.
This example project demonstrates a PSoC project using a USBUART component to echo any data sent to it from
a PC terminal.

Component List
Instance Name Component Name Version Component Category Comments

USBUART_1 USBUART 1.0 Custom
VID, PID, Device Release, Mfr String and Product
String are set

The USBUART component is the only component used in this example. To use this component in a project, a
dependency must be set pointing to the library project containing the USBUART component. The instructions for
adding this component to your own project are mentioned in the following section.

Importing a Custom Component in a Project

Follow these steps to add the USBUART component to a new project:

 Right click on the project name in the Workspace Explorer and select Dependencies.

CE60246

Project Name: USBUART_Example_Project
 Programming Language: C

Software Version: PSoC
®
 Creator™ 1.0

Related Hardware: CY8CKIT-001
Prerequisites: USBUART_Lib

Author: Dan Sweet

[+] Feedback

http://www.cypress.com/?docID=21441
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-60246_pdf_p_1

CE60246

June 20, 2011 Document No. 001-60246 Rev. *E 2

 Add a new User Dependency. Navigate to and select the USBUART_Component_Library.cyprj file provided with the

example project.

 Ensure Components is selected and the Code check box is cleared.

 Click OK and the USBUART component now appears in a new tab in the Component Catalog. It is now ready to be

placed on your schematic.

Top Design

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-60246_pdf_p_2

CE60246

June 20, 2011 Document No. 001-60246 Rev. *E 3

Component Configuration

USBUART

Note Each USB product must have a unique combination of Vendor ID (VID) and Product ID (PID). The default
values provided here are used as an example, but a unique VID (assigned by the USB Implementers Forum) and
PID must be used in a final product.

Design Wide Resources

Changes must be made in the Clocks tab in the design wide resources file (.cydwr) to use USB on the PSoC 3
device. The clocks can be configured by clicking Edit Clock in the Clocks tab. You must make the following
changes.

 IMO: Select Osc 24.000 MHz.

 PLL: Select Input from IMO and desired frequency as 48MHz.

 ILO: Select 100 kHz.

 USB: Enable and select IMOx2 – 48.000 MHz.

 Master Clock: Select PLL_OUT– 48.000 MHz.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-60246_pdf_p_3

CE60246

June 20, 2011 Document No. 001-60246 Rev. *E 4

Operation

This project echoes any data sent to it through the PC COM terminal. During initialization, global interrupts are
enabled and the USBUART component is started and enumerated. In the main loop, the receive buffer is checked
for data. If data exists, the data is read out of the buffer and written back to the PC. After writing data to the PC,
the PSoC must wait for the transmission to complete before continuing; otherwise, the PSoC may send new data
to the PC before it is ready. This code is shown in Code 1.

Code 1 USBUART Example Code
#include <device.h>

uint8 Count;

uint8 Buffer[128];

void main()

{

 /* Initialization Code: */

 CYGlobalIntEnable;

 USBUART_1_Start(0, USBUART_1_3V_OPERATION);//!!NOTE!! Make sure this matches your board voltage!

 while(!USBUART_1_bGetConfiguration());

 USBUART_1_CDC_Init();

 /* Main Loop: */

 for(;;)

 {

 Count = USBUART_1_bGetRxCount();

 if(Count != 0) /* Check for input data from PC */

 {

 USBUART_1_ReadAll(Buffer);

 USBUART_1_Write(Buffer, Count); /* Echo data back to PC */

 while(!USBUART_1_bTxIsReady()){} /* Wait for Tx to finish */

 }

 }

}

Apart from the standard USBFS APIs, the following APIs are implemented for this component.

uint8 USBUART_bGetRxCount(void)

 Description: Get the size of valid data in the receive buffer

 Parameters: None

 Return Value: uint8 : Returns the number of valid data bytes in the receive buffer

void USBUART_ReadAll (uint8 *pData)

 Description: Reads all data from the receive buffer into pData.

 Parameters: (uint8*) pData , the pointer to the array to which data the data from receive buffer will be loaded into.

 Return Value: None

void USBUART_Write(uint *pData, uint8 bLength)

 Description: Writes the data to the Tx buffer

 Parameters:

uint* pData: the pointer to the array from which data will be loaded to the Tx buffer
uint8 bLength: The number of bytes that are written from array pData to the Tx buffer.

 Return Value: None

uint8 USBUART_bTxIsReady(void)

 Description: Checks to see if the device is ready to send data

 Parameters: None

 Return Value: uint8, If the device is not ready to transmit data, 0 is returned. Else, the Tx buffer size is returned.

[+] Feedback

http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-60246_pdf_p_4

CE60246

June 20, 2011 Document No. 001-60246 Rev. *E 5

uint8 USBUART_CDC_Init(void)

 Description: Initializes the component

 Parameters: None

 Return Value: uint8, this function returns 1.

 Note this function was called USBUART_Init in previous versions of the component (distributed with code example
Rev *D and earlier).

Hardware Connections

 You can use the default jumper settings of CY8CKIT-001 available in PSoC Development Kit Board Guide. This project
should be adaptable to work on almost any board with USB capabilities. Note this does not include the CY8CKIT-003
FirstTouch Starter Kit, which does not have a USB interface.

 Jumper 8 may be changed to VBUS location, if you wish to power the board through USB.

Output

 Build the project and program the chip.

Note The default device selection is PSoC 3 (CY8C3866AXI-040).To use this project with PSoC 5 family, do the following:

 Go to Project Device Selector Select PSoC 5 device (CY8C5588AXI-060), build the project again and program the

PSoC 5 device as follows:

 Plug the USB cable into the DVK and reset the board (SW4). When Windows prompts you with Found New Hardware
Wizard, direct the wizard to the

\USBUART_Example_Project\USBUART_Example_Project.cydsn\Generated_Source\PSoC 3 directory,

where the USBUART_CDC.inf file is located. This allows the device to enumerate correctly.

[+] Feedback

http://www.cypress.com/?docID=21441
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-60246_pdf_p_5

CE60246

June 20, 2011 Document No. 001-60246 Rev. *E 6

 Check to see which COM port the device is mapped to in the Device Manager.

 Open a COM terminal (such as HyperTerminal) and select the appropriate port. The baud rate selected does not matter.
Ensure that the local echo is turned OFF.

 When a connection is established, the PSoC returns any information typed in the terminal.

Related Application Notes and Example Projects

 USB Peripheral Basics - AN57294

 PSoC
®
 3 / PSoC 5 USB HID Fundamentals - AN57473

 PSoC
®
 3 / PSoC 5 USB HID Intermediate - AN58726

 USB Bulk Loopback With PSoC
®
 3 - AN56718

 USB Vendor Commands with PSoC
®
 3 - AN56377

 Interrupt Loopback - PSoC
®
 3 / PSoC 5

 Isochronous Transfers in PSoC
®
 3 / PSoC 5

[+] Feedback

http://www.cypress.com/?rID=39327
http://www.cypress.com/?rID=39404
http://www.cypress.com/?rID=40103
http://www.cypress.com/?rID=39156
http://www.cypress.com/?rID=39553
http://www.cypress.com/?rID=42703
http://www.cypress.com/?rID=45478
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-60246_pdf_p_6

CE60246

June 20, 2011 Document No. 001-60246 Rev. *E 7

Document History
Document Title: USBUART in PSoC

®
 3 / PSoC 5

Document Number: 001-60246

Revision ECN
Orig. of
Change

Submission
Date

Description of Change

** 2889259 DRSW 03/16/2010 New example project

*A 2930450 DRSW 05/10/2010 1. Fixed mistake in clock setting instructions and updated related screen
shot

2. Updated project to fix a warning message and mistake in component
datasheet.

3. Shortened some folder names and library project name.

*B 2959649 DRSW 06/23/2010 Updated project and document to support Beta 4.1 and PSoC 5.

*C 3013689 DRSW 08/23/2010 Updated software version.

*D 3119539 DRSW 01/21/2011 GCC compiler warnings are fixed and project rebuilt in FCS RC9.

Two copies of the project attached - one with ES2 as the default device,
one with ES3 as the default device. Otherwise, the projects are identical.

*E 3287514 DRSW 06/20/2011 Updated component to fix enumeration bug with 5 V operation that
occurred on a small number of USB hubs.

Updated project and example code to use new USBUART_CDC_Init API

Specified this example project does not work on the CY8CKIT-003
FirstTouch Starter Kit, which does not have a USB interface.

PSoC is a registered trademark of Cypress Semiconductor Corp. PSoC Creator is a trademark of Cypress Semiconductor Corp. All other
trademarks or registered trademarks referenced herein are the property of their respective owners.

 Cypress Semiconductor
198 Champion Court

San Jose, CA 95134-1709
Phone: 408-943-2600

Fax: 408-943-4730
http://www.cypress.com/

© Cypress Semiconductor Corporation, 2010-2011. The information contained herein is subject to change without notice. Cypress Semiconductor
Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any
license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or
safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as
critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The
inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies
Cypress against all charges.

This Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide
patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a
personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative
works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress
integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source
Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the
right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or
use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a
malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress’ product in a life-support systems
application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

[+] Feedback

http://www.cypress.com/
http://ccc01.opinionlab.com/o.asp?id=wRiLHxlo&prev=docurate_001-60246_pdf_p_7

	Objective
	Overview
	Component List
	Importing a Custom Component in a Project
	Top Design
	Component Configuration
	USBUART

	Design Wide Resources
	Operation
	Hardware Connections
	Output
	Related Application Notes and Example Projects
	Document History

