
Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions 33333

7171717171

Matrices are useful in image processing and graphics algorithms because
they provide a natural two-dimensional format to store x and y
coordinates. Many signal processing algorithms perform mathematical
operations on matrices. These operations range from scaling the elements
in the matrix to performing an autocorrelation between two signals
described as matrices.

The three basic matrix operations discussed in this chapter are

• multiplying one matrix by a vector

• multiplying one matrix by another matrix

• finding the inverse of a matrix

This chapter describes three ADSP-21000 family assembly language
subroutines that implement these operations. The matrix buffers, interrupt
vector tables, and DAG registers must be set up by the calling routine
before the routines can access the matrices. Optionally, each subroutine
can include setup code so it can run independently of a calling routine.
This setup code is conditionally assembled by using the assembler’s
-D identifier command line switch.

The implementations are based on the matrix algorithms described in
[EMBREE91].

33333

7272727272

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.13.13.13.13.1 STORING A MATRIXSTORING A MATRIXSTORING A MATRIXSTORING A MATRIXSTORING A MATRIX
To minimize index register usage, the two-dimensional array matrix is
stored in a single-dimensional array buffer and element positions are kept
track of by the processor’s DAG registers. The program can access any
matrix element by using the index, modify, and length registers. The
elements are stored in row major order; all the elements of the first row are
first in the buffer, then all of the elements in the second row, and so forth.

For example, a 3×3 matrix with these elements

A11 A12 A13
A21 A22 A23
A31 A32 A33

is placed in a nine element buffer in this order

{A11, A12, A13, A21, A22, A23, A31, A32, A33}

The elements can be read continuously and consecutively if you

• use circular buffering

• use the correct modify values for index pointers

• keep track of the pointer in the matrix

To read the elements in a row consecutively, set the index pointer to the
location of the first element in the row and set the modify value to 1.

To read the elements in a column consecutively, set the index register to
the location of the first element in the column and set the modify value
equal to the length of the row.

For example, to read the first column in the 3 ×3 matrix example, set the
index pointer to point to A11 and the set modify value to three (3). After an
indirect memory read of the first element, the index pointer points to A21,
the second column element.

This method of storing and accessing a matrix keeps available more DAG
registers than using a different index pointer for each row of the matrix.

7373737373

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.23.23.23.23.2 MULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A M×N MATRIX BY AN NN MATRIX BY AN NN MATRIX BY AN NN MATRIX BY AN NN MATRIX BY AN N×1 VECTOR1 VECTOR1 VECTOR1 VECTOR1 VECTOR
This section discusses how to multiply a two-dimensional matrix of
arbitrary size, M×N, by a vector (one-dimensional matrix), N×1.

3.2.13.2.13.2.13.2.13.2.1 ImplementationImplementationImplementationImplementationImplementation
The matrix elements are stored in the buffer mat_a , with length of M×N
(where M is the number of rows in a matrix and N is the number of
columns).

The vector is stored in a separate buffer, mat_b , with length of N. (The
number of rows in the vector must equal the number of columns of the
matrix.)

The result of the multiplication is another vector stored in a buffer,
mat_c , with length of M (the number of rows of the first matrix).

The M×N matrix and M×1 result vector are stored in a data memory
segment, while the N×1 multiply vector is stored in a program memory
segment. This lets the algorithm take advantage of the dual fetch of the
multifunction instructions to access the next two elements of the matrix
and vector while multiplying the current two elements.

The multiplication of the matrix and vector is performed in a two-level
deep loop. The inner loop, row , is a single instruction that performs the
multiplication of the current two elements and accumulates the previous
multiplication while fetching the next two elements to be multiplied. This
row loop is performed N times (the number of columns) to account for
the number of multiply/accumulate steps done for each row.

The outer loop, column , takes the final accumulated result and stores it
in the mat_c result buffer. The loop also clears the accumulator result,
R8, so that it can be used again for the next row loop. The column loop
is performed M times (the number of rows) to account for the number of
times it has to perform the row loop operations.

For efficient loops, the operation of multiplication, accumulation and the
next two data fetches are all performed in the same multifunction
instruction. Each multiply is done on operands which were fetched on the
pervious iteration of the inner loop. Similarly, each addition accumulates
the product from the multiply in the previous loop iterations. Before the
loops are entered the first time, the operands must be preloaded from
memory.

33333

7474747474

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

This technique of preloading registers so multifunction instructions can be
used in the loop body is called “rolling the loop.” To roll the loop, the first
instructions outside of the row and column loops clear the
accumulator, fetch the first two elements to be multiplied and multiplies
them while fetching the next two elements.

One cycle can be saved when clearing the accumulator by performing an
exclusive or operation (XOR) between the accumulator register (R8) and
itself. This lets the processor fetch the next two elements while performing
a computation, which is faster than using one cycle to clear the
accumulator by loading R8 with a zero and then a second cycle to perform
the fetches. The processor cannot perform a register load and two data
fetches in the same cycle.

This trick of combining the computation with data fetches in a single
instruction is also used for the last instruction of the column loop when
clearing the accumulator for the next loop and storing the final
accumulation result to the mat_c buffer. Since this loop may be
performed many times (depending on the number of rows in the matrix),
it can greatly reduce the time spent executing the algorithm.

The accumulation operation of the multifunction instruction used in the
row loop is performed last. When the accumulation of the last element is
performed for the current row, the multiplier has already multiplied the
first two elements of the next row and the second two elements have been
fetched. Provided the current row is not the last one, the extra
multiplication and data fetches roll over into the next iteration of the loop.

When performing the accumulation on the last elements of the last row,
the index pointers of the input buffers wrap around to the start of the
buffer; the multiplication and data fetches for the first row are repeated.
Since those operations are redundant, their destination registers can be
written over after the routine completes. Note that the index pointers are
also modified and point to the third elements in the matrices when the
routine is finished. Therefore, the pointers must be restored if the same
matrices must be used in a subsequent routine.

7575757575

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.2.23.2.23.2.23.2.23.2.2 Code Listing–MCode Listing–MCode Listing–MCode Listing–MCode Listing–M×N By NN By NN By NN By NN By N×1 Multiplication1 Multiplication1 Multiplication1 Multiplication1 Multiplication

/***

File Name
MxNxNx1.ASM

Version
25-APR-91

Purpose
Matrix times a Vector.

Matrix dimensions are arbitrary. Matrix A accessed as a circular buffer so
that the last iteration of the inner loop will do a dummy read from a
known location.

Use the -Dexample Assembler Preprocessor Switch to include assembly of an
example calling routine

Equations Implemented
[Mx1]=A[MxN]*B[Nx1]

Calling Parameters
Constants: m, n
pm(mat_b[n]) row major, dm(mat_a[m*n]) row major,
M1=1;
M9=1;
B0=mat_a; L0=@mat_a;
B1=mat_c; L1=0;
B8=mat_b; L8=@mat_b;

Return Values
dm(mat_c[m]) row major

Registers Affected
F0,F4,F8,F12, I0,I1,I8

Cycle Count
cycles=6+M(3+N)+5 (entrance + core + 5 cache)

PM Locations
pm code=8 words, pm data=n words

DM Locations
dm data=m*n+m words

***/

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

33333

7676767676

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

/* dimension constants */
#define M 4
#define N 4

#ifndef example
.GLOBAL mxnxnx1;
.EXTERN mat_a, mat_b,mat_c;
#endif

#ifdef example
.SEGMENT/DM dm_data;
.VAR mat_a[M*N]=”mat_a.dat”;
.VAR mat_c[M];
.ENDSEG;

.SEGMENT/PM pm_data;

.VAR mat_b[N]=”mat_bb.dat”;

.ENDSEG;

.SEGMENT/PM rst_svc;
dmwait=0x21; /* set dm waitstates to zero */
pmwait=0x21; /* set pm waitstates to zero */
jump setup;

.ENDSEG;

/* example calling code */
.SEGMENT/PM pm_code;
setup: m1=1;

m9=1;
b0=mat_a; l0=@mat_a;
b1=mat_c; l1=0;
b8=mat_b; l8=@mat_b;
call mxnxnx1;
idle;

.ENDSEG;
#endif

/* matrix multiply starts here */
.SEGMENT/PM pm_code;
mxnxnx1: r8=r8 xor r8, f0=dm(i0,m1), f4=pm(i8,m9); /* clear f8 */

f12=f0*f4, f0=dm(i0,m1), f4=pm(i8,m9);
lcntr=M, do column until lce;
 lcntr=N, do row until lce;

row: f12=f0*f4, f8=f8+f12, f0=dm(i0,m1), f4=pm(i8,m9);
column: r8=r8 xor r8, dm(i1,m1)=f8;

rts;
.ENDSEG;

Listing 3.1 MxNxNx1.asmListing 3.1 MxNxNx1.asmListing 3.1 MxNxNx1.asmListing 3.1 MxNxNx1.asmListing 3.1 MxNxNx1.asm

7777777777

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.33.33.33.33.3 MULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A MMULTIPLICATION OF A M×N MATRIX BY A NN MATRIX BY A NN MATRIX BY A NN MATRIX BY A NN MATRIX BY A N×O MATRIXO MATRIXO MATRIXO MATRIXO MATRIX
This section discusses how to multiply two matrices of arbitrary size.

3.3.13.3.13.3.13.3.13.3.1 ImplementationImplementationImplementationImplementationImplementation
The two input matrices are stored in separate data memory and program
memory segments so multifunction instructions can be used to produce
efficient code.

• The first input matrix (M×N), mat_a , is stored in data memory.

• The second input matrix (N×O), mat_b , is stored in program memory.

• The result matrix (M×O), mat_c , is stored in data memory.

You can think of matrix-matrix multiplication as several matrix-vector
multiplications. The matrix is always the first input matrix and each
“vector” is a column in the second matrix. As discussed in the previous
section, the matrix-vector multiplication code consisted of two loops: row
and col . To obtain the matrix-matrix multiplication code a third loop is
added, colrow , that simply repeats the entire block of matrix-vector
code for the number of columns in the second matrix.

Repeating this code, however, requires that the modifications of the index
pointers for each matrix be handled differently. The modify value for
mat_a (m1) is still set to 1 to increment through the matrix row by row.
However, to consecutively increment through the columns of mat_b , the
modify value (m10) needs to be set to the number of columns in that
matrix. For this code example, the second matrix is a 4 × 4 matrix, so the
modify value is 4. The result matrix is written to column by column and
has the same modify value.

After a single loop through the matrix-vector code, a column in the result
matrix is complete. Because the code is looped to reduce the number of
cycles inside the loop, the position of the index pointers are incorrect to
perform the next matrix-vector multiplication. Modify instructions are
included at the end of the rowcol loop that modify the index pointers so
they begin at the correct position. The index register for mat_a is
modified to point to the beginning of the first row and first column. The
index registers (pointers) for both mat_b and the result matrix mat_c
are modified to point to the beginning of the next column.

33333

7878787878

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

The pointer to the matrix mat_a is modified to point to the first element
of the first row by performing a dummy fetch with a modify value of –2.
(Because the loop is rolled, the DAG fetches the first two row elements
again.)

A dummy fetch is also used to modify the matrix pointer for mat_b to
point to the first element of the next column. The modify value for this
dummy fetch is –(O * 2 – 1), where O is the number of columns in the
matrix. Because of loop rolling, the index pointer points to the third
column element. Therefore, the index pointer needs to be adjusted
backwards by two rows minus one element. For this code example, the
index pointer points to the third column position. To make the pointer
point to the first element of the next column, modify the pointer by
–(4 * 2 – 1) = –7.

Finally, the pointer to the result matrix mat_c is modified to point to the
first element of the next column by modifying the index pointer by one.
Since the instruction that writes the result is the last one in the loop, loop
rolling does not affect this index pointer. Dummy reads modify the index
registers, instead of modify instructions, so that a multifunction
instruction can be performed. This reduces the number of cycles in the
loop.

The loop colrow is then executed again, which calculates the result for
the next column in the result matrix. The loop colrow repeats until all
the columns in the result matrix are filled.

The final pointer positions are as follows

• position (1,1) for mat_a (beginning of the buffer and matrix),

• position (2,1) for mat_b (row 2, column 1)

• position (2,1) for the result mat_c (row 2, column 1).

To use the same matrices in a subsequent routine, first reset the index
pointers to the beginning of each buffer.

7979797979

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.3.23.3.23.3.23.3.23.3.2 Code Listing–MCode Listing–MCode Listing–MCode Listing–MCode Listing–M×N By NN By NN By NN By NN By N×O MultiplicationO MultiplicationO MultiplicationO MultiplicationO Multiplication

/

File Name
MxNxNxO.ASM

Version
25-APR-91

Purpose
Matrix times a Matrix.

The three matrices have arbitrary dimensions. Matrix A accessed as a
circular buffer so that the last iteration of the inner loop will do a
dummy read from a known location.

Use the -Dexample Assembler Preprocessor Switch to include assembly of an
example calling routine

Equations Implemented
C[MxO]=A[MxN]*B[NxO]

Calling Parameters
Constants: m, n, o
pm(mat_b[N*O]) row major, dm(mat_a[M*N]) row major
dm(mat_c[M*O]) row major
M1=1;
M2=-2;
M3=o;
M9=-(o*2-1);
M10=o;
B0=mat_a; L0=@mat_a;
B1=mat_c; L1=@mat_c;
B8=mat_b; L8=@mat_b;

Return Values
F0,F4,F8,F12, I0,I9, B8

Registers Affected
F0,F4,F8,F12, I0,I1,I8

Cycle Count
cycles=4+o(m(n+2)+5)+7 (entrance + core + 7 cache)

PM Locations
pm code=11 words, pm data=NxO words,

DM Locations
dm data=MxN+MxO words

***/(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

33333

8080808080

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

/* dimension constants */
#define M 4
#define N 4
#define O 4

#ifndef example
.GLOBAL mxnxnxo;
.EXTERN mat_a, mat_b, mat_c;
#endif

#ifdef example
.SEGMENT/DM dm_data;
.VAR mat_a[M*N]=”mat_a.dat”;
.VAR mat_c[M*O];
.ENDSEG;

.SEGMENT/PM pm_data;

.VAR mat_b[N*O]=”mat_b.dat”;

.ENDSEG;

.SEGMENT/PM rst_svc; /* reset vector */
dmwait=0X21; /* set dm waitstates to zero */
pmwait=0X21; /* set pm waitstates to zero */
jump setup;

.ENDSEG;

/* example calling code */
.SEGMENT/PM pm_code;
setup: m1=1;

m2=-2;
m3=O;
m9=-(O*2-1);
m10=O;
b0=mat_a; l0=@mat_a;
b1=mat_c; l1=@mat_c;
b8=mat_b; l8=@mat_b;
call mxnxnxo;
idle;

.ENDSEG;
#endif

/* matrix multiply starts here */
.SEGMENT/PM pm_code;
mxnxnxo: lcntr=O, do colrow until lce;

 r8=r8 xor r8, f0=dm(i0,m1), f4=pm(i8,m10); /* clear f8 */
 f12=f0*f4, f0=dm(i0,m1), f4=pm(i8,m10);
 lcntr=M, do column until lce;
 lcntr=N, do row until lce;

row: f12=f0*f4, f8=f8+f12, f0=dm(i0,m1), f4=pm(i8,m10);
column: r8=xor r8, dm(i1,m3)=f8;

 f0=dm(i0,m2), f4=pm(i8,m9); /* modify with dummy fetches */
colrow: modify(i1,1);

rts;
.ENDSEG;

Listing 3.2 MxNxNxO.asmListing 3.2 MxNxNxO.asmListing 3.2 MxNxNxO.asmListing 3.2 MxNxNxO.asmListing 3.2 MxNxNxO.asm

8181818181

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.43.43.43.43.4 MATRIX INVERSIONMATRIX INVERSIONMATRIX INVERSIONMATRIX INVERSIONMATRIX INVERSION
The inversion of a matrix is used to solve a set of linear equations. The
format for the linear equations is

Ax = b

The vector x contains the unknowns, the matrix A contains the set of
coefficients, and the vector b contains the solutions of the linear equations.
The matrix A must be a non-singular square matrix. To get the solution for
x, multiply the inverse of matrix A by the constant vector, b. The inverse
matrix is useful if a different constant vector b is used with the same
equations. The same inverse can be used to solve for the new solutions.

Because of round-off error that occurs during the elimination process, it is
hard to get accurate results when inverting large matrices. The Gauss-
Jordan method elimination with full pivoting, however, provides a highly
accurate matrix inverse.

Gauss-Jordan elimination can become numerically unstable unless
pivoting is used. Full pivoting is the interchanging of rows and columns in
a matrix to have the largest magnitude element on the diagonal of the
matrix. This diagonal element, called the pivot, is then used to divide the
other elements of the row. The row is used to eliminate other column
elements to obtain the identity matrix. The same elimination procedures
are performed on an original identity matrix. Once the matrix is reduced
to the identity matrix, the original identity matrix will contain the inverse
matrix. This resulting matrix must be adjusted for any interchanging of
rows and columns.

The Gauss-Jordan algorithm is an in-place algorithm: the input matrix and
output result are stored in the same buffer of data.

The algorithm is subdivided into five sections:

• The first section searches for the largest element of the matrix.

• The second section places that element on the diagonal of the matrix
making it the pivot element. The row that contained the pivot element
is marked so that it won’t be used again.

• The third section of code divides the rest of the row by that pivot
element.

33333

8282828282

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

• The fourth section performs the in-place elimination.

• The first four sections are repeated until all of the rows of the matrix
have been checked for a pivot point.

• The fifth section performs the corrections for swapping rows and
columns.

3.4.13.4.13.4.13.4.13.4.1 ImplementationImplementationImplementationImplementationImplementation
The matrix is in data memory and uses N×N locations, where N is the size
of the matrix (N=3 for a 3×3 matrix). The pivot flag (pf) and swap column
(swc) arrays are also stored in data memory. The swap row array (swr) is
in program memory.

This routine uses all of the universal registers (F0-F15) and eight of the
DAG registers (I0-I8) as either data storage or temporary registers.
Therefore, if this routine is called from a routine that uses these registers,
switch to the secondary registers before starting the routine. Make sure to
switch back to the primary registers when done.

The first four sections of the algorithm are enclosed in the full_pivot
loop. Each pass through the loop searches for the largest element in the
matrix, places that element on the diagonal, and performs the in-place
elimination. The loop repeats for every row of the matrix.

The first section of the algorithm searches the entire matrix for the largest
magnitude pivot value in the nested loops row_big and column_big .
At the beginning of each loop, it checks if the pivot flag is set for that row
or column. If the pivot flag is set, that row or column contains a pivot
point that has already been used. Since any element in a row or column
that previously contained a pivot point cannot be reused, the loop is
skipped and the index pointer is modified to point to the next row or
column.

The loop performs a comparison of all the elements in the matrix and the
largest value is stored in register F12—the pivot element. The row that
contained the pivot point is stored in the pf buffer so that any elements
in that row will not be used again. A test is performed to see if the pivot
element is a zero. If the pivot point is zero, the matrix is singular and does
not have a realizable inverse. The routine returns from the subroutine and
the error flag is register F12 containing a zero.

8383838383

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

The second section of the algorithm checks if the pivot element is on the
diagonal of the matrix. If the pivot element is not on the diagonal,
corresponding rows and columns are swapped to place the element on the
diagonal. The position of the pivot element is stored in the counters R2
and R10. If these two numbers are equal, then the element is already on a
diagonal and the algorithm skips to the next section of the algorithm. If
the numbers are not equal, the loop swap_row is performed. This loop
swaps the corresponding row and column to place the pivot element on
the diagonal of the matrix. The row and column numbers that were
swapped are stored in separate arrays called swr (row) and swc
(column) . These values will be used in the fifth section to correct for any
swapping that has occurred.

The third section of the algorithm divides all the elements of the row
containing the pivot point by the pivot point. The inverse of the pivot
point is found with the macro DIVIDE . The result of the macro is stored
in the f1 register. The other elements in the row are then multiplied by the
result in the loop divide_row .

The fourth section of the algorithm performs the in place elimination. The
elimination process occurs within the two loops fix_row and
fix_column . The results of the elimination replace the original elements
of the matrix.

These four sections described are repeated N times, where N is the
number of rows in the matrix.

The fifth section of the algorithm is executed after the entire matrix is
reduced. This section fixes the matrix if any row and column swapping
was done. The algorithm reads the values stored in the arrays swr and
swc and swaps the appropriate columns if the values are not zero.

33333

8484848484

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.4.23.4.23.4.23.4.23.4.2 Code Listing—Matrix Inversion Code Listing—Matrix Inversion Code Listing—Matrix Inversion Code Listing—Matrix Inversion Code Listing—Matrix Inversion

/

File Name
MATINV.ASM

Version
May 6 1991

Purpose
Inverts a square matrix using the Gauss-Jordan elimination.
algorithm with full pivoting.

See P.M. Embree and B. Kimble. C Language Algorithms For Digital
Signal Processing. Chap. 6, Sect. 6.2.3, pp. 326-329.Prentice-Hall, 1991

Equations Implemented
C[MxO]=A[MxN]*B[NxO]

Calling Parameters
 dm(mat_a[n*n]) row major, dm(pf[n+1]), dm(swc[n]);
 pm(swr[n]);
 r14=n; (n= number of rows (columns))
 m0=1; m1=-1;
 m8=1; m9=-1;
 b0=mat_a;
 b1=pf;
 b7=swc; l7=0;
 b8=swr; l8=0;

Return Values
dm(mat_a[n*n]) row major;
f12=0.0 -> matrix is singular

Registers Affected
f0 - f15,
i0 - i7, i8, m2

Cycle Count
 maximum number= worst case= 7.5n**3+25n**2+25.5n+23 (approximated)

PM Locations
pm code= 93 words, pm data= n words

DM Locations
dm data= n*n+2n+1 words

8585858585

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

***/

/* To assemble the example below type the following command

 asm21k -Dexample matinv */

#include “macros.h”

#define n 3

#ifndef example
.GLOBAL mat_inv;
.EXTERN mat_a;
#endif

#ifdef example
.SEGMENT/DM dm_data;
.VAR mat_a[n*n]= “mat_a1.dat”;
.VAR pf[n+1];
.VAR swc[n];
.ENDSEG;

.SEGMENT/PM rst_svc;
 dmwait=0x21; /*set dm waitstates to zero*/

 pmwait=0x21; /*set pm waitstates to zero*/
 jump setup;

.ENDSEG;

.SEGMENT/PM pm_data;

.VAR swr[n];

.ENDSEG;
/* example calling code */

.SEGMENT/PM pm_code;
setup: b0=mat_a; /*i0 -> a(row,col)*/

b1=pf; /*i1 -> pf= pivot_flag*/
b7=swc; /*i7 -> swc= swap_col*/
b8=swr; /*i8 -> swr= swap_row*/
l7=0;
l8=0;
m0=1;
m1=-1;
m8=1;
m9=-1;
r14=n;
call mat_inv;

(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)(listing continues on next page)

33333

8686868686

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

idle;
.ENDSEG;
#endif

/* Matrix inversion starts here */
.SEGMENT/PM pm_code;
mat_inv: r13=r14*r14(ssi), b3=b0;

l0=r13; /*matrix in a circular data buffer*/
b4=b0;
b5=b0;
b6=b0;
l3=l0;
l4=l0;
l5=l0;
l6=l0;
r13=r14+1, b2=b1;
l1=r13; /*pf in a circular data buffer*/
l2=l1;
f9=0.0;
f8=2.0; /*2.0 is required for DIVIDE_macro*/
f7=1.0; /*1.0 is a numerator for DIVIDE_macro*/
r13=fix f9, m2=r14;
lcntr=r14, do zero_index until lce;
 dm(i7,m0)=r13, pm(i8,m8)=r13;

zero_index: dm(i1,m0)=r13;
f0=pass f9, dm(i1,m0)=r13; /*f0= big*/

lcntr=r14, do full_pivot until lce;
/*find the biggest pivot element*/

 r1=pass r13, r11=dm(i1,1); /*r1= row no., r11= pf(row)*/
 lcntr=r14, do row_big until lce;
 r11=pass r11, i4=i3; /*check if pf(row) is zero*/
 if ne jump (PC,12), f4=dm(i0,m2); /*i0 -> next row*/
 r5=pass r13, r15=dm(i2,1); /*r5= col no., r15= pf(col)*/
 lcntr=r14, do column_big until lce;
 r15=pass r15; /*check if pf(col) is zero*/
 if ne jump column_big (db);

f4=dm(i0,1); /*f4= a(row,col)*/
f6=abs f4;
comp(f6,f0); /*compare abs_element to big*/
if lt jump column_big;
f0=pass f6, f12=f4; /*f0= abs_element, f12= pivot_element*/
r2=pass r1, r10=r5; /*r2= irow, r10= icol*/

column_big: r5=r5+1, r15=dm(i2,1);
row_big: r1=r1+1, r11=dm(i1,1);

/*swap rows to make this diagonal the biggest absolute pivot*/
 f12=pass f12, m5=r10; /*check if pivot is zero, m5= icol*/
 if eq rts; /*if pivot is zero, matrix is singular*/
 r1=r2*r14 (ssi), dm(m5,i1)=r5; /*pf(col) not zero*/
 r5=r10*r14 (ssi), m6=r1;
 comp(r2,r10), r1=dm(i3,m6); /*i3 -> a(irow,col)*/
 dm(i7,m0)=r10, pm(i8,m8)=r2; /*store icol in swc and irow in swr*/

 if eq jump row_divide (db);
 r2=pass r13, m7=r5;

8787878787

33333Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

 modify(i4,m7); /*i4 -> a(icol,col)*/
 i5=i4;
 lcntr=r14, do swap_row until lce;
 f4=dm(i3,0); /*f4= temp= a(irow,col)*/
 f0=dm(i5,0); /*f0= a(icol,col)*/
 dm(i3,1)=f0; /*a(irow,col)= a(icol,col)*/

swap_row: dm(i5,1)=f4; /*a(icol,col)= temp*/

/*divide the row by the pivot*/
row_divide: f6=pass f7, i5=i4;

 DIVIDE(f1,f6,f12,f8,f3); /*f1= pivot_inverse*/
 i6=i5;
 f4=dm(i4,1);
 lcntr=r14, do divide_row until lce;
 f5=f1*f4, f4=dm(i4,1);

divide_row: dm(i6,1)=f5;
 dm(m5,i5)=f1;

/*fix the other rows by subtracting*/
 lcntr=r14, do fix_row until lce;
 comp(r2,r10), i6=i5; /*check if row= icol*/
 if eq jump (PC,8), f4=dm(i0,m2); /*i0 -> next row*/
 f4=dm(m5,i0); /*temp= a(row,icol)*/
 dm(m5,i0)=f9;
 f3=dm(i6,1);
 lcntr=r14, do fix_column until lce;
 f3=f3*f4, f0=dm(i0,0);
 f0=f0-f3, f3=dm(i6,1);

fix_column: dm(i0,1)=f0;
fix_row: r2=r2+1;
full_pivot: f0=pass f9, i3=i0;

/*fix the affect of all the swaps for final answer*/
r0=dm(i7,m1), r1=pm(i8,m9); /*i7 -> swc(N-1), i8 -> swr(N-1)*/
r0=dm(i7,m1), r1=pm(i8,m9); /*r0= swc(N-1), r1= swr(N-1)*/
lcntr=r14, do fix_swap until lce;
 comp(r0,r1), m5=r0; /*m5= swc(swap)*/
 if eq jump fix_swap;
 m4=r1; /*m4= swr(swap)*/
 lcntr=r14, do swap until lce;
 f4=dm(m4,i0); /*f4= temp= a(row,swr(swap))*/
 f0=dm(m5,i0); /*f0= a(row,swc(swap))*/
 dm(m4,i0)=f0; /*a(row,swr(swap))= a(row,swc(swap))*/
 dm(m5,i0)=f4; /*a(row,swc(swap))= temp*/

swap: modify(i0,m2);
fix_swap: r0=dm(i7,m1), r1=pm(i8,m9);

rts;
.ENDSEG;

Listing 3.3 matinv.asmListing 3.3 matinv.asmListing 3.3 matinv.asmListing 3.3 matinv.asmListing 3.3 matinv.asm

33333

8888888888

Matrix FunctionsMatrix FunctionsMatrix FunctionsMatrix FunctionsMatrix Functions

3.53.53.53.53.5 REFERENCESREFERENCESREFERENCESREFERENCESREFERENCES

[EMBREE91] Embree, P. and B. Kimble. 1991. C Language Algorithms
For Digital Signal Processing. Englewood Cliffs, NJ:
Prentice Hall.

	Matrix Functions 3
	3.1 Storing a Matrix
	3.2 Multiplication of a MxN Matrix by an Nx1 Vector
	3.2.1 Implementation
	3.2.2 Code Listing - MxN by Nx1 Multiplication

	3.3 Multiplication of a MxN Matrix by a NxO Matrix
	3.3.1 Implementation
	3.3.2 Code Listing - MxN by NxO Multiplication

	3.4 Matrix Inversion
	3.4.1 Implementation
	3.4.2 Code Listing - Matrix Inversion

	3.5 References

