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Using The Low Cost, High Performance ADSP-21065L Digital
Signal Processor For Digital Audio Applications

Dan Ledger and John Tomarakos

DSP Applications Group, Analog Devices, Norwood, MA 02062, USA

This document examines desirable DSP features to consider for implementation of real time audio applications, and also
offers programming techniques to create DSP a gorithms found in today's professional and consumer audio equipment.
Part One will begin with a discussion of important audio processor-specific characteristics such as speed, cost, data word
length, floating-point vs. fixed-point arithmetic, double-precision vs. single-precision data, 1/0 capabilities, and dynamic
range/SNR capabilities. Comparisions between DSP's and audio decoders that are targeted for consumer/professional
audio applications will be shown. Part Two will cover example algorithmic building blocks that can be used to
implement many DSP audio algorithms using the ADSP-21065L including: Basic audio signal manipulation,
filtering/digital parametric equalization, digital audio effects and sound synthesis techniques.
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0. INTRODUCTION

This document will serve as an introduction for those new to digital signal processing with interestsin digital audio. It will
first cover important DSP features for use in audio application such as precision, speed, data format and 1/0O capabilities.
Some basic comparative analysis will be shown for DSPs that are targeted for professional and consumer audio applications.
Dynamic range requirements for high fidelity audio processing will aso be discussed.

Finally, there will be some discussion on various programming techniques that can be used for creating DSP agorithms
using the ADSP-21065L . Hardware circular buffering, delay lines usage, and wavetable lookups will be presented with tips
on how these building blocks can be used in certain algorithms. Implementation of various digital audio algorithms will be
demonstrated, with theoretical equations as well as actual coding implementations shown wherever possible. These include
basic audio signal manipulation, filtering techniques, waveform synthesis techniques, digital audio effects and more.

In general, most audio algorithms fall under one of three classes: Professional, Prosumer, and Consumer Audio. For
Professional Audio, the applications are targeted to a specific consumer base that consists of professional musicians,
producers, audio engineers and technicians. Prosumer Audio includes many professional applications, but aimed more at
lower cost, higher volume equipment sold through local music equipment retailers. Consumer Audio applications target a high
volume customer base through consumer electronic retailers. Many basic DSP agorithms are used in all three markets
segments, while others are used only in the professional or consumer space. Table 1 shows some examples of the types of

products and audio algorithms used in the professional and consumer markets to help demonstrate the differentiation between
the two markets.

Professional Audio Products
« Electronic Music Keyboards

« Digital Audio Effects Processors
(Reverb, Chorus, Flanging, Vibrato
Pitch Shifting, Dyn Ran. Compression....)
« \Vocal “Harmonizers” /
Formant-Corrected Pitch Shifters

« Graphic and Parametric Equalizers
« Digital Mixing Consoles

« Digital Recording Studios (DAT) /
Multichannel Digital Audio Recorders

« Speaker Equalization

* Room Equalization

Algorithms Used

Wavetable/FM synthesis, Sample
Playback, Physical Modeling
Delay-Line Modulation/Interpolation,
Digital Filtering (Comb, FIR....)

STFFT(Phase Vocoder), additive
synthesis, frequency-domain
interpolation(Lent’s Alg), windowing
Digital FIR/IIR filters

Filtering, Digital Amplitude Panning,
Level Detection, Volume Control
Compression techniques: MPEG,
ADPCM, AC-3

Filtering

Filtering

Consumer Audio Products
Karaoke
Digital Graphic Equalizers
Digital Amplifiers/Speakers
Home Theater Systems
{Surround-Sound Receivers/Tuners}
Digital Versitile Disk (DVD) Players
Digital Audio Broadcasting Equip.
CD Players and Recorders
CD-I
Satellite (DBS) Broadcasting
Satellite Reciever Systems
Digital Camcorders
Digital Car Audio Systems
(Digital Speakers, Amps, Equalizers
Surround-Sound Systems)

Computer Audio Multimedia Systems

Algorithms Used

MPEG, audio effects algorithms
Digital Filtering

Digital Filtering

AC-3, Dolby Prologic, THX
DTS, MPEG, Hall/Auditorium Effects
AC-3, MPEG...

AC-3, MPEG...

PCM

ADPCM, AC-3, MPEG

AC-3, MPEG

AC-3,

Ex. Circle Surround (RSP Tech.)
Digital Filtering...

3D Positioning (HRTFs), ADPCM,
MPEG, AC-3 ....

Table1: Some AlgorithmsUsed In Professional and Consumer Audio




1. SELECTING AN AUDIO SIGNAL PROCESSOR

The ADSP-21065L contains the following desirable characteristics to perform real-time DSP computations:

Fast and Flexible Arithmetic
Single-cycle computation for multiplication with accumulation, arbitrary amounts of shifting, and standard arithmetic and
logical operations.

Extended Dynamic Range for Extended Sum-of Product Calculations

Extended sums-of-products, common in DSP algorithms, are supported in multiply/accumulate units. Extended precision
of the accumulator provides extra bits for protection against overflow in successive additions to ensure that no loss of
data or range occurs.

Sngle-cycle Fetch of Two Operands For Sum-of-Products Cal culations
In extended sums-of-products cal cul ations, two operations are needed on each cycle to feed the calculation. The DSP
should be able to sustain two-operand data throughput, whether the data is stored on-chip or off.

Hardware Circular Buffer Support

A large class of DSP agorithms, including digital filters, requires circular data buffers. The ADSP-21065L is designed
to allow automatic address pointer wraparounds to simplify circular buffer implementation, and thus reducing overhead
and improving performance.

Efficient Looping and Branching for Repetitive DSP Operations
DSP algorithms are repetitive and are most logically expressed asloops. The 21065L's program sequencer allow looping
of code with minimal or zero overhead. Also, no overhead penalties for conditional branching instructions.

1.1 General Purpose Digital Signal Processors and Decoders For Audio

There are many tradeoffs which must be considered when selecting the ideal DSP for an application. In any cost sensitive,
high volume audio application with high fidelity requirements, designers look for a number of desired features at the lowest
available cost. Generally, these are often speed, flexibility, data types, precision, and on-chip memory. There are a handful
of DSPs and audio decoders on the market today with architectures targeted for the consumer and professional audio like the
Analog Devices ADSP-21065L, Crystal Semiconductor CS4923, Motorola DSP563xx family and Zoran ZR385xx family.

1.2 Processor Speed

Processor speed generally determines how many operations can be performed within aDSP in a set amount of time. There
are two units of measurement that are typically used to describe the speed of a chip: Megahertz and MIPS (millions of
instructions per second). The clock speed of the chip is measured in Megahertz (MHZz), or millions of cycles per second.
Thisisthe rate at which the DSP performs it most basic units of work [5]. Most DSPs perform at |east one instruction per
clock cycle. The second unit of measurement, MIPS describes exactly what it stands for : millions of instructions per second.
It isimportant, however, to understand how specific DSP manufacturers define an instruction. Some manufacturers will count
multiple operations executed in one instruction opcode as more than one machine instruction while other maintain the one
instruction opcode equals one instruction.

1.3 On-Chip Memory

The *on-chip’ memory in a DSP is the memory integrated inside of the DSP which is used to store both program instructions
and data. The size of on-chip memory in today’s DSP isincreasing due to the changing to meet the memory requirements for
evolving DSP agorithms used today. As shown in Section 3, many audio applications generally require large memory buffers.
Off-chip memory can add to the system cost and increase PCB real estate, so the trend in recent years has been an increase in
‘on-chip’ memory integration. In addition, a 'bus bottleneck' can be produced during computationally intensive DSP routines
executed off-chip, since it usually takes more than one DSP cycle to execute dual memory fetch instructions. Thisis because
DSP manufacturers will multiplex program and data memory address and data lines together off-chip to save pins on the
processor and reduce the package size, thus compromising the performance of Harvard Architecture-based processors.




1.4 1/0 Capabilities and Interfaces For Processing Of Audio Samples

Another important consideration in selecting a DSP is determining if the DSP communication with the outside world is fast
and efficient enough to handle a particular application’ s requirements. The designer must determine the transfer rate
requirements for any given application in order to determine what type of DMA and periphera interface would be adequate
for the design. Many DSPsinclude a number of on-chip peripherals that can transmit or receive data in various binary
formats between the DSP and the outside world. Many devices require a memory-mapped parallel interface or seria
interface, so DSP peripheral support plays acrucial role in what types of devices can be used with the selected DSP.

1.4.1 ADSP-21065L DMA (Direct Memory Access) Controller

The ADSP-21065L includes a number of peripherals that can transmit or receive data from the outside world and the DSP
core. On-chip DMA circuitry handles transfer of data between the DSP and external device. The ADSP-21065L host
interface circuitry alowsfor an easy interfade to an 8, 16 or 32-bit host processor. The ADSP-21065L's zero-over head
DMA controller capable of transferring data between all 1/O ports and the DSP core with no processor intervention.

1.4.2 ADSP-21065L Serial Interface to Audio Converters and other Digital Audio Devices

The ADSP-21065L has 2 serial portsto alow interface to synchronous devices as well as inter-processor communication.
Enhanced modes of operation include multichannel TDM communication as well as support for standard audio protocols such
as Philips 1S, Sony CDP, and AC'97 digital audio protocols.

Synchronous Serial Ports with Time Division Multiplexing

The ADSP-21065L supportsa TDM multichannel mode to easily interface to many synchronous serial devices such as Audio
Codecs, Audio A/D Converters and Audio D/A Converters. Many codecs can operate in a TDM scheme where control/status
information and stereo data are sent in different 'timeslots' in any given serial frame. For example, multichannel modeis often
used for interfacing to the Analog Devices AD1847 multichannel SoundPort codec. AC'97 compatible devices such as the
Analog Device AD1819A can aso be interface to the ADSP-21065L in thismode. For example, the ADSP-21065L EZ-LAB
Development board uses the AD1819a, which isa TDM protocol based on the AC-97 1.03 specification.

Philips I?SDigital Serial Protocol

In consumer and professional audio products of recent years, the analog or digital ‘front-end’ of the DSP uses a digital audio
serial protocol known as 12S. Audio interfaces between various | Csin the past was hampered because each manufacturer had
dedicated audio interfaces that made it extremely difficult to interface these devices to each other. Standardization of audio
interfaces was promoted by Philips with the development of the Inter-1C-Sound (12S) bus, a serial interface developed for
digital audio to enable easy connectivity and ensure successful designs. In short, 1°Sisapopular 3 wire serial bus standard
protocol developed by Philips for transmission of 2 channel (stereo) Pulse Code Modulation digital data, where each audio
sampleis sent MSB first. 1S signals, shown in Figures 1 and 2, consist of a bit-clock, Left/Right Clock and alternating left
and right channel data. This protocol can be compared to synchronous serial portsin TDM mode with 2 timeslots ( or
channels) active. This multiplexed protocol requires only 1 data path to send/receive 2 channels of digital audio information.




Figure 1
12S Digital Audio Serial Bus Interface Examples
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Figure 2. Example I2S Timing Diagram for 16-bit
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Audio data word sizes supported by various audio converter manufacturers range can be either
16, 18, 20, or 24 bits

Asaresult, today many analog and digital audio 'front-end' devices support the 1’s protocol. Some of these devices include:

Audio A/D and D/A converters
PC Multimedia Audio Controllers

Digital Audio Transmitters and Receivers that support serial digital audio transmission standards such as
AES/EBU, SP/DIF, IEC958, CP-340 and CP-1201.

Digital Audio Signal Processors
Dedicated Digital Filter Chips
Sample Rate Converters

The ADSP-21065L has 4 transmit and 1%S serial port support for interfacing to up to 8 commercialy available 1°S devices
Some audio DSPs and decoders also integrate analog and digital audio interfaces on-chip which resultsin asavingsin PCB

space, aswell as cost savings.

Figure 3 below shows two examples for interfacing 1°S devices to a DSP. DSPs without 1%S support can still interface to these
devices with the use of an FPGA. . Thisallows a designer to take use multiple 1S devices with many commercially available
DSPs that support a serial time-division multiplexed scheme but do not have built in support for 12S. The timings between the
devices can be resolved so that data can be aligned to a particular time-slot in the DSP TDM frame .

Thus, the ADSP-21065L 's built-in support for the 12S protocol eliminates the need for the FPGA and result in asimple,
gluelessinterface. Standard DSP synchronous serial ports with a TDM mode can still be interfaced to 12S devices, but
additional gluelogic viaan FPGA will be required to synchronize a sample to a particular DSP timeslot.




Figure 3, Example I°S/DSP Interfaces

Audio Interface Interface to a DSP Serial Port in TDM Mode Audio Interface to a DSP Serial Port with 12S Support
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SPDI/IF & AES/EBU Digital Audio Transmitters and Receivers

The ADSP-21065L's 1°Sinterface easily allow transmission and reception of audio data using industry standard digital audio
serial protocols. These devices act as a'digital’ front-end for the DSP. There are primarily 2 dominant digital protocols used
today. Oneisused for professional audio and the other for consumer audio.

AES/EBU (Audio Engineering Society/European Broadcast Union) is a standardized digital audio bit serial
communications protocol for transmitting and receiving two channels of digital audio information through a transmission line
(balanced or unbalanced XRL microphone cables and audio coax cable with RCA connectors). Thisformat of transmission is
used to transmit digital audio data over distances of 100 meters. Data can be transmitted up to 24 bit resolution, along with
control, status and sample rate information embedded in frame[37]. AES/EBU is considered to be the standard protocol for
professional audio applications. It isacommon interface that is used in interfacing different professional mixing and DAT
recording devices together. The AES3-1992 Standard can be obtained from the Audio Engineering Society.

Figure 4. AES3 Frame Format

0 3 4 27 28 29 30 31
U 24 bit Audio S le Word M
preamble | s pto it Audio Sample Word ¢ viuleclpe
B (16/20/24 Data) B
Audio Engineering Society Recommended Practice: V = Validity
AES3-1992: Serial Transmission Format for Two- U = User Data
Channel Linearly Represented Digital Audio Data C = Channel Status

P = Parity Bit

SPD/IF (Sony/Philips Digital I nterface Format) is based on the AESJEBU standard in operating in ‘consumer' mode. The
physical medium is an unbalanced RCA cable. The consumer mode carry less control/status information. Typical
applications where this interface can be found is in home theater equipment and CD players.

Digital Audio Receivers typically receive AESEBU and SP/DIF information and convert the audio information into the 1°S
(or parallel) format for the ADSP-21065L , as well as provide status information that is received along with the audio data.
Digital Audio Transmitters can take an 1S audio stream from the ADSP-21065L and transmit the audio data along with
control information in AES/EBU and SPD/IF formats.




1.5 DSP Numeric Data Formats : Fixed/Floating Point Arithmetic

Depending on the complexity of the application, the audio system designer must decide on how much computational accuracy
and dynamic range will be needed. The most common native data types are explained briefly in this section. 16- and 24-bit
fixed-point DSPs are designed to compute integer or fractional arithmetic. 32-bit DSPslike ADI's 2106x SHARC family
weretraditionally offered as floating point devices, however, this popular family of DSPs can equally perform both floating
point arithmetic and integer/fractional arithmetic.

1.5.1 1.6.0 16/24/32-Bit Fixed-Point Arithmetic

DSPs that can perform fixed point operations typically use atwo’s complement binary notation for representing signals. The
representation of the fixed-point format can be signed (twos-complement) or unsigned integer or fractional notation. Most
DSP operations are optimized for signed fractional notation. For example, the numeric format in signed fractional notation
would correspond to the samples produced from a5V A/D converter as shown in figure 4 below. The highest full scale
positive fractional number would be 0.999.... while the highest full scale negative number is-1.0.

Figure 4 Figure 5
Signed Two’s Complement Representation of Sampled Signals Fractional And Integer Formats
« Fractional format is 1.15/ 1.23 / 1.31 notation
BV OX7FFF.... I S, FFF FFFF.. FFFF FFFF|
i

radix point

ov - 0x0000.... « Integer format is 16.0 / 24.0 / 32.0 notation

ISIII T ||||.|
0x8000.... 4

radix point

-5V

In the fractional format, the binary point is assumed to be to the to the left of the LSB (sign bit). In the integer format, the
binary point isto the right of the LSB (figure 5).

1.5.2 Floating-Point Arithmetic

The native floating point capability of the ADSP-21065L has data paths that are 32 bits wide., where 24 hits represent the
mantissa and 8 hits represent the exponent. The 24 bit mantissais used for precision while the exponent is for extending the
dynamic range. For 40 bit extended precision, 32 bits are used for the mantissa while 8 bits are used to represent the
exponent (figures 6 and 7).

Figure 6. Figure 7.
IEEE 754 32-Bit Single Precision Floating-Point Format 40-Bit Extended Precision Floating-Point Format
31 30 23 22 0 39 38 31 30 0
S e7 eO 1. fzz ....... fo I I S 67 eo 1. f30 ....... fo
Sign Bit 8-Bit Exponent [ \ 24-bit Mantissa Sign Bit 8-Bit Exponent [ \ 32-bit Mantissa
Binary Point Binary Point
Hidden Bit Hidden Bit

A 32-hit floating point number is represented in decimal as:
n=mx 2°*%
It's binary numeric |EEE format representation is stored on the ADSP-21065L as.

n :('1)8 X Ze_lzg(l boblbz'"bzs)




It isimportant to know that the | EEE standard always refers to the mantissa in signed-magnitude format, and not in twos-
complement format. So the extra hidden bit effectively improved the precision to 24 bits and also insures any number ranges
from 1 (1.0000....00) to 2 (1.1111....11) since the hidden bit is always assumed to be a 1.

Figure 7 shows the 40-bit extended precision format available that is also supported on the ADSP-2106x family of DSPs.
With extended precision, the mantissais extended to 32 bits. In all other respects, it is the same format as the | EEE standard
format. 40-bit extended precision binary numeric format representation is stored as:

n=(-1)°x 2°®(Lb,b,b,--by)

Floating Point Arithmetic istraditionally used for applications that have high dynamic range requirements. Typically in the
past, trade-offs were considered with price vs performance. Until recently, the higher cost made 32-bit floating point DSPs
unreasonable for use in audio. Today, designers can achieve high quality audio using 32-bit fixed or floating point
processing with the introduction of the ADSP-21065L, at a cost comparable to 16-bit and 24-bit DSPs.
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1.6 The Importance Of Dynamic Range In DSP-Audio Processing

One of the top considerations when designing an audio system is determining acceptable signal quality for the application.
Audio equipment retailers and consumers often use the phrase ' CD-quality sound’ when referring to high dynamic range
audio. Compare sound quality of a CD player to that of an AM radio broadcast. For higher quality CD audio, noise is not
audible, especially during quiet passagesin music. Lower level signals are heard clearly. But, the AM radio listener can
easily hear the low level noise at very audible levels to the point where it can be very distracting. Thus, as an audio signals
dynamic ranges, the better distinction one can make for low level audio signals while noise becomesinaudible. The table
below shows some comparisons of signal quality for some audio applications, devices and equipment.

Figure 9.

Audio Device/Application Typical Signal Quality Audio Slgna! Level (dBu) Relatlonshlp Between
AM Radio 48 dB Dynamic Range, SNR and Headroom
Analog Broadcast TV 60 dB
FM Radio 70 dB
Analog Cassette Player 73 dB 25 T~ Peaklevel-
Video Camcorder 75 dB Headroom clipping Point
ADI SoundPort Codecs 80 dB +4 Nominal Slectionic Ling Lovel
16 Bit Audio Converters 90 to 95 dB |
Digital Broadcast TV 85 dB Dyn amic
Mini-Disk Player 90 dB
CD Player 92 to 96 dB SNR Range
18-bit Audio Converters 104 db
Digital Audio Tape (DAT) 110 dB
20-bit Audio Converters 110 dB
24-bit Audio Converters 110to 120 dB -65
Analog Microphone 120 dB Noise “Floor”

-95

Table 2: Some Dynamic Range Comparisons

Important Audio Definitions [Davis & Jones, 17] (See Figure 9 for graphic representation)
Decibel - Used to describe sound level (sound pressure level) ratio, or power and voltage ratios:
dBy/)ts=20109(V/V; ),  dByyaits=10109(P/P;),  dBgp =20log(P/P;)
Dynamic Range - The difference between the loudest and quietest representable signal level, or if noiseis present, the
difference between the loudest (maximum level) signal to the noise floor. Measured in dB.
Dynamic Range = (Peak Level) - (Noise Floor) dB
SNR (Signal-To-Noise Ratio, or S/N Ratio) - The difference between the nominal level and the noise floor. Measured
indB. Other authors define this for analog systems as the ratio of the largest representable signal to the noise floor when
no signal is present[6], which more closely parallels SNR for a digital system.
Headroom - The difference between nominal line level and peak level where signal clipping occurs. Measured in dB.
The larger the headroom, the better the audio system will handle very loud signal peaks before distortion occurs.
Peak Operating L evel - The maximum representable signal level at which point clipping of the signal will occur.
Line Level - Nominal operating level ( 0 dB, or more precisely between -10 dB and +4 dB)
Noise Floor - The noise floor for human hearing is the average level of ‘just audible’ white noise. Analog audio
equipment can generate noise from components. With a DSP, noise can be generated from quantization errors.
[ One can make an assumption that the headroom + S/N ration of an electrical analog signal equals the dynamic range
(although not entirely accurate since signals can still be audible below the noise floor) ].

In undithered DSP-based systems, the SNR definition above is not directly applicable since there is no noise present when
thereisno signal. Indigital terms, dynamic range and SNR (Figure 11) are often both used to describe the ratio of the largest
representable signal to the quantization error or noise floor [R. Wilson, 9]. The wordlength for a given processor determines
the number of quantization levels that are available. For an n-bit data word would yield 2" quantization levels (some
examples shown in Table 4 below). The higher number of bits used to represent a signal will result in a better approximation
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of the audio signal and areduction in quantization error (noise), which produces and an increasein the SNR. In theoretical
terms, thereis an increase in the signal-to-quantization noise or dynamic range by approximately 6 dB for each bit
added to the wordlength of an ADC, DAC or DSP. For example, figure 10 demonstrates how 32-bit or 24-bit processing
can more accurately represent a given value as compared to 16-bit processing. 24-bit processing can more accurately
represent a signal 256 times better than 16-bit processing, while the ADSP-21065L 's 32-bit processing can more accurately
represent signals 65,536 times better than that for 16-bit processing, and 256 times more accurately than that of a 24-bit
processor.

N Quantization Levels for n-bit data words (N = 2" levels)
2° = 256

2% = 65,536

2?0 = 1,048,576

2% = 16,777,216

2%2 = 4,294,967,296

2% = 18,446,744,073,729,551,616

Table 4: An n-bit data word yields 2" quantization levels

Figure 10. Figure 11.
Fixed Point DSP Quantization Level Comparisons DSP/Converter SNR and Dynamic Range
1 16-Bit Quantization Step = 256 24-bit DSP Quantization Steps d B
1 16-Bit Quantization Step = 65,536 32-bit DSP Quantization Steps E feevaekl
1 24-Bit Quantization Step = 256 32-bit DSP Quantization Steps
Headroom
Normal
pr— +0 Electronic
g Line Level
= Converter DSP
— Dynamic ‘System’ N-Bit DSP Dynamic
— Range & SNR
1 = 256 1 65,536 Range SNR = 6x N-bits
16-bit — 24-bit 16-bit 32-bit Established by
Quantization = Levels of Quantization Levels of the A/D and/or
— R . R A D/A converter
Level — Quantization Level Quantization
— P DSP tizati
= A Noise Errer S 1112188 | |cornersion
— “ ” Error
= o Floor

The maximum representable signal amplitude to the maximum quantization error for of an ideal A/D converter or DSP-based
digital system s calculated as:

SNR , p(rms),(dB) =6.02n +1.76 dB Dynamic Range(dB)=6.02n + 176 dB @6n

1.76 dB is based on sinusoidal waveform statistics, and would vary for other waveforms|[ ], and n represents the data word
length of the converter or the processor.
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Figure 12.
Fixed-Point DSP Dynamic Range Comparisons

32-bit DSP
24-bit DSP 4,294,967,296
Levels of
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65536 Quantization A A
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Dynamic

Dynamic Dynamic
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DSP Noise \ \
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Fixed Point Dynamic Range per Bit of Resolution = 6dB

16 bit fixed point precision yields 96 dB, 16 x (6 dB per bit) = 96 dB
24 bit fixed point precision yields 144 dB, 24 x (6 dB per bit) = 144 dB
32 bit fixed point precision yields 192 dB, 32 x (6 dB per bit) = 192 dB

Figure 1 above compares the dynamic ranges between commercially available 16, 24 and 32-bit fixed point processors
(assuming single-precision arithmetic). As stated earlier, the number of data-word bits used to represent asignal directly
affects the SNR and quanti zation noise introduced during the sample conversions and arithmetic computations.

Additional Fixed Point MAC Unit Dynamic Range for DSP Overflow Prevention

Many DSPs include additional bits in the MAC unit to prevent overflow in intermediate cal culations. Extended sums-of-
products are common in DSP algorithms are achieved in the MAC unit with single cycle multiply accumulates placed in an
efficient loop structure. The extra bits of precision in the accumulator result register provide extended dynamic range for the
protection against overflow in successive multiplies and additions, thus ensuring that no loss of data or range occurs. Below
is atable comparing the extended dynamic ranges of 16-bit, 24-bit, and 32-bit DSPs. Note that the ADSP-21065L has a much
higher extended dynamic range than 16 and 24 bit DSPs when executing fixed point multiplication instructions.

N-bit DSP N-bit x N-bit  Additional MAC  Precision in MAC Additional Dynamic Resulting MAC
Multiply Result Bits Result Register Range Gained Dynamic Range

16-bit 32-bits 8-bits 40-bits 48 dB 240 dB

DSP

24-bit 48-bits 8-bits 56-bits 48-dB 336 dB

DSP

32-bit 64-bits 16-bits 80-bits 96-dB 480 dB

21056L

Developing Audio Algorithms Free From Noise Artifacts

If adigital system produces processing artifacts which are above the noise floor of the input signal, then these artifacts will be
audible under certain circumstances e.g. when an input signal is of low intensity or limited frequency content. Therefore,
whatever the dynamic range of a high-quality audio input, be it 16, 20 or 24 bit samples, the digital processing which is
performed on it should be designed to prevent processing noise from reaching levels at which it may appear above the noise
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floor of the input and hence become audible. For adigita filter routine to operate transparently, the resolution of the
processing system must be considerably greater than that of the input signal so that any errors introduced by the arithmetic
computations are smaller than the precision of the ADC or DAC. In order for the DSPto maintain the SNR established by
the A/D converter, al intermediate DSP calculations require the use of higher precision processing [9,15]. The effects of a
finite word length that can degrade an audio signal’s SNR can be the result of any of the following:

A/D Conversion Noise
Finite precision of an input data word sample will introduce some inaccuracy for the DSP computation as a result of the
nonlinearities inherent in the A/D Conversion Process.

Quantization Error of Arithmetic Computations From Truncation and Rounding
DSP Algorithms such as Digital Filters will generate results with must be truncated or rounded up. In IIR filters where
feedback isimplemented, these errors will tend to accumul ate.

Computational Overflow
Whenever the result of an arithmetic computation is larger than the highest positive or negative full scale value, an
overflow will occur and the true result will be lost.

Coefficient Quantization
Finite Word Length of afilter coefficient can affect pole/zero placement and affect adigital filters frequency response.
The ADSP-21065L enables precise placement of poles/zeros with 32-bit accuracy.

Limit Cycles
Ocecur in IR filters from truncation and rounding of multiplication results or addition overflow. These often cause
periodic oscillations in the output result, even when the input is zero.

" The overall DSP-based audio system dynamic range isonly as good as the weakest link"

Thus, in a DSP-based audio system, this means that any one of the following sources or devices in the audio signal chain will
determine the dynamic range of the overall audio system:

- the analog input signal from a microphone or other device

- the ADC word size and conversion errors

- DSP word length effects: DSP quantization errors from truncation and rounding, and filter coefficient
guantization

- output DAC

- other connecting equipment used to further process the audio signal

Fielder [38] demonstrates the dynamic range requirements for consumer CD audio requires 16-bit conversion/processing
while the minimum requirement for professional audio is 20-bits (based on perceptual tests performed on human auditory
capabilities). Dynamic range application requirements for high fidelity audio processing can be categorized into two groups:

‘Consumer CD-Quality’ Audio System uses 16-bit conversion with typical dynamic ranges between 85-93 dB
‘Professional-Quality’ Audio System uses 20-24 bit conver sion with dynamic Range between 110-122 dB

Maintaining 96 dB 16-bit 'CD-Quality' Audio During DSP Algorithm Calculations

When processing audio signals, the DSP must keep quantization errors introduced by arithmetic cal culations lower than the
converter noise floor. Consider a'CD-quality’ audio system. If the DSPisto process audio datafrom a 16 bit A/D converter
(ideal case), @96 dB SNR must be maintained through the algorithmic processin order to maintain a‘ CD quality’ audio
signal (6x16=96dB). Therefore, it isimportant that all intermediate cal culations be performed with higher precision than the
16-bit ADC or DAC resolution. Errorsintroduced by the arithmetic calculations can be minimized when using higher data-
word processing (single or extended double precision) .
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Figure 13. Fixed-Point DSP Noise Floor with a typical 16-bit
ADC/DAC at 92 dB

The higher the number of bits, the more flexibility for roundoff and truncation
errors as long as errors to not exceed noise floor of the A/D and D/A Converters.
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As an comparison example, let'stake alook at the processing of audio signals from a 16-bit A/D converter that has a
dynamic range close to it's theoretical maximum, in this case with a92 dB dynamic range and SNR (see Figure 13 above).
The 16-bit DSP only has 4 dB higher SNR higher than the A/D converter. For moderate to complex audio processing using
single precision arithmetic, the 16-bit DSP data path will not be adequate as a result of truncation and round-off errors that
can accumulate. As shown in the Figure 15 below, errors produced from the arithmetic computations will be seen by the
output D/A converter. The same sample processing algorithm implemented on a higher resolution DSP would ensure these
errors are not seen by the D/A converter. The 24-bit DSP has 8 bits below the converter noise floor to allow for errors, while
the the ADSP-21065L (32-bit DSP) has 16-bits below the noise floor, allowing for the greatest SNR computation flexibility in
developing stable, noise free audio algorithms.

Thus, when using a 16-bit converter for ‘ CD-quality’ audio, the general recommendation is to use a higher resolution
processor (24/32-bit) since additional bits of precision gives the DSP the ability to maintain the 96dB SNR of the audio
converters[9,15, 28]. Double precision math can still be used for smaller data word DSPs if software overhead is available,
although the real performance of the processor can be compromised. A 16-bit DSP using single precision processing would
only suffice for low cost audio applications where processing is not too complex and SNR requirements are around 75 dB
(audio cassette quality).

Figure 14.
16-bit A/D Samples at 96 dB SNR

Figure 15.
16-bit D/A Output Samples with Finite Length Effects
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Summary of requirementsfor maintaining 16-bit accuracy, 96 dB SNR:
All intermediate cal culations must be performed using higher precision filter coefficients and higher precision storage of
intermediate samples in larger data word computation registers and/or memory to ensure the noise floor of the
algorithm/filter isless than the final truncated output result by the D/A converter
At least 24 hits are required if the quality of 16 bitsisto be preserved. However, even with 24-bit processing, it has been
demonstrated that care would need to be taken to ensure the noise floor of the digital filter algorithm is not greater than
the established noise floor of the 16 bit signal, especialy for recursive IR audio filters. [R. Wilson, 9].
When processing 16/18/20 bit audio data, the use of 32-bit processing is especially useful for complex recursive
processing using IR filters. For example, parametric/graphic equalizer implementations using cascaded 2nd order IR
filters, and comb/allpass filters for audio are more robust using 32-bit math. The ADSP-21065's 32-bit capability reduces
the burden from the DSP programmer to ensure that the quantization error from computations does not go above the
ADC/DAC noisefloor.
The ADSP-21065L's 32-hit processing can give an additional 48 dB 'guard' benefit to ensure 16-hit signal quality is not
impaired during multistage recursive filter computations and and multiple algorithmic passes before obtaining the final
result for the DAC.

Processing 110-120 dB, 20-/24-bit Professional-Quality Audio

When the compact disc was launched in the early 1980s, the digital format of 16-bit words sampled at 44.1 kHz, was chosen
for a mixture of technical and commercial reasons. The choice was limited by the quality of available analog-to-digital
converters, by the quality and cost of other digital components, and by the density at which digital data could be stored on the
medium itself. It was thought that the format would be sufficient to record audio signals with all the fidelity required for the
full range of human hearing. However, research has shown that this format isimperfect in some respects.

Firstly, the sensitivity of the human ear is such that the dynamic range between the quietest sound detectable and the
maximum sound which can be experienced without pain is approximately 120dB. The 16-bit words used for CD alow a
maximum dynamic range of 96 dB athough with the use of dither this is reduced to about 93 dB. Digital conversion
technology has now advanced to the stage where recordings with a dynamic range of 120dB or greater may be made, but
compact disc is unable to accurately carry them.

While 16-bit, 44.1 kHz PCM digital audio continues to be the standard for high quality audio in most current applications,
such as CD, DAT and high-quality PC audio, recent technological developments and improved knowledge of human hearing
have created a demand for greater word lengths in the professional audio sector. 18, 20 and even 24 bit anal og-to-digital
converters are now available which are capable of exceeding the 96dB dynamic range available using 16 bits. Many
recording studios now routinely master their recordings using 20-bit recorders, and quickly moving to 24 bits. These
technological developments are now making their way into the consumer and so-called “ prosumer” audio markets. The most
conspicuous incarnation is DVD which is capable of carrying audio with up to 24-bit resolution. New DV D standards are
extending the digital formats to 24-bits at sample rates of 96 kHz and 192 kHz formats. Other productsinclude DAT
recorders which can sample at 96kHz. Many professional audio studio manufacturers now offer DAT recorders with 24-bit
conversion, 96 kHz sampling rage. In fact, three trends can be identified which have influenced the current generation of
digital audio formats which are set to replace CD digital audio, and these may be summarized as follows:

Higher resolution - 20 or 24 bits per word
Higher sampling frequency - typically 96 kHz
More audio channels

With many converter manufacturers introducing 24-bit A/D and D/A converters to meet emerging consumer and professional
audio standards, processing of audio signalswill require at least 32-bit processing in order to offer sufficient precision to
ensure that afilter algorithm's quantization noise artifacts will not exceed the 24-bit input signal.
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2. USEFUL DSP HARDWARE/SOFTWARE BUILDING BLOCKS FOR AUDIO

This section will briefly review common DSP operations, and show how a DSP programmer can take advantage of the
ADSP-21065L processor specific characteristics that allow the designer to easily write DSP algorithms. This DSP was
designed to allow efficient coding of real-time signal processing operations such as convolution and vector operations while
allowing fast, efficient memory accesses.

2.1 Basic Arithmetic Operations

DSPs have the ability to perform alarge range of mathematical operations. All DSPs must be able to perform simple
operations like addition, subtraction, absolute value, multiplication, logical operations (AND, OR,..). The ADSP-2106x
family with it's floating-point support can perform more advanced functions like divisions, logarithms, square roots and
averages very efficiently. Figure 16 below summarizes some common code building blocks:

Figure 16.
Common DSP Building Block Operations

Signal Delay Multiplication a Signal By A
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> s X,(N)+X,()
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Subtraction of 2 Signals

Xa(n) \
x,(n) = -

— X,(N)-X,(N)

2.2 Implementing Convolution With Zero-Overhead Looping, Multiply/Accumulate
Instructions (MAC), and Dual Memory Fetches

A common signal processing operation is to perform arunning sum on an input and an impul se response to a system.
Convolution involves multiplying two sets of discrete data and summing the outputs as seen in the convolution equation
below:

y(n) = Sx(m)h(n-m)

Examining this equation closely shows elements required for implementation. The filter coefficients and input samples need
to come from 2 memory arrays. They need to be multiplied together and added to the results of previousiterations. So
memory arrays, multipliers, adders, and aloop mechanism are needed for actual implementation. The ADSP-2106x DSPs
can fetch two data words from memory(x(n) and h(n-m)), multiply them and accumulating the product (MAC instruction) to a
previous results in one instruction cycle. When used in a zero-overhead loop, digital filter implementation becomes extremely
optimized since no explicit software decrement, test and jump instructions are required.
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Multiply / Accumulates (MAC)

Many DSP architectures like the SHARC family include a fixed-point MAC in the computational section to allow a multiply
and accumulate in 1 instruction cycle. The DSP needs this support in order to multiply an input sample with afilter
coefficient, and add the result to the previous accumulator results.

Dual Memory Fetches with a Modified Harvard Architecture

DSP architectural features are designed to perform these computations as quickly as possible, usually within 1 instruction
cycle. To perform an operation shown above, a DSP architecture should allow: 1 multiplication with an addition to a
previous result, fetch a sample from memory and fetch a coefficient within 1 instruction cycle. To perform the complete
convolution operation, an efficient loop hardware should be able to efficiently loop through the number of iterations of the
MAC & dual memory fetch instruction.

Figure 17.
The Harvard Architecture
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The ADSP-21065L uses a Modified Harvard Architecture (Figure 17 above) further to enable 2 datatransfersand 1
instruction (such asaMAC) to be executed in 1 instruction cycle due to the fact that there are 2 separate memory spaces
(program and data) and either a cache or separate PM data bus. The ability to also store data in the Program Memory Space
allows the DSP to execute an instruction and performing 2 memory movesin any given cycle. On-chip memory storage
allows the DSP programmer to place arithmetically intensive filter computationsin internally to maintain single cycle dual
memory fetches.

2.3 Hardware Circular Buffering For Efficient Storage/Retrieval Of Audio Samples

An important feature for repetitive DSP algorithms is the use of circular buffering. A circular buffer is afinite sesgment of the
DSPs memory defined by the programmer that is used to store samples for processing (Figure 18). The ADSP-2106x DSPs
have data address generation units that automatically generate and increment pointers [18] for memory accesses. When data
is stored/retrieved from a circular buffer in consecutive locations, the address generation units will ensure that the indirect
pointer to the buffer will automatically wrap to the beginning memory address after exceeding the buffer’s endpoint (Figure
19). When circular buffering isimplemented in hardware, the DSP programmer does not have to be concerned with
additional overhead of testing and resetting of the address pointer so that it does not go out of the boundary of the buffer.
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Figure 18. Figure 19.
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2.4 Zero-Overhead Looping

The Control Unit in the DSP microcomputer must provide efficient execution of data as quickly as possible. For digital filter
routines, arunning sum of MAC operations istypically executed in fast loop structures with what is know as zero overhead,
meaning the branching, loop decrementing, and termination test operations are build into the control unit hardware, saving
precious DSP cycles without having to include addition loop construct operation in hardware. Once the loop isinitialized,
there is no software overhead. The example assembly pseudocode below shows how hardware-controlled loops with zero
overhead can produce code that is 3 times faster, after the 1 cycle that is required for setting up the DO Loop Instruction.

» Software Loop Example:
CNT = 10;
Loop1: Mult/Acc AR, X, Y;
Decrement CNT;
JNE  Loopi;

» Zero Overhead Hardware Loop Example:
CNT=10;
Do Loop Until Mult_Acc Done:
Mult_Acc: Mult/Acc AR, X, Y;

2.5 Block Processing vs. Sample Processing

DSP algorithms usually process signals by either block processing or sample processing [2]. For block processing, datais
transferred to a DSP memory buffer and then processed each time the buffer fills with new data. Examples of such algorithms
are fast fourier transforms and fast convolution. The processing time requirement is based on the sample rate times the
number of locations in the memory buffer.

In sample processing algorithms, each input sample is processed on a sample-by-sample basis through the DSP routine as
each sample becomes available. Sampled datais usually passed from a peripheral (such asaserial port) and transferred to an
internal register or memory location so it is made available for processing. Theis the preferred method when implementing
real-time digital filters for infinite duration. For infinite duration sequences, once the DSPisinitialized, it will forever
process data coming in and output aresult aslong as the DSP system is powered . So for real-time digital 1|R/FIR filters and
digital audio effects, sample processing will be the method used for most examples to be covered in this paper. Aswe will
seein the next section, some digital filters and audio effects use sample processing techniques with delay-lines.
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2.6 Delay-Lines

The Delay-Line isabasic DSP building block which is can be used to filter asignal or produce time-based effects such as
chorusing, flanging, reverberation and echo. The basic design for any time-delay effect isto simply delay an incoming signal
and output the result by some fixed or variable length of time (See general delay line structure in Figure 20). The DSP delay-
line can be implemented by the following technique [17]: Using an ADC, an input analog signal is converted to it’s equivalent
binary numeric representation. These discrete samples are then placed in the DSP' sinternal (or external) RAM. To move
through the delay-line, the DSP uses addressing generation/modification methods to automatically increment (or decrement)
an address pointer after each input sample is stored so the other samples are stored in consecutive memory locations. At the
sametime, previously stored samples are sent to a DAC from another ‘tapped’ address location in the memory buffer. The
DAC convertsthe digital result back to its analog equivalent. Figure 20 below shows the DSP structure of the delay-line:

Figure 20. Delay Line with buffer size D Delay(sec) = Dy spe X T

Samp. Rate
D .
x(n) w,(n) Z_D wp(n) y() Delay(sec) — Buff. Size
x(n - D) Samp. Rate

The delay time of an DSP-processed audio signal is determined by:

1. Delay Line Buffer Size - number of words (address locations) defined for the buffer.

2. Sampling Rate - determined usually by the audio converters. This also corresponds with the rate at which datais
received, processed and returned by the DSP (usually within an interrupt service routine). The addressin the buffer
isincremented every time samples are stored/retrieved.

The /O difference equation is simply:
y(n)=x(n- D)

Usually, the sampling rate of the A/D or D/A converter is related to the rate at which the DSP's interrupt service routineis
called for data processing. The DSP interrupt rate usually depends on the AD/DA converters since the converters are
connected to the DSP' s serial ports or are using a hardware interrupt pin to notify the DSP when data is being transmitted or
received.

To increase the delay of asignal, either the buffer size must be increased to store more samples, or the sampling rate can be
decreased to increase the delay. Tradeoffs must be considered when choosing longer delay times. Sometimes a DSP only has
alimited amount of memory available. The higher the bandwidth requirement of the incoming signal, the more memory
storage required by the DSP.  But, by decreasing the sampling rate, the bandwidth isreduced. In some casesthisisnot a
problem. For example, human voices or stringed instruments have a bandwidth of only up to 6 kHz. In such cases, asmaller
sampling rate will not limit the with the frequency range of the instrument.

2.7 Signal Generation With Look-Up Tables

Methods of signal generation for wavetable synthesis, delay-line modulation and tremolo effects can be produced by using a
periodic lookup of asignal stored in the DSP's data memory. Wavetable Generators can be used to implement many time-
delay modulation effects an amplitude effects such as the chorus, flanger, vibrato, and tremolo. The figure below shows some
of the more common signals that can be easily stored in memory for use in audio applications.
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Figure 21.
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Most high level languages such a C/C++ have build in support to generate trigonometric functions. Real-time Embedded
System Software Engineers who program DSP algorithms mostly in assembly do not have the flexibility of a high level
language when generating signals. Various methods proposed by Crenshaw [8], Orfanidis[2] and Chrysafis [39] can be used
for generating sinusoidal/random signalsin aDSP. Signal generation can be achieved by:

1. Making asubroutine call to a Taylor Series function approximation for trigonometric signals, uniform/Gaussian
random number generator routine for random white noise generation.

2. Using atable lookup

3. Using hold/linear interpolation operations between consecutive locations in the wavetable to increase the
resolution of the stored signal.

The advantage of using awavetable to generate asignal isthat it is simple to generate signal simply by performing a memory
read from the buffer, therefore saving DSP cycle overhead. The wavetable can be implemented as a circular buffer so that the
signal stored is regenerated over and over. The larger the buffer, the purer the signal that can be generated. With larger
internal memory sizes integrated on many DSPs or the use of low cost commodity SDRAM, the option of using alook-up
table is more easily achievable than in the past. To save memory storage, the size of the table can be reduced by afactor of 2,
and as suggested above, the DSP can interpolate between 2 consecutive values. For example, a wavetable buffer can contain
4000 locations to represent 1 period of a sine wave, and the DSP can interpolate in between every value to produce 8000
elementsto construct the signal. Thisis not a bad approximation for generating a decent sounding tone

What is the best way to progress through the table? The general recommendation for accessing data from the table would be
to declare the wavetable in the DSP program as a circular buffer instead of as alinear buffer (see some examplesin Figure 22
below). Thiswill allow the signal to be replayed over and over without the program having to check to seeif the pointer
needs to be reset. Two methods can be used to progress through the lookup table:

1. Sample-Rate Dependent Update: On method for updating a wavetable pointer is sample-rate dependent update, where a
new lookup value is generated every time the sample processing algorithm is entered (typically viaan interrupt service
routine). This synchronization with the sample rate will not introduce possible aliasing artifactsin implementing delay
line modulation.
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DSP Timer Expire Update: Another method, would be to update the value in the table using the DSP's on chip
programmable timer. Every time the timer expires and resets itself, the timer ISR can update the pointer to the wavetable
buffer. This method allow movement through a table that is not relative to the converter's sampling rate, allowing for
more flexible and precise timing of signal generation or delay-line modulation.

For certain digital audio effects such as flanging/chorusing/pitch shifting, lookup table updates can be easily achieved using
the programmable timer as well as viathe audio processing ISR. Delay-line modulation value can be easily updated by using
the programmable timer or an interrupt counter to process the parameter used to determine how far back in the delay-line
buffer the DSP's data addressing unit needs to fetch a previously stored sample. A sine wavetable can be used to implement
many time delay modulation effects an amplitude effects such as the chorus, flanger, vibrato, and tremolo. Random Low-
frequency oscillator (LFO) Tables can be used to implement realistic chorus effects[2]. Using a sawtooth wavetable will be
useful for shifting the pitch of asignal [16]. We will look at these examplesin more detail in subsequent sections.

Figure 22.
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Many methods exist for generating wavetable datafiles for inclusion into a DSP program. An easy way isto use a
mathematical software packages such aMATLAB to create datafiles. Signal tables can even be created using Microsoft
Excel. C source also exists on the Internet for generating ASCI| files with Hex data for creating simple periodic signals.
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3. IMPLEMENTING DSP AUDIO ALGORITHMS

Now that some techniques for creating components of an algorithm have been proposed, let’ s examine some basic to
moderately complex audio algorithms that are often used in prosumer equipment. Many of the DSP Techniques we will
discuss can be used to implement many of the features found in digital mixing consoles and digital recorders. We will
provide some example processing routines for various effectg/filters that were implemented using alow cost DSP evaluation
platform.

Figure 23.
Typical 8 Channel Mixer/Recorder
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Figure 23 isan example 8 channel mixing console/ recorder. Some of the features that are commonly found in mixers and
multi-track recorders can be implemented with DSP instructions to perform functions that are often found in mixer equipment
as the 8 track recorder shown above:

- Channel and Master Gain/Attenuation

- Mixing Multiple Channels

- Panning multiple signals to a Stereo Field

- High, Low and Mid Digital Filters Per Channel

- Graphic/Parametric Equalizers

- Signal Level Detection

- Effects Send/Return Loop for further processing of channels with signal processing equipment

Many of these audio filters and effects have been implemented using the ADSP-21065L EZ-LAB development platform, aswe
will demonstrate in this section with some assembly code examples.. The ability to perform al of the above functionsis only
constrained by the DSP MIPs. The 21056L's dual multiprocessor system capability can also be used for computationally
intensive audio applications. For example, in adigital mixing console application, audio manufacturerstypically will use
multiple processors to split up DSP tasks or assign different processors to handle a certain number of channels. Inthe
following section, we will model our effects and filter algorithms to cover many of the features that are found in the above
digital mixer diagram, and show how easy it is to develop such a system using the ADSP-21065L EZ-LAB.
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3.1 Basic Audio Signal Manipulation

The attractive alternative of choosing to use aDSP is because of the easiness at which a designer has the ability to add,
multiply, and attenuate various signals, as well afiltering the signal to produce a more pleasing musical response. In this
section we will review some techniques to amplify or attenuate signals, pan signals to the left and right of a stereo field,
mixing multiple signals, and pre-scaling inputs to prevent overflow when mixing or filtering signals using fixed point
instructions with the ADSP-21065L.

3.1.1 Volume Control

One of the simplest operations that can be performed in a DSP on an audio signa is volume gain and attenuation. For fixed-
point math, this operation can be performed by multiplying each incoming sample by a fractional value number between
0x0000.... and Ox7FFF.... or using a shifter to multiply or divide the sample by a power of 2. When increasing the gain of a
signal, the programmer must be aware of overflow, underflow, saturation, and quantization noise effects.

. VAR DRY_GAI N_LEFT = O0x6AAAAAAAA; /* Gin Control for left channel */
/* scal e between 0x00000000 and Ox7FFFFFFF */
. VAR DRY_GAI N_RI GHT = 0x40000000; /* Gin Control for right channel */
/* scal e between 0x00000000 and Ox7FFFFFFF */
/* nodify volune of left channel */
r10 = DM Left_Channel); /* get current left input sanple */
rll = DM DRY_GAI N_LEFT); /* scal e between 0x0 and Ox7FFFFFFF */
rl0 = r10 * rll(ssf); [* x(n) *(G.left) */
/* nmodify volune of right channel */
r10 = DM Ri ght _Channel); /* get current right input sanple */
ril = DM DRY_GAI N_RI GHT); /* scal e between 0x0 and Ox7FFFFFFF */
rl0 = r10 * rll(ssf); /* x(n) *(G_right) */

3.1.2 Mixing Multiple Audio Signal Channels

Adding multiple audio signals with aDSP is easy to do. Instead of using op-amp adder circuits, mixing a number of signals
together inaDSP is easily accomplished with an ALU’s adder circuit and/or Multiply/Accumulator. First signals are
multiplied by a constant number so that the signals do not overflow when added together. The easiest way to ensure signals
are equally mixed is by choosing afractional value equal to the inverse of the number of signalsto be added.

For example, to mix 5 audio channels together at equal strength, the difference equation (assuming fractional fixed point
math) would be:

1 1 1 1 1
Y(N) = £x,(N) + £x, () + 2x5(0) + 5x,(N) + £x ()

The general mixing equation is:

y(n) = %[xl(n) X, (M) Xy (N)]

Choosing N to equal the number of signals will guarantee that no overflow will occur if al signals were at full scale positive
or negative values at a particular value of n. Each signal can aso be attenuated with different scaling values to provide
individual volume control for each channel which compensates for differencesin input signal levels:

y(n) =cx;(n) + ¢, X, (N)+...c X (N)

An example of mixing 5 channels with different volume adjustments can be:
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y(n) - _Xl(n) z(n) 3(n) 4(n) s(n)

Asin the equal mix equation, the sum of all of the gain coefficients should be less than 1 so no overflow would occur if this
equation was implemented using fractional fixed point arithmetic. An example implementation of the above difference
equation is shown below.

5-Channel Digital Mixer Example With Custom Volume Control Using The ADSP-21065L

#defi ne cl 0x19999999 /* ¢l =0.2, 1.31 fract. format */
#def i ne c2 0x0cceecce /[* ¢c2 =0.1*/
#defi ne c3 0x26666666 /[* ¢3 = 0.3 */
#defi ne c4d 0x06666666 /* ¢c4 = 0.05 */
#defi ne c5 0x39999999 /* ¢5 = 0.45 */
/* Serial Port 0 Receive Interrupt Service Routine */
5 channel _di gi tal _m xer:
/* get input sanples from data hol ders */
rli = dm(channel _1); {audi o channel 1 input sanple}
r2 = dm(channel _2); {audi o channel 2 input sanple}
r3 = dm(channel _3); {audi o channel 2 input sanple}
r4 = dm(channel _4); {audi o channel 2 input sanpl e}
r5 = dm(channel _5); {audi o channel 2 input sanple}
ré = cil;
nrf =r6 * rl1 (ssf); {nrf = cl*x1}
r7 = c2;
ntf =mf +r7 * r2 (ssf); {mrf = cl*x1 + c2*x2}
r8 = c3;
nrf =mf +r4 * r2 (ssfr); {nprf = cl*x1 + c2*x2 + c3*x3}
r9 = c4;
ntf =mf +r4 * r2 (ssfr); {nrf = cl*x1 + c2*x2 + c3*x3 + c4*x4}
ri0 = cb5;
nrf =mf +rd4 * r2 (ssfr); {nrf = y= cl*x1l + c2*x2 + ¢3*x3 + c4*x4 + c5*x5}
nmf = sat mf;
{----mmmm e - wite output sanples to stereo D/A converter ------------------- }
ro = nrif;

dm( |l eft _out put)
dm(ri ght _out put)

{left output sanple}

=r0;
=r0; {right output sanple}

3.1.3 Amplitude Panning of Signals to a Left or Right Stereo Field

In many applications, the DSP may need to process two (or more) channels of incoming data, typically from a stereo A/D
converter. Two-channel recording and playback is till the dominant method in consumer and professional audio and can be
found in mixers and home audio equipment. V. Pulkki [22] demonstrated placement of asignal in a stereo field (see Figure 4
below) using Vector Base Amplitude Panning. The formulas presented in Pulkki’s paper for atwo-dimensional trigonometric
and vector panning will be shown for reference.
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Normally, the stereo signal will contain an exact duplicate of the sampled input signal, although it can be split up to represent
two different mono sources. Also, the DSP can also take a mono source and create signals to be sent out to a stereo D/A
converter. Typical audio mixing consoles and multichannel recorders will mix down multiple signal channels down to a
stereo output field to match the standardized configuration found in many home stereo systems. Figure 25 is a representation
of what atypical panning control ‘pot’ looks like on a mixing console or 8-track home recording device, along with some
typical pan settings:

Figure 25. Three Typical Pan Control Settings of a
Mono Source To A Stereo Output Field

Full Left Pan Center Mix Full Right Pan

Many 4/8/12 track analog and digital studios contain a knob to pan an input source entirely to the left or right channel, or
played back through both channels at an equal mix (with the pan control centered in the middle). To give the listener a sense
of location within the output stereo filed, the DSP can simply perform a multiplication of the algorithmic result on both the
left and right channel so that it is perceived from coming from a phantom source.

Figure 26. Panning of Two-Channel Stereophonic
Audio Derived by Blumlein, Bauer and Bernfeld [26]

Figure 27. Pulkki’'s Method [26] For
Vector Panning of Two-Channel Audio
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y(n)=g.x,(n)
Yr(N) =grXg(N)

To create a panning effect of an audio channel to a particular position in the stereo output field, the programmer can use the
Stereophonic Law of Sines, or the Tangent Law equation (Pulkki, Blumlein and Bauer[22].. see Figure 26) where g, and gr
are the respective gains of the left and right channels.
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Stereophonic Law of Sines (proposed by Blumlein and Bauer [22] )

sinf :gL'gR
snf, g +0z

where 0° <f , <90°, -f , <f <f,,andg,,0, 1 [0]]

Thisisvalidif the listener’s head is pointing straight ahead. If the listener turns the head to follow the virtual source, the
Tangent Law equation as described by Pulkki [derived by Bernfeld, 26] is modified as:

tanf _ g, - Os
tanf, g, +0g

where 0° <f , <90°, -f , <f <f,,andg,,g, 1 [0]]

Assuming fixed point signed fractional arithmetic where signals are represented between 0 (0x0000...) and 0.99999
(OX7FFF...), the DSP programmer will smply multiply each signal by the calculated gain.

Using Pulkki's Vector Base Amplitude Panning method as shown in the Figure 27, the position p of the phantom sound source
is calculated from the linear combination of both speaker vectors:

p=0g.l. +0glg
The output difference 1/0 eguations for each channel are simply:

y (n)=g.x.(n) and yg(N)=ggXg(N)

Vector-Base Amplitude Panning Summary:

1) Left Pan: If thevirtual sourceis panned completely to the left channel, the signal only comes out of the left channel and
theright channel iszero. When the gainis 1, then the signal is simply passed through to the output channel.

1) Right Pan: If the virtual sourceis panned completely to the right channel, the signal only comes out of the right channel
and the left channel is zero. When the gain is 1, then the signal is simply passed through to the output channel.

1
G, =0
1) Center Pan: If the phantom source is panned to the center, the gain in both speakers are equal .

G [ = G ;

4) Arbitrary Virtual Positioning: If the phantom source is between both speakers, the tangent law applies. The resulting
stereo mix that is perceived by the listener would be off-scale left/right from the center of both speakers. Some useful
design equations [26] are shown below:

_ cosf sinf , +sinf cosf _cosf sinf ; - sinf cosf ¢ _arctanésinfoaegL—gR(jl)
= . = . = é =0
: 2cosf , sinf R 2cosf ,sinf acosf , g, +9, g5
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L ookup tables can be used to determine the sine and cosine values quickly to determine the gain factors for the left and right
channelsif the speaker placement is known and a desired virtual angle is determined. The arctangent approximation can be
computed to determine the placement of the virtual source if the speaker placement is known and gain values are arbitrarily
selected. Otherwise the programmer can create a panning table with pre-computed left and right gains for a number of
panning angles. Two memory storage buffers can be created, one for the left and one for the right channel. To createa
virtual pan on-the-fly, the DSP can simply look up the values from memory and perform the multiplication with the output
sample prior to the conversion of the sample by the D/A converter. Table 5 below shows |eft and right channel gains required
for the desired panning angle:

Table 5. Left/Right Channel Gains for Desired Virtual Panning Placement

f 0 f gL gR gL- norm gL- nor

45° | 45° 1 0 1 0

45° | 300 | 1366 0366 | 1 | 02679
45° 20° | 18737 | 0.8737 1 04663
45° | 10° | 33356 | 23356 1 0.7002

45 | oo 1 1 1

45° | -10° |-23356|-33356| 0.7002 1
45° | -20° |-08737| -18737 | 04663 1
45° | -30° | -0366| -1366 | 02679 | 1
45° | -45° 0 1 0 1

After nomalization of the larger gain coefficient to unity, the other channel is afractional value between 0x0000.... and
Ox7FFF.... (unity approximation). From the chart shown above we see that we can use a sine lookup table to calculate the
fractional number that can be uses as a gain while the other channel is kept at unity gain (or simply passed from the input
through to the desired stereo output channel). Moving through the table periodically to pan left for positive numbers and pan
right for negative numbers can create a tremolo/ping-pong effect. At the zero crossing, the phaseis reversed as aresult of of
negative pan values taken from the lookup sine table buffer. Thus, a modified version of the tremolo effect described in
section 3.3.3 can be based on the vector based stereo panning concept.

30° Amplitude Panning to a Stereo Output Example (ADSP-21065L DSP)
{Thi s exanpl e assunes speaker placenent of 45 degrees, shown in above table}

#def i ne Left_Gain Ox7FFFFFFF /* gL = 0.999999, 1.31 fract. format */
#defi ne Right _Gain 0x224A8C15 /* gR = 0.2679 */

/* Serial Port 0 Receive Interrupt Service Routine */
Mono_To_St ereo_Panni ng_Control l er:
rl = dm(audi o_dat a); { get audio input sample from codec }

{Note, the left channel can be passed through at unity gain, or nultiplied bel ow
with a constant close to unity, in this case 0.99999 which is an approxi mati on of 1}

r2 = Left_Gain;

nrf =r2 * rl1 (ssfr); {nrf = gL * xLeft}
r3 = Right_Gain;
ntf =r3 * rl (ssfr); {mf = gR * xRight}
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{------meeee - - wite output sanples to stereo D/A converter ------------------- }
ro = nrlif;
dm(left_output) = r0; {left output sanpl e}
dm(right _output) = rO0; {right output sanple}

3.2 Filtering Techniques and Applications

One of the most common DSP algorithms implemented in audio applications is the digital filter. Digital filters are used to
increase and decrease the amplitude of asignal at certain frequencies similar to an equalizer on astereo. Thesefilters, just
like analog filters, are generally categorized in to one of four types : high-pass, low-pass, band-pass and notch and are
commonly implemented in one of two forms: the IR (Infinite Impulse Response) filter and the FIR (Finite Impulse Response)
filter. Using these two basic filter typesin different configurations, we can create digital equivalents to common analog filter
configurations such as parametric equalizers, graphic equalizers, and comb filters.

Digital filters work by convolving an impulse response (h[n]) with discrete, contiguous time domain samples (x[n]). The
impul se response can be generated with a program like MATLAB and is commonly referred to as a set of filter coefficients.
The FIR and IR examples for the ADSP-21065L include both fixed and floating point equivalent routines.

3.2.1 The FIR Filter

The FIR (Finite Impulse Response) filter has an impulse response which isfinite in length asimplied by its name. The output
values (y[n]) are calculated using previous values of x[n] as seen in the figure and difference equation below.

Figure 28.

hD

x[n] /—i—\ y[n]

y[n] = & hik]x[n- K]

k=0

Floating Point FIR Filter Implementation on an Analog Devices’ ADSP21065L

/* FIRFilter

Cal ling Paraneters:
fo i nput sanple x[n]
b0 base address of delay line
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mD = 1 (nodify val ue)

10 = length of delay line buffer

b8 = base address of coefficients buffer containing h[n]
m =1

18 = length of coefficient buffer

Ret urn Val ue:
fO = output y[n]

Cycl e Count:
6 + nunmber of taps + 2 cache nisses

*/

FIR rl2 = r12 xor r12, dn(i1,0) = r2; /1 set r12/f12=0,store input sanple in line
r8=r8 xor r8, fO = dmiioO,n), f4 = pn(i8,nmB); // r8=0, get data and coeffs
lentr = FIRLen-1, do macloop until lce; // set to loop FIRIength - 1

macl oop: f12 = fO*f4, f8 = f8+f12, fO = dn(il,m), f4 = pm(i8, nB); // MAC
rts (db); /1 del ayed return from subroutine
f12 = fO*f4, f8 = f8+f12; Il performlast multiply
fO=f 8+f 12; /1 performlast accunul ate

Fixed Point FIR Filter Implementation on an Analog Devices’ ADSP21065L

/* Fixed Point FIRFilter

Cal ling Paraneters:

R10 = input sanple x[n]

b0 = base address of delay line

m0 = 1 (nodify val ue)

10 = length of delay line buffer

b7 = base address of coefficients buffer containing h[n]
i7 = pointer to coeffs buffer

nw =1

17 = length of coefficient buffer

Ret urn Val ue:
MRLF = out put y[n]

*/
fir_filter:
MB = 1;
B7 = FIR Gai n_Coeffs;
L7 = @FI R_Gai n_Coef fs;
DM17,1) = RL0; /* wite current sanple to buffer */
RlL =DMI10,1); /* get first delay tap length */
M7 = R1; MODIFY(Il7,M); /* buffer pointer now points to first tap */
RlL =DMI10,1); /* get next tap length */
M = R1;
R3 =DMI17,M), RA& = PMI8, MB); /* get first sanple and first tap gain for MAC */
LCNTR = FIRLen-1, DO er_sop UNTIL LCE;
RlL =DMI10,1); /* get next tap length */
M = R1; /* put tap length in M7 */
FI R _sop: MRF = MRF + R3*R4 (SSF),R3 = DM 1 7, M7) , R4 = PM 18, MB);

/* conmpute sum of products,

MRF + R3*R4 (SSFR):
SAT MRF;

get next sanple, get next tap gain */

/* last sanple to be conputed */
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3.2.2 The lIR Filter

The IR (Infinite Impulse Response) has an impulse response which isinfinitein length. The output (y[n]) is calculated using
both previous values of x[n] and previous values of y[n] as seen in the figure and difference equation below. For this reason,
IIR filters are often referred to as recursive filters.

Figure 29.

x[n] (4 > y[n]

vin]
Mnl =@ (-avin- i)+ & (bx{n- ])

Floating Point Biquad IIR Filter Implementation on an Analog Devices’ ADSP21065L

/* BIQUAD IR Filter

Cal ling Paraneters

f8 = input sanple x(n)

r0 = nunber of biquad sections

b0 = address of DELAY LI NE BUFFER

b8 = address of COEFFI CENT BUFFER

mL. = 1, nodify value for delay |ine buffer
m8 = 1, nodify value for coefficient buffer
10 =0

11 =0

18 =0

Ret urn Val ues
f8 = output sanple y(n)

Regi sters Affected
f2, £3, f4, 8, f12
i0, b1, i1, i8

Cycle Count : 6 + 4*(nunber of biquad sections) + 5 cache ni sses

# PM Locat i ons
10 instruction words
4 * (nunber of biquad sections) |locations for coefficents

# DM Locat i ons
2 * (nunber of biquad sections) locations for the delay |ine

LEE R R R RS R R R R R R R E Ry

cascaded_bi quad: /*Call this for every sanple to be filtered*/
b1=b0; *|1 used to update delay |line with new val ues*/
f12=f12-f12, f2=dm(i O, m), f4=pm(i8,n8B); /*set f12=0,get a2 coefficient,get W(n-2)*/
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[lentr=r0, do quads until Ice;
/ *execut e quads | oop once for ea biquad section */
f12=f2*f4, f8=f8+f12, f3=dn(iO, nl), f4=pn(i8, nB);
/* a2*w(n-2),x(n)+0 or y(n) for a section, get w(n-1), get al*/
f12=f3*f4, f8=f8+f12, dn(il, m)=Ff3, f4=pn(i8, nB);
/*al*w(n-1), x(n)+[a2*wmn-2)], store new w(n-2), get b2*/
f12=f2*f4, f8=f8+f12, f2=dn(iO, nl), f4=pn(i8, nB);
/*b2*W(n-2), new w(n), get w(n-2) for next section, get bl*/
quads: f12=f3*f4, f8=f8+f12, dm(il, m)=f8, fd4=pn(i8, n8);
[*b1*W(n-1), w(n)+[b2*Wn-1)], store new wn-1), get a2 for next

Fixed-Point Direct-Form-I lIR Filter Implementation on an Analog Devices’ ADSP21065L

AR AR R R R R R R R R R R R R R R

Direct-Form| IIRfilter of order 2 using hardware circular buffers
32-bit fixed-point arithmetic, assuming fractional 1.31 fornmat

The input may need to be scaled down further to avoid overflows, and the del ay-line
pointer i2 is updated by a -1 decrenent

The filter coefficients nmust be stored consecutively in the order:

[a0, al, a2,..., aM b0, bl,..., bM
and i8 is points to this double-length buffer. The a,b coefficients used in the program
are related to the true a,b coefficients by the scale factors, defined by the

exponents ea, eb:

scal e factor
scal e factor

a
b

a_true / Ga, Ga
b_true / G, (€]

2"exp_a
27hexp_b

(because a0O_true =1, it follows that a0 1/ Ga. This coefficient is redundant and not
really used in the conputation; it always gets nmultiplied by zero.)

The comon doubl e-1ength circul ar buffer 18 should be declared as:

.var a[Mrl], b[M+l]; <-- PMvariables
B8 = a; L8 = 2*(M+l);

Program assunes that both numerator and denoni nator have order M The y- and x-del ay-line
buffers nmust be declared as follows:

.var W M+1]; <-- DM vari abl es
.var v[ Mt1];  <--
B2 = w L2 @,
B3 =v; L3 = @;

LR AR R R R R R R R R R R R R R R R R R LY

. GLOBAL IR filter;

. GLOBAL init_IlIRfilter_buffers;

#define exp_a 1 /* scaling exponent for a - divide by 2 */
#define exp_b 1 /* scaling exponent for b - scale by 2 */

/* filter coeff in 2.30 fractional format */

#define b2 0x3ec474bf /* b2 = 0.980740725, scaled by 2 */

#define b0 0x3ec474bf /* b0 = 0.980740725, scaled by 2 */

#define al_bl 0x82771682 /* al and bl = -2*b0 = -1.96148145, scaled by 2 */
#define a2 0x3d88e97e /* a2 = 2*b0 - 1 = 0.96148145, scaled by 2 */
#define a0 0x40000000 /* a0 =1, scaled by 2 */

A DATA MEMORY FILTER BUFFERS --------mmmmm oo */

.segment /dm dmlIR

.var W 3]; /* y-delay-line buffer in DM*/

.var v[3]; /* x-delay-line buffer in DM*/
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. endseg;

R PROGRAM MEMORY FI LTER BUFFERS ----------mmmmimmia oo */

.segnent /pm pmlIR

.var a[3] = a0, 0, az; /* a coeffs in PM initial denom nator coefficients */
.var b[3] = b0, 0, b2; /* b coeffs in PM initial nunerator coefficients */

. endseg;

. segnent /pm pm code;

R R R IR Digital Filter Delay Line Initialization ------------------- */

init IR filter_buffers:

B2 = w L2 = @y /* y-del ay-line buffer pointer and | ength */

B3 =v; L3 = @; /* x-delay-line buffer pointer and | ength */

B8 = a; L8 = 6; /* double-length a,b coefficients */

e =1,

B = 1,

LCNTR = L2; /* clear y-delay line buffer to zero */

DO clr_y Diine UNTIL LCE;
clr_y Dine: dm(i 2, nmR2) = 0;

LCNTR = L3; /* clear x-delay line buffer to zero */

DO clr_x_Dine UNTIL LCE;
clr_x_Dine: dm(i 3, nmB) = 0;

call init_wavetable;

RTS;
/*************************************************************************************************/
/* */
/* IR Digital Filter Routine - Direct Form1 */
/* */
/* I nput Sanple x(n) = R15 */
/* Filtered Result y(n) = RO */
/* */

/*************************************************************************************************/

IR filter:
/*r15 = scal ed input sanple x, put input sanple into tap-0 of x delay line w] */
dn(i3, 0) = ri5;

/*put zero into tap-0 of y delay line v[], where sO = 0*/

r8 =0; dm(i2, 0) =r8; /* because a0O_true = 1, it follows that a0 = 1/ Ga.
This coefficient is redundant and not really used in the
conputation; it always gets nmultiplied by zero. */

m =1, n2 =1; n8 = 1,

/*dot product of y delay line buffer wf3] with a-coeffs of length 2 + 1*/
mf =0, rO =dn(i2, nm), rl = pn(i8, nB);

LCNTR = 2;
DO pol e_| oop UNTIL LCE;
pol e_| oop: mf =mf +r0* rl (SSF), r0 =dn(i2, nm2), rl = pn(i8, nB);
mf =nmf +r0 * rl (SSFR);
nrf = SAT nrf;
r3 = nrlif;
rl2 = ashift r3 by exp_a; {Ga * dot product(2nd order a coeff)}

/*dot product of x delay line buffer v[3] with b-coeffs of length 2 + 1*/
mf =0, rO =dn(i3, nmB), rl = pn(i8, nB);
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LCNTR = 2;
DO zero_|l oop UNTIL LCE;

zero_| oop: mf =mf +r0* rl (SSF), r0 =dn(i3, nmB), rl = pn(i8, nB);
mf =mf +r0 * rl (SSFR);
nrf = SAT nrf;
r8 = nrlif;
r13 = ashift r8 by exp_b; {Go * dot product(2nd order b coeff)}
/*conpute output y, where y(n) =b's * x's - a's * y's */
r9 =r13 - r12; /* output y inr9 */
/*put output sanple into tap-0 of y delay line w] */ /* sO =y */

/* and backshift circular y[ ] delay-line buffer pointer */
dm(i2, -1) =r9;

/ *backshi ft pointer & update circular x[ ]delay-line buffer, output in r9*/
modi fy(i3, -1);

rts;
. endseg;

3.2.3 Parametric Filters

Parametric filters are used quite widely in the audio industry because of their ability to amplify or dampen specific frequency
components of asignal. Traditionally, these filters have been designed using analog components, however, their digital
counterparts are very simple and efficient to implement. The filter’ s bandwidth, center frequency and gain can be calculated
using afew basic formulas to calculate the four required coefficients.

Parametric filters are really just second order IR filters and have a frequency response containing a single peak or notch at a
given frequency v ,. Thegain at al other frequenciesis roughly unity. These filters require less computational power than
higher order FIR and IR filters and the amount of computational power required to calculate coefficientsis minimal
compared to higher order filters.

Here's how the filter works : a conjugate pair of poles and a conjugate pair of zeros are arranged aong a straight line from the
origin of the Z-plane as shown in figure x. If the poles are closer to the origin than the zeros (i.e. R <), the resulting filter
will be anotch filter. On the other hand, the zeros are closer to the origin, the resulting filter will be apeak filter. Figurey
contains the frequency responses of both cases. The strength of the boost or cut of the respective peak and notch is
determined by the closeness of r and R. Also, the width of the peak or cut is determined by the closeness or r and R to the
unit circle.

Figure 30. Figure 31.
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Figurel: Pole-Zero Plot of parametric Filter Figure 2 : Frequency response of parametric filter

Below are the transfer function and difference equation for the parametric filter.

_Y(2) _b,+bz"+b,z?
T X(2)  1-az'-a,z?

H(z) y(n) =bx(n)+bx(n-1) +bx(n-2)+ay(n-1) +a,y(n-2)

This difference equation is implemented in code example below. The following equations (Orphanidis, 1996) are used to
calculate the coefficient values based on aknown value of v, r and R:

8, =1 a =-2Rcogw,) a,=FR
=1 b =-2rcosw,) b, =r?

These calculations are implemented in code example YYYYY.

Parametric Filter Implementation on an Analog Devices’ ADSP-21065L

/*
Parametric Filter Inplenentation

i nputs:
fo i nput sanpl e
i0 pointer to x[] values - circular buffer 3 elements |ong

il pointer to y[] values - circular buffer 3 elenments |ong

i 8 pointer to coefficients

out put's:

f1 = output sanple

*/

Filter:
ri2 = r12 xor r12, dm(iO,m) = fO;
f8 =f0+f3, fO = dm(il,m), f4 = pn(i 8, mB);
f12 = f0*f4, f8 = f8+f12, fO = dm(il,ml), f4 = pn(i 8, NB);
f12 = f0o*f4, f8 = f8-f12, fO = dm(iO, M), f4 = pn(i 8, NB);
f12 = f0*f4, f8 = f8-f12, fO = dm(i 0, m0), f4 = pn(i 8, MB);
f12 = f0*f4, f8 = f8+f 12;
fl1 =18 + f12;
rts;

Parametric Filter Coefficient Calculations I mplementation on an Analog Devices ADSP21065L

/*
Parametric Filter Coefficient Cal cul ati ons

i nput s:

fO = vep v, = frequency

fli1 =R

f3 =7r

i9 = pointer to where coefficients are to be stored
out put's:

al, a2, bl, b2 coefficients

35



*/
Par anetri cCal c:

call cosine (db); /1 returns fO as the cos(f0)
nop;

f4 = -2.0;

fo =f0 * f4, [* -2*cos(Vvy) */
f4a =f0 * f3; [* f4=-2r*cos(v,) */
pm(2,i9)=f4; /* store bl */

fa =f0 * f1; [* f4=-2R*cos(v,) */
pm(0,i9)=f4; /* store al */

f3=f 3*f 3;

pm(3,i9)=f3; /* store b2 */

rts (db);

fa1=f1*f1;

pm(1,i9)=f1; /* store a2 */

rts;

3.2.4 Graphic Equalizers

Professional and Consumer use equalizers to adjust the amplitude of a signal within selected frequency ranges. In a Graphic
Equalizer, the frequency spectrum is broken up into several bands using band-pass filters. Setting the different gain slidersto
adesired setting gives a ‘visual graph’ (Figure 32) of the overall frequency response of the equalizer unit. The more bandsin
the implementation yields a more accurate desired response.

Figure 32. Typical 12 Band Analog Graphic Equalizer
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Analog equalizers typically uses passive and active components. Increasing the number of bands resultsin alarge board
design. When implementing the same system in a DSP, however, the number of bandsis only limited by the speed of the DSP
(M1Ps) while board space remains the same. Resisters and capacitors are replaced by discrete-time filter coefficients, which
are stored in amemory and can be easily modified.
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Figure 33 shows and example DSP structure for implementing a 6 band graphic equalizer using second order IIR filters. The
feedforward path is afixed gain of 0.25, while each filter band can be multiplied by a variable gain for gain/attenuation.
There are many methods of implementation for the second order filter, such as using ladder structures or biquad filters. Filter
coefficients can be generated by a commercially available filter design package, where A and B coefficients can be generated
in for the following 2™ order transfer function and equivalent 1/0 difference equations:

_Y(2) _by+bz"+b,z?
“X(2)  1-az'-a,z?

H(z) y(n) =byx(n)+bx(n-1)+bx(n-2)+ay(n-1) +a,y(n-2)

Figure 33. DSP Implementation of a 6-Band Digital Graphic
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3.2.5 Comb Filters

Comb filters are used for noise reduction of periodic signals, signal enhancement, averaging signals, and are inherent in
digital audio effects such as delays, chorus and flange effects. Comb filters work by adding a signal with a delayed and scaled
version of the same signal. This causes some frequencies to become attenuated and others to become amplified through
signal addition and subtraction. Comb filters essentially simulate multiple reflections of sound waves, as we will seein the
section on digital reverb. Asthe nameimplies, the frequency response looks like the teeth of a comb as seen in the figure
below. Orfanidis[2] covers Comb Filters and their applications in much detail and serves as an excellent reference. In his
text [2], he shows the derivation of the IIR and FIR Digital Comb Filters with the equations shown below:

37



Figure 34.
IR Comb Filter
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Below isthe corresponding pole-zero diagram. The distance from the poles to the origin is determined by the value of Gg.
The number of polesis equal to the length of the delay element, or the value of D. In the case below, D = 8 and Grequals
about 0.9.

Figure 35.
O = zeros Real
X = poles
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Orfanidis [2] covers Comb Filters and their applications in much detail and serves as an excellent reference. In histext [2],
he shows the derivation of the IIR and FIR Digital Comb Filters with the following equations:

1+2z°

1 i ) N 11-
1-azP’ H £1rcoms (2) :W(l'*'ZD +7%0+....7") :N 1-

For the FIR version, it can be used to adding a delayed versions of an input signal to produces delay effects.

HIIRcomb(Z) = b

Z—ND
Z—D
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And, in asimplified case for D=1, we have an FIR smoother, or Moving Average Filter:

1 4, . 11-zM
|_|F|R_MA(Z):N(]—‘|‘Zl‘|'Zz+....Z(N1)):NF

Recursive Comb Filters are can be used for constructing Reverb Algorithms [2]:

H coms (2) = 1-az®

These make excellent building blocks because the input signal is repeated at multiples of D.

21065L IIR-Comb Filter Example

R ]

Transfer function and I/ O difference equations:

H(z) = ----------- y(n) = ay(n - D + x(n)

LR R R R LR R R R R R R R R R LRy

/* ADSP-21065L System Regi ster bit definitions */

#i ncl ude "def 21065I . h"

#i ncl ude "newb5Ldef s. h"

. GLOBAL Init_Conb_Filter_Buffer;

. GLOBAL IR _conb_filter;

. GLOBAL change_reverb_settings;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

A DATA MEMORY FILTER BUFFERS ---------cmmm o - */
.segnment /dm dmrevrb;

#defi ne D 18000 /* TD = DIfs = 18000/ 48000 = 0. 375 sec */
.var I RQL_counter = 0x00000004;

.var Decay_Tinme = D + 1;

/* define conb filter variable, and buffer */

.var a = 0x40000000; /* conb feedback coefficient a = 0.50 */
.var WD+ 1]; /* left delay-line buffer */

. endseg;

R R R R PROGRAM MEMORY CODE -------------mmmmmmmmmm i oo -

. segment /pm pm code;
Init_Conb_Filter_Buffer:

/* Initialize conb filter buffer pointer */

39




B2 = w L2 = @y /* delay-line buffer pointer and |l ength */

M = 1;

/* clear delay line buffers to zero */

LCNTR = L2;

DO clrDine_1 UNTIL LCE;
clrDine_1: dm(i 2, nmR2) = 0;

RTS;
/**************************************************************************************** */
/* */
/* IR COMB FI LTER */
/* */
/* Can be used as a building block for a nore conplex stereo reverb response */
/* Thi s exanpl e processes the | eft channel and creates a stereo response */
/* */
/**************************************************************************************** */

IR _conb_filter:

/* get input sanples fromdata hol ders */

r0 = dnm(Left_Channel); /* left input sanple */

rl = dm R ght _Channel); /* right input sanple */

/* process |left channel */

mf =0; nilf = r0; /* mf = x = left input sanple */
r2 = dma);

/* tap outputs of circular delay line, where r2 = sD=Dth tap */

m = D, nodify(i2, nR); /* point to d-th tap */

m =-D; r3 =dn(i2, nR); /* put d-th tap in data register */
mf =nmf +r2* r3 (ssfr); /* mf =y =xL + a* sD= output */
rl2 = nrif;

/* put y result into tap-0 of delay line */
rl2 = nrdf; dmii2, 0) =r12;

/* backshift pointer & update delay-line buffer */
modi fy(i2, -1);

/* send conb filter result to left/right channel outputs */

dn( Left _Channel) = r12; /* left output sanple */
dm( Ri ght _Channel) = r12; /* right output sanple */
rts;

3.2.6 Scaling to Prevent Overflow

Overflow/underflow is a hardware limitation that occurs when the numerical result of the fixed point computation exceeds the
largest or smallest number that can be represented by the DSP. To prevent overflow, the input signal needs to be properly
scaled down (attenuated) before it is passed through the digital filter routine.

In addition to preventing fixed point overflow when doing simple addition of signals, scaling of input samples when
performing fixed point digital filtering, or when going between consecutive filter stages of a higher order filter
implementation.

The disadvantage to scaling is the dynamic range of the filter is reduced. Precision in the lower bits can be lost if the
downshifted scaling factor causes precision in the LSBsto be lost. The SNR of the final result is lower, since the output
would have to be scaled back up, introducing quantization noise into the output converter with ‘ zeros’ introduced in the lower
LSBs. To prevent this, a DSP data word width would have to be much larger than the precision of the A/D and D/A
converters, or double precision math can be used. The high dynamic range capability of 32 or 40-bit floating point processing
that the ADSP-21065L offers can virtually eliminate the need for scaling input samples to prevent overflow.
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3.3 Time-Delay Digital Audio Effects

In this section some background theory and basic implementation of a variety of time-based digital audio effects will be
examined. The figure below shows some algorithms that can be found in digital audio effects processor. We will first [ook at
implementing signal and multiple reflection delay effects using delay lines, and then discuss more intricate effects such as
chorusing, flanging, pitch shifting and reverberation. These effects are found in many commercial audio effects processors
that use a DSP to process real time audio signals (Figure 36).

Figure 36.
Typical Signal Chain for Audio Multi-Effects Processors

—> Distortion/ || Equalizer > Chorus/ |, | Digital Delay/

Compressor ) 2
Overdrive : : Flanger - | Digital Reverb

(Bypass Switches)

Input Signal Output Signal

from instrument TQ Amplifier or
Mixing Console

3.3.1 Digital Delay - (Echo, Single Delay, Multi-tap Delays and ADT)

The Digital Delay isthe simplest of all time delay audio effects. The delay effect is often the basis to produce more intricate
effects such as flanging and chorusing, which vary the delay time on-the-fly. It isalso used in reverberation algorithmsto
produce early reflections and recursive delays.

Figure 37. Echo Between The Source And Reflecting Wall
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Reflecting Reflecting

wall ‘ wall

When a sound source is reflected from a distant, hard surface, a delayed version of the original signal is heard at alater time
(see Figure 37). Before the introduction of DSPsin audio, thefirst delay units were created by using tape delay with multiple
moving recording heads, while other units then produced the delay with analog circuitry. To recreate thisreflection digitally,
DSP delay effects units encode the input signal and store it digitally in adelay-line buffer until it isrequired at the later time
where it is decoded back to analog form [17]. The DSP can produce delaysin avariety of ways. Delay units can produce
stereo results and multiple-tapped delayed results [7]. Many effects processors implement adelay and use it as abasis for
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producing multi-tap and reverb effects. Multi-tapped signals can be panned to the right, left or mixed together to give the
listener the impression of the stereo echo bouncing from one side to the other.

Figure 38. Implementation of a Digital Delay with a h(n) 4
Single Tap 1
ax(n - D)
x(n) 70 PD—®— v
a
Delayed
Signal Gain n
0 D -
Uity ain X(n) Figure 39. Delay (or Echo) with a Single Reflection

Single Refection Delay
To create asingle reflection (Figures 38 and 39) of an input signal, the implementation shown above is represented in the
following difference equation [2]:

ly(n) = x(n) + ax(n-D)|

and it stransfer functionis:.  H(z) =1+az™®

Notice that the input x(n) is added to a delayed copy of theinput. The signal can be attenuated by a factor that is lessthat 1,
because reflecting surfaces, aswell as air, contain aloss constant a due to absorption of the energy of the source wave. The
delay D represents the total time it takes for the signal to return from areflecting wall. D is created by using a delay-line
buffer of a specified length in DSP memory. The frequency response resultsin a FIR comb filter [2] where peaks in the
frequency response occur at multiples of the fundamental frequency. Comb filters (see section 3.2) result whenever adirect
input signal is combined with delayed copies of the direct input (see Figure 40 for an example response).

Figure 40.
Example FIR Comb Filter Result of Adding An Input Signal
To a Delayed Replica
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The DSP can subtract the delay instead of adding it:

Y(n) = x(n) - ax(n - D)

An example implementation for adding an input to a delayed replicais:
1 1
n) = =x(n) + =x(n-D
y(M) = 2x(n) + 2x(n-D)

Single Reflection Digital Delay Processing Routine Implemented on the ADSP-21065L

#defi ne a0 0x40000000 /* a0 = 0.50 */
#defi ne al 0x40000000 /* al = 0.50 */
#def i ne Del ayLi ne 2000 /* TD = D/ fs=2000/ 8000 Hz= 25nsec */
Digital _Delay Effect: /* process right channel input only */
/* get input sanmples fromdata hol ders */

ro = dm(left_input); {left input sanple}

ri = dm(right_input); {right input sanple}
/* tap output of circular delay line */

= - Del aylLi ne; {load delay line tap value }
r3 =dmn2, i2); {point to d-th tap and put in data register}
{pre-nodi fy address with no update}

r2 = ao;

nrf =rl1 * r2 (ssf); {prf = a0 * x}

r2 = al;

nrf +r3 * r2 (ssf); {nrf

nrf = a0 * x + al * sDel ay}
mf = sat nrf;

{--- wite output sanples to codec ------------------------ - }
r10 = nrilf;
dm(left_output) = rl0; {left output sanple}
dm(right _output) = rl0; {right output sanple}

/* put input sample into tap-0 of delay line, post-nodify address after storage */
n = 1,
dm(i2, n2) = rQ0; {put value fromregister rO into delay line}
{and increnent address by 1}

rti; { Return fromlInterrupt }

Automatic Double Tracking (ADT) and Slapback Echo

One popular use of the digital delay isto quickly repeat the input signal with a single reflection at unity gain. By making the
delay an input signal around 15-40 milliseconds, the resulting output produces a“slapback” or “doubling” effect (see Figure
41). Thedlight differencesin the delay create the effect of the two parts being played in unison. This effect can also be set up
to playback the original “dry” signal in one stereo channel and the delayed signal in the other channel (Figure 42). This
creates the impression of a stereo effect using a single mono source. The same technique is used for a mono result, except
both signals are added together. With short delays, slapback can thicken the sound of an instrument or voice when mixed for
amono result, although cancellations can occur from comb filtering side effects when the delay is under 10 ms, which will
result in a hollow, resonant sound [2], [26].
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Figure 41. Figure 42.
Slapback Echo Effect Automatic Double Tracking / ‘Stereo Doubling’
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Example Slapback and Stereo Doubling Routines for the ADSP-21065L

______________________________________________________________________________________ *
/* Sl apback Echo - Mono Doubling Audio Effect (ADT) using a digital delay-line */
/* Digital Delay Effect to create a nono echo effect */
/* */
/* This routines scales & m xes both input channels into 1 audio stream */
/* ______________________________________________________________________________________ */
Sl apback_Echo: /* process both channel inputs */

/* get input sanples fromdata hol ders */

r0 = dnm(Left_Channel); /* left input sanple */

rl = dm R ght _Channel); /* right input sanple */

rl = ashift rl by -1, /* scale signal by 1/2 for equal mx */

r2 = ashift r2 by -1; /* scale signal by 1/2 for equal mx */

rl =r2 +rl,; [* 1/2xL(n) + 1/2 xR(n) */

L6 = dn(delay_tine);
/* tap output of circular delay line */
= dn(i 6, 0); /* point to d-th tap and put in data register */
/* fetch address with no update */

/* add del ayed signal together with original signal */

rl = ashift rl by -1; /* scale input signal by 1/2 for equal mx */
r3 = ashift r3 by -1, /* scal e del ayed signal by 1/2 for equal mx */
rd =r3 +rl; [* 1/2xL(n) + 1/2 xR(n) */

/* wite output sanples to AD1819 Master Codec channels */

r4 = ashift r4 by 1, /* turn up the volune a little */

dn( Left_Channel) = r4; /* left output sanple */

dm( Ri ght _Channel ) = r4; /* right output sanple */

/* put input sanple into tap-0 of delay line, post-nodify address after storage of input */

dnm(i 6, -1) =r1; /* put value fromregister rl into delay line */
/* and decrenent address by -1 */

rts; /* Return from Subroutine */
/* ______________________________________________________________________________________ */
/* Stereo Autonmatic Doubl e Tracking - ADT Audio Effect using a digital delay-line */
/* Digital Delay Effect to create a stereo field effect */
/* Al 'so called 'Stereo Doubling' */
/* ______________________________________________________________________________________ */
St er eo_Doubl e_Tr acki ng: /* process right channel input only */

/* get input sanples fromdata hol ders */

r0 = dnm(Left _Channel); /* left input sanple */

rl = dm R ght _Channel); /* right input sanmple */

L6 = dn(delay_tinme);




/* tap output of circular delay line */
r3 = dmi6, 0); point to d-th tap and put in data register */

/*
/* fetch address with no update */

/* wite output sanples to AD1819 Master Codec channels */
dn( Left _Channel) = rQ0; /* left output sanple */
dm( Ri ght _Channel) = r3; /* right output sanple */
/* put input sanple into tap-0 of delay line, post-nodify address after storage of input */
dm(i 6, -1) =r1; /* put value fromregister rl into delay line */
/* and decrenent address by -1 */

rts; /* Return from Subroutine */

Multitap Delays

Multiple delayed values of an input signal can be combined easily to produce multiple reflections of the input. This can be
done by having multiple taps pointing to different previous inputs stored into the delay line, or by having separate memory
buffers at different sizes where input samples are stored.

Figure 43.
Typical Impulse Response of Multiple Delay Effect
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The difference equation is a simple modification of the single delay case. To 5 delays of the input (see Figure 43), the DSP
processing algorithm would perform the following difference equation operation:

y(n) = x(n) + axx(n-D1) + a,x(n-D2) + a,x(n-D3) + a,x(n-D4) + ayxx(n-D5)

Figure 44. Multiple Delay (3-Tap) Example
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y(n) = x(n) + ax(n-D1) + a,x(n-D2) + a,x(n-D3)

The above structure uses 3 delay-line tap points for fetching samples. In addition, feedback can be used to take the output of
the system delay and feed it back to the input.




Figure 45.
Impulse Response of Multiple Delays Decaying Exponentially
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Figure 46.

Adding an infinite # of delayswill create arudimentary reverb effect by simulating reflectionsin aroom (Figure 46). The
difference equation then becomes and IR comb filter (Figure 46):

y(n) = x(n) + ax(n - D) * a’*(n-2D) + a’x(n-3D) + ......
The transfer function is then:
H(z) = 1+ az” + a’z® + a’z"+...

Represented as a geometric series, the transfer function becomes arecursive [ IR comb filter:

1
H (Z)=m y(n) = ay(n - D) + x(n)

Since an infinite number of delays are created as the response becomes and IR response, this computationally simple IR
comb filter is used as the basis for constructing more intricate reverberation effects.

Figure 47 is another variation of implementing multiple delays using 2 delay lines. Feedback is introduced to produced more
reflections.

Figure 47.
2 Tap Multi-delay Effect Implementation Described
by Orfanidis [Intro. to Signal Processing]
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The Z-transform for the above equation described by Orfanidis[2] is:

é zP u z'Dluez

u
H(z) =b0+bla +b2 4
e B R

Example DSP source code of the interrupt processing routine for the above figure is shown below.

ADSP-21065L Multi-Tap Delay Effect Implementation Using 2 Delay Lines

#def i ne al 0x40000000 /* al = 0.50 */
#def i ne a2 0x33333333 /* a2 = 0.40 */
#def i ne b0 Ox7fffffff /* b0 = 0.9999 */
#def i ne bl 0x66666666 /* bl = 0.80 */
#def i ne b2 0x4ccd0000 /* b2 = 0.60 */
#defi ne Del ayLnl 3000
#defi ne Del ayLn2 4000
/* Serial Port O Receive Interrupt Service Routine */
mul titap_del ay_effect:
/* get i nput sanples fromdata hol ders */
= dn(left_input); {left input sanple}
= dn(right_input); {right input sanple}
/* tap outputs of circular delay lines */
n2 = DI, {load delay line 1 tap val ue}
r3 =dnm(n2, i2); {point to d-th tap and put in data register}
{pre-nodify address with no update}
8 = D2; {l oad delay line 2 tap val ue}
r4 = dm(nB, i3); {point to d-th tap and put in data register}
r2 = bo,
mf =rl1* r2 (ssf); {mrf = b0 * x}
r2 = bl
n f =mf +r3 * r2 (ssf); {mrf =Db0 * x + bl * siD}
r2 = bz,
nr f =mf +r4 * r2 (ssfr); {mrf =y =b0 * x + bl * siD + b2 * s2D}
mf = sat nrf;
{--- wite output sanples t0 €COdEC -----------mmmmmmm }
r10 = nrif;
dn(l eft_output) = rio0; {left output sanple}
r10 = nrif;
dr(right _output) = rio0; {right output sanple}
{--- sanple processing algorithm (continued) ----------------------------- }
mf = 0;
nrlf = r3; {mrf = siD}
r5 = az;
mf =nmf +r4 * r5 (ssfr); {mrf = s20 = s1D + a2 * s2D}
mf = sat nrf;

/* put input sanple into tap-0 of delay |ine #2, postnodify address after storage */
r12 = nraf; dm(i3, -1) =r12;

mf = 0;

nrlf = r1,; {mrf = x}

r5 = al,;

mf =mf +r3* r5 (ssfr); {mrf =s10 = x + al * siDb}
mf = sat nrf;
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/* put input sanple into tap-0 of delay line #1, postnodify address after storage */
rl2 = nrif; dmii2, -1) =r12;
rts;

Multitap Stereo Ping-Pong Delay
Another interesting delay effect (shown below) consists of alternating delayed replicas of the mono input source between the
left and right output speakers using 2 delay-line buffers. Each delay line output is fed into the input of the other delay line.

Figure 48.
Multi-Tap ‘Ping-Pong’ Delay of a Mono Source to
a Stereo Output Field

v

Z_Dl y.(n)

x(n) =—

yr(n)

ADSP-21065L 'Ping-Pong' Delay Effect Implementation Using 2 Delay Lines

/* khkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhkhhkhhkhhhkhhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkkxx*x*%x

STEREO DELAYS. ASM - ' Pi ng-Pong' stereo delay effects algorithmw th cross-feedback

Based on Fig.8.4.1 of Introduction to Signal Processing.
By S. J. Ofanidis - 1996, Prentice-Hall

Assuming the feedback filters are plain nultipliers, G.(z)=aL, GR(z)=aR
the sanpl e processing algorithmfor each pair xL, xR do:

What the stereo del ay effect does?

Creating nmultiple delay typte offects can be obtained frominplenenting

sinple loworder FIRor IIRfilters. Many DSP audi o effects processors wi dely use
variations of this effect created with nultiple delay Iines.

Stereo delay effects can be inplenented by coupling the left and right channels.
The left and right channels are coupl ed by introduci ng cross-feedback coefficients, so
that the del ayed output of one channel is fed into the input of the other channel.

The I/ O equation in the z-domain is:

YL(z) = HLL(Z)*XL(x) + HLR(Z)*XR(z)
YR(z) = HRL(z)*XL(z) + HRR(z)*XR(z)

khkhkhkhkhkhkhkhkhkhkhkhkhkhhhhhhhhhhkhkhhhhhhkhhhhhhhhhhkhkhkhkhhhhkhhhhhkhkhkhhhhhhhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkxkkk*x*%x */

/* ADSP-21060 System Register bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldef s. h"

. GLOBAL stereo_del ay_effect;

. GLOBAL Init_Delay_Buffers;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

A DATA MEMORY FILTER BUFFERS -----------mmmmmmm e e e e oo o - */

.segnment /dm dmdel ay;

/* 32 bit filter coefficients are in 1.31 fractional format */
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/*aL = 0 - left self-feedback*/

/*aR = 0 - right self-feedback*/

/*bL = 0.8 - left delay gain*/

/*bR = 0.8 - right delay gain*/

/*cL = 0.5 - left direct path gain*/
/*cR = 0.5 - right direct path gain*/
/*dL = 0.5 - cross feedback fromL to R/
/*dR = 0.5 - cross feedback fromR to L*/
/*TL = L/fs = 18000/ 48000 = 0. 375 sec*/
/*TR = R/fs = 18000/ 48000 = 0. 375 sec*/

/* Stereo Early Reflection Settings for a Reverb Processor */

/* left delay-line buffer */
/* right delay-line buffer */

#define aL 0x00000000
#defi ne aR 0x00000000
#define bL 0x66666666
#define bR 0x66666666
#define cL 0x40000000
#define cR 0x40000000
#define dL 0x40000000
#define dR 0x40000000
#define L_2 24000
#define R 2 24000
#define L 3000
#define R 3000

.var WL[ L+1];

.var WR[ R+1] ;

. endseg;
o,

. segnent /pm pm code;

Init_Delay_ Buffers:

B2 = wL; L2 = @\u; /* delay-line buffer pointer and | ength */
B3 = wR L3 = @GW; /* delay-line buffer pointer and I ength */
m =1 nm = 1;
LCNTR = L2; /* clear left delay line buffer to zero */
DO clrDine_L UNTIL LCE;
clrDine_L: dm(i 2, nmR2) = 0;
LCNTR = L3; /* clear right delay line buffer to zero */
DO clrD i ne_R UNTIL LCE;
clrDine_R dm(i 3, nmB) = 0;
RTS;
| X e o o e o e e o e o e e o o e h m e h e e o e e m e e e e e e e e e e e e e e e e e e e e e e e e e e e e e eemmem—eaoo -
/*
/* stereo del ay processing algorithm- processing on both |eft and right channels
/*
*

~

stereo_del ay_effect:

/* get input sanples fromdata hol ders */

r0 = dm(Left_Channel); /* left channel input sanple */

rl = dnm(R ght _Channel); /* right channel input sanple */

rl = 0x00000000; /* for true stereo delay, renmove this instruction*/

/* tap outputs of circular delay lines */

/* r3 = sLL = L-th tap of left delay */

m2 = L; nodify(i2, nR); {point to d-th tap}

m =-L; r3 =dn(i2, nR); {put d-th tap in data register}
/* r4d = sRR=Rth tap of right delay */

M = R nodify(i3, nB); {point to d-th tap}

m =-R r4 =dn(i3, nB); {put d-th tap in data register}
nrf = 0;

nrlf = r3; {rr1f = sLL}

r2 = cL;

mf =nmf +r0 * r2 (ssfr); {mrf =yL =cL * xL + sLL = left output}
nrf = sat nrf;

r10 = nrif;

dn( Left _Channel) =

r10;

{send result to |ef

t output channel}

*/
*/
*/
*/
*/
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mf = 0;

nr1lf = r4; {mr1f = sRR}

r2 = cR;

mf =nmf +rl * r2 (ssfr); {mrf =yR=cR* xR + sRR = right output}
mf = sat mf;

rl0 = nrif;

dm( Ri ght _Channel) = r10; {send result to right output channel}
r2 = bL;

mf =r0 * r2 (ssf); {m = bL * xL}

r2 = al;

mf =nmf +r3 * r2 (ssf); {m = bL * xL + aL * sLL}

r2 = dR

mf =nmf +r4 * r2 (ssfr); {m =bL * xL + aL * sLL + dR * sRR}
mf = sat nrf;

/* put value fromMAC result into tap-0 of left delay-line */
m = 0,
r12 = nrif; dmii2, n2) =r12;

/* backshift pointer, update left circular delay-line buffer */
m = -1; nodify(i2, nR);

r2 = bR

mf =rl1* r2 (ssf); {mr = bR * xR}

r2 = aR;

mf =nmf +r4 * r2 (ssf); {mr = bR* xR + aR * sRR}

r2 = dL;

mf =mf +r3* r2 (ssfr); {mr =bR* xR+ aR * sRR + dL * sLL}
mf = sat mf;

/* put value fromMAC into delay line into tap-0 of right delay-line */
8 = 0;
r12 = nrif; dm(i3, nB) = rl2;

/* backshift pointer, update right circular delay-line buffer */
M = -1; nodify(i3, nB);
rts;

3.3.2 Delay Modulation Effects

Delay Modulation Effects are some of the more interesting type of audio effects but are not computationally complex. The
technique used is often called Delay-Line Interpolation [6], where the delay-line center tap is modified, usually by some low
frequency waveform. The result of interpolating/decimating samples within the delay line resultsin a slight pitch change of
theinput signal. Thus, one type of pitch shift algorithm can fall under this category, although there are other DSP methods for
pitch shifting. Below isalisting of some effects that fall under Delay-Line Modulation:

Chorus - Simulation of multiple instruments/voices

Flanger - * Swooshing Jet Sound’

Doppler - Pitch Change increase./decrease of an object moving towards/away from listener.
Pitch Shifting - Changing frequency of an input source

Detune - Very dlight pitch change added with the input to simulate 2 voices.

Doubling - Adding a small delay/pitch change with an input source.

Leslie Rotating Speaker Emulation - Combination of Vibrato and Tremolo.

Figure 49 summarize some common types of modulators used for moving the center tap of adelay-line[2, 16, 26].
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Figure 49. Common Methods of Modulation
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The above general structure (Figure 50) described by J. Dattorro [6] will alow the creation of many different types of delay
modulation effects. Each input sampleis stored into the delay line, while the moving output tap will retrieved from a different
location in the buffer rotating from the tap center (Figure 51). When the small delay variations are mixed with the direct
sound, atime-varying comb filter results[2, 6].

The Genera Delay Line Equation for the above structureis:

y(n) =a;x(n)+a,x(n-d(n))-a; (N-D,ey)
and,
d(n) rotates around tap center of delay line D

Aswe will see, the above genera structure will allow the creation of many different types of delay modulation effects.

Each input sampleis stored into the delay line, while the moving output tap will retrieved from a different location in the
buffer rotating from the tap center. If adelay of an input signal is very small (around 10 msec), the echo mixed with the direct
sound will cause certain frequencies to be enhanced or canceled (due to the comb filtering). Thiswill cause the output
frequency response to change. By varying the amount of delay time when mixing the direct and delayed signals together, the
variable delay lines create some amazing sound effects such as chorusing and flanging.
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3.3.2.1 Flanger Effect

Flanging was coined by the way it was accidentally discovered. Aslegend hasit, arecording engineer was recording a signal
onto 2 reel-to-reek tapedecks and monitored from both playback heads of the 2 tapedecks at the same time. While trying to
simulate the ADT or doubling effect, it was discovered that small changes in the tape speed between the 2 decks created a
‘swooshing’ jet sound. This effect was further enhanced by repeatedly leaning on the flanges of one of the tape reels dlightly
to slow the taped down. Thus the flanger was born.

It isvery easy to recreate this effect using a DSP. Flanging can be implemented in a DSP by varying the input signal with a
small, variable time delay at avery low frequency between 0.25 to 25 milliseconds and adding the delayed replica with the
origina input signal (Figure 52). When the time delay offset isvaried by rotating the delay-line center tap, the in-phase and
out-of-phase frequencies as a result of the comb filtering sweep up and down the frequency spectrum (Figure 53). The
“swooshing” jet engine effect created as aresult isreferred to as flanging.

Figure 52. Figure 53.
Implementation of a Flanger Effect Frequency Response of the Flanger
Comb Filt
Sine Generator HIVV| — E:lr)nand; :nrd —_—
SINE Modulates Tap \ Contracts
Center of Delay Line 1+4

a
T azx(n - d(n)),
x(n) - 7N T[}—»@—»y(n)

a2 1.3 ‘ W
Delay 0 p 3p 5p 2p
Line Gain d(n) d(n) d(n) ---------
N
Vv alx(n) The Frequency Response of the Flanger results in a Comb Filter.
al As the Delay Increase, the number of peaks increases. Changing
Direct the Delay modifies the comb filter, which in turn affects the
N =variable delay d(n)  Gain frequencies that are enhanced or cancelled.

By modifying the single reflection echo equation, the flanger can be implemented as follows:
y(n) = x(n) + ax(n - d(n))

scaling each signal equally by Y2 to prevent overflow:
1
y() = SIx(n) + x(n-d(n)]

Flanging is created by periodically varying delay d(n). The variations of the delay time (or delay buffer size) can easily be
controlled in the DSP using a low-frequency oscillator sine wave lookup table (see Figures 54 and 55) that cal culates the
variation of the delay time, and the update of the delay is determined on a sample basis or by the DSP’s on-chip timer. To
sinusoidally vary the delay between 0< d(n) < D, the on chip timer interrupt service routine should calculate the following
equation described by Orfanidis[2]:

d(n) = % 1 - cos( 2p nf

cycle )
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Figure 54. Figure 55.
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Thissinusoidal LFO’s frequency is usually controlled by the ‘ sweep rate’ parameter. The LFO can easily be implemented on
the DSP by creating a sine wavetable |lookup that determines the variation of the delay time. The determination of the delay
time can be updated periodically using the on chip programmable timer.

Another control parameter called the ‘ sweep depth’ D will determine how much the time will change during a sinusoidal

cycle. Thelarger the size of the delay-line buffer, the farther the phase cancellations and reinforcements will move up and
down the frequency spectrum.

Example Implementation of the Flanger Routine Using the ADSP-21065L.:

/* Kk hkhkhkhhkhhhhhhhkhkhhhhkhhhhhhhhhhkhkhhhkhhhkhkhkhhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhhhkhkhhhkhhkhhhkhkhkhhhkhhkhkhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkxk*x*x*%

FLANCGER. ASM - flanging effect - "swooshing jet/doppler" sound

Fl anger Effect as Described by Jon Dattorro in "Effect Design Part 2 -

Del ay- Li ne Modul ation and Chorus," J. Audio Eng. Socienty, Vol. 45, No. 10,
Cct ober 1997
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Del ay cal cul ati on Based on Egs.(8.2.18-8.2.19) of Introduction to Signal Processing.
By S. J. Ofanidis - 1996, Prentice-Hall
| SBN 0- 13-209172-0

This version uses Linear Interpolation (versus Allpass Interpolation described by Dattorro)

I/ O equation:
y(n) = 0.7071 * x(n) + 0.7071*x(n - d(n)) - 0.7071*x(n - D/ 2)

x(n) ----- O e R So------- >0------- > y(n)
- | A 0. 7071 A
I / I
I / _ I
| | | Rotating Tap |
| | Z™(-D) | Cent er |
|-mmemeees < I B >
| d(n) | 0. 7071
I I
I I
I
/ | Fixed Tap
/ | Cent er
f eedback | D/ 2
------------- S

What the flanging effect does?

Fl angi ng consi sts of nodul ating a del ayed replica of an input by a few nmilliseconds,

and adding this delayed signal together with the input, which will then cause phase shifting
and spreading of the audio signal as a result of conmb filtering. The delay is nodul ated using
a low frequency sinusoid. The effect works best on druns, guitars, keyboards, and some vocal s.

For each input sanple, the sanple processing al gorithm does the follow ng:
store input sanple sO to the flanger delay line buffer - *p = s0 = xinput
generated variable delay, d = (D - D * sin(2*pi*fc*t)) / 2
sl = del ayed sanple = tap(D, w, p, d)
y = a0 * sO + al * s1

Devel oped for the 21065L EZ-LAB Eval uation Board

LEE R R EEEE R R R R R R R R R R LY

/* ADSP-21060 System Register bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newb5Ldef s. h"

. GLOBAL Fl anger _Ef f ect;

. GLOBAL Init_Flange_Buffers;

. GLOBAL TinmerO_Initialization;

. GLOBAL change_depth_rate_w dt h;

. GLOBAL sel ect _fl ange_f eedback_gai n;
. GLOBAL wavet abl e_gen;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

.segnment /dm dnfl ange;

/* Flanger Control Knobs */

#define D 345 /* TD = D/fs = 400/8000 = 50 msec */

#define D2 D2 /* Nomi nal Tap Center of Delay Line D */

#defi ne WaveSi ze 4000 /* sinusoi dal wavetable */

#defi ne nodul ati on_rate 80000

#definea0 Ox5A82799A /* a0 = 0.707106781, nominal input gain */

#defineal Ox5A82799A /* al = 0.707106781, nom nal output gain of tapped del ay

line */

.var I RQL_counter = 0x00000003;

.var | RQ2_counter = 0x00000003;

.var DRY_GAI N = Ox7FFFFFFF;

.var WET_GAI N = OX7FFFFFFF; /* For inverted phase, set to 0x80000000 */

.var feedback_gai n = OxA57D8666; /* FEEDBACK = -0.707106781, inverted o/p of fixed center tap */
/* Ox5A82799A */ /* For positive FEEDBACK, 0.707106781 */




.var sweep_rate = 1; /* controls Mregister, signal frequency fc = c*Meg*ftiner
*/

.var sweep_w dth = 0; /* controls width of sweep, ranges fromO to - 15 */
.var WD+ 1]; /* delay-line buffer, max delay = D */
.var si ne_val ue; /* wavetabl e update via tiner for delay cal cuation */
.var si ne[ WaveSi ze] = "sinetbl.dat" /* mn frequency f1 = fs/Ds = 8/4 = 2 Hz */
/* |l oad one period of the wavetable */

. endseg;
[* ceeeeeee e PROGRAM MEMORY CODE---------------------"------------ */
. segment /pm pm code;
Init_Flange_Buffers:

B2 =w L2 = @y /* delay-line buffer pointer and | ength */

m =1,

LCNTR = L2; /* clear delay line buffer to zero */

DO clrDine UNTIL LCE;
clrDine: dm(i 2, nmR2) = 0;

B6 = si ne; /* pointer for signal generator */

L6 = @i ne; /* get size of sine table | ookup */

RTS;
/* ___________________________________________________________________ */

/* Set up tiner for the Chorus Effects wavetabl e generator */

TinmerO_Initialization:

bit clr node2 TI MENO; [* timer off initially */

bit set node2 PWMOUTO | PERI OD _CNTO | | NT_H 0; /* latch tinerO to high priority timer int */

r0 = nodul ation_rate;

DM TPERI OD0) = rO;

DM TCOUNTO) = rO0; /* assuming 16.7 nSec cycle @60 MPs */

ro = 10;

DM TPW DTHO) =rO0;

bit set imask TMZHI; /* timer high priority */

bit set node2 TI MENO; /* timer on */

rts;
/* ______________________________________________________________________________________________ */
/* */
/* Wavet abl e Generator used for Flange Del ay Line Mdul ation */
/* */
/* ______________________________________________________________________________________________ */
/* Hgh Priority Tinmer Interrupt Service Routine for Delay Line Mdulation of Flange Buffer */
/* This routine is a wavetabl e generator, where r3 = where r3 = D2 * sin(2*pi*fc*t) */
/* and it nodul ates the delay line around rotating tap center */
wavet abl e_gen:

bit set nodel SRRFL; /* enabl e secondary registers rO - r8 */

nop; /* 1 cycle latency witing to Mddel register */

nm6 = dn(sweep_rate); /* desired increnent ¢ - frequency f = c x fs / WaveSize */

rl = D2; /* Nomi nal Center Tap Delay Time */

r2 = dnmi 6, nb); /* get next value in wavetable */

r4 = dm(sweep_w dt h); /* store to nenory for chorus routine */

r2 = ashift r2 by r4; /* control anount of variable delay via sweep_wi dth */

r3 =rl1%*r2 (SSFR); /* scale Nominal Delay Tinme by a fractional value */

dn(si ne_val ue) = r3; /* save for flange routine */

rti(db);

bit clr nodel SRRFL; /* disabl e secondary regi ster set */

nop; /* 1 cycle latency to wite to nodel register */
/* _____________________________________________________________________________________________ */
/* */
/* Digital Flanger - process right channel only */
/* */
/* _____________________________________________________________________________________________ */
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Fl anger _Effect:
rl5 = DM Ri ght _Channel ) ; /* get x-input, right channel */

r3 = dm(si ne_val ue);
ri4 = D2,
r4 =rl14 - r3;

calculate time-varing delay deviation */
nomi nal tap center delay */
rd =d=D2 - D2 * sin(2*pi *fc*t) */

~——
* % ok

/* r4d noww ||l be used to set nR2 register to fetch tinme varying del ayed sanple */
nm = r4; /* tap outputs of circular delay line */

modi fy(i2, nR); /* go to del ayed sanple */

r4 = -ré4; /* negate to get back to where we were */

m = r4; /* used to post nodify back to current sanple */
r6 = dnmi2, n2); /* get tine-varying del ayed sanple */

/* r8 will be used to get Nomi nal Tap Center del ayed sanple for flange feedback */

m = D2; /* tap outputs of circular delay line */

modi fy(i2, nR); /* go to del ayed sanple */

m = -D2; /* negate to get back to where we were */

r8 = dn(i2, n2); /* get nominal del ayed sanple, postnodify back to current sanple */
/* crank out difference equati */

r5 = ao; input gain */

mf =r15 * r5 (SSF); nrf = a0 * x */

r9 = dm(f eedback_gai n); gain for feedback of nominal tap center*/

~———=-0
* ok kK k3

mf =mf +r8 * r9 (SSF); nmf = a0 * x - af * sNomi nal */

rl2 = nrif; save for input to flanger delay line */

r7 = al; /* delay line gain */

mf =mf +r7 * r6 (SSFR); /* mf =a0 * x +a* sl - af * sNonmnal */
mf = SAT mrf; /* saturate if necessary */

rl0 = nrif; /* flanged result in r10 */

/* put 'input mnus feedback' sanple fromr12 into tap-0 of delay line */
/* and backshift circular delay-line buffer pointer */
dan(i 2, -1) = r12;

/* send flanged result to both left and right output channels */
DM Left _Channel ) =r 10;
DM R ght _Channel ) =r 10;

rts;
/* ______________________________________________________________________________ */
/* */
/* I RQL Pushbutton Interrupt Service Routine */
/* */
/* This routine allows the user to nodify flanger width and rate presets. */
/* */
/* Default before 1st |RQ push: */
/* 1st Pushbutton Press: */
/* 2nd Pushbutton Press: */
/* 3rd Pushbutton Press: */
/* 4t h Pushbutton Press: */
/* 5th Pushbutton Press: */
/* 6t h Pushbutton Press: */
/* 7th Pushbutton Press: Reverts back to 1st Pushbutton Press */
/* */
/* The pushbutton setting is shown by the active LED setting, all others are */
/* ________________________________________________________________________________ */

change_depth_rate_w dt h:

bit set nodel SRRFH, /* enabl e background register file */

NOP; /* 1 CYCLE LATENCY FOR WRI TI NG TO MODE1 REG SER! !
ri3 = 6; /* nunber of presets */

rl5 = DM I RQL_counter); /* get preset count */

rl5 = r15 + 1, /* increnent preset */

conp (r15, r13);

if ge ri5 = r15 - r15; /* reset to zero */

DM | RQL_counter) = r15; /* save preset count */

rl0 = pass r1i5; /* get preset node */

if eq junp delay_settings_2; /* check for count == 0 */
r10 = r10 - 1;

if eq junp delay_settings_3; /* check for count == 1 */

*/
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rl0 =r10 - 1;

if eq junp delay_settings_4; /* check for count == 3 */

ri0o = r10 - 1,

if eq junp delay_settings_5; /* check for count == 4 */

ri0 = r10 - 1,

if eq junp delay_settings_6; /* check for count == 5 */
del ay_settings_1: /* count therefore, is ==

ri4 = 1; DM sweep_rate) = rl4;

ri4 = 0; DM sweep_w dt h) = r14;

bit set ustatl Ox3E;
bit clr ustatl 0x01;
dn( | OSTAT) =ust at 1;

j ump done;

del ay_settings_2:
riq4 = 2,
ri4 = 0,
bit set ustatl Ox3D
bit clr ustatl 0x02;
dn( | OSTAT) =ust at 1,
j ump done;

del ay_settings_3:
ri4 = 3,
ri4 = -1;
bit set ustatl O0x3B;
bit clr ustatl 0x04;
dn( | OSTAT) =ust at 1,
j ump done;

del ay_settings_4:
rl4 = 4;
rl4 = -1,
bit set ustatl 0x37;
bit clr ustatl 0xO08;
dn( | OSTAT) =ust at 1;
j ump done;

del ay_settings_5:
ri4 =5,
ri4 = -2;
bit set ustatl Ox2F,
bit clr ustatl 0x10;
dn( | OSTAT) =ust at 1,
j ump done;

del ay_settings_6:
rl4 = 6;
ri4 = 0,
bit set ustatl Ox1F;
bit clr ustatl 0x20;
dn( | OSTAT) =ust at 1;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

DM sweep_rate) = rl4;

DM sweep_w dt h) = r14;

done:
rti(db);
bit clr nodel SRRFH,
nop;
o
/* | RQ@ Pushbutton Interrupt Service Routine
/*
/* Intensifies the effect of the flanged sound to sound nore netallic.
/* Negati ve Feedback subtracts (inverts) the output of the fixed tap center output
/* Positive Feedback adds the fixed tap center output of the flange delay line
/*
/* Default before 1st |IRQ push: Delay = 20.83 nsec
/* 1st Pushbutton Press: Feedback Setting #1 -
/* 2nd Pushbutton Press: Feedback Setting #2 -
/* 3rd Pushbutton Press: Feedback Setting #3 -
/* 4t h Pushbutton Press: Feedback Setting #4 -
/* 5th Pushbutton Press: Feedback Setting #4 -
/* 6t h Pushbutton Press: Feedback Setting #4 -
/* 7th Pushbutton Press: Reverts back to 1st Pushbutton Press
/*

/* turn on Flag4 LED */

/* turn

/* turn

/* turn

/* turn

/* turn

on Fl ag5

on Fl ag6

on Fl ag7

on Fl ag8

on Fl ag9

LED */

LED */

LED */

LED */

LED */

6 if you are here */

/* switch back to prinmary register set */

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
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/* The pushbutton setting is shown by the inactive LED setting,

/* (reverse of I RQL LED settings,
*

sel ect _fl ange_f eedback_gai n:

all others are on */
whi ch show lit LED for setting #) */
____________________________________________ * [

bit set nodel SRRFH, /* enabl e background register file */
NOP; /* 1 CYCLE LATENCY FOR WRI TI NG TO MODE1 REQ SER!!
ri3 = 6; /* nunber of presets */

rl5 = DM | RQ2_counter); /* get preset count */

rl5 = r15 + 1, /* increnent preset */

conp (r15, r13);

if ge ri5 = r15 - r15; /* reset to zero */

DM | RQ2_counter) = r15; /* save preset count */

r10 = pass r15; /* get preset node */

if eq junp feedback_settings_2; /* check for count == 0 */

r10 = r10 - 1;

if eq junp feedback_settings_3; /* check for count == 1 */

r10 = r10 - 1;

if eq junp feedback_settings_4; /* check for count == 3 */

r10 = r10 - 1;

if eq junp feedback_settings_5; /* check for count == 4 */

r10 = r10 - 1;

if eq junp feedback_settings_6; /* check for count == 4 */

f eedback_settings_1:
/* no feedback */
r14 = 0x00000000;
bit clr ustatl Ox3E;
bit set ustatl 0x01;
dn( | OSTAT) =ust at 1;
junp exit;

DM f eedback_gai

f eedback_settings_2:
/* add sone snall
rl4 = 0x20000000;
bit clr ustatl 0x3D;
bit set ustatl 0x02;
dn( | OSTAT) =ust at 1;
junp exit;

positive feedback */
DM f eedback_gai

f eedback_settings_3:
/* add sone snall
rl4 = Ox5A82799A;
bit clr ustatl 0x3B;
bit set ustatl 0x04;
dn( | OSTAT) =ust at 1;
junp exit;

negative feedback */
DM f eedback_gai

f eedback_settings_4:

/* count therefore, is == 5 if you are here */

n) = rl4;

/* turn off Flag4 LED */

n) = rl4;

/* turn off Flag5 LED */

n) = rl4;

/* turn off Flag6 LED */

/* add a medi um amount of positive feedback */

rl4 = 0xA57D8666;
bit clr ustatl 0x37;
bit set ustatl 0x08;
dn( | OSTAT) =ust at 1;
junp exit;

DM f eedback_gai

f eedback_settings_5:
r14 = Ox67FFFFFF;
bit clr ustatl Ox2F;
bit set ustatl 0x10;
dn( | OSTAT) =ust at 1;
jump exit;

DM f eedback_gai

f eedback_settings_6:
r14 = 0x90000000;
bit clr ustatl Ox1F;
bit set ustatl 0x20;
dn( | OSTAT) =ust at 1;

DM f eedback_gai

exit:
rti(db);
bit clr nodel SRRFH,
nop;

. endseg;

n) = rl4;

/* turn off Flag7 LED */

n) = rl4;

/* turn off Flag8 LED */

n) = rl4;

/* turn off Flag9 LED */

/* switch back to prinmary register set */

*/
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3.3.2.2 Chorus Effect

Chorusing is used to “thicken” sounds. Thistime delay algorithm (between 15 and 35 milliseconds) is designed to duplicate
the effect that occurs when many musicians play the same instrument and same music part simultaneously. Musicians are
usually synchronized with one another, but there are always slight differences in timing, volume, and pitch between each
instrument playing the same musical notes. This chorus effect can be re-created digitally with avariable delay line rotating
around the tap center, adding the time-varying delayed result together with the input signal.

Using this digitally recreated effect, a 6-string guitar can also be ‘ chorused’ to sound more like a 12-string guitar. Vocals can
be thickened to sound like more than one musician is singing.

The chorus agorithm is similar to flanging, using the same difference equation, except the delay timeislonger. With alonger
delay-line, the comb filtering is brought down to the fundamental frequency and lower order harmonics (Figure 70). Figure
67 shows the structure of a chorus effect simulating 2 instruments [2, 6].

Figure 67. Implementation of a Chorus Effect Figure 68. Chorus Effect Simulating
Simulating 2 Instruments 3 Instruments
LFO Z‘ N, T Dasx(n - dy(n))
* Modulating Tap l a
" Center of Delay Line
" Nviathe LFO LFO2
T az2x(n - d(n)) °N T ax(n - dy(n))
x(n) 7N BD——@—>ym  x) Z" D—®—yin)
a2
Delay LFO1
Line Gain ax(n)
N 1/
> D —
al alx(n) a, Direct Gain
. Di
N = variable delay d(n) G”a?f]t Can use same LFO table with pointers 90 degrees apart.

The difference equation is for Figure 67 is:
y(n)=a;x(n)+a,x(n- d(n))
Some example difference equations for smulating 2 or 3 musicians are shown below.

An example fixed point fractional implementation is:

() = Zx() +X(n- d()

Scaling each signal by %2 will equally mix both signal to around the same volume while ensuring no overflow when the signals
are added.

To implement a chorus of 3 instruments, 2 variable delay lines can be used (Figure 68). Use a scaling factor of 1/3 to prevent
overflow with fixed point math while mixing all three signals with equivalent gain.

() = 2x(n) + 2x(n- dy(m)+2X(n- dy(n)
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Another Implementation Example as described by Orfanidig[2] is:
1
ym) = S[x() + a,m)x(n-d1(n) + a,(n)x(n- d2(n)
where the gain coefficients al(n) and a2(n) can be alow-frequency random number with unity mean.

The small variationsin the delay time can be introduced by arandom LFO at around 3 Hz. A low frequency random LFO
lookup table (for example, Figure 69) can be used to recreate the random variations of the musicians, although the circular
buffer will till be periodic.

Figure 69. Figure 70.
Example 4K Random LFO Wavetable Storage Chorus Result of Adding a Variable Delayed
: \; Input Signal x(m)
-
7
0x0400 \\\
! < 0x00000000
7 1 DG_ ; 15
: Y Signal with vari
: f
0x0800 X
B N —
<—— OX7FFFFFFF
. —
——
0x0C00 ——
: (& ~——— 0x80000000
N
S
- S
Divide by 2 to keep SN\
values between: ) )
OXOFFF Z ~<—— 0x00000000

-0.5<d(n)<0.5

A result of an increasing slope in the LFO will cause the pitch to be lower. A negative slop will result in a pitch increase.
The LFO value in the table can be updated on a sample basis via the chorus processing routine, or the wavetable look-up can
be modified using the DSP’ s on-chip programmable timer. The varying delay d(n) will be updated using the following
equation:

d(n) = D05 + LFO()), or d(n) = D(05 +v(n))

The signal v(n) is described by Orfanidis[2] as a zero-mean low-frequency random signal varying between [-0.5,0.5]. An
easy technique to ensure fixed point signals stay within this range would be to take a lookup table with fractional numbers
ranging from -1 to 0.9999 and dividing each lookup value by 2.
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Figure 71.
Chorus Delay Parameters

Delay (sec)

Maximum
Sweep
Depth

Nominail_ Center
Tap Delay

’ - -

t

-05D<d(n)<05D
Maximum Sweep Depth < +/- 0.5D, or between 0 <d(n) < Dc
Sweep Rate - speed of wavetable playback, infuences pitch change

Chorus Parameters
Like the flanger, most units offer “Modulation” (or Rate) and “Depth” controls.

Depth ( or Delay)
controls the length of the delay line, allowing a user to change the length on-the-fly.

Sweep Depth
Determines how much the time offset changes during an LFO cycle. 1t combined with the delay line value for atotal delay
used to process the signal.

Modulation
The variationsin delay time will be introduced by alow-frequency oscillator (L FO). This frequency can usually be
controlled with the “Sweep Rate” parameter. Usually, the LFO consists of alow frequency random signal. When the
waveform is at the largest value, variable delay that results will be the maximum delay possible. A result of an increasing
dlopein the LFO will cause the pitch to be lower. A negative slop will result in a pitch increase.

Sine and Triangle waves can be used to vary the delay time. One easy method for generating the modulation value is through
awavetable lookup. The value in the table can be modified on a sample basis via the chorus routine, or the lookup can be
determined using the DSP’ s on-chip programmable timer. When the timer count expired and the DSP vectors off to the
Timer Interrupt Service Routine, the modulation value can then be updated with the next value in the waveform buffer. The
LFO can be repeated continuously by making the wavetable a circular buffer. Using a cosine wavetable, the varying delay
d(n) will be updated using the following equation:

d(n) = D(0.5 + LFO(2p nfyy,,))

where D =Delay Line Length
Fdelay = Frequency of the LFO with a period of 2 Pi of the LFO
n = the nth location in the wavetable lookup

The small variations in the time delays and amplitudes can also be simulated by varying them randomly at avery low
frequency around 3 Hz.

d(n) =D(0.5 +v(n))

where,
v(n)= current variable delay value from the random LFO generator

or,
d(n) =D( 0.5 + random_LFO_number(n))
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The signal v(n) as described by Orfanidis[2] is a zero-mean low-frequency random signal varying between [-0.5,0.5]. An
easy technique to ensure fixed point signals stay within this range would be to take a lookup table with fractional numbers
ranging from -1 to 0.9999 and dividing each lookup value by 2. This can easily be done with an arithmetic shift instruction
shifting the input to the right by 1 binary place to divide the lookup value by 2.

Stereo Chorus

This effect is achieved by panning the chorus result on back and forth on both stereo channels, creating the impression of
movement of the sound in space. The effect can also be created by sending the unaltered input signal on one output stereo
channel and the chorused result to the opposite channel.

Example Stereo Chorus Effect

t

agx(n - dy(n))
7N T[>—» Ya(n)
a
LFO 2

t

aX(n - dy(n))
x(n) A 1 D——@— v
2

N a;x(n)
| Vg

a, Direct Gain

LFO 1

Can use same LFO table with pointers 90 degrees apart.

Figure 72.

Flanging/Chorusing Similarities and Differences

Both Flanging and Chorusing use variable buffers to change the time delay on the fly. Both effects achieve these variationsin
delay time by using alow frequency oscillator (LFO). This parameter is available on commercial units as the “ sweep rate”.
The “sweep-depth” parameter is what determines the amount of delay in the sweep period. The greater the depth, the farther
the peaks and dips of the phase cancellation.

The key difference between the two effects is the flanger found in many commercia units changes the delay using alow
frequency sine-wave generator, where the chorus usually changes the delay using a low-frequency random noise generator. In
addition, the flanger modulates the length of the delay from 0 to D, while the chorus modulates the delay from ??7?? ( expand
further)
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Example Stereo Chorus Implementation of 3 instruments Using the ADSP-21065L

R

STEREO_CHORUS FEEDBACK. ASM - stereo chorusing effect sinmulating 3 voices/nusical instrunments
(SPORT1 Rx | SR count & update nethod - delay cal cul ati on deternined by a counter
incremented in the serial port's audio processing routine)

Chorus Effect as Described by:
1. Jon Dattorro in "Effect Design Part 2 - Del ay-Line Mdul ati on and Chorus,"
J. Audio Eng. Socienty, Vol. 45, No. 10, Cctober 1997

2. Eq(8.2.20) of Introduction to Signal Processing.
By Sophocles J. Ofanidis - 1996, Prentice-Hall
| SBN 0- 13-209172-0

This version uses Linear Interpolation (versus Al pass Interpolation) along with
integer (not fractional) sanple delay. Since the sanple rate is 48K, for nost

| ower bandwi dth signals, Linear Interpolation is probably adequate for nost

i nstruments.

I/ O equations:

yL(n) = 1.0 * x(n) + 0.7071*x(n - di(n)) - 0.7071*x(n - D1/2)
yR(n) = 1.0 * x(n) + 0.7071*x(n - d2(n)) - 0.7071*x(n - D2/2)
x(n) ----- (O R ) S >0 ------- > yL(n)
- | n 0.7071 N
I / I
I / _ I
| | | Rotating Tap |
| | ZN(-D1) | Cent er |
[----------- >| [----------- [ >--]
| di(n) | 0.7071
I I
I I
ro
/ | Fixed Tap
/ | Cent er
f eedbackl | DL/ 2
------------- N |
(O R ) S >0 ------- > yR(n)
- | n 0.7071 N
I / I
I / _ I
| | Rotating Tap |
| | ZN(-D2) | Cent er |
[----------- >| [----------- [ >--]
| d2(n) | 0.7071
I I
I I
ro
/ | Fixed Tap
/ | Cent er
f eedback2 | D2/ 2
------------- N |

What the Chorusing Effect does?

Chorusing sinmulates the effect of nmultiple instrunents/voices playing the sane nusi cal
arrangenent at the sane tinme. |n actual concert situations, nusicians are usually
synchroni zed together, except for snmall variations in anplitude and ti m ng.

This effect is achieved by allowing the time delay (and al so anplitude) to vary
randomy or sinusoudally in tine by using a random nunber generation routine or sine
wavet abl e.

For each input sanple, the sanple processing al gorithm does the follow ng:
store input sanple sO to 2 delay |lines
nmodi fy wavet abl e(when necessary)
generated variable delay, d = D* (0.5 + randnun(fc*t))
sl = sanplel = tap(D, wl, pl, d)
s2 = sanple2 = tap(D/ 2)
y = a0 * sO + al * s1 - af * s2
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Devel oped for the 21065L EZ-LAB Eval uation Board

********************************************************************************************/

/* ADSP-21060 System Register bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldef s. h"

. GLOBAL chorus_effect;

. GLOBAL I nit_Chorus_Buffers;

. GLOBAL change_depth_rate_w dt h;
. GLOBAL sel ect _f eedback_gai n;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

/* Chorus Control Paraneters */

#defi ne aOL OX7FFFFFFF /* a0 = 0.99999999, left input gain */
#define allL 0x5A82799A /* al = 0.707106781, left output gain of tapped del ay
line */
#def i ne aOR OX7FFFFFFF /* a0 = 0.99999999, right input gain */
#defi ne alR 0x5A82799A /* al = 0.707106781, |eft output gain of tapped del ay
line */
#define aflL 0x5A82799A /* a0 = 0.707106781, negative feedback gain */
#define afR 0x5A82799A /* a0 = 0.707106781, negative feedback gain */
/* = OxA57D8666 for positive feedback, - 0.707106781 */
#define D1 870 /* Depth, or TD = D1/fs = 870/48000 = 18 nsec */
#define D2 1120 /* Depth, or TD = D2/fs = 1120/ 48000 = 23 nsec */
#defi ne DepthL D1 /* DepthL is equivalent to tine delay of signal, or
d-line 1 size */
#defi ne Dept hR D2 /* DepthR is equivalent to tine delay of signal, or
d-line 2 size */
#define L_Del _TapCenter Dept hL/ 2 /* D1/2, used for add & subtracting delay from
nom nal tap center */
#define R _Del _TapCenter Dept hR/ 2 /* D2/2, used for add & subtracting delay from
nom nal tap center */
#def i ne WaveSi ze 4000 /* semi -randont si nusoi dal wavet abl e size*/

/* chorus control paraneters */
#define c 1 /* wavetabl e signal freq fcl = cl*(update tine)*WaveSize = 4 Hz */
#define chorus_width -2 /* Enter # from1l to 31. Do not enter O, to keep #s +/- 0.5 */

#define nodul ati on_rate 80 /* Update wavetabl e pointer for delay calc every 40 interrupts */

/* sine wavetabl e has a rate of nodul ation of about 0.15 Hz */

/* playing with the width, nodul ation rate, depth size and feedback affects
the intensity of the chorus'ed sound */
.segnment /dm dnthor us;
.var I RQL_counter = 0x00000004;
.var | RQ2_counter = 0x00000004;
.var f eedback_gai nL = aflL;
.var f eedback_gai nR = af R
.var sweep_rate = nodul ati on_rate;
.var sweep_w dt hL = chorus_wi dt h; /* controls width of |eft sweep, ranges from-1to - 15 */
.var sweep_w dt hR = chorus_w dt h; /* controls width of right sweep, ranges from-1to - 15 */
.var wl[ DepthL + 1]; /* delay-line buffer 1, max delay = D1 */
.var w2[ Dept hR + 1]; /* delay-line buffer 2, max delay = D2 */
.var excur si on_val uel; /* wavet abl e of fset value for delay cal culation */
.var excur si on_val ueR; /* wavet abl e of fset value for delay cal culation */
.var randon{WaveSi ze] ="si net bl . dat"; /* store one period of the wavetable */
/* mni mum frequency of table =

(freq of delay update)/WaveSize = 8/4 = 2 Hz */
.var wavet bl _counter = 0x00000000;
. endseg;
[* ceeeeeee e PROGRAM MEMORY CODE--------------------"-"------------ */

. segment /pm pm code;

I nit_Chorus_Buffers:

B2 = wl; L2 = @v,;

/* left delay-line buffer pointer and | ength */




m = 1,

LCNTR = L2; /* clear left delay line buffer to zero */
DO clrDii neL UNTIL LCE;
clrDineL: dm(i 2, nmR2) = 0;
B3 = w2; L3 = @&; /* right delay-line buffer pointer and | ength */
m = 1,
LCNTR = L3; /* clear right delay line buffer to zero */
DO clrDi i neR UNTI L LCE;
clrDineR dm(i 3, nmB) = 0;
B6 = random /* left channel pointer for signal generator */
L6 = @andom /* get size of table | ookup */
B7 = random /* right channel pointer for signal generator */
17 = random + 1000; /* offset 90 degrees so nodul ators in quadradure phase */
L7 = @andom /* get size of table | ookup */
RTS;
/* ________________________________________________________________________________ */
/* */
/* Di gital Chorus Routine - process both channels together */
/* */
/* _______________________________________________________________________________ */

chorus_effect:
/* conbine both left and right

nput sanples together into 1 signal */

i

r0 = dn(Left_Channel); /* left input sanple */

rl = dm R ght _Channel); /* right input sanple */

r0 = ashift r0 by -1; /* scale signal by 1/2 for equal mx */
rl = ashift rl by -1, /* scale signal by 1/2 for equal mx */
rl5 =r0 + rli; [* 1/2xL(n) + 1/2 xR(n) */

test _wav_updat e:
/* update sine value from !l ookup table? Update every 80 SPORT rx interrupts */
/* sweep frequency = 80 * ¢ * 4000 / fs = 96000 /48k = .15 sec */

rll = DM sweep_rate); /* count up to 80 interrupts (default) */
rl10 = DM wavet bl _counter); /* get last count from nenory */
ri0 = r10 + 1; * increment preset */

/
conmp (r10, r11); /* conpare current count to max count */

if ge r10 = r10 - r10; /* if count equals nax, reset to zero and start over */
DM wavet bl _counter) = r10; /* save updated count */

rl2 = pass r10; /* test for wave count 0? */
if eq junp update_wavetbl _ptrs;

/* if you are here, reuse sanme random val ues for now */
junp do_stereo_chorus;

/* if necessary, calculate updated pointer to wavetables */
updat e_wavet bl _ptrs:
6 = c

= ¢; /* desired increnent ¢ - frequency f = c x fs / D */
rl = DepthL; /* Total Delay Time */
r2 = dnmi 6, nb); /* get next value in wavetable */
r4 = dm(sweep_w dt hL);
r2 = ashift r2 by r4; /* divide by at least 2 to keep 1.31 #s between 0.5 and -0.5 */
r3 =rl1%*r2 (SSFR); /* multiply Delay 1 by a fractional value fromO to 0.5 */

dn{ excursion_val uelL) = r3;

nv = c; /* desired increnent ¢ - frequency f = c x fs / D */

rl = DepthR /* Total Delay Time */

r2 = dnmi 6, nb); /* get next value in wavetable */

r4 = dm(sweep_w dt hR);

r2 = ashift r2 by r4; /* divide by at least 2 to keep 1.31 #s between 0.5 and -0.5 */
r3 =rl1%*r2 (SSFR); /* multiply Delay 1 by a fractional value fromO to 0.5 */

dn{ excursion_val ueR) = r3;

do_stereo_chorus:

r3 = dm(excursion_val uel); /* calculate time-varing delay for 2nd voice */
rl = L_Del _TapCenter; /* center tap for delay line */
rd =rl +r3; /* r4a = d(n) =D1/2 + D1 * randon(fc*t) */
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process_| eft_ch:

/* r4d noww ||l be used to set nR2 register to fetch tinme varying del ayed sanple */

nm = r4; /* tap outputs of circular delay line */

modi fy(i2, nR); /* go to del ayed sanple */

r4 = -ré4; /* negate to get back to where we were */

m = r4,; /* used to post nodify back to current sanple */
r9 = dn(i2, n2); /* get tine-varying del ayed sanple 1 */

/* r8 will be used to get Nomi nal Tap Center del ayed sanple for flange feedback */

m2 = L_Del _TapCenter; tap outputs of circular delay line */

rmdl fy(i2, nR); go to del ayed sanple */

114 -L_Del _TapCenter; negate to get back to where we were */

dn(i 2, nR); get del ayed sanple, postnodify back to current

~——
L

r7

/* crank out difference equation */
r8 = aoL;

mf =r8 * r15 (SSF);

r8 = dm(feedback_gainL);

mf =mf - r8 * r7 (SSF);

left input gain */
nrf = a0OL * x-input */

left gain for feedback of nominal tap center*/
mf =a0L * x - afL * sNomnalL */

~———
* % ok ok *

ri2 nr 1f ; save for input to chorus left delay line */
r8 = all; /* left delay line output gain */

mf =mf +r8 * r9 (SSFR); /* mf = a0L * xL + alL * s1L - afL * sNomnallL
mf = SAT mrf; /* saturate result if necessary */

r10 = nrif; /* chorus result in r10 */

/* put 'input mnus feedback' sanple fromr12 into tap-0 of delay line */
/* and backshift circular delay-line buffer pointer */
dan(i 2, -1) = r12;

/* wite chorus'ed output sanple to | eft output channel */

dn( Left _Channel) = r10; /* left output sanple */
process_right _ch:
r3 = dm(excursion_val ueR); /* calculate time-varing delay for 2nd voice */
rl = R Del _TapCenter; /* center tap for delay line */
rd =rl +r3; /* r4 = d(n) = D2/2 + D2 * randon(fc*t) */
/* r4 noww |l be used to set nB register to fetch tine varying del ayed sanple */
B = r4; /* tap outputs of circular delay line */
modi fy(i3, nB); /* go to del ayed sanple */
rd4 = -r4; /* negate to get back to where we were */
B8 = r4; /* used to post nodify back to current sanple */
r9 = dmii3, nB); /* get time-varying delayed sanple 1 */
/* r8 will be used to get Nomi nal Tap Center del ayed sanple for chorus feedback */

n8 = R Del _TapCenter;
modi fy(i3, nB);

nB3 -R _Del _TapCenter;
dm(i 3, nB);

* tap outputs of circular delay line */

go to del ayed sanple */

negate to get back to where we were */

get del ayed sanpl e, postnodify back to current

~_~——
* % ok

r7

/* crank out difference equation */
r8 = aOR
mf =r8 * r15 (SSF);

left input gain */
mf = aOR * x-input */

~————
* ok ok Ok *

r8 = dn(feedback_gai nR); gain for feedback of nom nal tap center*/
mf =nmf - r8 * r7 (SSF); mf = aOR* xR - afR* sNomnal R */

rl2 = nrif; save for input to chorus right delay line */
r8 = alR; /* right delay line output gain */

mf =mf +r8 * r9 (SSFR); /* mf = aOR * x + alR * s1R - af * sNominal R
nrf = SAT mrf; /* saturate result if necessary */

rl0 = nrif; /* chorus result in rl10 */

/* put "input mnus feedback' sanple fromrl2 into tap-0 of delay line */
/* and backshift circular delay-line buffer pointer */
dm(i 3, -1) = r12;

/* wite chorus'ed output sanple to right output channel */
dm( Ri ght _Channel) = r10; /* right output sanple */

rts;

sanpl e */

*/

sanpl e */

*/
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3.3.2.3 Vibrato

The vibrato effect that duplicates 'vibrato' in a singer's voice while sustaining a note, a musician bending a stringed
instrument, or a guitarist using the guitars ‘whammy' bar. This effect is achieved by evenly modulating the pitch of the signal.
The sound that is produced can vary from a slight enhancement to a more extreme variation. It is similar to a guitarist moving
the 'whammy' bar, or aviolinist creating vibrato with cyclical movement of the playing hand. Some effects units offered
vibrato aswell asatremolo. However, the effect is more often seen on chorus effects units.

The dlight change in pitch can be achieved (with a modified version of the chorus effect) by varying the depth with enough
modulation to produce a pitch oscillation. Thisis accomplished by changing the modify value of the delay-line pointer on-
the-fly, and the value chosen is determined by alookup table. Thisresultsin the interpolation/decimation of the stored
samples viarotating the center tap of the delay line. The stored 'history' of samples are thus played back at a slower, or faster
rate, causing a slight change in pitch.

To obtain an even variation in the pitch modulation, the delay line is modified using a sine wavetable. Note that thisa
stripped down of the chorus effect, in that the direct signal is not mixed with the delay-line output.

This effect is often confused with ‘tremol o', where the amplitude is varied by a L FO waveform. The tremolo and vibrato can
both be combined together with atime-varying L PF to produce the effect produced by a rotating speaker (commonly referred
to a'Ledie’ Rotating Speaker Emulation). An example rotating speaker emulation effect is also shown in this section.

Figure 73.
Implementation of the Vibrato Effect

Sine Table

Tap Center of Delay
Line Modulates by
the Sine Wavetable

T ax(n - d(n))
X(n) —— Z-N 'l> y(n)

1 a
Gain

N = variable delay d(n)

Can use chorus or flanger algorithm, but no mix of input signal is required

Example Vibrato Implementation Using The ADSP-21065L

______________________________________________________________________________________________ * [

/* */
/* Digital Vibrato Routine - process both channel s together */
/* */
/* ______________________________________________________________________________________________ */
vibrato_effect:

A con‘ol ne both left and right input sanples together into 1 signal */

r0 = dm(Left_Channel); /* left input sanple */

rl = dnm(R ght _Channel); /* right input sanple */

r0 = ashift r0 by -1, /* scale signal by 1/2 for equal mx */

rl = ashift rl by -1; /* scale signal by 1/2 for equal mx */

r2 =r0 +ri,; [* 1/2xL(n) + 1/2 xR(n) */
t est _si ne_updat e:

/* update sine value from !l ookup table? Update every 12 SPORT rx interrupts */

/* sweep rate = 12 * sin_inc * 4000 / fs = 48000 /48k = 1 sec */

rll = DM nodul ation_rate); /* count up to 24 interrupts */

r10 = DM wavet bl _counter); /* get last count from menory */

rl0 = r10 + 1, /* increnent preset */

conp (r10, r11); /* conpare current count to max count */

if ge r10 = r10 - r10; /* if count equals nmax, reset to zero and start over */

DM wavet bl _counter) = r10; /* save updated count */
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rl2 = pass r10; /* test for wave count 0? */
if eq junp update_sinetbl _ptr;

junp do_vi brat o; /* if you are here, reuse sane sine value for now */
/* dm(sine_val ue) remai ns unchanged */

/* if necessary, calculate updated pointer to sine wavetable */
updat e_si net bl _ptr:

m6 = dn(sin_inc); /* desired increment sin_inc - f =sin_inc x fs / D */
ré = b

r7 = dmii 6, nb);

r4 = dn(pitch_bend);

r7 = ashift r7 by r4; /* divide by 2 to keep #s between 0.5 and -0.5 */

r8 =r6 * r7 (SSFR /* delay nultiplication factor */

dn(si ne_val ue) = r8; /* save to current sine value to be reused above */

do_vi br at o

= dn(si ne_val ue); /* get previous or newy updated sine value */
rl = D2; /* get nominal tap center delay */
rd =rl +r3; /* =d(n) =D2 + D* sin(fc*t) */

/* r4 noww |l be used to set nR register to fetch tine varying del ayed sanple */

m = r4; /* set tap valud for output of circular delay line */

modi fy(i2, nR); /* go to del ayed sanpl e address */

rd4 = -r4; /* negate to get back to where we were */

m = r4; /* set up to go back to current nem|location after access */
r10 = dmi 2, nR); /* get del ayed sanple */

/* put input sanple fromr2 into tap-0 of delay |lines */
/* and backshift pointer & update circular delay-line buffer*/
dm(i 2, -1) =r2;

/* wite vibrato output sanple to AD1819A DAC channels */

dn( Left_Channel) = r10; /* left output sanple */
dm( Ri ght _Channel) = r10; /* right output sanple */
rts;

21065L Rotating Speaker Emulation Implementation (Vibrato & Tremolo Combo)

* % % RO'I'ATI ,\G_SPEAKER.ASM khkkhkhkhkhkhkhkhkhkhkhkhkhkhhkhhhkhkhkhhkhkhkhkhkhkhkhkhhkhhkhhhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkkk*x*x*%x

AD1819A/ ADSP- 21065L EZLAB Rot ating Speaker Enul ation Effect Program
Devel oped usi ng ADSP-21065L EZ- LAB Eval uation Platform

I/0 Equation: y(n) = [x(n)*sin(2*pi*fc*t)] convolve [ x(n-d(n)) ]

|
I [
| |/ Variable
/ Rotating Tap / Cut of f
/ Cent er Freq

sin(2*Pl *fc*t) / /
| / I
[ | | | |
Y | ZN(-D) | |  LPF |
x(n) -------- >0 ----mmeo-e >| [------- | H(z) |--->y(n)
X I d(n) | |
|

What the rotating speaker effect does?

A popul ar effect used on keyboards and Hammond organs. This effect
consists of a conbination of the trenplo and vibrato effects, conbined
a lowpass filter with a variable cutoff frequency. This conbination
simul at es what was done by audi o engi neers who woul d actual |y produce
this effect by rotating a speaker cabinet. The resulting sound heard
by the ears is a cyclical increase/decrease in volunme, a doppler effect
fromthe speaker rotating, and a cyclical drop in high frequencies
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* whenever the speaker is facing away fromthe |istener. *

* *
*******************************************************************************************/

/* ADSP-21065L System Regi ster bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldefs. h"

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

. GLOBAL Init_Tremol o_Vi brato_Buffers;
. GLOBAL Rot at i ng_Speaker _Ef fect;

. GLOBAL change_speaker _rotate_rate;

. GLOBAL sel ect _trenol o_effect;

.segnent /dm r ot speak;

#defi ne WaveTabl eSi ze 4000 /* sinusoidal wavetable, 1 period in table of 4000 sine wave
el ements */
#define D 2000 /* Depth, or TD = D/fs = 1000/ 48000 = 20. 83 nsec */
/* increasing depth size D increases pitch variation */
#define Depth D /* Depth is equivalent to tine delay of a signal, or delay-line size */
#define D2 Dept h/ 2 /* D2, used for addig & subtracting delay fromtap center */
.var I RQL_counter = 0x00000003;
.var I RQ2_counter = 0x00000000;

.var wavet bl _counter = 0x00000000;

.var Effect _Ctrl = 0x00000001; /* memory flag that determnmines which trenolo routine executes */
.var pitch_bend = -6; /* Enter # from-1to -15. Do not enter 0.*/
/* -1to -5 - large pitch bend*/
/* -6 to -10 - nedium pitch bend */
/* -11 to -15 - small pitch bend */
.var sin_inc = 2; /* wavetabl e signal frequency ftable = sin_inc * fs = ? Hz */
.var nmodul ation_rate = 3; /* controls how fast the wavetable is updated in the SPORT1 rx ISR
*/
.var si ne_val ue; /* used for tremolo control */
.var excur si on_val ue; /* used for vibrato delay offset calculation */
.var si ne[ WaveTabl eSi ze] = "sinetbl.dat";
.var w D+ 1]; /* delay-line buffer, max delay = D */
. endseg;
/* ___________________________________________________________________________ */
. segnent /pm pm code;
/* __________________________________________________________________________________ */
Init_Tremol o_Vi brato_Buffers:
B2 =w L2 = @y /* delay-line buffer pointer and | ength */
e = 1,
LCNTR = L2; /* clear delay line buffer to zero */
DO clrDine UNTIL LCE;
clrDine: dm(i 2, nmR2) = 0;
B6 = si ne; /* pointer for signal generator */
L6 = @i ne; /* get size of sine table | ookup */
RTS;

/*******************************************************************************************

ROTATI NG SPEAKER (Vi brato & Trenol o Conbo) AUDI O EFFECT

********************************************************************************************/

Rot at i ng_Speaker _Effect:
rl DM Left _Channel ) ;

rl = ashift rl by -1;
r2 = DM R ght _Channel ) ;
r2 = ashift r2 by -1;
r3 =r2 +rl,
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/* generate sine value fromwavetabl e generator if necessary, where r4 = sin(2*pi*fc*t) */
test _wavt bl _updat e:

/* update sine value from | ookup table? Update every 80 SPORT rx interrupts */

/* sweep frequency = 80 * ¢ * 4000 / fs = 96000 /48k = .15 sec */

rll = DM nodul ation_rate); count up to 80 interrupts */
r10 = DM wavet bl _counter); get last count from nenory */
rl0 = r10 + 1, increment preset */

conp (r10, r11);
if ge r10 = r10 - r10;
DM wavet bl _counter) = r10;

conpare current count to max count */
if count equals max, reset to zero and start over */
save updated count */

~—————
* % ok ok Ok F

rl2 = pass r10; /* test for wave count 0? */
if eq junp update_wavetbl _ptr;

/* if you are here, reuse sane sine value for now . dn{sine_value) renains unchanged */
junmp do_vi brato;

/* if necessary, calculate updated pointer to wavetable */
updat e_wavet bl _ptr:
m6 = dn(sin_inc); /* desired increment sin_inc - frequency f = sin_inc x fs /
D */
r7 = dmii 6, nb);
dn(si ne_value) = r7;
r4 = dm(pitch_bend);

get next value from sine | ookup table */
use for trenolo_effect anplitude scaling factor */
controls scaling of center tap delay offset */

~———— =
EE

r7 = ashift r7 by r4; divide by at least 2 to keep #s between 0.5 and -0.5 */
ré6 = D Total Delay Tinme D = anplitude of sine wave | ookup */
r8 =r6 * r7 (SSFR); delay multiplication factor */

dn( excursion_val ue) = r8; save to current sine value to be reused above */

do_vi brat o:

r2 = dn(excursion_val ue); /* get previous or newy updated scal ed sine value */
rl = D2; /* get nominal tap center delay */
rd =rl +r2; /* r4 =d(n) = D2 + D* sin(fc*t) */

/* r4 noww |l be used to set nR register to fetch tine varying del ayed sanple */

m = r4; /* set tap valud for output of circular delay line */

modi fy(i2, nR); /* go to del ayed sanpl e address */

rd4 = -r4; /* negate to get back to where we were */

m = r4; /* set up to go back to current location after nenory access
*/

r10 = dm(i 2, nR); /* get del ayed sanple */

/* wite vibrato output sanple to rO for trenolo routine */
ro = rio;

/* put input sanple fromr2 into tap-0 of delay |lines */
/* and backshift pointer & update circular delay-line buffer*/
dm(i 2, -1) =r3;

whi ch_trenol o_routi ne:
r4a = DMEffect_Cirl);
r4 = pass ré4,
if eq junp nono_trenol o_effect; /* if == 1, execute nono trenolo routine */
/* otherwi se, execute stereo trenolo routine */
stereo_trenol o_effect:
/* get generated sine value fromwavetabl e generator, where r4 = sin(2*pi*fc*t) */

ra dn( si ne_val ue) ;

r5=r0* r4 (SSFR);

/* test current sine value to pan left or right, if + then pan left, if - then pan right */
r4 = pass r4,

I F LE JUWP (pc, pan_right_channel);

pan_| eft _channel :
/* wite trenplo result sanple to left/right output channels */
DM Left _Channel ) = rb;
ré = 0x00000000;
DM R ght _Channel ) = r6;
JUWP (pc, trenol o_done);

pan_ri ght _channel :
/* wite trenolo result sanple to left/right output channels */
ré = 0x00000000;
DM Left _Channel ) = r6;
DM R ght _Channel ) = r5;
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trenol o_done:
rts;

nmono_trenol o_effect:
/* get generated sine value fromwavetabl e generator, where r4 = sin(2*pi*fc*t) */

r4 = dn(sine_val ue);

r5=r0* r4 (SSFR);

/* wite trenolo result sanple to left/right output channels */

dn( Left_Channel) =r5; /* left output sanple */
dm( Ri ght _Channel) = r5; /* right output sanple */
RTS;

3.3.2.4 Pitch Shifter

An interesting and commonly used effect is changing the pitch of an instrument or voice. The algorithm that can be used to
implement a pitch shifter is the chorus or vibrato effect. The chorus routine is used if the user wishes to include the original
and pitch shifted signals together. The vibrato routine can be used if the desired result is only to have pitch shifted samples,
which is often used by TV interviewers to make an anonymous persons voice unrecognizable. The only difference from these
other effectsis the waveform used for delay line modulation. The pitch shifter requires using a sawtooth/ramp wavetable to
achieve a'linear' process of dropping and adding samplesin playback from an input buffer. The slope of the sawtooth wave
aswell asthe delay line size determines the amount of pitch shifting that is performed on the input signal.

Figure 74.
Implementation of a Generic Pitch Shifter

Sawtooth Wave
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Gain

N = variable delay d(n)

The audible side effect of using the 2 instrument chorus algorithm (with one delay line) isthe ‘clicks’ that are produced
whenever the delay pointer passes the input signal pointer when samples are added or dropped. This is because output pointer
is moving through the buffer at a faster/slower rate than the input pointer, thus eventually causing an overlap. To reduce or
eliminate this undesired artifact cross-fading techniques can be used between two alternating delay line buffers with a
windowing function, so when one of delay line output pointers are close to the input, a zero crossing will occur at the overlay
to avoid the 'pop' that is produced. For higher pitch shifted values, there is a noticable ‘warble' audio modulation produced as
aresult of the outputs of the delay lines being out of phase, which causes periodic cancellation of frequencies to occur.
Methods to control the delay on-the-fly to prevent the phase cancellations have been proposed, but are not implemented in our
reference examples. A basic 21065L assembly example of the pitch shifter used as a Detune Effect is shown in the next
section.

Again, the DSP timer can update the delay-line retrieval address value of a previous sample which resultsin alinear adding
and dropping of samples. Using a positive or negative slope determines if the pitch of an audio signal will be shifted up or
down (see diagram below). The same look-up table can be used to pitch shift up or down. The address generation unit only
needs to use an increment or decrement modify register that will move forward or backwards in the table. Multiple harmonies
can be created by having multiple pointers with positive and negative address modify values circling through the table.
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Figure 75.
Example Two-Voice Pitch Shifter Implementation
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Figure 76.
Example 4K Sawtooth Wavetable
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3.3.2.5 Detune Effect

The Detune Effect is actually aversion of the Pitch Shifter. The pitch shifted result is set to vary from the input by about +/-
1% of the input frequency. Thisisdone by setting the Pitch Shift factor to 0.99 or 1.01 The effect's result isto increase or
decrease the output and combine the pitch shift with the input to vary afew Hz, resulting in an ‘out of tune effect’. (The
algorithm actually uses a version of the chorus effect with a sawtooth to modulate the delay-line). Small pitch scaling values
produce a‘chorus like' effect and imitates two instruments dightly out of tune. This effect is useful on vocal tracksto give
impression of 2 musicians singing the same part using 1 person's voice. The pitch shifting result is to small for the formant
frequencies of the vocal track to be affected, so the shifted voice still sounds realistic.

For a strong Detune Effect, vary the pitch by 5-10 Hz
For aweak Detune Effect ( 'Sawtooth Chorus sound ), vary the pitch by 2-3 Hz
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21065L Example Detune Effect - Slight Pitch Shift Variation of an Input Signal

/* khkhkhkhkhkhkhkhkhhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhhhhhhhhhhkhkhkhhkhkhkhhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkkkkxx*x*%x

DETUNE_EFFECT. ASM - DETUNE. ASM - Pitch Shift Effect Simulating 2 Voices Slightly Qut O Pitch
(Timer0 Update Method - delay cal cul ation determnined by the on-chip programmble tiner)
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khkhkhkhkhkhkhkhkhkhkhhhhhhhhhhhhhkhhhhhhhhhhhhhkhhkhhhhhkhhhhhhhkhhhhhhkhhkhkhkhkhkhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkxkkkxkx**x*%x */

/* ADSP-21060 System Register bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldefs. h"

. GLOBAL pitch_shifter;

. GLOBAL Init_Pitch_Buffers;

. GLOBAL TinmerO_Initialization;

. GLOBAL wavet abl e_gen;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

/* pitch shift filter coefficients */

#define a0 0x40000000 /* One Half, or 0.5 in 1.31 format */
#define al 0x40000000 /* One Half, or 0.5 in 1.31 format */
#define a2 0x40000000 /* One Half, or 0.5 in 1.31 format */

/* delay buffer and wavetabl e definitions */

/* increasing depth size D increases pitch variations */

#define D 2000 /* Depth, or TD = D/fs = 1500/ 44100 = 35 nsec */
#define D2 D2

#defi ne WaveSi ze 4000 /* triangul ar wavetabl e size*/

#defi ne WnSi ze 4000 /* w ndow function for cross-fading delay-lines */

/* pitch shift control paraneters */

#define c 2 /* signal frequency fcl =cl * freqtimer = 4 Hz */
#defi ne nodul ati on_rate 50000 /* # of DSP cycles between Tiner Expire | SR update */
#define pitch_depth 1 /* Enter # from1 to 10. DO NOT ENTER '0'!, to keep #'s
between +/- 0.5 in fractional format */
/* The | ower the nunber, the greater the pitch bend */

/* playing with the pitch depth, nodul ation rate,

and pitch-depth size affects

the intensity of the pitch shifted sound,

the pitch-depth setting is strongest

at lower nunbers 1 to 3, it is less intense for 4 to 7.*/
{sawt oot h chorus - nodrat e=50000, pitchdepth=1, c=1, D=1000)
{detune effect - nodrate=50000, pitchdepth=1, c=2, D=1000}
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.segrment /dm del aylin;

.var wi[D + 1]; /* delay-line buffer, max delay = D */

.var w2[D + 1]; /* delay-line buffer, nax delay = D *

. endseg;

.segnent /dm dnpi t ch;

.var saw_val uel; /* wavetabl e update via tiner for delay cal culation */

.var saw_val ue2;

.var vol une_dl i nel;

.var vol ume_dl i ne2;

.var wi ndow_fnc[ WnSize] = "triang_wi ndow.dat"; /* |oad wi ndow function for crossfade control */

.var sawt oot h_wav[ WaveSi ze] = "sawtooth.dat"; /* load one period of the wavetable */
/* min frequency f1 = fs/Ds = 8/4 =2 Hz */

. endseg;

[* ceeeeeee e PROGRAM MEMORY CODE---------------------"------------ */

. segment /pm pm code;

Init_Pitch_Buffers:

B2 = wl;, L2 = @ui; /* delay-line 1 buffer pointer and | ength */
m =1,
LCNTR = L2; /* clear delay line buffer to zero */
DO clrDiinel UNTIL LCE;
clrDinel: dm(i 2, nmR2) = 0;
B3 = w2; L3 = @&2; /* delay-line 2 buffer pointer and |l ength */
B = 1,
LCNTR = L3; /* clear delay line buffer to zero */
DO clrDii ne2 UNTIL LCE;
clrDine2: dm(i 3, nmB) = 0;
B6 = sawt oot h_wav; /* pointer 1 for sawtooth signal generator */
L6 = @awt oot h_wav; /* get size from sawtooth nunber table | ookup */
B7 = sawt oot h_wav; /* pointer 2 for sawtooth signal generator */
17 = sawt oot h_wav + 2000; /* start in middle of table */
L7 = @awt oot h_wav; /* get size from sawtooth nunber table | ookup */
B4 = wi ndow_f nc; /* pointer for crossfade wi ndow for delay-line 1 */
L4 = @i ndow_f nc; /* get length of w ndow buffer */
B5 = wi ndow_f nc; /* pointer for crossfade wi ndow for delay-line 2 */
I'5 = wi ndow_fnc + 2000; /* start in middle of table */
L5 = @i ndow_fnc; /* get length of w ndow buffer */
RTS;
/* ___________________________________________________________________ */

/* Set up tiner for the Chorus Effects wavetabl e generator */

TinmerO_Initialization:

bit clr node2 TI MENO; [* timer off initially */

bit set node2 PWVMOUTO | PERI OD _CNTO | | NT_H 0; /* latch tinerO to high priority timer int */

r0 = nodul ation_rate;

DM TPERI OD0) = rO;

DM TCOUNTO) = rO0; /* assuming 16.7 nSec cycle @60 MPs */

ro = 10;

DM TPW DTHO) =r0;

bit set imask TMZHI; /* timer high priority */

bit set node2 TI MENO; /* timer on */

rts;
/* _____________________________________________________________________________________________ */
/ */

Wavet abl e Generator used for Pitch Shift Delay Line Mdulation */
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/* */
/* _____________________________________________________________________________________________ */
/* Hgh Priority Tinmer Interrupt Service Routine for Delay Line Mdulation of Chorus Buffers */

/* This routine is a wavetabl e generator, where r3 = D2 * sin(2*pi*fc*t) */

/* and it nodul ates the chorus delay line around rotating tap center */

wavet abl e_gen:
bit set npdel SRRFL;
nop; /* 1 cycle latency witing to Mddel register */

/* ¢ = desired wavetabl e increnent (DAG nodifier), where frequency f = c x fs / D */

r3=r1* r2 (SSFR);
dnm(saw_val uel) = r3;

multiply Delay by a fractional value fromO to 0.5 */
store to nenory for chorus routine */

sawt oot h1:
rl = b /* Total Delay Time */
r2 =dmi6, c); /* get next value in wavetable */
r2 = ashift r2 by -pitch_depth; /* divide by at least 2 to keep 1.31 #s between 0.5/-0.5 */
/*
/*

sawt oot h2:
rl = D /* Total Delay Tinme */
r2 =dmi7, c); /* get next value in wavetable */
r2 = ashift r2 by -pitch_depth; /* divide by at least 2 to keep 1.31 #s between 0.5/-0.5 */
r3=rl1%*r2 (SSFR); /* multiply Delay by a fractional value fromO to 0.5 */
dnm(saw_val ue2) = r3; /* store to nenory for pitch shift routine */

/* determ ne cross-fade gain control values for both delay-line buffers used in pitch shift routine */
/* scaling factor will be 0x00000000 whenever the center tap crosses input of the delay line buffer */

triangl _w ndow val uel:
rl = dmii4, c); /* corresponds with sawtooth 1 */
dnm(vol ume_dl i nel) ri;

triangl _w ndow_val ue2:
rl =dmii5, c); /* corresponds with sawtooth 2 */
dm(vol ume_dl i ne2) = r1;

bi_t clr nodel SRRFL;

rti;
/* ______________________________________________________________________________________________ */
/* */
/* Digital Pitch Shifter Routine - process right channel only */
/* */
/* ______________________________________________________________________________________________ */
pitch_shifter:

rl5 = DM Ri ght _Channel ) ; /* get x-input, right channel */

r3 = dm(saw_val uel); /* calculate time-varing delay for 2nd voice */

rl = D2; /* center tap for delay line 1*/

rd =rl +r3; /* r4d =d(n) = D2 + D* randonm(fc*t) */

r5 = dm(saw_val ue2); /* calculate time-varing delay for 3nd voice */

r2 = D2; /* center tap for delay line 2 */

ré6 =r2 + rb; /* r6 =d(n) = D2 + D* randonm(fc*t) */

r8 = ao; /* input gain */

mf =r8 * r15 (SSF); /* nmf = a0 * x-input */

nm = r4; /* tap outputs of circular delay line */

modi fy(i2, nR); /* go to del ayed sanple */

r4 = -ré4; /* negate to get back to where we were */

m = r4; /* used to post nodify back to current sanple */

r9 = dn(i2, n2); /* get tine-varying delayed sanple 1 */

r11 = dm(vol ume_dl i nel); /* get scaling factor */

r9 =r9 * rll (SSF); /* multiply by delay |ine output */

r8 = al; /* delay-line 1 gain */

mf =mf +r8 * r9 (SSF); /* mf =a0 * x + al * s1 */

m = r6; /* tap outputs of circular delay line */

modi fy(i3, nB); /* go to del ayed sanple */

ré6 = -r6; /* negate to get back to where we were */

B8 = r6; /* used to post nodify back to current sanple */
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r10 = dm(i 3, nB); /* get tine-varying del ayed sanple 2 */
r11 = dm(vol unme_dl i ne2);

r10 = r10 * r11 (SSF);

r9 = az; /* delay-line 2 gain */

mf =mf +r9 * r10 (SSFR); /* mf =a0 * x + al * s1 + a2 + s2 */
nrf = SAT mrf; /* saturate result if necessary */

rl0 = nrif; /* pitch shifted result in r10 */

/* put input sanple fromrl5 into tap-0 of delay lines */
dm(i 2, 0) = r1i5;
dn(i 3, 0) = ri5;

/* backshift pointers & update circular delay-line buffers */

modi fy(i2, -1);

nmodi fy(i3, -1);

/* wite pitch shifted output sanple to left/right output channels */
DM Left _Channel ) =r 10;

DM R ght _Channel ) =r 10;

rts;

. endseg;
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3.3.3 Digital Reverberation Algorithms for Simulation of Large Acoustic Spaces

Reverberation is another time-based effect. More complex processing than echoing, chorusing or flanging, reverberation is
often mistaken with delay or echo effects. Most multi-effects processing units provide a variation of both effects.

Thefirst simulation reverb unitsin the 60’'s and 70’ s consisted of using a mechanical spring or plate attached to a transducer
and passing the electrical signal through. Another transducer at the other end converted the mechanical reflections back to the
output transducer. However, this did not produce realistic reverberation. M.A Schroeder and James A. Moorer developed
algorithms for producing realistic reverb using a DSP.

Figure 78.
Reverberation of Large Acoustic Spaces
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The reverb effect simulates the effect of sound reflectionsin alarge concert hall or room (Figure 78). Instead of afew
discrete repetitions of a sound like a multi-tap delay effect, the reverb effect implements many delayed repetitions so close
together in time that the ear cannot distinguish the differences between the delays. The repetitions are blended together to
sound continuous. The sound source goes out in every direction from the source, bounces off the walls and ceilings and
returns from many angles with different delays. Reverberation is almost always present in indoor environments, and the
reflections are greater for hard surfaces. As Figure 12 below shows, Reverberated Sound is classified as three components:
Direct Sound, Early reflections and the Closely Blended Echos (Reverberations) [11,12,14].

Figure 79.
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Direct Sound - directly reaches the listener from the sound source.

Early reflections - early echos which arrive within 10 msto 100 ms by the early reflections of surfaces after the
direct sound.

Closely Blended Echos - is produced after 100 ms early reflections.

Figure 79 shows an impul se response of alarge acoustic space, such as an auditorium or gymnasium. In atypical large
auditorium, the first distinct delay responses that the user will hear are termed ‘early reflections’. These early reflections are a
few relatively close echos that actually occur in as reverberation in large spaces. The early reflections are the result of the
first bounce back of the source by surfaces that are nearby. Next come echos which follow one another at such small intervals
that the later reflections are no longer distinguishable to the human ear. A Digital Reverb typically will process the input
through multiple delayed filters and add the result together with early reflection computations. Various parameters to
consider in the algorithm would be the decay time (time it takes for reverb to decay) , presense (dry signal output vs.
reverberations), and tone control (bass or treble) of the output reverberations.

M.A. Schroeder suggested 2 ways for producing a more realistic sounding reverb. The first approach was to implement 5
allpass filters cascaded together. The second way was to use 4 comb filtersin parallel, summing their outputs, then passing
the result through 2 alpassfiltersin cascade.

James A. Moorer expanded on Schroeder’ s research.  One drawback to the Schroeder Reverb is that the high frequencies
tend to reverberate longer than the lower frequencies. Moorer proposed using alow pass comb filter for each reverb stage to
enlarge the density of the response. He demonstrated a technique involving 6 parallel comb filters with alow pass output,
summing their outputs and then sending the summed result to an allpass filter before producing the final result. Moorer also
recommended including the simulation of the early reflections common in concert halls using a tapped-delay FIR filter
structure, along with the reverb filters for amore realistic response. Some initial delays can be added to the input signal by
using an FIR filter ranging from 0 to 80 milliseconds. Moorer chose appropriate filter coefficients to produce 19 early
reflections. Moorer’s reverberator produced a more realistic reverb sound than Schroeder’s, but still produces a rough sound
for impulse signals such as drums.

Figure 80.

James A. Moorer’s Digital Reverberation Structure
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The figure above shows the structure for JA Moorer’s Digital Reverb [11] algorithm for alarge auditorium response
assuming a44.1 kHz sampling rate. Moorer demonstrated a technique involving 6 parallel comb filters with alow pass
output, summing their outputs and then sending the summed result to an all-pass filter before producing the final result. For
realistic sounding reverberation, the DSP requires the use of large delay lines for both the comb filter and early reflection
buffers. Each comb filter incorporates a different length delay-line. The reverberation delay time depends on the length the
delay-line buffer sizes and the sampling rate. Fine tuning of input and feedback for each comb filter gain and delay-line
values vary the reverberation effect to provide a different room size characteristic. Sinceal are programmable, the decay
response can be modified on the fly to change the amount of the reverb effect.

Figure 82.
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Table6.
Early Reflection Early Reflection
Delay Tap Tap Gain Parameters
Lengths Fractional 1.15 Representation
-190 0.841 = Ox6BA6
-759 0.504 = 0x4083
-44 0.490 = Ox3ED9
-190 0.379 = 0x3083
-9 0.380 = 0x30A4
-123 0.346 = O0x2C4A
-706 0.289 = Ox24FE
-119 0.272 = 0x22D1
-384 0.192 = 0x1893
-66 0.193 = 0x18B4
-35 0.217 = O0x1BC7
-75 0.181 = 0x172B
-419 0.180 = 0X170A
-4 0.181 = 0x172B
-79 0.176 = 0x1687
-66 0.142 = 0x122D
-53 0.167 = 0x1560
-194 0.134 = 0x1127
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Reverb Building Blocks Low Pass Comb Filter and All Pass Filter Structures

For realistic sounding reverberation, the DSP requires the use of large delay lines for both the comb filter and early reflection
buffers. The comb filter is used to increase echo density and give the impression of a sizable acoustic space. Each comb
filter incorporates a different length delay line. Each delay line can be tuned to a different value to provide a different room
size characteristic. Fine tuning of input and feedback gains for each comb filter gain and comb filter delay-line sizes will vary
the reverberation response. Since these parameters are programmable, the decay response can be modified on the fly to
change the amount of the reverb effect for simulation of alarge hall or small room. The total reverberation delay time
depends on the size the comb filter/early reflections buffers and the sampling rate.

Low pass filtering in each comb filter stage reduces the metallic sound and shortens the reverberation time of the high

frequencies, just as areal auditorium response does. The allpass filter is used along with the comb filters to add some color to
the 'colorless/flat’ sound by varying the phase, thus helping to emulate the sound characteristics of areal auditorium.

ADSP-21061 Low Pass Comb Filter Subroutine Example

/* Low Pass IIR Conmb Filter Structure:
x(n) --------- b O e > y(n)
N+
I _
| | z7(-D |
u(n) I [ |
| b0
[----------- (O O---------
+ vO(n) +
|
| z"-1 |
|
vli(n)
bl al
----- N R [ S
*/

Low _Pass_Conb_Filter:
L3 = @onb_out put;

B3 = conb_out put;

RO = 0x50710000; /* gf = G/ (1+gl) -- conb feedback gain */
R1 = 0x26660000; /* gl -- low pass filter gain */

L9 = COMB_LENGTH,

R4 = PM19,0); /* read conmb buffer -> output */

R5 = DM conb_| pf_state); /* read previous |low pass filter state */
MRF = R4*RO (SSF), DM 13, M) = R4; [/* save output, feedback conb output */
MRF = MRF + R5*Rl (SSFR); /* add | ow pass filter state */

R10 = MR1F;

DM conb_| pf _state) = R10; /* replace with new filter state */

MR1LF = R5; /* get old |ow pass filter output */

R7 = 0x46760000; /[* gi = 1/(1 + gf + gf*gl) */

MRF = MRF + R6*R7 (SSFR); /* mac | pf output with input*/

R10 = MR1F;

PM19,-1) = R10; /* wite sanple to buffer */

RTS;
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ADSP-21065L Example All-Pass Filter Implementation

/*

*/

al |

1st Order All pass Transfer function and 1/O difference equations:
-a + z(-D)
Hz) = ----------- y(n) = ay(n - D) - ax(n) + x(n - D)

IR conb filters tend to magnify input signal frequencies near conmb filter peak
frequencies. Allpass filters can be used to prevent this 'coloration' of the input
since it has a relatively flat magnitude response for all frequencies.

_pass_filter:

LO = @l | _pass;

R1 = 0x599A0000; /* feedback gain */

R10 = DM 1 0, 0); /* | oad output of buffer */

MRLF = R10;

MRF = MRF + R1*RO (SSFR); /* add to (feedback gain)*(input) */
MRF = SAT MRF;

R3 = MRLF; /* output of all pass in R3 */

MR1F = RO; /* put input of all pass in MRLF */
MRF = MRF - R1*R3 (SSFR); /* input - (feedback gain)*(output) */
MRF = SAT MRF;

R10 = MRLF;

DM 10, M7) = R10; /* save to input of buffer */

RTS;

Figure 83 is an example implementation of a Plate Reverb topology that is described by Dattorro[30], and will not be
discussed in too much detail here. The reader should refer to Dattorro's description on this class of reverb algorithms,
although it is not explored in much theoretical detail, as he suggests that it is best explored through tinkering with the gains
delay line values and output tap points. This suggested implementation yields very high quality reverberation very efficiently.
Notice that is has similar building blocks using comb filters. In addition, it uses allpass filter diffusers based on lattice
structure topologies.
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Figure 83.
Griesinger’s Plate Class Reverberation Structure
X, As Described By Dattorro [AES Journal Dec 97]
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/* khkhkhkhkhkhkhkhkhkhkhhhhhhhhhkhhhhhkhkhhhhhhhhkhhhhhhhkhkhhkhhhkhhhhhhhkhhhkhhkhhhkhkhhkhkhkhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkxx*x*%x

Digital Plate-Cl ass Reverberation Audio Effect - Giesinger's Mdel
Descri bed by Jon Dattorro in "Effect Design Part 1: Reverberator and
O her Filters, " Journal of the Audio Engineering Society," Vol. 45,
No. 9, pp. 660-684, Septenber 1997.

Created for the 21065L EZ-LAB Eval uation Platform

Includes on-the-fly selection of reverb conb & allpass filter gains/lengths,
predel ay gain/length presets, and left/right panning via |RQL and | RQ2 pushbutton control

** Works well for single instruments such as a guitar, keyboard, violin....

khkhkhkhkhkhkhkhkhkhkhhhhhkhhhhhhhhhhhhhhhhhhhhhhhhhhkhhhhhhhhhkhhhhhhkhhkhkhkhhhhhhhkhhhkhkhkhkhkhkhkhkhkhkhkhkhkhkhkkkkxkkxx*x*%x */

/* ADSP-21060 System Register bit definitions */

#i ncl ude "def 21065l . h"

#i ncl ude "newe5Ldef s. h"

. GLOBAL Di gital _Reverberator;

. GLOBAL Init_Reverb_Buffers;

. GLOBAL change_reverb_settings;
. GLOBAL modi fy_reverb_m x;

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

/* Default Reverberation Paranmeters - Reverb DM Vari abl es and pointers */
.segnment /dm rev_vars;

#define Fsl 29761 /* Sanple Rate is 29761 Hz, default recommended by Dattorro */
/* reducing Fs will reduce delay line nenory requirenents */
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/* Reverberation can be convincing at sanple rates as |ow as 20-24 kHz */

#define Fs2 48000 /* Sanple Rate is 48000 Hz, delay lines increased for 48 kHz */
/* reverb left channel output taps at 48 kHz fs */

#define D1_L 429 /* = 266 @29761 Hz Fs */
#define D2_L 4797 /* = 2974 @29761 Hz Fs*/
#define D3_L 3085 /* = 1913 @29761 Hz Fs */
#define D4_L 3219 /* = 1996 @29761 Hz Fs*/
#define D5_L 3210 /* = 1990 @29761 Hz Fs */
#define D6_L 302 /* = 187 @29761 Hz Fs */
#define D7_L 1719 /* = 1066 @29761 Hz Fs */
/* reverb right channel output taps at 48 kHz fs*/

#define D1_R 569 /* = 353 @29761 Hz Fs */
#define D2_R 3627 /* = 3627 @29761 Hz Fs */
#define D3_R 5850 /* = 1228 @29761 Hz Fs */
#define D4_R 2673 /[* = 2673 @29761 Hz Fs */
#define D5_R 4311 /* = 2111 @29761 Hz Fs */
#define D6_R 540 /* = 335 @29761 Hz Fs */
#define D7_R 195 /* = 121 @29761 Hz Fs */

/* pointers for input and decay diffusers */

. VAR al | _pass_ptr1;
. VAR al | _pass_ptr?2;
. VAR al | _pass_ptr3;
. VAR al | _pass_ptr4;
. VAR al | _pass_ptr5;
. VAR al | _pass_ptr6;
. VAR al | _pass_ptr7;
. VAR al | _pass_ptr8;

/* Single Length Conb Filter State Variables */

. VAR conbl_f eedback_state;

. VAR conb2_f eedback_st at e;

. VAR conb3_f eedback_state;

. VAR recircul atel_feedback;
. VAR recircul at e2_f eedback;
. VAR di ffusion_result;

. VAR predel ay_out put;

. VAR reverb_left;

. VAR reverb_right;

. VAR Lrev_out put _t aps[ 6] ;

. VAR Rrev_out put _t aps[ 6] ;

. endseg;

Y S

.segnment /dm dmrevrb;

DATA MEMORY DELAY LINE & ALLPASS FI LTER BUFFERS

/* Allpass and Delay Line Filter Length Definitions */

#def i
#def i
#def i
#def i
#def i
#def i
#def i

ne al | pass_Di i nel

ne al | pass_Dl i ne2

ne ALLPASS1_LENGTH
ne ALLPASS2_LENGTH
ne ALLPASS3_LENGTH
ne ALLPASS4_LENGTH
ne ALLPASS5_LENGTH

i ne ALLPASS6_LENGTH

i ne ALLPASS7_LENGTH
i ne ALLPASS8_LENGTH
ineD_Linel
ineD_Line2
ineD_Line3
ine D Line4

/* Audio delay |ines */

. VAR predel ay[ 6321] ;
. VAR wi[ D _Li nel];
. VAR w2[ D_Li ne2];
. VAR w3[ D_Li ne3];

2168 /* = 1344 @29761 Hz Fs */
2930 /* = 1816 @29761 Hz Fs */
229 /* = 142 @29761 Hz Fs */
172 /* = 107 @29761 Hz Fs */
611 /* = 379 @29761 Hz Fs */
447 [* = 277 @29761 Hz Fs */
al | pass_Dli nel/ 2 /* 2168/ 2 variable delay rotating around tap center
al | pass_Dl i ne2/ 2 /* 2930/ 2 variable delay rotating around tap center
2903 /* = 1800 @29761 Hz Fs */
4284 /* = 2656 @29761 Hz Fs */
7182 /* = 4453 @29761 Hz Fs */
6000 /* = 3720 @29761 Hz Fs */
6801 /* = 4217 @29761 Hz Fs */
5101 /* = 3163 @29761 Hz Fs */
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VAR W[ D _Lined];

/* input diffusers using allpass filter structures */

.VAR  diffuser_1[ ALLPASS1_LENGTH] ;

. VAR di ffuser_2[ ALLPASS2_LENGTH] ;

.VAR  diffuser_3[ ALLPASS3_LENGTH] ;

. VAR di f fuser_4[ ALLPASS4_LENGTH] ;

. VAR decay_di f fuser _Al[ ALLPASS5_LENGTH] ; /* allpass diffuser with variable delay */
. VAR decay_di ffuser_B1[ ALLPASS6_LENGTH] ; /* allpass diffuser with variable delay */
. VAR decay_di f fuser _A2[ ALLPASS7_LENGTH] ;

. VAR decay_di f fuser_B2[ ALLPASS8_LENGTH] ;

. endseg;

[* e | NTERRUPT/ FLAG REVERB FX DEMO CONTROL PARAMETERS --------- */
.segnment /dm | RQCctl;

/* Reverb Control Paraneters, these control 'knobs' are used to change the response on-the-fly */
. VAR decay = 0x40000000; /* Rate of decay - 0.05 */
. VAR bandwi dt h = 0x7f 5c28f 6; /* = 0.9995, H gh-frequency attenuation on input */
/* full bandwi dth = 0x9999999 */
. VAR danpi ng = 0x0010624d; /* = 0.0005, Hi gh-frequency danpi ng; no danping = 0.0 */
. VAR predel ay_tine = 200; /* controls length (L6 register)of predelay buffer */
/* length val ue always << nmax buffer |length! */

. VAR decay_diffusion_1
. VAR decay_di f fusi on_2

0x5999999a; /* 0.70, Controls density of tail */
0x40000000; /* 0.50, Decorrelates tank signals */
/* decay diffusion 2 = decay +0.15, floor = 0.25, ceiling - 0.50 */
0x60000000; /* = 0.75, Decorrelates incom ng signal */
0x50000000; /* = 0.625, Decorrelates incomng signal */

. VAR i nput _diffusion_1
. VAR i nput _di ffusion_2

. VAR DRY_GAI N_LEFT = Ox7FFFFFFF; /* Gain Control for left channel */
/* scal e between 0x00000000 and Ox7FFFFFFF */
. VAR DRY_GAI N _RI GHT = Ox7FFFFFFF; /* Gain Control for right channel */
/* scal e between 0x00000000 and Ox7FFFFFFF */
/* Gin Control for predelay output */
/* scal e between 0x00000000 and Ox7FFFFFFF */
. VAR PREDEL_GAI N_RI GHT = 0x00000000; /* Gain Control for predelay output */
/* scal e between 0x00000000 and Ox7FFFFFFF */
/* Gain for reverb result */
/* scal e between 0x00000000 and Ox7FFFFFFF */
/*
/*

. VAR PREDEL_GAI N_LEFT = 0x00000000;

VAR  VET_GAI N_LEFT = OX7FFFFFFF;

Gain for reverb result */
scal e between 0x00000000 and Ox7FFFFFFF */

VAR  VET_GAIN_RI GHT = Ox7FFFFFFF;

. VAR | RQL_counter = 0x00000004; /* selects preset 1 on first I RQL assertion */
. VAR | R@R_counter = 0x00000004; /* selects preset 1 on first IRQ assertion */
. endseg;

R PROGRAM MEMORY CODE--------------------------------- */

. segment /pm pm code;

Init_Reverb_Buffers:

/* initialize all-pass filter pointers to top of respective buffers */
B7 = diffuser_1,;

DM al | _pass_ptrl) = B7;
B7 = diffuser_2;

DM al | _pass_ptr2) = B7;
B7 = diffuser_3;

DM al | _pass_ptr3) = B7;
B7 = diffuser_4;

DM al | _pass_ptr4) = B7;
B7 = decay_di ffuser_Al,
DM al | _pass_ptr5) = B7;
B7 = decay_di f fuser_B1,;
DM al | _pass_ptr6) = B7;
B7 = decay_di ffuser_A2;
DM al | _pass_ptr7) = B7;
B7 = decay_di ffuser_B2;
DM al | _pass_ptr8) = B7;

/* Initialize Audio Delay Lines */
B2 = wl; L2 = @u; /* delay-line buffer 1 pointer and |length */
B3 = w2; L3 = @&; /* delay-line buffer 1 pointer and |ength */




B4 = w3; L4 = @B; /* delay-line buffer 1 pointer and |ength */

B5 = w4; L5 = @¥4; /* delay-line buffer 1 pointer and |length */

B6 = predelay; L6 = @redel ay;

/* clear all audio delay line buffers to zero */

m =1 nB =1, mM =1, nb =1; n6 = 1,

LCNTR = L2;

DO clrDine_1 UNTIL LCE;
clrDine_1: dm(i 2, nm2) = 0;

LCNTR = L3;

DO clrDine_2 UNTIL LCE;
clrDine_2: dm(i 3, nmB) = 0;

LCNTR = L4;

DO clrDine_3 UNTIL LCE;
clrDine_3: dm(i 4, mi) = 0;

LCNTR = L5;

DO clrDine_4 UNTIL LCE;
clrDine_4: dm(i 5, nmb) = 0;

LCNTR = L6;

DO clrDine_5 UNTIL LCE;
clrDine_5: dm(i 6, m6) = O;

RTS;
/* _____________________________________________________________________________________________ */
/* */
/* Digital Reverb Filter Routines */
/* */
/* ______________________________________________________________________________________________ */
Di gital _Reverberator:

/* conbine both left and right input sanples together into 1 signal */

r0 = dm(Left_Channel); /* left input sanple */

rl = dnm(R ght _Channel); /* right input sanple */

r0 = ashift r0 by -1, /* scale signal by 1/2 for equal mx */

rl = ashift rl by -1; /* scale signal by 1/2 for equal mx */

r2 =r0 +ri,; /* 1/ 2xLeft(n) + 1/2 xR ght(n) = sum of input sanples */
conput e_pr edel ay:

L6 = dn{predelay_tine); /* get predelay tine setting, default is L6=@redelay */

r3 = dmi6, 0); /* get ol dest sanple, time delay = D _Linel x fs*/

dm(i 6, -1) =r2; /* wite input sanple to buffer */

dn( predel ay_output) = r3; /* used for final mx */

r2 =r3; /* r2 is input to reverb routines */

call (PC, hi_freq_input_atten); /* attenuate high-fregencies on input */

ro =r2,

call (PC, input_diffusers); /* call all-pass filters */

call (PC, reverberation_tank); /* controls the rate of reverberation decay */

call reverb_m xer;
/*
bypass_mi xer:

r0 = dm(reverb_left);

dn( Left _Channel) = r0;

r0O = dm(reverb_right);

dm( Ri ght _Channel) = rQ0;
*/

rts;
/* _____________________________________________________________________________________________ */
/* */
/* Hi gh Frequency | nput Attenuator */
/* */
/* This routine is a sinple conb filter, used to attenuate high frequencies on the input. */
/* H gher frequencies tend to dimnish faster than | ower frequecies in reverberant */
/* acousti c spaces */
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B DM bandwi dt h)

= full

hi _freqg_i nput _atten:
conb filter 1 - attenuate high frequencies on the input */

/*

bandwi dt h gai n when set to 0.9999999 (Ox7FFFFFFF in 1.31 format) */

/* full bandwi dth gain is 0.9999999 */
r4 =r2; /* r4 = conb filter input */
r6 = dm(bandwi dt h); /* high frequency bandwi dth gain */
r7 = Ox7FFFFFFF; /* 0.99999 or approximately = 1 */
r8 =r7 - ré6; /* r8 =1 - bandwi dth */
r5 = DM conbl_f eedback_state); /* read previous |ow pass filter output state */
mf = r4*r6 (SSF); /* scale conmb filter input */
mf = nmf + r5*r8 (SSFR); /* add previous filter state */
r2 = nrif; /* rl10 = conb filter output */
dn(conbl_feedback_state) = rl0; /* replace with new filter state */
rts; /* return fromsubroutine */
/* ____________________________________________________________________________________________ */
A Al Pass Filter Routines ---------------mmmmommmon */
/* */
/* Each all-pass filter diffusers are inplemented in the topol ogy */
/* of a two-multiplier lattice structure. */
/* */
/* i nput -> RO */
/* out put -> R3 */
/* */
/* Also, it is not necessary to save and restore all conb filter */
/* FIR or all-pass filter index and length registers, if only */
/* doing this reverb denpo. These extra instructions are included */
/* so that this exanple can easily be conbined with other audio */
/* effects that require the use of multiple buffers */
/* */
/* 1 index register 17 is used for all 4 allpass filters */
/* _______________________________________________________________________ */

i nput _di ffusers:

B7
17
L7
R1

di ffuser_1;

DM al | _pass_ptr1l);

@i ffuser_1;

DM i nput _di f fusi on_1);

al | pass_filt1:
R10 = DM 17, 0);

MRLF = RIO;
MRF = MRF + RI*RO (SSFR);
MRF = SAT MRF;

R3 = MRLF;

MRLF = RO;

MRF = MRF - R1*R3 (SSFR);
MRF = SAT MRF;

R10 = MRLF;

DM17,1) = RLO;

DM al | _pass_ptrl) =17,

al | pass_filt2:

B7 = diffuser_2;

17 = DM all _pass_ptr2);
L7 = @i ffuser_2;

Rl = DM i nput _di ffusion_1);
RO = RS;

R10 = DM 17,0);

MRLF = R10;

MRF = MRF + R1*RO (SSFR);
MRF = SAT MRF;

R3 = MRLF;

MRLF = RO;

MRF = MRF - RL1*R3 (SSFR);
MRF = SAT MRF;

R10 = MRLF;

~———— ~_~——

~—————

~——— ~——

~——

* ok ok F * EE

* % ok ok Ok F

* %k ok ok * * % ok

L

set base address to buffer */

get previous allpass 1 pointer address */
set length of circular buffer */
feedback gain for allpass */

| oad output of buffer */

put in forground MAC register */
add to (feedback gain)*(input) */
saturate if necessary */

output of all pass in R3 */

put input of all pass in MRLF */

input - (feedback gain)*(output) */

saturate if necessary */

put MACresult in register file */

save to input of buffer, update pointer */

save current allpass 1 pointer address for next time */

set base address to buffer */
/* get previous allpass 2 pointer address */
set length of circular buffer */
feedback gain for allpass 1*/
output of allpass 1 = input of allpass 2 */

| oad out put of buffer */

put in forground MAC register */
add to (feedback gain)*(input) */
saturate if necessary */

output of all pass in R3 */

put input of all pass in MRLF */
input - (feedback gain)*(output) */
saturate if necessary */

put MAC result in register file */
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DM 17,1) = R10; /* save to input of buffer, update pointer */
DM al | _pass_ptr2) =17, /* save current allpass 2 pointer address for next tine */
al | pass_filt3:
B7 = diffuser_3; /* set base address to buffer */
17 = DM al | _pass_ptr3); /* get previous allpass 3 pointer address */
L7 = @li ffuser_3; /* set length of circular buffer */
Rl = DM i nput _di ffusion_2); /* feedback gain for allpass 2*/
RO = R3; /* output of allpass 2 = input of allpass 3 */
R10 = DM 1 7, 0) ; /* |l oad output of buffer */
MRLF = R10; /* put in forground MAC register */
MRF = MRF + RL*R0O (SSFR); /* add to (feedback gain)*(input) */
MRF = SAT MRF; /* saturate if necessary */
R3 = MRILF; /* output of all pass in R3 */
MRLF = RO; /* put input of all pass in MRLF */
MRF = MRF - R1*R3 (SSFR); /* input - (feedback gain)*(output) */
MRF = SAT MRF; /* saturate if necessary */
R10 = MRLF; /* put MACresult in register file */
DM 17,1) = R10; /* save to input of buffer, update pointer */
DM al | _pass_ptr3) =17, /* save current allpass 3 pointer address for next tine */
al | pass_filt4:
B7 = diffuser_4; | * set base address to buffer */
17 = DM al | _pass_ptr4); /* get previous allpass 4 pointer address */
L7 = @li ffuser_4; /* set length of circular buffer */
Rl = DM i nput _di ffusion_2); /* feedback gain for allpass 3 */
RO = ; /* output of allpass 3 = input of allpass 4 */
R10 = DM 1 7, 0) ; /* |l oad output of buffer */
MRLF = R10; /* put in forground MAC register */
MRF = MRF + RL*R0O (SSFR); /* add to (feedback gain)*(input) */
MRF = SAT MRF; /* saturate if necessary */
R3 = MRILF; /* output of all pass in R3 */
DM di ffusion_result) = R3; /* save for holding tank routines */
MRLF = RO; /* put input of all pass in MRLF */
MRF = MRF - R1*R3 (SSFR); /* input - (feedback gain)*(output) */
MRF = SAT MRF; /* saturate if necessary */
R10 = MRLF; /* put MAC result in register file */
DM17,1) = RL0; /* save to input of buffer, update pointer */
DM al | _pass_ptr4) =17, /* save current allpass 4 pointer address for next tine */
RTS; /* return from subroutine */
A Reverb Hol ding Tank Routines ------------------------ */
/* */
/* R3 <- */
/* */
/* out put -> DM reverb_left) */
/* DM reverb_right) */
/* */
/* The reverberation tank recirculates 4 diffusers. [It's purpose */
/* is to 'trap' the input and nmake it recirculate in a 'figure 8 */
/* structure, thus altering the tail of the decaying reverb response. */
/* The decay coefficients deternmine the rate of decay. */
/* It is recommended to set the coefficents by ear. */
/* */
/* Al'so note: Diffuser Lattices Al and Bl have negative coefficients. */
/* The all pass structures have the MAC adds and subtract instructions */
/* reversed. The inpul se response changes, but it is still an allpass */
/* filter. This is reconmended by Dattorro to further enhance the del ay */
/* di ffusi on between both sides of the hol ding tank */
/R o

rever beration_tank:
/* initialize left & right output tap buffer pointers */

BO
LO
Bl
L1

Lrev_out put _t aps;
@.rev_out put _t aps;
Rrev_out put _t aps;
@Rr ev_out put _t aps;
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rl = DMrecircul atel_feedback); /* get previously trapped incom ng audio signal */

r2 = DM decay); /* Rate of decay on previous trapped signal */

r4 =rl*r2 (SSF); /* scale prior signal state */

r3 = DM diffusion_result); /* get output frominput diffusion section */

rl4 = r3 + r4; /* add to current input diffuser result */

rl = DMrecircul at e2_f eedback) ; /* get previously trapped incom ng audio signal */

r2 = DM decay); /* Rate of decay on previous trapped signal */

r4 =rl*r2 (SSF); /* scale prior signal state */

r3 = DM diffusion_result); /* get output frominput diffusion section */

rl5 = r3 + r4; /* add to current input diffuser result */

/* r14 and r15 are inputs to holding tank */
di f fusor _Al: /* allpass filter with variable delay */

B7 = decay_di ffuser_Al; | * set base address to buffer */

17 = DM al | _pass_ptr5); /* get previous allpass 2 pointer address */

L7 = @lecay_di ffuser_Al; /* set length of circular buffer */

rl = DM decay_di ffusion_1); /* feedback gain for allpass 1*/

ro = r15; /* tank input 1 */

rl0 = DM 17,0); /* |l oad output of buffer */

nr1f = r10; /* put in forground MAC register */

mf =nmf - r1*r0 (SSFR); /* add to -(feedback gain)*(input) */

mf = SAT mrf; /* saturate if necessary */

r3 = nrlif; /* output of all pass in R3 */

nr1lf = ro0; /* put input of all pass in MRLF */

mf =nmf + r1*r3 (SSFR); /* input + (feedback gain)*(output) */

nrf = SAT mrf; /* saturate if necessary */

rl0 = nrif; /* put MACresult in register file */

DM 17,-1) = rl0; /* save to input of buffer, update pointer */

DM al | _pass_ptr5) =17, /* save current allpass 2 pointer address for next tine */
audi o_del ay1:

r5 = dmii2, 0); /* get oldest sanple, tine delay = D _Linel x fs*/

/* tap inside of circular delay line 1, rO = sanpleD5_L = D5_L-th tap */

md = D5_L; nodify(i2, nR); /* point to d-th tap */

m = -D5 L; r0 =dnm(i2, nR); /* put d-th tap in data register */

DM Lrev_out put _taps + 4)= rO0; /* wite to 4th location in left reverb output buffer */

/* tap inside of circular delay line 1, rO = sanpleDl_R = D1_R-th tap */

m = DI_R nodify(i2, nR); /* point to d-th tap */

md = -D1I_R r0 =dmii2, nR); /* put d-th tap in data register */

DM Rrev_out put _taps + 0)= rO0; /* wite to O'th location in left reverb output buffer */

/* tap inside of circular delay line 1, rO = sanpleD2_R = D2_R-th tap */

mi = D2_R nodify(i2, nR); /* point to d-th tap */

m =-D2R r0 =dn(i2, nR); /* put d-th tap in data register */

DM Rrev_output _taps + 1)= rO0; /* wite to 1st location in left reverb output buffer */

dm(i 2, -1) =r3; /* wite input sanple to buffer */

conb_filter_2:
/* conb filter 2 */

r4 = rb5; /* r4 = conb filter input */

r6 = dm(danpi ng) /* high frequency danpling gain */

r7 = Ox7FFFFFFF; /* 0.99999 or approximately = 1 */

r8 =r7 - ré6; /* r8 =1 - danping */

r5 = DM conb2_f eedback_state); /* read previous |ow pass filter output state */
mf = r4*r8 (SSF); /* scale conmb filter input */

mf = nmf + r5*r6 (SSFR); /* add previous filter state */

rl0 = nrif; /* rl10 = conb filter output */
dn{conb2_feedback_state) = r10; /* replace with new filter state */

rll = DM decay);
r0 = r10*r1l1 (SSFR);

di f fusor _A2: /* allpass filter with variable delay */
B7 = decay_di ffuser_A2; | * set base address to buffer */
17 = DM al | _pass_ptr6); /* get previous allpass 2 pointer address */
L7 = @lecay_diffuser_A2; /* set length of circular buffer */
Rl = DM decay_di ffusion_2); /* feedback gain for allpass 1*/
RO = R3; /* output of allpass 1 = input of allpass 2 */
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ri0 = bM17,0);
mr 1f = r10;
mf =nmf + r1*r0 (SSFR);
mrf = SAT nrf;
r3 = nrif;
nrlf = r0;
mf =nmf - r1*r3 (SSFR);
mf = SAT mrf;
r10 = nrif;
/* tap inside of decay diffuser A2 filter delay Iline,
nm7 = D6_L; nodify(i7, nv);
nv = -D6_L; r0 =dn(i7, nv);
DM Lrev_out put _taps + 5)= rO0;
/* tap inside of decay diffuser A2 filter delay line,
n7 = D3_R nodify(i7, nv);
/7 = -D3_R  r0 =dm(i7, n¥);
DM Rrev_out put _taps + 2)= r0;
DM17,-1) = rl0;
DM al | _pass_ptr6) =17,
audi o_del ay2:
= dn(i3, 0);

ap inside of circular delay line 2,

r5

/* t

md = D7_L; nodify(i3, nB);
m = -D7_L; r0 =dn(i3, nB);
DM Lrev_out put _taps + 6)= rO0;

| oad out put of buffer */

put in forground MAC register */
add to (feedback gain)*(input) */
saturate if necessary */

output of all pass in R3 */

~———
* % ok ok *

put pass in MRLF */
input - (feedback gain)*(output) */
saturate if necessary */

put MAC result in register file */

input of all

~——
L

r0 = sanpleD6_L = D6_L-th tap */
/* point to d-th tap */

/* put d-th tap in data register */

/* wite to 5th location in left reverb output buffer */
r0 = sanpleD3_R = D3_R-th tap */

/* point to d-th tap */

/* put d-th tap in data register */

/* wite to 2nd location in left reverb output buffer */
/* save to input of buffer, update pointer */

/* save current allpass 2 pointer address for next tine */

/* get oldest sanple, tine delay = D _Line2 x fs*/
r0 = sanpleD7_L = D7_L-th tap */

point to d-th tap */

put d-th tap in data register */

wite to 6th location in left reverb output buffer */

/
/
/

* % ok

/* tap inside of circular delay line 2, rO = sanpleD4_R = D4_R-th tap */

m = D4R nodify(i3, nB); /* point to d-th tap */

m = -D4 R r0 =dmi3, nB); /* put d-th tap in data register */

DM Rrev_out put _taps + 3)= r0; /* wite to 3rd location in left reverb output buffer */
dm(i 3, -1) =r3; /* wite input sanple to buffer */

/* feed output back to top of tank */

r5 = DMrecircul at e2_f eedback) ; /* feed to other side of tank 8 */

di f fusor _B1:

B7 decay_di f fuser _B1;

17 = DM all _pass_ptr7);
L7 = @lecay_diffuser_B1;
rl = DM decay_di ffusion_1);
ro = ri5;

rl0 = DM 17, 0);

nr1f = r10;

mf =nmf - r1*r0 (SSFR);
mf = SAT mrf;

r3 = nrlif;

nr1lf = ro0;

mf =nmf + r1*r3 (SSFR);
nrf = SAT nrf;

rl0 = nrif;

DM 17,-1) = rl0;

DM al | _pass_ptr7) =17,

audi o_del ay3:
r5 = dn(i4, 0);

al I pass filter with variable delay */

set base address to buffer */

get previous allpass 2 pointer address */
set length of circular buffer */
feedback gain for allpass 1*/

tank input 1 */

~—————
E I

| oad out put of buffer */

put in forground MAC register */
add to -(feedback gain)*(input) */
saturate if necessary */

output of all pass in R3 */

~————
* ok ok Ok *

put input of all pass in MRLF */
input + (feedback gain)*(output)
saturate if necessary */

put MACresult in register file */

save to input of buffer, update pointer */

save current allpass 2 pointer address for next time */

*/

~—————
* %k ok ok Ok F

/* get oldest sanple, tine delay = D Line3 x fs */

/* tap inside of circular delay line 3, rO = sanpleD1_L = D1_L-th tap */

mi = D1_L; nodify(id4, nmd); /* point to d-th tap */

m = -D1_L; r0 =dnm(id4, md); /* put d-th tap in data register */

DM Lrev_out put _taps)= r0; /* wite to O'th location in left reverb output buffer */
/* tap inside of circular delay line 3, rO = sanpleD2_L = D2_L-th tap */

mt = D2 L; nodify(id4, nd); /* point to d-th tap */

md = -D2_L; r0 =dmii4, nmd); /* put d-th tap in data register */

DM Lrev_out put _taps + 1)= rO0; /* wite to 1st location in left reverb output buffer */
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/* tap inside of circular delay line 3, r0 = sanpleD5_R = D5_R-th tap */

= D5_R nodify(i4, m); point to d-th tap */

m = -D5 R r0 = dmi4, m); put d-th tap in data register */

DM Rrev_out put _taps + 4)= r0; wite to 4th location in left reverb output buffer */

~—
EE

dn(i4, -1) =r3; /* store current input into delay line */

conb fllter 3

di f fusor _B2:

comb filter 3 */

r4=r5, /* r4 = conb filter input */

r6 = dn(danping); /* high frequency danpling gain */

r7 = Ox7FFFFFFF; /* 0.99999 or approximately = 1 */

r8 =r7 - ré6; /* r8 =1 - danping */

r5 = DM conb3_f eedback_state); /* read previous |ow pass filter output state */
mf = r4*r8 (SSF); /* scale conmb filter input */

mf = nmf + r5*r6 (SSFR); /* add previous filter state */

rl10 = nrif; /* r10 = conb filter output */
dn(conb3_feedback_state) = r10; /* replace with new filter state */

rll = DM decay);
r0 = r10*r11 (SSFR);

audi o_del ay4:

/* allpass filter with variable delay */
B7 = decay_di ffuser_B2; | * set base address to buffer */
17 = DM al | _pass_ptr8); /* get previous allpass 2 pointer address */
L7 = @lecay_diffuser_B2; /* set length of circular buffer */
Rl = DM decay_di ffusion_2); /* feedback gain for allpass 1*/
RO = R3; /* output of allpass 1 = input of allpass 2 */
rl0 = DM 17,0); /* |l oad output of buffer */
nr1f = r10; /* put in forground MAC register */
mf =nmf +r1*r0 (SSFR); /* add to (feedback gain)*(input) */
mrf = SAT mrf; /* saturate if necessary */
r3 = nrlif; /* output of all pass in R3 */
nr1lf = ro0; /* put input of all pass in MRLF */
mf =nmf - r1*r3 (SSFR); /* input - (feedback gain)*(output) */
nrf = SAT mrf; /* saturate if necessary */
rl10 = nrif; /* put MACresult in register file */
/* tap inside of decay diffuser filter delay line, rO = sanpleD3_L = D3_L-th tap */
n7 = D3_L; rmd|fy(|7 nv) ; /* point to d-th tap */
nm/ = -D3_L; rO dm(i 7, nv); /* put d-th tap in data register */
DM Lr ev_out put taps + 2)=r0; /* wite to 2nd location in left reverb output buffer */
/* tap inside of decay diffuser A2 filter delay line, rO = sanpleD6_R = D6_R-th tap */
7 = D6_R rmdlfy(|7 nv) ; /* point to d-th tap */
nw=-D6R r0 dm(i 7, nv); /* put d-th tap in data register */
DM Rr ev_out put taps + 5)=r0; /* wite to 5th location in left reverb output buffer */
DM17,-1) = rl0; /* save to input of buffer, update pointer */
DM al | _pass_ptr8) = 17; /* save current allpass 2 pointer address for next tine */
r5 = dmii5, 0); /* get ol dest sanple, time delay = D Lined4 x fs */
/* tap inside of circular delay line 4, rO = sanpleD4_L = D4_L-th tap */
m = D4 L; nodify(i5, nb); /* point to d-th tap */
md = -D4_L; r0 =dmi5, nb); /* put d-th tap in data register */
DM Lrev_out put _taps + 3)= r0; /* wite to 3rd location in left reverb output buffer */
/*

D7_R,  nodify(i5, nb); point to d-th tap */
=-D7_R r0 = dn(i5, nb); put d-th tap in data register */
DM Rrev_out put _taps + 6)= rO0; wite to 6th location in left reverb output buffer */

22

* % ok

tap inside of circular delay line 4, r0O = sanpleD7_R = D7_R-th tap */
= /
= /

/

dm(i 5, -1) =r3; /* save delay line input to buffer */

/* feed output back to top of tank */
= DMrecircul atel_feedback); /* feed to other side of tank 8 */

reverb_out put _t aps:
/* conbine all of the left & right reverb output taps taken at different point in the holding tank */
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/* left output, all wet */

BO = Lrev_output_taps;
R1 = 0x4CCCCCCD;
RO = DM 10, 1);
MRF = RO*R1 (SSF), RO = DM 10, 1);
MRF = MRF + RO*R1 (SSF), RO = DM 10
MRF = MRF - RO*R1 (SSF), RO = DM 10
MRF = MRF + RO*R1 (SSF), RO = DM 10
MRF = MRF - RO*R1 (SSF), RO = DM 10
MRF = MRF - RO*R1l (SSF), RO = DM 10
MRF = MRF - RO*R1 (SSFR);
R2 = MRILF;
DMreverb left) = R2;
/* right output, all wet */
Bl = Rrev_output_taps;
Rl = 0x4 ;
RO = DMI1,1);
MRF = RO*R1 (SSF), RO = DM 11,1);
MRF = MRF + RO*R1 (SSF), RO = DM 11
MRF = MRF - RO*R1 (SSF), RO = DM 11
MRF = MRF + RO*R1 (SSF), RO = DM 11
MRF = MRF - RO*R1 (SSF), RO = DM 11
MRF = MRF - RO*RLl (SSF), RO = DM |1
MRF = MRF - RO*Rl1 (SSFR);
R2 = MRILF;

R2;

DMreverb_right) =
RTS;

reverb_m xer:

r2 = 0x2AAA0000;

/* mx |left channel */

rl10 = DM Left_Channel);
r1l1 = DM DRY_GAI N_LEFT);
rl0 = r10 * rl1i(ssf);

mf =r2 * r10(ssf);

rl = dm(reverb_left);
r1l1 = DM WET_GAI N_LEFT);
rl =rl1* rll (ssf);

mf = nmf + rl*r2 (ssf);
rl0 = nrif;

rl = dm(predel ay_out put);
r4 = DM PREDEL_GAI N_LEFT);
r3 =rl1* r4 (ssf);

mf = nmf + r3*r2 (ssfr);
rl0 = nrif;

dn( Left _Channel ) = r10;

/* mx right channel */

r10 = DM Ri ght _Channel ) ;
r1l1 = DM DRY_GAI N_RI GHT) ;
rl10 = r10 * r11(ssf);
mf =r2 * r10(ssf);

rl = dm(reverb_right);

ril1 = DM WET_GAI N _RI GHT);
rl =rl1* rll (ssf);

mf = mf + r1*r2 (ssf);
r10 = nr1f;

rl = dn(predel ay_out put);
r4 = DM PREDEL_GAI N_RI GHT);
r3 =rl1* r4 (ssf);

mf =nmf + r3*r2 (ssfr);
r10 = nr1f;

dm( Ri ght _Channel) = r10;

rts;

/*
/*
/*

~
* ok

~——— ~_~——
* %k ok ok * EE

~—
EE

~———— ~——
* ok ok Ok * L

~——
* % ok

sumof left reverb output taps */
scal e tap outputs by 0.60 */
load first output tap */
/* conpute product, |oad next output*/
/* conmpute sum of products */
/* and so on ... */
/* save left reverb result */
/* sumof right reverb output taps */
/* scale tap outputs by 0.60 */
/* load first output tap */
/* conpute product, |oad next output*/
/* conmpute sum of products */
/* subtract product */
/* and so on ... */

/* save right reverb result */

set up scaling factor for result */
mx input with eref & reverb result by 1/3 */

get current left input sanple */
scal e between 0x0 and Ox7FFFFFFF */

x(n) *(G.left) */
0.33 * (Gleft) * x(n) */
get reverb result */
scal e reverb between 0x0 and Ox7FFFFFFF */
x_reverb(n) * RG|eft */
add reverb to input sanple */

0. 33*x(n) +0.33*x(rev_result) */

scal e between 0x0 and Ox7FFFFFFF */

x_er(n) * (ER_G.left) */
yL(n)=0.33*x(n) +0.33*x(rev_result) + 0.33*x(ear_ref)
output left result */

get current right input sanple */

scal e between 0x0 and Ox7FFFFFFF */

x(n) *(G_right) */

0.33 * (Gright) * x(n) */

get reverb result */

scal e reverb between 0x0 and Ox7FFFFFFF */
x_reverb(n) * RG.right */

add reverb to input sanple */

0.33*x(n) +0.33*x(rev_result) */

scal e between 0x0 and OX7FFFFFFF */

x_er(n) * (ER_G.right) */
yR(n)=0.33*x(n) +0.33*x(rev_result) + 0.33*x(ear_ref)
output right result */

*/

*/
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3.4 Amplitude-Based Audio Effects

Amplitude-Based audio effects simply involve the manipulation of the amplitude level of the audio signal, from simply
attenuating or increasing the volume to more sophisticated effects such as dynamic range compression/expansion. Below isa
list of effectsthat can fall under this category:

Volume Control
Amplitude Panning (Trigonometric / Vector-Based)
Tremolo (Auto Tremolo)
“Ping-Pong” Panning (Stereo Tremolo)
Dynamic Range Control
- Compression
- Expansion
- Limiting
Noise Gating

3.4.1 Tremolo - Digital Stereo Panning Effect

Tremolo consists of panning the output result between the left and right output stereo channels at a slow periodic rate. Thisis
achieved by allowing the output panning to vary in time periodically with alow frequency sinusoid. This example

pans the output to the left speaker for positive sine values and pans the output to the right speaker for negative sine values
(Figure 85). Theanalog version of this effect was used frequently on guitar and keyboard amplifiers manufactured in the '70s.
A mono version of this effect (Figure 84) can be done easily by modifying the code to place the tremolo result to both
speakersinstead of periodically panning the result. The I/O difference equation is as follows:

y(n) = x(n) *sin(2pf,et)| , Mono Tremolo

Figure 84. Figure 85.
Mono Implementation of the Tremolo Effect Stereo Implementation of the Tremolo Effect
; _ a(m) = sinusoidally
Sine Look-Up a(m) = sinusoidally Sine Look-Up varying amplitude
varying amplitude
Amplitude Amplitude - —_—
Modulation of input < — Modulation of input + a(m)
x(n) x(n) a(m)
a(m) +//_> yL(n)
x(n)a(m) x(n) 'kxj P '\
> > x(n)a(m
x(n) xX) y(n) — (N
y (n)=yr(n)=y (n) - a(m)

For Stereo Tremolo:

when a(m) >0
x(n)a(m) panned to left channel
right channel is zero

when a(m) <0
x(n)a(m) panned to right channel
left channel is zero
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Example Stereo Tremolo Implementation on the ADSP-21065L

trenmol o_effect:

ri = DMl eft_input);
ri = ashift rl by -1;
r2 = DMright _input);
r2 = ashift r2 by -1;
r3 =r2 +ri;

/* generated sine value fromwavetabl e generator, where r4 = sin(2*pi*fc*t) */
r4 = dm(si ne_val ue);
ntf =r3 * r4 (SSFR);
rs nr 1f ;
ra pass r4; /* read current sine value to pan left or right */
/[* if + then pan left, if - then pan right */
| F LE JUVMP pan_right channel;

pan_l eft _channel :
DMl eft_output) = rb5;
ré = 0x00000000;
DM right_output) = r6;
JUMP done;

pan_right channel:
ré = 0x00000000;
DM | eft _output) = r6;
DM right_output) = r5;

done: rts;

3.4.2 Signal Level Measurement

There are many ways to measure the amplitude of asignal. The technique described below uses a simple signal averaging
algorithm to determine the signal level. It rectifies the incoming signal and averages it with the 63 previous rectified samples.
Notice, however, that it only requires 6 instructions to average 64 values. Thisis because we are not recalculating the
summation of 64 values and dividing this sum by 64 but rather updating a running average. Thisis how it works:

_X[n- 64]+X[n- 63] +x[n- 62]+...+X[n- 1]

Xaverageold - 64
Xacsmgons = X[n- 64] N x[n- 63 N x[n- 62] - x[n- 7]
64 64 64 64
_X[n- 63| +x[n- 62] +X[n- 61]+...+X[n]
Xaveragenew - 64
X = X[n- 63 N X[n- 63 N X[n- 6]] - X[n]
vera 64 64 64 64
_Xn] xn- 64]
Xaveragenew - Xaverageold - 64 - 64
_ X[n] x[n- 64]
Xaveragenew - Xaverageold + 64 - 64

This algorithm needs to be run 64 times before Xayerageaid CONtains avalid signal average value.
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/* set up variables */

.segment /dm dm vari abl es;
.var average_line[64];
. endseg;

Ampl i tude Measurenent

f15 = 1/ 64

fO = current sample

f14 = current anplitude

i7 = pointer to average_line

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::*/
Anpl i t ude:
fO = abs fO; /* take absolute val ue of inconming sanple */
fo =f0 * f15; /* divide incom ng sanple by |ength of average line */
fl1 =dmi7,0); /* fetch last value in average line */
fl14 = f14 + fO; /* add it to the running average val ue */
rts(db); /* del ayed return from subroutine */
fl14 = f14 - 1, /* subtract new sanple fromrunning average */
dm(i7,1) = fO0; /* store new sanple over old sanple in average |line */

3.4.3 Dynamics Processing

Dynamic processing algorithms are used to change the dynamic range of asignal. This means altering the distance in volume
between the softest sound and the loudest sound in asignal. There are two types of dynamic processing algorithms :
compressorg/limiters and expanders.

3.4.3.1 Compressors and Limiters

The function of a compressor and limiter isto keep the level of asignal within a specific dynamic range. Thisisdoneusing a
technique called gain reduction. A gain reduction circuit reduces the amount of additional gain above athreshold setting by
acertain ratio (Stark, 1996). The ultimate objective isto keep the signal from going past a specific level.

Compressors and limiters have many applications. They are used to limit the dynamic range of asignal so it can be
transmitted through a medium with alimited dynamic range. An expander (covered later in this section) can then be used on
the other side to expand the dynamic range back to its original levels. Compressors are also widely used in the recording
industry to prevent signals from distorting as aresult of overdriven mixer circuitry.
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Compressors

Parameters
1nput Signal Qutput Signal Threshold : the level at which the dynamics processor begins
dynarmic range = 11008 dynamic range = 50 JB adjusting the volume of the signal

—— > Compressor ——> . . . .
Compression Ratio : level comparison of the input and output

signals of the dynamics processor past the threshold

% W
S Attack Time: The amount of time it takes once the input signal
has passed the threshold for the dynamics processsor to begin

attenuating the signal

Attack Time

.......................................................... Release Time : The amount of time it takes once the input stgnal
has passed below the threshold for the dynamics processor to stop
Compressors are used to ‘compress' the dynamic range of asignal attenuating the signal

Ratio=2:1

10" ‘ ‘ /

Output Level (dB)

Input Level (dB)

Threshold =-5dB or 0.5

There are two primary parameters for a compressor : threshold and ratio. The threshold isthe signal level at which the gain
reduction begins and the ratio is the amount of gain reduction that takes place past the threshold. A ratio of 2:1, for example,
would reduce the signal by afactor of two when it passed the threshold level as seen in the first compressor example below.

Two other parameters commonly found in compressors are attack time and release time. The attack is the amount of time it
takes the compressor to begin compressing asignal once it has crossed the threshold. This helps preserve the natural
dynamics of asignal. The release time, on the other hand, is the amount of time it takes the compressor to stop attenuating the
signal onceitslevel has passed below the threshold.

A compressor with aratio greater than about 10:1 is considered alimiter (Stark, 1996). The effect of alimiter ismorelike a
clipping effect than a dampening effect of alow-ratio compressor. This clipping effect can add many gross harmonicsto a
signal as seen in the examples below. These harmonics increase in number and amplitude as the threshold level islowered.

The figures on the following page show the example input and output waveforms, FFTs and gain ratios of some different
compressor configurations.

Compressor Characteristics: threshold = 0.5, ratio=2:1
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Input Level (dB)
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Compressor Characteristics: threshold = 0.75, ratio= ¥:1

Limiter Input

1 . , FFT of Limiter Input 10"
H 10
A I |
j 10° .
0 g
05 \ \ \ / \ 107 e e B 1’
% 5
o 50 100 150 200 10° 5
0 20 40 60 80 100 ES
Limiter Output : threshold = 0.75 5 FFT of Limiter Output : threshold = 0.75 =
1 T 10 Q 10?
05 \ / \ 1 ’\ -
\ \ N v A
0.5 : 10°

" 10° 10° 10" 10
"o 50 100 150 200 0 20 40 60 80 100 input Level (dB)

The code example below is a simple stereo compressor. This implementation does not use the attack and release parameters.

Stereo Compressor | mplementation on an Analog Devices ADSP21065L

/* St ereo Conpressor
i nputs:
f2 = left channel data
f3 = right channel data
out put s:
f2 = compressed | eft channel data
f3 = conpressed right channel data
*/
Conpr essor:
fO = 0.05; [* fO = ratio = 1/20 */
f1 = 0.5; /[* f1 = threshold = 0.5 */
f4 = abs f2;
conp(f4,f1); /* 1s left channel past threshold? */
if LT junp CheckRight; /* If not, check the right channel */
fa =14 - f1, /* signal = signal - threshold */
fa =14 * f0; /* signal = signal * ratio */
fa =14 + f1, /* signal = signal + threshold *
f2 = f4 copysign f2; /* f2 now contains conpressed | eft channel */
CheckRi ght :
f4 = abs f3;
conp(f4,f1); /* 1s right channel past threshol d? */
if LT rts; /[* if not, return from subroutine */
fa =14 - f1, /* signal = signal - threshold */
fa =14 * f0; /* signal = signal * ratio */
rts (db); /* del ayed return from subroutine */
fa =14 + f1, /* signal = signal + threshold *
f3 = f4 copysign f3; /* f2 now contains conpressed right channel */
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Limiters

A limiter is acompressor with a compression ratio greater
than about 10:1

........................ ] JAERAR
3 VAR VAN

1 :
0 200 400 600 800 1000
Compressor Output : threshold = 0.5, ratio = 20:1
1 T

"""""""""""" B I EvATASAS

10 10 "o 200 400 600 800 1000
Input Level (dB)

Output Level (dB)

The following code exampleis a stereo limiter with aratio of 1:¥ - in other words, it clips the signal at a certain threshold.
As seen below, thisis extremely simple to do using the clip function.

Stereo Limiter Implementation on an Analog Devices ADSP21065L

/* Stereo Limter
| nput s:
f2 = left channel data
f3 = right channel data
CQut put s:
f2 =limted left channel data
f3 =1limted right channel data
*/
Limt:
fl1 = 0.75; /* Threshold = .75 */
rts (db); /* del ayed return from subroutine */
f2 =clip f2 by f1; /* Limt |left channel */
f3 =clip f3 by f1; /* Limt right channel */

3.4.3.2 Noise Gate/Downward Expander

A noise gate or downward expander is used to reduce the gain of a signal below a certain threshold. Thisis useful for
reducing and eliminating noise on aline when no signal is present. The difference between a noise gate and a downward
expander is similar to the difference between alimiter and a compressor. A noise gate cuts signalsthat fall below a certain
threshold while a downward expander has aratio at which it dampens signals below a threshold.
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Noise Gate Characteristics: Threshold = 0.1

Noise Gate Input B FFT of Noise Gate Input
1 j 10 T : :
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Downward Expander . . . A
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Time
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The following code example is a stereo noise gate. This agorithm turns off the signal if its amplitude is below a certain level

10 Time

using RMS level detection of asignal to determine if the signal itself should be turned on or not.

Stereo Noise Gate Implementation on an Analog Devices’ ADSP21065L
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180
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200
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NO SE_GATE. ASM

ADSP-21065L EZLAB Noi se Gate Effect Program
Devel oped using ADSP-21065L EZ-LAB Eval uation Platform

What the noi se gate does?

Reduces the anount of gain below a certain threshold to reduce or elimnate
noi se produced when no audio signal is present, while still allow ng the

signal to pass thru. This is useful after processing nultiple audio effects
that can introduce noise above the noise floor of the AD1819a DACs.

Par amet ers:

Threshol d: The level at which the noise gate processor begins decreasing the

vol ume of the signal.

NOTE: Threshold values are in RVMS5. This routine calculates the RV5 of the
audio signal in deternmining if |low level noise should be renoved. A running
average is not sufficent otherwise the audio signal will be severely distorted

Future Paraneters that will be added in Rev 2.0:

Attack Tine: The anount of tine it takes once the input signal has passed the
threshold for the dynam cs processor to begin attenuating the signal.

Rel ease Tine: The anount of tine it takes once the input signal has passed

EE R s
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The audio data is sent out to the AD1819A Line CQutputs
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/* ADSP-21065L System Regi ster bit definitions */

#i ncl ude "def 21065 . h"

#i ncl ude "newb5Ldef s. h"

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

. GLOBAL Noi se_Gat e;

. GLOBAL sel ect _t hreshol d;

. GLOBAL init_averaging_buffers;
.segment /dm noi segt ;

.var I RQL_counter = 0x00000003;
.var threshol d = 0. 04,

.var Left _RMS Result;

.var Ri ght _RMS_Resul t;

.var left_float;

.var right_float;

.var | eft _RVS_squared = 0.0;
.var ri ght _RVS_squared = 0. 0;
.var | eft _RVS_|ine[500];

.var right _RVS_|ine[500];

*/

. endseg;

. segnent /pm pm code;

init_averaging_buffers:

B6 = left_RMS |ine;
L6 = @eft_RM5_|ine;
e = 1,

LCNTR = L6;

DO clrDlineL UNTIL LCE;
clrDineL: dm(i 6, m6) = O;
B7 = right _RM5_|ine;

L7 = @ight _RM5_ |ine;

nw = 1,

LCNTR = L7,

DO clrDlineR UNTIL LCE;
clrDineR dm(i 7, nv) = 0;

RTS;

~
* ok

/*

/*

/*

/*

used to detect

del ay-line buffer pointer and length */

clear delay line buffer to zero */

del ay-line buffer pointer and length */

clear delay line buffer to zero */

bel ow the threshold for the dynamics processor to stop attenuating the signal

LR e

the RVB val ue of the |eft channel
used to detect the RVS val ue of the right channel

IEEEE AR EEE R EEEEEEEEEEEE R EREEEEEEEE R R R R R R EEE LR

*

S:
| eft channel data
ri ght channel

=]
Inunc
=4

t put s:

I .

dat a

conpressed | eft channel
conpressed right channel

STEREO NO SE GATE ROUTI NE

dat a
dat a

L

*
*
*
*
*
*
*
*
*
*
*
*

/

audi o si gnal
audi o si gnal

*/
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**********************************************************************************/

Noi se_Gat e:
r2 = DM Left _Channel ) ; /* left input sanple */
r3 = DM R ght _Channel ) ; /* right input sanple */
rl = -31; /* scale the sanple to the range of +/-1.0 */
f2 = float r2 by ri,; /* convert left fixed point sanple to floating point */
f3 =float r3 by ri; /* convert right fixed point sanple to floating point */
DM left _float) = f2; /* save floating point sanples tenporarily */

DMright _float) = f3;

f15 = 0.002; /* 1/500 = 0.002*/
f5 = DM threshol d); /* f1 = Threshold = 0.1 */
RVS | ef t _val ue
fOo = abs f2 /* take absol ute value of incomng |left sanple */
fl1=1f0; /* get ready to square the input */
fo=f0* f1; /* f0 = square(abs(x)) */
fo =f0 * fi5; /* divide incom ng squared sanple by length of RMS line */
f1 = dn(i6,0); /* fetch ol dest value in RVM5 line */
f10 = DM | ef t _RMS_squar ed) ; /* get previous running average of the squares of the input */
f10 = f10 + fO; /* add scal ed squared i nput to the running average val ue */
f10 = f10 - f1; /* subtract ol dest squared sanple fromrunning average */
DM | eft _RMS_squared) = f10; /* save new runni ng average of the square of the inputs sanples */
dm(i 6,1) = fO0; /* store new scal ed squared sanple over old sanple in RMS |ine */
/* cal cul ate square root of new average in f10 based on the Newton-Raphson iteration algorithm*/
f8 = 3.0;
f2 = 0.5;
f4 = RSQRTS f 10; /* Fetch seed */
fl1="f4
fl12 = f4 * f1; [* F12=X0"2 */
f12 = f12 * fO; [* F12=C*X0"2 */
fa =12 * f4, f12 = f8 - f12; /* F4=.5*X0, F10=3-C*X0"2 */
fa =14 * 12, [* F4=X1=.5*X0(3- C*X0"2) */
fl1 =14
f12 = f4 * f1, [* F12=X172 */
f12 = f12 * fO; [* F12=C* X172 */
fa =12 * f4, f12 = 8 - f12; /* F4=.5*X1, F10=3-C*X1"2 */
f4 =14 * f12; [* F4=X2=.5*X1(3-C*X1"2) */
fl1="f4
fl12 = f4 * f1; [* F12=X2"2 */
f12 = f12 * fO; [* F12=C*X2"2 */
fa =12 * f4, 12 = f8 - f12; /* F4=.5*X2, F10=3-C:X2"2 */
fa =14 * 12, [* F4=X3=.5*X2(3-C*X2"2) */
f10 = f4 * f10; [* X=sqrt(Y)=Y/sqrt(Y) */

DM Left _RMS_Resul t)

f 10;

gate_left:
f2 = DMl eft_float);
f10 = abs f10; /
conp(f10,f5); /
if LT f2 =12 - f2; /

get absol ute value of running average */
conpare to desired threshold */
if left channel < threshold, |left channel = 0.0 */

EE

/* send gated results to | eft DAC channel */

rl = 31, /* scale the result back up to MSBs */
r2 =fix f2 by r1,; /* convert back to fixed point nunber */
DM Left _Channel ) = r2;

RVS_ri ght _val ue:

fO = abs f3; /* take absolute value of incomng right sanple */

fl1=10; /* get ready to square the input */

fo=f0* f1; /* f0O = square(abs(x)) */

fo =f0 * f15; /* divide incom ng squared sanple by length of RVS line */

fl1 =dm(i7,0); /* fetch oldest value in RVM5 line */

f10 = DM right _RMS_squared); /* get previous running average of the squares of the input */
f10 = f10 + fO; /* add scal ed squared input to the running average val ue */

f10 = f10 - f1; /* subtract ol dest squared sanple fromrunning average */

DM right _RMS squared) = f10; /* save new running average of the square of the inputs sanples */
dm(i 7,1) = f0; /* store new scal ed squared sanple over old sanple in RVS line */
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/* caclul ate square root of new average in f10 based on the Newton-Raphson iteration algorithm*/
f8 = 3.0;
f2 = 0.5;
f4 = RSQRTS f 10; /* Fetch seed */
f1="f4;
fl12 = f4 * f1; [* F12=X0"2 */
f12 = f12 * fO; [* F12=C*X0"2 */
fa =12 * f4, f12 = f8 - f12; /* F4=.5*X0, F10=3-C*X0"2 */
fa =14 * 12, [* F4=X1=.5*X0(3- C*X0"2) */
f1 =14
f12 = f4 * f1, [* F12=X172 */
f12 = f12 * fO; [* F12=C* X172 */
fa =12 * f4, f12 = 8 - f12; /* F4=.5*X1, F10=3-C*X1"2 */
f4 =14 * f12; [* F4=X2=.5*X1(3- C*X1"2) */
f1="f4;
fl12 = f4 * f1; [* F12=X2"2 */
f12 = f12 * fO; [* F12=C*X2"2 */
fa =12 * f4, f12 = f8 - f12; /* F4=.5*X2, F10=3-C:X2"2 */
fa = f4 * £12; [* F4=X3=.5*X2(3-C*X2"2) */
f10 = f4 * f10; [* X=sqrt(Y)=Y/sqrt(Y) */
DM Ri ght RVS_Result) = f10;

gate_right:

f3 = DMright_float):
10 = abs f10;

conp(f10,f5);

if LT f3 =13 - f3; /* if right channel < threshold, right channel = 0 */
/* send gated results to right DAC channel */

rl = 31, /* scale the result back up to MSBs */

r3 =fix f3 by r1,; /* convert back to fixed point nunber */

DM R ght _Channel ) = r3;

rts;

3.4.3.3 Expanders

An expander is adevice used to increase the dynamic range of asignal and complement compressors. For example, asignal
with a dynamic range of 70 dB might pass through an expander and exit with a new dynamic range of 100 dB. These can be
used to restore a signal that was altered by a compressor.

Below are the properties of an expander.

Expanders

Input Signal Output Signal
dynamic range = 50d8 dynamic range = 110 dB

— | Expander [ >

AA A A

Release Time

Expanders are used to ‘expand’ the dynamic range of asignal
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dynamic range = 110dB
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COVPANDER. ASM

ADSP- 21065L EZ- LAB Conpandi ng Effect Program
Devel oped usi ng ADSP-21065L EZ- LAB Eval uation Platform

What the conpander does?

Conbi nati on of a conpressor and expander.
upper threshold are conpressed, while |ower I|evel

threshol d are expanded.

Par amet er s:

Thr eshol d:

The | evel

vol ume of the signal.

Conpr essi on Rati o:
dynami cs processor

Future Paraneters that wll

Level
past the threshol d.

The peaks si gnal

be added in Rev 2.0:

Attack Tine:

Rel ease Ti ne:

The anmount of tine it takes once the input signal
threshold for the dynanmics processor to begin attenuating the signal.
The anmount of tine it takes once the input signal

has

| evel s above the
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has passed the
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* bel ow the threshold for the dynamics processor to stop attenuating the signal *

LEE AR R R LR R R R R R R E R R R R LRy

/* ADSP-21065L System Regi ster bit definitions */

#i ncl ude "def 21065I . h"

#i ncl ude "newb5Ldef s. h"

. EXTERN Left _Channel ;

. EXTERN Ri ght _Channel ;

. GLOBAL St er eo_Conpander ;

. GLOBAL sel ect _conpander _rati os;

. GLOBAL sel ect _conpander _t hreshol ds;

.segnment /dm conpand;

.var I RQL_counter = 0x00000003;
.var | RQ2_counter = 0x00000003;

.var conp_ratio = 0.05;
.var conp_threshold = 0.5;
.var expan_ratio = 1.5;
.var expan_t hreshold = 0. 2;

. endseg;

. segnent /pm pm code;

/**********************************************************************************

* STEREO COVPANDER ROUTI NE *

**********************************************************************************/

St er eo_Conpander :

r2 = DM Left _Channel ) ; /* left input sanple */
r3 = DM R ght _Channel ) ; /* right input sanple */
rl = -31; /* scale the sanple to the range of +/-1.0 */
f2 = float r2 by ri,; /* convert fixed point sanple to floating point */
f3 =float r3 by ri; /* convert fixed point sanple to floating point */
fO = DM conp_ratio); /* f0 = ratio = 1/20 */
f1 = DM conp_t hreshol d); /* f1 = threshold = 0.5 */
conpress_left:
f4 = abs f2;
conp(f4,f1l); /* Is left channel past threshol d? */
if LT junp conpress_right; /* 1f not, check the right channel */
fa =14 - f1; /* signal = signal - threshold */
f4 =14 * £0; /* signal = signal * ratio */
fa =14 + f1; /* signal = signal + threshold */
f2 = f4 copysign f2; /* f2 now contains conpressed | eft channel */

conpress_right:
f4 = abs f3;

conmp(f4,f1); /* I's right channel past threshol d? */
if LT junp expansion; /* if not, return from subroutine */
f4 =14 - £1; /* signal = signal - threshold */
fa =14 * f0; /* signal = signal * ratio */
f4 =14 + f1; /* signal = signal + threshold */
f3 = f4 copysign f3; /* f3 now contains conpressed right channel */
expansi on:
fO = DM expan_ratio); /* f0O =ratio = 1.4 */
f1 = DM expan_t hreshol d); /* f1 = threshold = 0.2 */
expand_| eft:
f4 = abs f2;
conp(f4,fl); /* |Is left channel past threshol d? */
if LT junp expand_right; /* 1f not, check the right channel */
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f4 =14 - f1 /* signal = signal - threshold */

fa =14 * f0; /* signal = signal * ratio */

f4 =14 + f1; /* signal = signal + threshold */

f2 = f4 copysign f2; /* f2 now contains conpressed | eft channel */
expand_ri ght:

f4 = abs 3

conp(f4,fl); /* |s right channel past threshol d? */

if LT junp finish_processing; /* if not, return from subroutine */

fa =14 - f1; /* signal = signal - threshold */

f4 =14 * £0; /* signal = signal * ratio */

fa =14 + f1; /* signal = signal + threshold */

f3 = f4 copysign f3; /* f3 now contains conpressed right channel */

finish_processing

rl = 31, /* scale the result back up to MSBs */
r2 =fix f2 by r1,; /* convert back to fixed point nunber */
r3 =fix f3 by ri; /* convert back to fixed point nunber */

/* send conpanded results to left and right DAC channels */
DM Left _Channel ) = r2;
DM R ght _Channel ) = r3;

rts;

3.5 Sound Synthesis Techniques

Sound synthesis is a technique used to create specific waveforms. It iswidely used in the audio market in products like sound
cards and synthesizers to digitally recreate musical instruments and other sound effects. The most simple forms of sound
synthesis such as FM and Additive synthesis use basic harmonic recreation of a sound using the addition and multiplication of
sinusoids of varying frequency, amplitude and phase. Sample playback and wavetable synthesis use digital recordings of a
waveform played back at varying frequencies to achieve life-like reproductions of the original sound. Subtractive Synthesis
and Physical Modeling attempt to simulate the physical model of an acoustic system.

3.5.1 Additive Synthesis

Fourier theory dictates that any periodic sound can be constructed of sinusoids of various frequency, amplitude and phase
[25]. Additive synthesisisthe processes of summing such sinusoids to produce awide variety of envelopes. By varying the
three fundamental properties : frequency, amplitude and phase over time, additive synthesis can accurately reproduce a
variety instruments.

In comparison to all other synthesis techniques, additive synthesis can require a significant amount of processing power based
on the number of sinusoidal oscillators used. Thereisadirect relationship between the number of harmonics generated and
the number of processor cyclesrequired. Below isthe basic formula.

y(n)=Asin(2Pfn+f )+ A sin(2Pf,n+f ,)+ Aisin(2Pf,n+f ,)...

3.5.2 FM Synthesis

FM Synthesisis similar to additive synthesisin that it uses simple sinusoids to create awide range of sounds. FM synthesis,
however, uses one finite formula to create an infinite number harmonics. The FM synthesis equation shown below uses a
fundamental sinusoid which is modulated by another sinusoid.

y(n) = A(n)sin(2Pf_n + 1 (n)sin(2Pf,n))

When this equation is expanded, we can see that an infinite number of harmonics are created.
y(n) = J,(n)sin(2Pf_n)
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+J,()[sin(2P (f, + f,)n)- sin(2P (f, - f,)n)]
+J,(n)[sin(2P (f_ +2f,)n)- sin(2P (f, - 2, )n)]
+J,(n)[sin(2P ( f, +3f,)n) - sin(2P (f, - 3fm)n)]...[2]

Because this method is very computationally efficient, it iswidely used in the sound card and synthesizer industry.

3.5.3 Wavetable Synthesis

Wavetable synthesisis a popular and efficient technique for synthesizing sounds, especially in sound cards and synthesizers.
Using alookup table of pre-recorded waveforms, the wavetable synthesis engine repeatedly plays the desired waveform or
combinations of multiple waveforms to simulate the timbre of an instrument. The looped playback of the sample can also be
modulated by an amplitude function which controls its attack, decay, sustain and release to create an even more realistic
reconstruction of the original instrument.

by
Figure 14: Figure 15: Figure 16:
One waveform period stored Waveforms added together and Repeated waveform modulated by an
in wavetable. repeated over time amplitude envelop.

This method of synthesisis simple to implement and is computationally efficient. In a DSP, the desired waveforms can be
loaded into a circular buffersto allow for zero-overhead looping. The only real computational operations will be adding
multiple waveforms, calculating the amplitude envelope and modulating the looping sample with it. The downside of wave-
table synthesisisthat it is difficult to approximate rapidly changing spectra.[1]

3.5.4 Sample Playback

Sample Playback is another computationally efficient synthesis technique that yields extremely high sound quality. An entire
sampleis stored in memory for each instrument which is played back at a selected pitch. Often times, these sample will have
loop points within them which can be used to alter the duration of the sustain thus giving an even more life-like reproduction

of the sound.

Figure 17

Although this method is capable of producing extremely accurate reproductions of almost any instrument, it requires large
amounts of memory to hold the sasmpled instrument data. For example, to duplicate the sound of a grand piano, the sample
stored in memory would have to be about 5 seconds long. If this sample were stereo and sampled at 44.1kHz, thissingle
instrument would require 441,000 Words of memory! To recreate many octaves of apiano, the system would require
multiple piano samples because slowing down a sample of a C5 on a piano to the pitch of a C2 will sound nothing like an
actual C2. Thistechniqueiswidely used in high-end keyboards and sound cards. Just like wavetable synthesis, sample
playback requires very little computational power. It can be easily implemented in a DSP using circular buffers with simple
loop-point detection.
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3.5.5 Subtractive Synthesis

Subtractive synthesis begins with asignal containing all of the required harmonics of asignal and selectively attenuating (or
boosting) certain frequencies to simulate the desired sound[2]. The amplitude of the signal can be varied using an envelope
function asin the other simple synthesis techniques. Thistechnique is effective at recreating instruments that use impulse-like

stimulus like a plucked string or a drum.

4. CONCLUSION

We have explored many of the basics in selecting the ADSP-21065L for use in digital audio applications. There are many
different DSPs on the market today and chances are there is one that fits your design needs perfectly. Because of this, it is
important to fully understand the type of algorithms and the amount of processing power that an application will require
before selecting aDSP. This paper has presented a subset of the expanding number of audio applications for DSPs and
provided some insight into their functionality and implementation. As DSPs become faster and more powerful, we will
undoubtedly witness new creative and ingenious DSP audio applications.
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