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Preface 
This book is rather broad  in that it covers many disciplines regarding both 
mathematical  tools  (algebra,  calculus,  statistics)  and  application  areas  (air- 
borne,  automotive,  communication  and  standard  signal processing and  auto- 
matic  control  applications). The book covers all the theory an applied en- 
gineer or researcher can ask for: from  algorithms  with  complete  derivations, 
their  properties to implementation  aspects.  Special  emphasis  has been placed 
on  examples,  applications  with  real data  and case studies for illustrating  the 
ideas and  what  can be achieved. There  are more than 130 examples, of which 
at least ten  are case studies that  are reused at several occasions in the book. 
The  practitioner who wants to get a quick solution to his problem may try 
the  ‘student  approach’  to learning, by studying  standard examples and using 
pattern recognition to match  them to  the problem at hand. 

There is a strong connection to MATLABTM There is an accompanying 
toolbox, where each algorithm  in the book is implemented as one  function, each 
example is one demo, and where algorithm design, tuning,  testing  and  learning 
are all  preferably  done in the graphical user interface. A demo version of 
the toolbox is available to download from the URL http: //m. sigmoid. se. 
The demo  toolbox makes it possible to reproduce  all  examples  in the book 
in a simple way, for instance by typing book( ’exl. 7 ’ 1, so all 250 figures 
or so are completely reproducible. Further,  it might be  instructive to  tune 
the design parameters  and  compare different methods! The toolbox works 
under MATLABTM , but  to some extent also under  the freeware clone Octave. 
From the home page, exercises can  be downloaded, about half of which concern 
computer  simulations, where the toolbox is useful. Further information  can be 
foundontheURLshttp://www.wiley.co.uk/commstech/gustafsson.html 
andhttp://www.comsys.isy.liu.se/books/adfilt. 

It might be interesting to note that  the toolbox and  its  structure came 
before the first plans of writing a book. The development of the toolbox 
started  during a sabbatical visit at Newcastle University 1993. The  outline 
and  structure of the book have borrowed many  features  from the toolbox. 

This book was originally developed during several courses with  major re- 
visions in between them: mini-courses at the Nordic Matlab Conference 1997 
(50 participants), a course at SAAB during  summer 1998 (25 participants), 
ABB Corporate Research September 1998 (10 participants),  and a graduate 
course for the  graduate school Ecsel at Linkoping University 1998 and 1999 
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(25 participants).  Parts of the  material have been translated  into Swedish for 
the model-based part of a book on  Digital  Signal  Processing, where about 70 
undergraduate  students  participate each year at Linkoping University. 

My interest in this  area comes from two directions: the theoretical  side, be- 
ginning  with my thesis and  studies/lecturing  in  control  theory,  signal process- 
ing and  mathematical  statistics;  and the practical  side,  from  the  applications 
I have been in contact  with. Many of the examples  in this book come from 
academic and professional consulting.  A  typical  example of the former starts 
with an email  request  on a particular  problem, where my reply is “Give me 
representative data  and a background  description, and I’ll provide you with 
a good filter”. Many of the examples herein are  the result of such  informal 
contacts. Professionally, I have consulted for the automotive  and aerospace 
industries,  and for the Swedish defense industry. There  are many  industries 
that have raised my interest  in this  area  and fruitfully  contributed to a set 
of benchmark  examples. In particular, I would  like to mention Volvo Car, 
SAAB Aircraft, SAAB Dynamics, ABB Corporate Research, Ericsson Radio, 
Ericsson Components  and Ericsson-SAAB Avionics. In addition, a number of 
companies and helpful contacts  are acknowledged at the first appearance of 
each real-data  example.  The  many  industrial  contacts,  acquired  during  the 
supervision of some 50 master’s  theses, at least half of them in target  tracking 
and navigation, have also been a great  source of inspiration. 

My most challenging task  at  the  time of finishing this book is to partic- 
ipate in bringing various adaptive  filters  and  change  detectors  into vehicular 
systems. For NIRA Dynamics http: //www.niradynamics . se), I have pub- 
lished a number of patents on  adaptive  filters,  Kalman  filters  and  change 
detection, which are  currently  in the phase of implementation  and  evaluation. 

Valuable comments and proof reading are gratefully acknowledged to many 
of the course attendants, my colleagues and co-authors. There  are  at least 30 
people who have contributed to  the  errata sheets  during  the years. I have 
received a substantial number of constructive  comments that I believe im- 
proved the content. In general, the  group of automatic control  has a quite 
general competence  area that has  helped me a lot, for instance  with crest- 
ing a Latex  style file that satisfies me. In particular,  in  alphabetical  order, 
I wish to mention  Dr. Niclas Bergman,  Dr. Fredrik Gunnarsson,  Dr.  Johan 
Hellgren, Rickard Karlsson MSc, Dr. Magnus Larsson,  Per-Johan  Nordlund 
MSc,  Lic. Jan Palmqvist, Niclas Persson MSc, Dr.  Predrag  Pucar,  Dr. Anders 
Stenman, Mikael Tapio MSc,  Lic. Fredrik Tjarnstrom  and MAns Ostring MSc. 
My co-authors of related  articles are also acknowledged, from some of these I 
have rewritten some material. 

Finally, a project of this kind would not be possible without  the  support of 
an understanding family. I’m indebted to Lena and  to my daughters,  Rebecca 
and Erica. Thanks for letting me take your time! 



Index 

C, criterion,  125 
@ criterion,  125 
x2 test, 65,  79,  217 
MAT LAB^^ , ix 

a posteriori  distribution 

a posteriori  probability, 92 
state, 399 

P ,  397 
changing regression, 235 
state change, 360 

abrupt changes, 142 
Acoustic Echo Cancelation, 115, 167 
adaptive  control,  5, 42 
Adaptive  Forgetting through Mul- 

tiple Models, 390 
AEC, 115, 167 
AFMM, 390 
AIC, 125, 241 
AIC,  corrected, 125 
Air Traffic Control, 271,  328,  330 
alarming, 58 
algorithm 

AFMM, 390 
blind  equalization, 166, 395 

CMA, 165 
decision directed, 165 
modulus  restoral, 165 
multiple  model, 395 

blind  equalization  algorithm, 395 
Brandt’s  GLR, 79 
CUSUM, 66 
CUSUM LS, 68 
CUSUM RLS, 69 
decentralized KF, 312 

extended  least  squares, 121 
Gauss-Newton, 129 
Gauss-Newton ARMAX, 130 
Gibbs  change  detection, 394 
Gibbs-Metropolis change detec- 

GLR, 350 
GPB, 388 
IMM, 389 
information KF, 309 
KF, 279 
KF parameter  estimation, 142 
likelihood signal  detection, 75 
LMS, 134 
local search, 94,  244,  386 
MCMC segmentation, 246 
MCMC signal  segmentation, 102 
multi-step, 143 
multiple model pruning, 386 
Newton-Raphson, 127 
NLMS, 136 
optimal  segmentation, 256 
parameter  and variance detec- 

parity  space  detection, 409 
recursive parameter segmenta- 

recursive signal  segmentation, 

RLS, 138, 192 
smoothing  KF, 293,  295 
SPRT, 65 
square  root  KF, 302-305 
stationary  KF, 286 
steepest  descent, 126 

tion, 392 

tion, 224 

tion, 244 

94 

Adaptive Filtering and Change Detection
Fredrik Gustafsson

Copyright © 2000 John Wiley & Sons, Ltd
ISBNs: 0-471-49287-6 (Hardback); 0-470-84161-3 (Electronic)



494 Index 

stochastic  gradient, 126 
two-filter MLR, 358 
Viterbi, 161 
Wiener filter, 464 
WLS, 140 

AR, 118, 472 
arg  min, 60 
ARL, 29,  440 
ARMA, 120 
ARMAX, 120 
ARX, 119, 473 
association, 330 
asymptotic local approach, 149, 214 
ATC, 271,  328,  330 
Auto-Regressive, 118 
Auto-Regressive model with eXoge- 

Auto-Regressive Moving Average, 120 
Auto-Regressive Moving Average model 

auto-tuning, 431 
Average Run  Length, 440 
average run length  function, 29 

Bayes’ rule, 92 
bearing only sensors, 329 
bearings only tracking, 334 
BER, 154 
Bernoulli variables, 235 
bias  error, 144, 298,  429 
BIC, 125, 241 
Bierman’s UD factorization, 190 
Binary Phase Shift Keying, 153 
Bit Error  Rate, 154 
blind  equalization,  5, 115, 382,  390 
blind  equalization  algorithm, 166 
BPSK, 153 
Brandt’s GLR method, 212 
burn-in  time, 438 

causal, 427 
causal  Wiener  filter, 463 

nous input, 119 

with eXogenous input, 120 

CE estimate, 399 
central  fusion, 307 
change  detection, 58 
change  in the mean, 34 
change  in the mean model, 58, 471 
change  in the variance model, 472 
change  point  estimation, 89, 102 
change  time, 58 
changing regression, 233 

a posteriori  probability, 235 
generalized likelihood, 235 
marginalized likelihood, 235 
state space  model, 233 

clutter, 330 
CM, 457 
CMA, 165 
CMV, 457 
compensation, 346 
conditional  expectation, 62 
Conditional  Mean, 457 
conditional  mean  estimate, 457 
Conditional  Minimum Variance, 457 
confidence region, 399 
Constant  Modulus  Algorithm, 165 
coordinated  turns, 271 
Correct Past Decisions, 159 
CPD, 159 
curse of dimensionality, 90, 232 
CUSUM, 65 
cut off branches, 385 

dead-beat  observer, 413 
decentralized  filters, 311 
decentralized fusion, 307 
decision directed, 165 
decision error, 158 
decision feedback equalizer, 158 
Decision-directed Feedback, 390 
decoupling, 405 
dedicated  observer, 406 
Delay For Detection, 440 



Index 495 

density  function 
linear regression 

off-line,  196 
on-line, 195 

design parameters 
local search, 245 

detection,  6, 381,  389 
Detection-Estimation  Algorithm, 391 
deterministic  disturbance, 404 
deterministic  least  squares, 122 
DFD, 440 
DGPS, 341 
diagnosis, 6, 218,  475 

Differential GPS, 341 
digital  communication, 114 
distance  function, 403 
distance  measure, 19, 64,  76, 86, 

divergence, 296 

divergence test, 209,  213 
double talk, 229 
dynamic  programming, 90,  233 

echo path change, 229 
EM, 391 
equalization, 114, 153, 382,  390 
equalizer, 153 

decision feedback, 158 
linear, 155 
minimum  variance, 160 
Viterbi, 160 
zero forcing, 159 

estimation, 58 
example, see signals 
excessive mean  square  error, 145 
Expectation  Maximization, 391 
exponential  forgetting window, 59 
Extended  Kalman  Filters, 316 
extended  least  squares, 121,  129 

medical example, 173 

211, 324 

Kalman  filter, 324 

factorial,  85 
failure  signature  matrix, 351 
false alarm  rate, 28,  440 
FAR, 28,  440 
far-field scattering, 118 
fault decoupling, 405 
fault  detection,  6, 475 
fault  isolation, 18 
FDI, 6 
filtered-input LMS, 168 
filtered-X LMS, 168 
filtering, 59 
Final  Prediction  Error, 124 
Finite Impulse  Response, 37, 117, 

Finite Moving Average, 59 
FIR, 37, 117, 428,  472 
FMA, 59 
forgetting  factor, 9, 61, 138 
forward dynamic  programming, 162 
forward-backward, 292 
FPE, 124 
frequency selective fading, 117 
fusion filter, 311 
fusion formula, 311 

gamma  distribution,  85 
gamma function, 85, 401 
Gauss-Newton algorithm, 129 
Gaussian  mixture, 379,  383,  438 
generalized likelihood 

Generalized Likelihood Ratio, 87, 

generalized observer, 406,  413 
Generalized Pseudo Bayes, 391 
Generalized Pseudo-Bayesian, 388 
Generalized Viterbi  Algorithm, 390 
Geometric Moving Average, 59 
Gibbs change detection  algorithm, 

428 

changing regression, 235,  240 

209,  345 

394 



496 Index 

Gibbs  sampler, 392 
Gibbs  sampling, 438 
Gibbs-Metropolis change  detection 

GLR, 87, 209,  345 
algorithm, 350 

GMA, 59 
Godard, 165 
GPB, 388 
GPS, 337 

Hankel matrix, 404 
Heisenberg’s uncertainty, 140 
hidden Markov model, 142 
Hilbert  space, 453 
hyper model, 274 
hypothesis test 

algorithm, 392 

x2, 65,  79,  217 
Gaussian, 79 

i.i.d, 437 
IIR, 428 
IMM, 389 
Inertial Navigation System, 307 
Infinite  Impulse Response, 428 
Information  Criterion A, 125 
Information  Criterion B, 125 
information  filter, 312 
input  estimator, 344 
input observer, 344,  406 
INS, 307 
Inter-Symbol Interference, 153 
Interacting Multiple Model, 391 
inverse system identification, 114 
inverse Wishart, 223 
ISI, 153 
isolation, 6, 45,  218,  405 
iterated  Kalman filter, 317 

Jensen’s inequality, 430 
jerk model, 270 
jump linear model, 384 

jumping regression, 234 

k-step  ahead  prediction, 428 
Kalman filter, 11, 15, 62 

iterated, 317 
scale invariance, 400 

Kalman  smoother, 467 
Kullback  discrimination  information, 

Kullback divergence, 212 

law of total probability, 399 
leaky LMS, 136 
learning curves, 126 
Least Mean  Square, 11, 61, 134 
least squares, 60 

212 

deterministic, 122 
stochastic, 122 

least squares over sliding window, 

likelihood 
11 

changing regression, 235 
state change, 362 

Likelihood Ratio, 75,  208,  345 
Lindley’s paradox, 239 
linear equalizer, 155 
linear estimators, 62 
linear filter, 427 
linear regression, 115, 472 

linear regressions, 370 
LLR, 208 
LMS, 61, 134, 391 

leaky,  136 
sign data, 136 
sign error, 136 
sign-sign, 136 

state space model, 233 

local approach, 205,  210,  214 
local scattering, 117 
local search, 386 

log likelihood ratio, 208 
design parameters, 245 



Index 497 

long term prediction, 188 
loss function, 207 

LR, 75,  208,  345 
Luenberger observers, 410 

MAP, 92, 235,  457 
MAP  estimate 

state, 397,  399 

LQG,  6 

Maple, 317,  321 
MAPSD, 395 
marginalization, 400 
marginalized likelihood 

Marginalized Likelihood Ratio, 345, 

Markov chain, 384 
Markov Chain Monte Carlo, 101, 

438 
Markov models, 391 
matched  filter, 164 
Mathematica, 317,  321 
matrix inversion lemma, 192 
Maximum A  Posteriori, 457 
maximum a posteriori, 92 
Maximum A  posteriori  Probability, 

Maximum A  Posteriori Sequence De- 
tection, 395 

Maximum Generalized Likelihood, 
74, 240 

Maximum Likelihood, 71,  236 
maximum likelihood, 73 
Maximum Marginalized Likelihood, 

MCMC, 90, 101, 233,  438 
MD, 209 
MDL, 125, 150, 181, 241,  446 
MDR, 440 
Mean Time between False Alarms, 

changing regression, 235 

353 

235 

74 

440 

mean time between false alarms, 28 
Mean Time to Detection, 440 
mean time to detection, 29 

3 measurement update. 
medical diagnosis, 40 
merging, 379,  385 
Metropolis step, 392 
MGL, 74 
MIMO, 121 

385 

minimal  order  residual  filter, 420 
minimizing argument, 60 
Minimum Description  Length, 181, 

241,  446 
minimum  description  length, 125 
minimum  mean  square  error, 122 
Minimum Variance, 458 
minimum variance equalizer, 160 
minimum variance estimator, 62 
misadjustment, 145 
Missed Detection Rate, 440 
missing data, 384 
ML,  71,  236 
MLR, 345,  353 

MML, 74 
mode, 378,  474 
model 

AR, 472 
ARMA, 120 
ARMAX, 120 
ARX, 473 
change  in the mean, 471 
change  in the variance, 472 
FIR, 472 
linear regression, 115, 472 
linear state space, 473 
MIMO, 121 
multi-, 474 
non-linear parametric, 473 
OE, 120 
SISO, 121 

two-filter algorithm, 358 



498 Index 

state space  with  additive changes, 
473 

model differences, 209 
model structure selection, 382 
model validation, 77,  205 
modulus  restoral, 165 
Monte Carlo, 429 
most  probable  branch, 386 
motion  model, 16 
MTD, 29,  440 
MTFA, 28,  440 
multi-input  multi-output,  121 
multi-rate signal processing, 279 
multi-step  algorithm, 143 
multiple model pruning  algorithm, 

MV, 458 

navigation,  6 
near-field scattering, 117 
Newton-Raphson algorithm, 127 
Neyman-Pearson Lemma, 349 
NLMS, 136 
noise cancelation, 115, 167 
non-causal filter, 427 
non-causal Wiener filter, 461 
non-parametric  approach, 58 
non-stationary signal, 5 
Normalized LMS, 136 
nuisance, 70 

observability, 297 
observer,  15, 287,  406 
observer companion  form, 272 
Ockam’s razor, 124 
Ockham’s razor, 93 
Octave, ix 
OE, 120 
optimal  segmentation, 256 
optimal  simulation, 143 
ordered  statistics, 105 
outlier, 176, 227 

386 

outliers, 296,  383 
Output  Error, 120 

parameter covariance 
asymptotic, 199 

parameter  tracking,  5 
parity  equation, 405 
parity  space, 407 
Parseval’s formula, 160 
parsimonious  principle, 93, 124 
peak  error, 430 
penalty  term, 90, 93, 124, 232,  241 
PLS, 125 
point  mass  filter, 73 
Predictive Least Squares, 125 
primary  residual, 215 
projection  theorem, 282,  452 
prune, 385 
pruning, 379 
pseudo-linear regression, 119 

QR factorization, 301 
QR-factorization, 189 
quasi-score, 215 

radar, 329 
random walk, 62, 142 
Rauch-Tung-Striebel formulas, 293 
Rayleigh distribution, 117 
Recursive Least Squares, 138, 191 
recursive least  squares, 11, 61 
recursive maximum likelihood, 130 
recursive parameter  segmentation, 

recursive signal  segmentation, 94 
reduced state space  estimation, 390 
regularization, 139 
resampling  techniques, 432 
residual, 404 
residual  generation,  18 
residual structure, 405 
Rice distribution, 117 

244 



Index 499 

RLS, 61, 138, 191 
algorithm, 192 
windowed, 193 

RMSE, 429 
robustness, 406 
Root Mean Square  Error, 429 
run  test, 66 

Sato, 165 
Schwartz criterion, 125, 241 
segmentation, 29, 58, 89, 92, 94, 

231,  244,  381,  389 
selected availability, 341 
self-tuning, 137 
sensitivity, 406 
sensitivity  analysis, 299 
SER, 155 
shortest  route  problem, 162 
sign data  algorithm, 136 
sign test, 105 
sign-error  algorithm, 136 
sign-sign algorithm, 136 
signal 

airbag, 32 
aircraft altitude, 36, 107 
aircraft  dynamics, 419 
belching sheep, 45,  227 
DC motor,  42,49, 173, 327,417 
earthquake, 40 
econometrics, 35 
EKG, 48, 247 
electronic nose, 52 
friction, 12,  21, 23,  27, 175 
fuel consumption, 9, 20,  26, 81 
human  EEG, 39, 173 
NMT sales, 132 
nose, 132 
paper refinery, 33,  82 
path, 46, 249 
photon emission, 34,  106 
rat  EEG, 36,  39,  108, 123, 227 

speech, 42,  248 
target tracking, 328 
telephone sales figures, 53 
tracking,  15, 21, 28 
valve stiction, 50 

signal  estimation,  5 
signal processing, 59 
Signal-to-Noise Ratio, 155 
Single-Input  Single-Output, 12 
Singular Value Decomposition, 

sliding window, 59,  205 
smoothing, 68,  360,  427 
SNR, 155 
spectral analysis, 140 
spectral factorization, 290,  463 
specular  multi-path, 117 
spread of the mean, 387,  399 
square  root, 301 
state  estimation, 5 
state feedback, 6 
state space,  14 
state space  model, 233,  473 

algebraic  methods, 404 
state space  partitioning, 390 
static friction, 50 

SISO, 121 

1 
407 

steepest descent algorithm, 126 
step size, 62 
step-size, 134 
stiction, 50 
Stirling’s  formula, 85, 225,  259 
stochastic  gradient  algorithm, 62, 

126, 137 
stochastic  least  squares, 122 
stopping  rule, 19, 63, 442 
super formula, 289 
surveillance, 5, 58 
SVD, 407 
switch, 218 
Symbol Error  Rate, 155 
system  identification, 114, 128 



500 Index 

target  tracking,  6 
time  update, 385 
time-invariant  filter, 427 
toolbox,  ix 
tracking  error, 429 
training sequence, 155 
transient  error, 144 
trellis diagram, 162 
two-filter smoothing  formula, 293 

unknown input observer, 277 

variance  change, 75 
variance error, 144, 429 
Viterbi  algorithm,  161 
Viterbi  equalizer, 160 
voting, 406 

Wiener-Hopf equations, 461 
Wiener-Hopf equation, 122 
Windowed Least Squares, 61, 140 
windowing,  59 
Wishart  distribution, 85, 258 
WLS, 140 

z-transform, 462 
zero forcing equalizer, 159 



Part I: Introduction 

Adaptive Filtering and Change Detection
Fredrik Gustafsson

Copyright © 2000 John Wiley & Sons, Ltd
ISBNs: 0-471-49287-6 (Hardback); 0-470-84161-3 (Electronic)



Extended summary 
1.1. About the book . . . . . . . . . . . . . . . . . . . . . . .  3 

1.1.1. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 
1.1.2. Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
1.1.3. Background  knowledge . . . . . . . . . . . . . . . . . . . .  6 
1.1.4. Outline  and  reading  advice . . . . . . . . . . . . . . . . .  7 

1.2. Adaptive  linear  filtering . . . . . . . . . . . . . . . . . .  8 
1.2.1. Signal  estimation . . . . . . . . . . . . . . . . . . . . . . .  9 
1.2.2. Parameter  estimation using adaptive filtering . . . . . . .  11 
1.2.3. State estimation  using  Kalman filtering . . . . . . . . . .  13 

1.3. Change  detection . . . . . . . . . . . . . . . . . . . . . .  17 
1.3.1. Filters  as  residual  generators . . . . . . . . . . . . . . . .  17 
1.3.2. Stopping  rules . . . . . . . . . . . . . . . . . . . . . . . .  18 
1.3.3. One-model  approach . . . . . . . . . . . . . . . . . . . . .  19 
1.3.4. Two-model  approach . . . . . . . . . . . . . . . . . . . . .  22 
1.3.5. Multi-model  approach . . . . . . . . . . . . . . . . . . . .  23 

1.4. Evaluation and formal design . . . . . . . . . . . . . . .  26 
1.4.1. General  considerations . . . . . . . . . . . . . . . . . . . .  26 
1.4.2. Performance  measures . . . . . . . . . . . . . . . . . . . .  28 

1.1. About  the  book 

1 . 1 . 1. Outlook 

The areas of adaptive  filtering and change (fault) detection  are  quite  active 
fields. both in research and applications . Some  central keywords of the book 
are  listed  in  Table 1.1, and  the figures. illustrated  in  Figure 1.1, give an idea 
of the relative  activity in the different areas . For comparison. the two related 
and well established  areas of adaptive  control  and  system  identification  are 
included in the  table . Such a search gives a quick idea of the size of the 
areas.  but  there  are of course many  shortcomings. and  the  comparison may 
be  unfair at several  instances . Still. it is interesting to see that  the theory 
has reached many successful applications. which  is directly reflected in the 
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Table 1.1. Keywords and  number of hits (March 2000) in different databases. For Sci- 
enceDirect the  maximum  number of hits is limited to 2000. On some of the rows, the logical 
‘or’ is used for related keywords like ‘adaptive signal processing or adaptive  estimation or 
adaptive filter’. 

Keyword 
Adaptive  filter/estimation/SP 
Kalman filter 
Adaptive equalizer (Eq) 
Target tracking 
Fault diagnosis (FDI) 
Adaptive control (AC) 
(System) Identification (SI) 
Total  number of items 

IEL ScienceDirect IBM patent 
4661 952 871 
1921 1642 317 
479 74 291 
890 124 402 

2413 417 74 
4563 2000 666 
8894 2000 317 

588683 856692 2582588 

I EL ScienceDirect IBM patents 
Kalman Kalman 

AC  AC 

Figure 1 . l .  Relative  frequency of keywords in different databases. 

number of patents. Browsing the titles also indicates that many journal  and 
conference publications concern applications.  Figure 1.2 reveals the,  perhaps 
well known, fact that  the communication industry is more keen to hold patents 
(here:  equalization).  Algorithms  aimed at real-time  implementation  are also, 
of course, more often  subject to  patents, compared to, for instance,  system 
identification, which is a part of the design process. 

Table 1.2 lists a few books  in  these  areas. It is not meant to  be compre- 
hensive, only to show a few important monographs  in the respective  areas. 

1.1.2. Aim 

The  aim of the book is to provide theory,  algorithms  and  applications of adap- 
tive filters with or without  support  from change detection  algorithms. Appli- 
cations in these  areas  can be divided  into the  the following categories: 
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Patents per publication 
SI 

Adaptive AC 

Figure 1.2. Relative ratio of number of patents found  in the IBM database  compared  to 
publications  in IEL for different keywords. 

Keyword 
Adaptive filters 

Kalman filter 

Adaptive equalizer 

Target tracking 

Fault diagnosis 

Adaptive control 
System identification 

Table 1.2. Related books. 

Books 
Haykin (1996), Mulgrew and Cowan (1988), Widrow and 
Stearns (1985), Cowan and  Grant (1985) 
Kailath  et al. (1998), Minkler and Minkler (1990), Anderson 
and Moore (1979), Brown and Hwang (1997), Chui and  Chen 

Proakis (1995), Haykin (1994), Gardner (1993), Mulgrew and 
Cowan (1988) 
Bar-Shalom and  Fortmann (1988), Bar-Shalom and Li (1993), 
Blackman (1986) 
Basseville and Nikiforov (1993), Gertler (1998), Chen  and 
Patton (1999), Mangoubi (1998) 
Wstrom and  Wittenmark (1989), Goodwin and Sin (1984) 
Ljung (1999), Soderstrom  and Stoica (1989), Johansson (1993) 

(1987)7 

0 Surveillance and parameter  tracking. Classical surveillance  problems 
consist in  filtering noisy measurements of physical variables  as flows, tem- 
peratures,  pressures  etc, which  will be called signal  estimation. Model- 
based approaches, where (time-varying) parameters in a model of a non- 
stationary signal need to be  estimated, is a problem of parameter track- 
ing. Adaptive control belongs to  this  area.  Another  example is blind 
equalization in  digital  communication. 

0 State  estimation. The  Kalman filter provides the best  linear state es- 
timate,  and change detection support can  be used to speed up  the re- 
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sponse  after  disturbances and  abrupt  state changes. Feedback control 
using state feedback, such as  Linear Quadratic Gaussian LQG control, 
belongs to this  area. Navigation and target  tracking are two particular 
application  examples. 

0 Fault  detection. Faults  can  occur  in  almost  all  systems.  Change  detec- 
tion  here has the role of locating the fault  occurrence  in time  and  to give 
a quick alarm.  After the alarm,  isolation is often needed to locate the 
faulty  component.  The combined  task of detection and isolation is  com- 
monly referred to as diagnosis. Fault  detection  can  be  recast to one of 
parameter or state estimation.  Faults  in actuators  and sensors are most 
easily detected  in  a state space  context, while system  dynamic changes 
often  require  parametric models. 

These  problems  are  usually treated separately  in literature in the  areas of sig- 
nal  processing, mathematical  statistics,  automatic control,  communication sys- 
tems  and  quality  control. However, the tools for solving these  problems have 
much in  common,  and  the  same  type of algorithms  can  be used (C.R.  John- 
son,  1995). The close links between these  areas  are  clearly  under-estimated  in 
literature. 

The  main difference of the  problem areas above lies in the evaluation cri- 
teria.  In  surveillance the  parameter  estimate should  be  as close as possible 
to  the  true value, while  in fault  detection it is essential to get an  alarm  from 
the change detector  as soon as possible after  the  fault,  and  at  the  same  time 
generating few false alarms.  In  fault  detection, isolation of the fault is also a 
main  task.  The combination of fault  detection and isolation is often  abbre- 
viated to FDI, and  the combined task  can  be  referred to as diagnosis. More 
terminology used in  this  area is found  in  Appendix B. 

The design usually consists of the following steps: 

1. Modeling the signal  or  system. 

2. Implementing  an  algorithm. 

3. Tuning  the algorithm  with  respect to certain  evaluation  criteria,  either 
using real or simulated data. 

The  main focus is on algorithms and  their properties,  implementation,  tuning 
and evaluation. Modeling is  covered only briefly, but  the  numerous  examples 
should give an idea of the possibilities of model-based signal processing. 

1 .l .3. Background  knowledge 

The derivations and analysis  can  be  divided  into the following areas,  and some 
prior knowledge, or at least  orientation, of these is required: 
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0 Statistical  theory:  maximum likelihood, conditional  distributions  etc. 

0 Calculus:  integrations,  differentiations,  equation solving etc. 

0 Matrix algebra:  projections,  subspaces, matrix factorizations  etc. 

0 Signal modeling: transfer  functions and  state space models. 

0 Classical filter  theory: the use of a low-pass filter for signal  conditioning, 
poles and zeros etc.  Transforms and frequency domain  interpretations 
occur, but  are relatively  rare. 

To  use the  methods, it is essential to  understand  the model and  the  statistical 
approach.  These  are  explained  in each chapter  in  a  section called ‘Basics’. 
These  sections  should provide enough  information for understanding  and  tun- 
ing the algorithms. A deeper understanding requires the reader to go through 
the calculus and  matrix algebra  in the derivations. The  practitioner who is 
mainly interested  in  what kind of problems  can  be  addressed is advised to 
start with the examples and applications  sections. 

1 .l .4. Outline and  reading advice 

There  are certain shortcuts  to approaching the book, and advice on how to 
read the book is appropriate.  Chapter 1 is a  summary  and overview of the 
book, while Chapter 2 overviews possible applications and reviews the ba- 
sic mathematical signal models. These  first two chapters  should serve as  an 
overview of the field, suitable for those who want to know what can  be  done 
rather  than how it is done. Chapters 3, 5 and 8 - the first  chapter  in each 
part ~ are  the core chapters of the book, where standard approaches to  adap- 
tive  filtering  are  detailed.  These  can  be used independently of the rest of the 
material. The  other chapters start with a section called ‘Basics’, which can 
also be considered as  essential knowledge. Part V is a somewhat  abstract pre- 
sentation of filter  theory  in  general,  without using explicit  signal models. It is 
advisable to check the content at  an early  stage, but  the reader  should  in no 
way spend  too much time  trying to digest all of the details.  Instead, browse 
through  and  return  to  the details  later. However, the ideas  should  be  familiar 
before starting with the  other  parts.  The  material can  be used as follows: 

0 Chapters 1 and 2 are  suitable for people from within industry who want 
an orientation  in  what  adaptive  filtering is, and  what change detection 
can add  to performance. An important goal is to  understand  what kind 
of practical  problems  can  be solved. 

0 Chapters 5, 8 and 13 are  suitable for an  undergraduate course  in  adaptive 
filtering. 
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Table 1.3. Organization of the book chapters. 

Estimation of 
Approach 

Chapter 11 Algebraic (parity  space)  change  detection 
Chapter 4 Chapter 7 Chapter 10 Multiple-model  based  change  detection 
Chapter 3 Chapter 6 Chapter 9 Maximum likelihood based  change  detection 

detection 
Chapter 3 Chapter 5 Chapter 8 Adaptive  filtering and  whiteness  based  change 
Signal  Parameter  State 

0 Chapters 1, 2, 3, 5, 8, 12, 13 and  the ‘Basics’ sections  in the  other 
chapters  can  be included in a graduate course on  adaptive  filtering  with 
orientation of change detection, while a more  thorough course for stu- 
dents specializing in the  area would include the whole book. 

This  matrix organization is illustrated  in  Table 1.3. Part I1 on  signal  estima- 
tion  has  many  interesting  signal processing applications, but  it also serves as a 
primer  on the change detection  chapters  in Parts I11 and IV. The approach  in 
Chapter 11 is algebraic rather  than  statistical,  and  can  be  studied separately. 
Appendix  A overviews the signal models used in the book, and presents the 
main  notation, while Appendix B summarizes  notation used in the  literature 
on  fault  detection. The only way in which the book should  not be approached 
is probably a reading  from cover to cover. The theory  in  the last part is im- 
portant  to  grasp  at  an early  stage,  and so are  the basics in  change  detection. 
Some of the  parts on change detection will appear  rather  repetitive, since the 
basic ideas are  quite  similar for signal,  parameter  and  state  estimation. More 
specifically, Part I1 can be seen as a special case (or an illustrative first order 
example) of Part 111. 

1.2. Adaptive linear  filtering 

Three conceptually different (although  algorithmically  similar) cases exist: 

0 Signal estimation. 

0 Parameter  estimation  in an unknown model. 

0 State  estimation in a known model. 

The following sections will explain the basic ideas of these  problems, and 
introduce one central  example to each of them  that will be used throughout 
the  chapter. 
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1.2.1. Signal  estimation 

The basic signal  estimation  problem is to estimate  the signal part Ot in the 
noisy measurement yt in the model 

An example of an  adaptive  algorithm is 

Here At will be referred to as the forgetting fuctor. It is a design parameter 
that affects the tracking  speed of the algorithm. As  will become clear from 
the  examples  to follow, it is a trade-off between tracking  speed and noise 
attenuation.  The archetypical  example is to use At = X, when this also  has 
the  interpretation of the pole in a first  order low-pass filter. More generally, 
any  (low-pass)  filter  can  be used. If it is known that  the signal level has 
undergone  an  abrupt change,  as might be  indicated by a change detection 
algorithm,  then  there is a  possibility to momentarily forget all old information 
by setting At  = 0 once. This is an  example of decision feedback in an  adaptive 
filter, which  will  play an  important role in change detection. An illustrative 
surveillance  problem is  given  below. 

Example 7.7 Fuel  consumption 

The following application  illustrates the use of change detection for im- 
proving signal  quality. The  data consist of measurements of instantaneous 
fuel consumption available from  the electronic  injection  system  in a Volvo 850 
GLT used as  a  test  car. The raw data are pulse lengths of a  binary  signal, 
called t,, which  is the control  signal  from the electronic  injection  system to 
the cylinders.  When t ,  = 1, fuel is injected  with  roughly  constant flow, so the 
length of the t ,  pulses is a  measure of fuel consumption. The  measured signal 
contains  a lot of measurement noise and needs some kind of filtering before 
being displayed to  the driver on the dashboard.  Intuitively, the  actual fuel 
consumption  cannot change arbitrarily  fast,  and  the  measured  signal  must  be 
smoothed by a  filter. There  are two requirements on the filter: 

0 Good attenuation of noise  is necessary to be  able to  tune  the accelerator 
during  cruising. 

0 Good  tracking ability. Tests show that fuel consumption very often 
changes abruptly, especially in  city  traffic. 
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- Slow filter 
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Figure 1.3. Measurements of fuel consumption and two candidate filters. Data collected by 
the  author in a collaboration with Volvo. 

These  requirements are  contradictory for standard linear filters. The  thin 
lines in  Figure 1.3 show measurements of fuel consumption for a test in  city 
traffic. The solid lines show the result of (1.2) for two particular values of 
the forgetting  factor X. The fast filter follows the  abrupt changes well, but 
attenuates  the noise unsatisfactorily, and  it is the  other way around for the 
slow filter. The best compromise is probably somewhere in between these 
filters. 

The  fundamental trade-off between speed and accuracy is inherent  in  all 
linear filters. Change  detectors provide a tool to design non-linear filters with 
better performance for the  type of abruptly changing  signal  in  Figure 1.3. 

Figure 1.4 shows the raw data,  together  with a filter implemented by  Volvo 
(not  exactly the  same filter, but  the principal  functionality is the same). Volvo 
uses a quite  fast low-pass filter to get good tracking  ability  and  then  quantizes 
the result to a multiple of 0.3 to  attenuate some of the noise. To avoid a rapidly 
changing value in the  monitor,  they  update  the monitored estimate only once 
a second. However, the  quantization introduces a problem when trying to 
minimize fuel consumption manually, and  the response time  to changes of one 
second makes the feedback information to  the driver less useful. 
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Figure 1.4. Measured fuel consumption  and a filtered  signal  similar to Volvo's implemented 
filter. 

1.2.2. Parameter  estimation  using adaptive filtering 

A quite  general  parametric  model of a  linear  system is 

Here G(q; 0) and H(q;  0) are two filters  expressed  in the delay operator q 
defined by qut = ut+l. The  parameters I9 in the model  are  assumed to be 
time-varying, and  are  to  be  estimated recursively. Here and in the sequel ut 
denotes  measured  inputs to  the system, if available, and et is an unknown 
input  supposed  to  be modeled as a stochastic noise disturbance. 

The generic form of an  adaptive  algorithm is 

et,, = et + K t E t ,  

E t  = Yt - !?to 

The  output from the  estimated model is compared to  the system, which defines 
the residual E t .  The  adaptive filter acts  as  a  system inverse, as  depicted  in 
Figure 1.5. One  common  filter that does  this  operation for linear  in parameter 
models is the recursive least squares (RLS) filter. Other well known filters  are 
Least Mean Square (LMS) (unnormalized  or  normalized), the Kalman  filter 
and least squares over  sliding  window. This book focuses on parametric models 
that are  linear  in the  parameters  (not necessarily linear  in the measurements). 
The reason for this is that  the statistical  approaches  become  optimal  in  this 
case. How to obtain  sub-optimal  algorithms for the general  linear  filter  model 
will be  discussed. 
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Figure 1.5. The interplay  between the  parameter  estimator and the system. 

Example 7.2 Friction  estimation 
This example  introduces a case study  that will be  studied  in Section 5.10.3. 

It has been noted  (Dieckmann, 1992) that  the dependence between the so- 
called wheel slip and  traction force is related to friction. The slip is defined as 
the relative difference of a driven wheel’s circumferential velocity, w,r,, and 
its  absolute velocity, v,: 

S =  
wr, - v, 

V ,  
7 

where r, is the wheel radius. We also define the normalized  traction  force, p, 
(sometimes referred to as  the friction coefficient) as the  ratio of traction force 
( F f )  at  the wheel and normal force ( N )  on one  driven wheel, 

Ff p = - .  
N 

Here p is computed  from  measurements,  in  this case a fuel injection signal, 
via an engine model. In  the sequel we will consider S and p as measurements. 

Define the slip slope k as 

The hypothesis is that k is related to friction, and  the problem is to adaptively 
estimate  it. 

The goal is to derive a linear regression model, i.e. a model linear  in the 
parameters.  The slip slope k we want to compute is defined in  (1.7), which 
for small p reads  (including an offset term S) 

p = k ( s  - S), 

where also S is unknown. Although this is a model linear  in the parameters, 
there  are two good reasons for rewriting  it as 

1 
k 

s = p - + S .  
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That is, we consider S to be  a  function of p rather  than  the  other way around. 
The reasons  are that S, contains  more noise than pm, and  that  the  parameter 
S is varying much  slower as  compared to kS. Both these arguments facilitate 
a successful filter design. Note that all  quantities  in the basic  equation (1.9) 
are dimensionless. 

We will apply  a  filter where 1/k and S are  estimated  simultaneously. The 
design goals are 

0 to get accurate values on k while  keeping the possibility to track slow 
variations  in both k and S, and  at  the  same  time 

0 to detect abrupt changes in k rapidly. 

This case study will be approached by a Kalman  filter  supplemented by a 
change detection  algorithm,  detailed  in Section 5.10.3. 

A notationally simplified model that will be used  is  given  by 

where 154 = (Oil), 0i2))T is the  parameter vector consisting of inverse slope 
and  the offset, ut is the  input  to  the  model  (the engine torque)  and yt is the 
measured  output  (the wheel slip). 

An example of measurements of yt, ut from a  test  drive is shown  in  Figure 
1.6(a).  The car  enters  a low friction  area at  sample 200 where the slope pa- 
rameter Oil) increases. Figure  1.6(b) shows a  scatter plot of the measurements 
together  with  a least squares fit of straight  lines,  according to  the model 1.10, 
to  the  measurements before and  after  a friction change. 

Two adaptive  filters were applied,  one  fast and  one slow. Figure  1.7 il- 
lustrates  the basic limitations of linear  filters: the slow filter gives a  stable 
estimate,  but is too slow in  tracking the friction  change, while the fast  filter 
gives an  output  that is too noisy  for monitoring  purposes.  Even the fast  filter 
has problem  in  tracking  the  friction  change  in  this  example. The reason is poor 
excitation,  as  can  be seen in  Figure  1.6(b). There is only a small  variation  in 
ut after  the change (circles),  compared to  the first 200 samples. A thorough 
discussion on this  matter is found  in Section 5.10.3. 

1.2.3. State  estimation  using  Kalman  filtering 

For state  estimation, we essentially run a model  in  parallel  with the system 
and  compute  the residual  as the difference. The model is specified in state 
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Figure 1.6. Measurements of yt and ut from a test drive going from dry  asphalt to ice (a). 
A scatter plot (b) reveals the  straight line friction  model. The  data were collected by the 
author in  collaboration with Volvo. 
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Figure 1.7. Estimated slope and offset as a function of sample  number. 

space form: 

(1.11) 

Here yt is a measured signal, A, B ,  C, D are known matrices and xt is an un- 
known vector (the  state).  There  are  three  inputs  to  the system: the observable 
(and controllable) ut, the non-observable process noise and  the measurement 
noise et. 
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Figure 1.8. The interplay  between the  state  estimator  and  the  system. 

In  a  statistical  setting,  state  estimation is  achieved via a Kalman $filter, 
while in  a  deterministic  setting, where the noises are neglected, the same 
device is called an observer. A generic form of a Kalman  filter and  an observer 
is 

(1.12) 

where Kt is the filter  gain specifying the algorithm. The  Kalman filter provides 
the equations for mapping  the model  onto the gain  as a function 

The noise covariance matrices Q, R are  generally considered to have some 
degrees of freedom that act  as the design parameters.  Figure 1.8 illustrates 
how the  Kalman filter  aims at ‘inverting’ the system. 

Example 1.3 Target tracking 

The typical  application of target  tracking is to estimate  the position of air- 
craft. A civil application is air  traffic  control (ATC) where the traffic surveil- 
lance system at each airport  wants to get the position and predicted  positions 
of all aircraft at  a certain  distance  from  the  airport.  There  are  plenty of 
military  applications  where, for several  reasons, the position and predicted 
position of hostile  aircraft  are  crucial  information. There  are also a few other 
applications where the  target is not an  aircraft. 

As an  illustration of Kalman  filtering, consider the  problem of target  track- 
ing where a  radar measures  range R and bearing 8 to  an aircraft. The mea- 
surements  are  shown  in  Figure 1.9 as circles. These  are noisy and  the purpose 
of the  Kalman filter is firstly to  attenuate  the noise and secondly to predict 
future positions of the aircraft. This application is described  in Section 8.12.2. 

One possible model for these  tracking  applications is the following state 
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Figure 1.9. Radar  measurements  (a)  and  estimates from  a Kalman filter (b) for an aircraft 
in-flight manoeuvre. 

space model 

/l 0 T 0) 

xt+T = 1 0  0 1 O I X t t l  T 0 I W t  (1.14) 

\o 0 0 1) 

Yt = + et. 

The  state vector used here is X = ( ~ 1 ~ ~ 2 , 7 1 1 , 7 1 2 ) ~ ~  where xi is the position 
in 2D, zli the corresponding velocity. The  state equation  is  one  example of 
a motion model describing the dynamics of the  object to be tracked. More 
examples are given in Chapter 8. 

The measurements are  transformed to this  coordinate  system  and a Kalman 
filter is applied. The resulting  estimates are marked  with stars. We can  note 
that  the tracking is poor,  and as will be  demonstrated,  the filter can  be  better 
tuned. 

To summarize  what  has been said, conventional adaptive  filters have the 
following  well-known shortcoming: 

Fundamental limitation of linear adaptive filters 
The  adaptation gain  in a linear  adaptive filter is a compromise 
between noise attenuation  and  tracking ability. 
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1.3. Change  detection 

Algorithmically, all proposed change detectors  can  be  put  into one of the 
following three categories: 

0 Methods using one filter, where a whiteness test is applied to  the resid- 
uals from a linear filter. 

0 Methods using two filters,  one slow and one fast one, in parallel. 

0 Methods using multiple filters in  parallel, each one matched to certain 
assumption  on  the  abrupt changes. 

In  the following subsections,  these will be briefly described. Let us note that 
the  computational complexity of the  algorithm is proportional to how many 
filters are used. Before reviewing these  methods, we first need to define what 
is meant by a residual  in this  context,  and we also need a tool for deciding 
whether a result is significant or not - a stopping rule. 

1.3.1. Filters  as  residual  generators 

A good understanding of the Kalman  and  adaptive filters  requires a thorough 
reading of Chapters 5 and 8. However, as a shortcut  to  understanding  sta- 
tistical change detection, we only need to know the following property, also 
illustrated in Figure 1.10. 

Residual  generation 
Under  certain model assumptions, the Kalman  and  adaptive filters 
take  the measured signals and  transform  them  to a sequence of 
residuals that resemble white noise before the change  occurs. 

From a change detection  point of view, it  does  not matter which filter we 
use and  the modeling phase  can be seen as a standard  task.  The filters also 
computes  other  statistics that  are used by some change  detectors,  but  more 
on this  later. 

4 Filter 

Figure 1.10. A whitening filter takes  the observed input ut and  output yt and  transforms 
them  to a sequence of residuals E t .  
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In  a perfect world, the residuals would be zero before a  change and non-zero 
afterwards. Since measurement noise and process disturbances  are  fundamen- 
tal problems  in the  statistical  approach  to change  detection, the  actual value 
of the residuals  cannot  be  predicted.  Instead, we have to rely on  their average 
behavior. 

If there is  no change in the system,  and  the  model is correct, then  the 
residuals  are so-called white noise, that is a sequence of independent  stochastic 
variables with zero mean and known variance. 

After the change either the mean  or  variance  or both changes, that is, the 
residuals become ‘large’ in some sense. The main  problem  in  statistical  change 
detection is to decide what ‘large’ is. 

Chapter 11 reviews how state space models can  be used  for filtering  (or 
residual generation as  it will be  referred to in this  context).  The idea is to 
find a  set of residuals that is sensitive to  the faults,  such that a particular 
fault will excite different combinations of the residuals. The  main approach 
taken  in that chapter is based on  parity  spaces. The first step is to stack  all 
variables into  vectors. The linear  signal  model  can then  be expressed  as 

where Yt is a vector of outputs, Ut is a vector of inputs, Dt the disturbances 
and Ft the faults. The residual is then defined as a projection 

With proper design of W ,  the residual will react to certain  faults  in specific 
patters,  making fault  isolation possible. A simple  example is when the mea- 
surement is two-dimensional, and  the  state  disturbance  and  the fault are  both 
scalar  functions of time. Then,  under  certain conditions,  it is possible to lin- 
early transform  the  measurement  to ~t = (dt ,  f t ) T .  A projection that keeps 
only the second component  can now be used as the residual to detect  faults, 
and it is said that  the disturbance is decoupled. 

It should also be  noted that  the residual is not the only indicator of a 
change (that is, it is not a sufficient statistic) in  all cases. So even though 
residual based change detection  as  outlined below  is applicable  in  many cases, 
there might be improved algorithms. The simplified presentation  in  this  chap- 
ter hides the fact that  the multi-model  approaches below actually use other 
statistics,  but  the residual  still plays a very important role. 

1.3.2. Stopping rules 

Many change detection  algorithms,  among  these  algorithms  in the classes of 
one-model  and two-model approaches below, can  be  recast  into the problem 
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of deciding on the following two hypotheses: 

H0 : E(st) = 0, 
H1 :E(st) > 0. 

A stopping  rule is essentially achieved by low-pass filtering st and comparing 
this value to a threshold. Below, two such low-pass filters are given: 

0 The  Cumulative SUM (CUSUM) test of Page (1954): 

gt = max(gt-1 + st - v, 0), alarm if gt > h. 

The drift  parameter U influences the low-pass effect, and  the threshold h 
(and also v) influences the performance of the detector. 

0 The Geometric Moving Average (GMA)  test  in  Roberts (1959) 

gt = Xgt-1 + (1 - X)st, alarm if gt > h. 

Here, the forgetting  factor X is used to  tune  the low-pass effect, and  the 
threshold h is used to  tune  the performance of the detector. Using no 
forgetting at all (X = 0), corresponds to thresholding directly, which is 
one option. 

1.3.3. One-model approach 

Statistical  whiteness  tests  can  be used to test if the residuals are white noise 
as  they should  be if there is no change. 

Figure 1.11 shows the basic structure, where the filter residuals are  trans- 
formed to a distance  measure, that measures the deviation  from the no-change 
hypothesis. The stopping  rule decides whether the deviation is significant or 
not.  The most natural  distance measures are listed below: 

0 Change in the mean. The residual itself is used in the stopping  rule  and 
S t  = E t .  

0 Change  in variance. The  squared residual subtracted by a known residual 
variance X is  used and st = E; - X. 

Data 
c Filter Stopping  rule - Distance meas. c 

E t  S t  Alarm 
c 

Yt, Ut k, ta  

Figure 1.11. Change detection based on a whiteness test from  filter  residuals. 
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0 Change  in  correlation. The correlation between the residual and  past 
outputs  and/or  inputs  are used and st = Etyt-k or st = ~ t u t - k  for some 
k .  

0 Change in sign correlation. For instance,  one  can use the fact that white 
residuals  should change sign every second sample  in  the average and use 
st = sign(etet-l). A variant of this sign test is  given in Section 4.5.3. 

Example 7.4 Fuel  consumption 

To improve on the filter  in  Example 1.1, the CUSUM test is applied to  the 
residuals of a slow filter, like that in  Figure 1.3. For the design parameters 
h = 5 and v = 0.5, the response  in  Figure 1.12 is obtained. The vertical lines 
illustrate  the  alarm times of the CUSUM algorithm. The lower plot shows how 
the  test  statistic exceeds the threshold level h at each alarm.  The  adaptive 
filter in this  example  computes the mean of the signal  from the latest  alarm to 
the current  time. With  a  bad  tuning of the CUSUM algorithm, we get either 
the  total mean of the signal if there  are no alarms at all,  or we get the signal 
back as the  estimate if the CUSUM test gives an  alarm at each time  instant. 
These  are  the two extreme  points  in the design. Note that nothing worse can 
happen, so the  stability of the filter is not an issue here. To avoid the first 
situation where the  estimate will  converge to  the overall signal  mean,  a better 
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Figure 1.12. Response of an  adaptive filter restarted each time a CUSUM test ( h  = 5 ,  
v = 0.5), fed with  the filter residuals, gives an  alarm.  The lower plot shows the  test  statistic 
of the CUSUM test. 
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design is to use a slow adaptive  filter of the  type  illustrated in  Figure 1.3. To 
avoid the second degenerate case, an  alarm can  trigger a fast  filter  instead of 
a  complete  filter restart.  That is, the algorithm  alternates between slow and 
fast  forgetting  instead of complete  or no forgetting. 

In  contrast to  the  example above, the next  example shows a case where 
the user gets important information from the change detector  itself. 

Example 1.5 friction  estimation 

Figure 1.13  shows how a whiteness test, used  for restarting  the filter,  can 
improve the filtering  result  in  Example 1.2 quite considerably. 

Here the CUSUM test  statistics from the residuals is used, and  the  test 
statistics gt are  shown  in the lower plot  in  Figure 1.13. Note that  the test 
statistics  start  to grow at  time 200, but  that  the conservative threshold level 
of 3 is not reached until  time 210. 

- 
0.04 - - - True  parameters 

Estimated  parameters 
I 
I 
I 

v-- 
100 150  200 250 300 

41  ' 4  
I I 

"0 50 100 150 200 250 300 
Time  [samples] 

Figure 1 .l 3. Estimated friction parameters  (upper  plot)  and  test  statistics from the CUSUM 
test (lower plot).  Note  the  improved  tracking ability  compared to Figure 1.7. 

In  the following example, change detection is a  tool for improved tracking, 
and  the changes themselves do not  contain much information for the user. 

Example 1.6 Target tracking 

This  example is a  continuation of Example 1.3, and  the application of the 
CUSUM test is analogous to Example 1.5. Figure  1.14(a) shows the  estimated 
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Figure 1.14. Radar  measurements  and  estimates from a Kalman filter with feedback from 
a CUSUM detector  (a), giving alarms at samples 19 and 39. The right  plot (b) shows the 
CUSUM test  statistics  and  the  alarm level. 

position  compared to  the  true one, while Figure  1.14(b) shows the  test  statis- 
tics  from the CUSUM test. We get an  alarm in the beginning  telling  us that 
the position  prediction  errors are much larger than expected.  After filter con- 
vergence, there  are  alarms at samples 16, 39 and 64, respectively. These  occur 
in the manoeuvres and  the filter gain is increased momentarily,  implying that 
the  estimates come back to  the right  track  almost  directly  after the  alarms. 

1.3.4. Two-model approach 

A model based on recent data only is compared to a model based on data 
from a much larger data window. By recent data we often  mean data from a 
sliding window. The basic procedure is illustrated  in (1.15) and  Figure 1.15. 

Model M1 
A 

Data : 51, Yz, . . ., Yt-L,Yt-L+l,. . ., Y; (1.15) 
., 

Model M2 

The model (M2) is based on data from a sliding window of size L and is 
compared to a model ( M l )  based on  all data or a substantially  larger  sliding 
window. If the model based on the larger data window  gives larger  residuals, 

then a change is detected.  The problem  here is to choose a norm that corre- 
sponds to a relevant statistical measure. Some norms that have been proposed 
are: 
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Figure 1.15. Two parallel  filters,  one slow to get  good noise attenuation  and one fast to get 
fast  tracking. The switch decides hypothesis H0 (no change) or H1 (change). 

0 The Generalized Likelihood Ratio (GLR), see Appel  and  Brandt (1983). 

0 The divergence test, see Basseville and Benveniste (1983a). 

0 Change  in  spectral  distance. There  are numerous  methods to measure 
the  distance between two spectra.  One  approach, not discussed further 
here, would be to compare the  spectral  distance of the two models. 

These  criteria provide an st to  be  put  into a stopping  rule  in Section 1.3.2, for 
instance,  the CUSUM test. 

The choice of window  size L is critical here. On  the one hand, a large value 
is needed to get an  accurate model in the sliding window and,  on  the  other 
hand, a small value is needed to get quick detection. 

Example 7.7 Friction  estimation 

Consider the slow and fast  filters  in  Example 1.2.  As one (na'i..)  way 
to switch between these filters, we may compare  their residuals. Figure 1.16 
shows the  ratio 

as a function of time. Here Q is a small  number to prevent division by zero. 
After time 200, the fast filter gives smaller  residuals  in the average. However, 
this simple  strategy  has  certain  shortcomings. For instance, the switch will 
change far  too  often between the two filter outputs. 

1.3.5. Multi-model approach 

An important  property of the  Kalman filter and RLS filter is the following. If 
the change time, or set of change  times, is known, then  the filter can  be  tailored 
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Figure 1.16. The  residual  ratio I E ~ ~ ) ~ / ( C X  + 1$)1) from the fast and slow filters in  Example 
1.2. In the lower plot,  the  ratio is low-pass filtered before the  magnitude is plotted. 

to this knowledge so that it gives white  residuals even after  the change(s). Such 
filters  are  usually called matched  $filters, because  they  are  matched to specific 
assumptions on the  true system. 

The idea  in the multi-model  approach is to  enumerate all conceivable hy- 
potheses about change times and  compare  the residuals from their  matched 
filters. The filter  with the ‘smallest’  residuals wins, and gives an  estimate of 
the change times that usually is quite  accurate.  The  setup is depicted  in  Figure 
1.17. The formulation is in a sense off-line, since a batch of data is considered, 
but many  proposed  algorithms turn out to process data recursively, and  they 
are  consequently  on-line. 

Again, we must decide what is meant by ‘small’  residuals. By just  taking 
the  norm of the residuals,  it turns  out  that we can  make the residuals  smaller 
and smaller by increasing the  number of hypothesized change times. That is, 
a  penalty on the  number of changes must  be  builtin. 

There can be a change or no change at each time  instant, so there  are 
2t possible matched  filters at  time t .  Thus,  it is often infeasible to apply  all 
possible matched  filters to  the  data. Much effort has been spent  in developing 
intelligent  search schemes that only keep a constant  number of filters at each 
time. 

To summarize, the  fundamental trade-off inherent  in  all  change  detection 
algorithms is the following: 
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Figure 1.17. A bank of matched  filters,  each  one  based  on a  particular  assumption  on  the 
set of change  times R = { k i } ~ = L = l ,  that  are  compared in a  hypothesis  test. 

Fundamental limitation of change detection 
The design is a compromise between detecting  true changes and 
avoiding false alarms. I 

On  the  other  hand,  adaptive filters complemented  with a change  detection 
algorithms,  as  depicted in Figure 1.18 for the whiteness test principle, offer 
t  h( 3 following possibility: 

Fundamental limitation of 
change detection for adaptive filtering 

The design can be seen as choosing one slow nominal filter and 
one fast filter used after  detections. The design is a compromise 
between how often the fast filter should be used. A bad design 
gives either  the slow filter (no  alarms  from  the  detector)  or  the 
fast filter (many false alarms),  and  that is basically the worst that 
can  happen. 
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Figure 1.18. Basic feedback structure for adaptive  filtering  with  a  change  detector.  The 
linear  filter  switches  between a slow and  a  fast  mode  depending on the  alarm  signal. 

1.4. Evaluation  and  formal  design 

1.4.1. General considerations 

Evaluation of the design can  be  done  either  on  simulated data or on real data, 
where the change times or true  parameters  are known. There  are completely 
different evaluation  criteria for surveillance and fault  detection: 

0 For signal, parameter or state  estimation,  the  main performance mea- 
sures  are  tracking  ability and variance  error  in the  estimated quantities. 
For linear  adaptive  filters  there is an inherent  trade-off, and  the  tun- 
ing consists  in  getting a fair  compromise between these two measures. 
Change  detectors  are  non-linear  functions of data  and it is in  principle 
possible to get arbitrarily  fast  tracking  and  small  variance  error between 
the  estimated change times, but  the change time  estimation  introduces 
another kind of variance  error. Measures for evaluating  change  detectors 
for estimation  purposes  include  Root Mean Square  (RMS) parameter 
estimation  error in simulation  studies and information  measures of the 
obtained  model which  work both for simulated and real data. 

0 For fault  detection,  it is usually important  to get the  alarms  as soon 
as possible ~ the delay for detection ~ while the  number of false alarms 
should  be  small. The  compromise inherent  in  all change detectors con- 
sists  in  simultaneously minimizing the false alarm  rate  and delay for 
detection. Other measures of interest  are change time  estimation ac- 
curacy,  detectability (which faults  can  be  detected)  and  probability of 
detection. 

The final choice of algorithm  should  be based on  a  careful  design,  taking  these 
considerations  into  account.  These matters  are discussed in Chapter 13. 

The first  example is  used to illustrate how the design parameters influence 
the performance  measures. 

Example 1.8 Fuel  consumption 
The interplay of the two design parameters in the CUSUM test is compli- 

cated,  and  there is  no obvious simple way to approach  the design in  Example 
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Figure 1.19. Examination of the influence of the CUSUM test’s design parameters h and U 
on the  number of alarms  (a)  and  the sum of squared  residuals (b). 

1.4 than  to use experience and visual  examination. If the  true fuel consumption 
was known, formal  optimization based design can  be used. One  examination 
that can  be done is to compare the number of alarms for different design pa- 
rameters,  as  done  in  Figure l.l9(a). We can see from the signal that 10-15 
alarms seem to  be plausible. We can  then  take  any of the combinations giving 
this number  as  candidate designs. Again visual  inspection is the best way to 
proceed. A formal attempt is to plot the  sum of squared  residuals for each 
combination, as shown in  Figure l.l9(b).  The residual is in  many cases, like 
this one, minimized for any design giving false alarms  all the time, like h = 0, 
v = 0, and a good design is  given  by the ‘knee’, which is a compromise between 
few alarms  and small residuals. 

The second example shows a case where  joint  evaluation of change detec- 
tion  and  parameter  tracking  performance is relevant. 

~ 

Example 1.9 friction estimation 

Consider the change detector  in  Example 1.5. To evaluate the over-all 
performance, we would  like to have many signals under the same premises. 
These  can  be  simulated by noting that  the residuals are well modeled by 
Gaussian  white noise, see the  upper plot  in  Figure  1.20(a) for one example. 
Using the  ‘true’ values of the friction  parameters,  the  measured  input pt and 
simulated  measurement noise, we can  simulate, say,  50 realizations of S t .  The 
mean  performance of the filter is shown in  Figure  1.20(b).  This is the relevant 
plot for validation for the  purpose of friction surveillance. However, if an  alarm 
device for skid is the primary goal, then  the delay for detection  illustrated  in 
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Figure 1.20. Illustration of residual distribution from  real data  and  distribution of alarm 
times  (a). Averaged parameter  tracking  (b)  and  alarm  times  are  evaluated from 100 simu- 
lations with  an  abrupt friction  change at sample 200. 

the lower plot of Figure  1.20(a) is the relevant evaluation  criterion. Here one 
can  make statements like: the  mean delay for alarm  after  hitting  an ice spot 
is  less than five samples (1 second)! 

Finally, the last  example  illustrates how parameter tracking  can  be  opti- 
mized. 

Example 7.70 Target tracking 
Let  us consider Example  1.3  again. It was remarked that  the tracking  in 

Figure 1.9  is poor and  the filter  should  be better  tuned.  The  adaptation gain 
can be optimized  with  respect to  the RMS error  and  an  optimal  adaptation 
gain is obtained,  as  illustrated  in  Figure 1.21(a). The optimization  criterion 
has typically,  as  here, no local minima  but is non-convex, making  minimization 
more difficult. Note that  the optimized design in  Figure  1.21(b) shows much 
better tracking  compared to Figure 1.9, at  the price of somewhat worse  noise 
attenuation. 

1.4.2. Performance  measures 

A general on-line statistical change detector  can  be seen as a device that takes 
a sequence of observed variables and at each time makes a binary decision if 
the system has undergone  a change. The following measures  are  critical: 

0 Mean  Time between False Alarms  (MTFA). How often do we get alarms 
when the system has not  changed? The reciprocal  quantity is called the 
false  alarm rate (FAR) .  
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Figure 1.21. Total RMS error  from the  Kalman filter as a function of its gain (a).  Note 
that  there is a clear minimum. The optimized design is shown in (b). 

0 Mean Time to  Detection (MTD).  How long time  do we have to wait after 
a change until we get the alarm? 

0 Average Run Length function, ARL(B), which generalizes MTFA and 
MTD.  The ARL function is defined as the mean time between alarms 
from the change detector as a function of the magnitude of the change. 
Hence, the MTFA and  DFD  are special cases of the ARL function. The 
ARL function answers the question of  how long it  takes before we get 
an  alarm  after a change of size 8. 

In practical  situations,  either MTFA or  MTD is fixed, and we optimize the 
choice of method  and design parameters to minimize the  other one. For in- 
stance,  in an airborne  navigation  system, the MTFA might be specified to one 
false alarm  per 105 flight hours, and we want to get the  alarms  as quickly as 
possible under  these premises. 

In off-line applications, we have a batch of data  and want to find the  time 
instants for system changes as accurately as possible. This is usually called 
segmentation. Logical performance  measures  are: 

0 Estimation accuracy. How accurately  can we locate the change  times? 

0 The Minimum Description  Length  (MDL). How much information is 
needed to  store a given signal? 

The  latter measure is relevant in data compression and communication  areas, 
where disk space or bandwidth is limited. MDL measures the number of 
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binary  digits that are needed to represent the signal.  Segmentation is one tool 
for making  this  small. For instance, the GSM standard for mobile telephony 
models the signal  as  autoregressive models over a certain  segmentation of the 
signal, and  then  transmits only the model parameters  and  the residuals. The 
change times  are fixed to every 50 ms. The receiver then recovers the signal 
from this  information. 
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This  chapter provides background  information and  problem descriptions 
of the applications treated in this book . Most of the applications  include 
real data  and many of them  are used as case studies  examined  throughout  the 
book with different algorithms . This  chapter serves both  as  a reference chapter 

Adaptive Filtering and Change Detection
Fredrik Gustafsson

Copyright © 2000 John Wiley & Sons, Ltd
ISBNs: 0-471-49287-6 (Hardback); 0-470-84161-3 (Electronic)



32 Atmlications 

and  as a motivation for the  area of adaptive  filtering and change  detection. 
The applications are divided here  according to  the model structures  that  are 
used. See the model summary in  Appendix  A for further details. The larger 
case studies  on  target  tracking,  navigation,  aircraft  control  fault  detection, 
equalization and speech coding, which deserve more  background  information, 
are not discussed in this  chapter. 

2.1. Change in  the mean model 

The fuel consumption  application  in  Examples 1.1, 1.4 and 1.8 is one  example 
of change in the mean model. Mathematically, the model is defined in  equation 
(A.l) in  Appendix  A). Here a couple of other examples are given. 

2.1 . l .  Airbag control 

Conventional airbags  explode when the front of the car is decelerated by a 
certain  amount.  In  the first generation of airbags, the same  pressure was used 
in all cases, independently of what the driver/passenger was doing,  or  their 
weight. In  particular,  the passenger might be leaning  forwards,  or may not 
even be present. The worst cases are when a baby  seat is in use, when a 
child is standing in front of the  seat,  and when very short  persons are driving 
and  sitting close to  the steering wheel. One  idea to improve the system is to 
monitor the weight on the  seat in  order to detect  the presence of a passenger 
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Figure 2.1. Two data  sets showing a weight measurement on a  car seat when a person enters 
and leaves the car. Also shown are one on-line and one off-line estimates of the weight as a 
function of time.  Data provided by Autoliv,  Linkoping, Sweden. 
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Figure 2.2. Power signal from a paper refinery and  the  output of a filter  designed by the 
company. Data provided by Thore Lindgren at Sund's Defibrator AB, Sundsvall, Sweden. 

and, in that case, his position, and  to  then use  two or  more different explo- 
sion pressures,  depending on the result. The  data in  Figure 2.1 show  weight 
measurements when a passenger is entering and  shortly afterwards leaving the 
seat.  Two different data sets  are shown. Typically, there  are  certain oscilla- 
tions  after  manoeuvres, where the seat  can  be seen as a damper-spring  system. 
As a change detection  problem, this is quite  simple, but reliable  functionality 
is still rather  important.  In Figure 2.1, change  times from an algorithm  in 
Chapter 3 are  marked. 

2.1.2. Paper  refinery 

Figure  2.2(a) shows process data from a paper refinery (M48 Refiner, Tech- 
board, Wales; the original data have been rescaled). The refinery engine grinds 
tree  fibers for paper  production. The interesting  signal is a raw engine power 
signal  in kW, which  is extremely noisy. It is  used to compute  the reference 
value in  a feedback control  system for quality  control and also to detect  engine 
overload. The requirements on the power signal  filter  are: 

0 The noise must be considerably attenuated  to  be useful in the feedback 
loop. 

0 It is  very important  to quickly detect abrupt power decreases to be  able 
to remove the grinding discs quickly and avoid physical disc  faults. 

That is, both tracking and detection  are important,  but for  two different rea- 
sons. An adaptive  filter provides some useful information,  as seen from the 
low-pass filtered  squared  residual  in  Figure  2.2(b). 
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0 There  are two segments where the power clearly decreases quickly. Fur- 
thermore,  there is a  starting  and  stopping  transient  that should  be de- 
tected  as change times. 

0 The noise  level  is fairly  constant (0.05) during the observed interval. 

These  are  the  starting points when the change  detector is designed in  Section 
3.6.2. 

2.1.3. Photon  emissions 

Tracking the brightness changes of galactical and extragalactical  objects is an 
important  subject in  astronomy. The  data examined  here  are  obtained  from X- 
ray and y-ray  observatories. The signal  depicted  in  Figure 2.3 consists of even 
integers  representing the  time of arrival of the photon,  in  units of microseconds, 
where the  fundamental sampling  interval of the  instrument is 2 microseconds. 
More details of the application  can  be  found  in Scargle (1997). This is a 
typical  queue process where a Poisson process is plausible. A Poisson process 
can be easily converted to a change in the  mean model by computing  the 
time difference between the arrival  times. By definition,  these differences will 
be  independently  exponentially  distributed  (disregarding  quantization errors). 
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Figure 2.3. Photon emissions  are  counted in short  time  bins.  The first plot  shows the 
number of detected  photons  as  a  function of time. To recast the problem to a change in  the 
mean,  the  time for 100 arrivals is computed, which is shown in the lower plot. Data provided 
by Dr. Jeffrey D. Scargle at NASA. 
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That is, the model is 

Thus, et is white  exponentially  distributed noise. 
The large  number of samples make interactive design slow. One  alternative 

is to  study  the  number of arrivals  in  larger  bins of,  say, 100 fundamental 
sampling  intervals. The  sum of 100 Poisson variables is approximated well  by 
a  Gaussian  distribution,  and  the  standard  Gaussian  signal  estimation  model 
can be used. 

2.1.4. Econometrics 

Certain economical data are of the change  in the mean  type, like the sales fig- 
ures for a  particular  product  as seen in  Figure 2.4. The original data have been 
rescaled. By locating the change points  in  these data,  important conclusions 
on how external  parameters influence the sale  can  be  drawn. 

2.2. Change in  the  variance  model 

The change in  variance  model (A.2) assumes that  the measurements  can  be 
transformed to a sequence of white noise with time varying  variance. 
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Figure 2.4. Sales  figures for a  particular  product.  (Data provided by Prof.  Duncan, UMIST, 
UK). 
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2.2.1. Barometric  altitude  sensor  in  aircraft 

A barometric  air  pressure sensor is  used in  airborne  navigation  systems for 
stabilizing the  altitude  estimate in the  inertial navigation  system. The baro- 
metric sensor is not very accurate,  and gives measurements of height with both 
a  bias and large  variance  error. The sensor is particularly  sensitive to  the so 
called transonic  passage, that is,  when Mach 1 (speed of sound) is passed. 
It is a good idea to detect for  which velocities the  measurements  are useful, 
and  perhaps also to  try  to find a  table for mapping velocity to noise variance. 
Figure 2.5 shows the errors  from a calibrated  (no  bias)  barometric  sensor, com- 
pared to  the  ‘true’ values from a GPS system. The lower plot shows low-pass 
filtered  squared  errors. The  data have been rescaled. 

It is desirable  here to have a  procedure to automatically find the regions 
where the  data have an increased error,  and  to  tabulate  a noise variance  as 
a  function of velocity. With such a table at hand,  the navigation  system  can 
weigh the information accordingly. 
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Figure 2.5. Barometric  altitude measurement  error for a test flight when passing the  speed 
of sound  (sample  around 1600). The lower plot shows low-pass filtered errors as a very rough 
estimate of noise variance. (Data provided by Dr.  Jan  Palmqvist, SAAB  Aircraft.) 

2.2.2. Rat EEG 

The EEG signal  in  Figure 2.6 is measured on a  rat.  The goal is to classify the 
signal  into  segments of so called ”spindles”  or  background noise. Currently, 
researchers  are using a narrow band  filter, and  then apply  a  threshold for the 
output power of the filter. That method gives 
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Figure 2.6. EEG for a rat  and segmented  signal variance. Three  distinct  areas of brain 
activity can  be  distinguished. (Data provided by Dr.  Pasi  Karjalainen,  Dept. of Applied 
Physics,  University of Kuopio, Finland. ) 

[l096  1543  1887  2265  2980  3455  3832  39341. 

The lower plot of Figure 2.6 shows an alternative  approach which segments 
the noise variance into piecewise constant intervals. The estimated  change 
times  are: 

[l122  1522  1922  2323  2723  3129  35301 

The 'spindles'  can be  estimated to  three intervals  in the signal  from this in- 
formation. 

2.3. FIR model 

The Finite  Impulse  Response (FIR) model (see equation (A.4) in  in  Appendix 
A) is standard in real-time  signal processing applications as in  communication 
systems,  but  it is useful in other applications as well, as  the following control 
oriented  example  illustrates. 

2.3.1. Ash recycling 

Wood has become an  important fuel in  district  heating  plants,  and  in  other 
applications. For instance, Swedish district  heating  plants  produce  about 500 
000 tons of ash each year, and soon there will be a $30 penalty fee for depositing 
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the ash  as  waste, which  is an economical incentive for recycling. The ash  from 
burnt wood cannot be recycled  back to  nature directly,  mainly  because of its 
volatility. 

We examine here a recycling procedure  described  in  Svantesson et al. 
(2000). By mixing ash  with  water, a granular  material is obtained.  In  the 
water mixing process,  it is of the  utmost  importance  to get the right  mixture. 
When  too much water is added,  the  mixture becomes useless. The idea is to 
monitor the mixture's viscosity indirectly, by measuring  the power consumed 
by the electric  motor in the mixer.  When the dynamics between input water 
and  consumed power changes, it is important  to  stop adding  water immedi- 
ately. 

A simple semi-physical model is that  the viscosity of the  mixture is pro- 
portional to  the  amount of water, where the initial  amount is unknown. That 
is, the model  with  water flow as  input is 

where U t  is the integrated  water flow. This is a simple  model of the  FIR  type 
(see equation (A.4)) with an  extra offset, or  equivalently a linear regression 
(equation (A.3)). When  the proportional coefficient O2 changes, the granula- 
tion  material is ready. 

Data  y,u  Measurement  and  model  simulation 
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Figure 2.7. Water flow and power consumed by a mixer for making  granules of ash from 
burnt wood (a). At a certain  time  instant,  the dynamics  changes and  then  the  mixture is 
ready.  A model based approach enables the  simulation of the  output  (b),  and  the change 
point  in the dynamics is clearly visible. (Data provided  by Thomas Svantesson, Kalmar 
University College, Sweden.) 
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A more precise model that fits the  data  better would be to include  a 
parameter for modeling that  the  mixture dries up  after  a while when no water 
is added. 

2.4. AR model 

The AR model defined below  is  very  useful  for modeling time series, of which 
some  examples  are provided in this section. 

2.4.1. Rat EEG 

The  same  data  as in 2.2.2 can  be  analyzed  assuming an  AR(2) model. Figure 
2.8  shows the  estimated  parameters from a  segmentation  algorithm (there 
seems to be no significant parameter change) and  segmented noise variance. 
Compared to Figure 2.6, the variance is roughly  one half of that here, showing 
that  the model is relevant and  that  the result  should  be  more  accurate. The 
change times were estimated  here  as: 

[l085  1586  1945  2363  2949  3632  37351 

Rat EEG and  seamentation of AR(2) model  and  noise  variance 
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Figure 2.8. EEG for a rat  and segmented noise variance from an AR(2) model. 

2.4.2. Human EEG 

The  data shown  in Figure 2.9 are  measured  from  the  human  occipital  area. 
Before time t b  the lights  are turned  on in  a  test  room where a test  person is 
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looking at something  interesting. The neurons are processing information  in 
the visual  cortex, and only noise is seen in the measurements.  When the lights 
are  turned off, the visual  cortex is at rest.  The neuron  clusters start 10 Hz 
periodical  'rest rhythm'.  The delay between t b  and  the  actual  time when the 
rhythm  starts varies strongly. It is believed that  the delay correlates  with, for 
example, Alzheimer disease, and  methods for estimating  the delay would be 
useful in medical  diagnosis. 
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Figure 2.9. EEG for a human in a room, where the light is turned off at time 387. After a 
delay which varies for different test  objects,  the EEG changes character.  (Data provided  by 
Dr.  Pasi  Karjalainen,  Dept. of Applied Physics,  University of Kuopio, Finland.) 

2.4.3. Earthquake analysis 

Seismological data  are collected and analyzed  continuously  all over the world. 
One  application of analysis  aims to detect  and locate earth quakes. Figure 
2.10  shows three of, in this case, 16 available signals, where the  earthquake 
starts  around  sample number 600. 

Visual inspection shows that  both  the energy and frequency content  un- 
dergo an  abrupt change at the onset  time, and smaller but still significant 
changes can  be  detected  during  the quake. 

As another example,  Figure 2.11 shows the movements during the 1989 
earth quake in San Francisco. This  data set is available in MATLABTM as 
quake. Visually, the onset time is clearly visible as a change in energy and 
frequency content, which is again a suitable  problem for an AR model. 
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Figure 2.10. Example of logged data from an  earthquake. 
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Figure 2.11. Movements for the 1989 San Francisco  earthquake. 
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2.4.4. Speech  segmentation 

The speech signal is one of the most classical applications of the AR model. 
One  reason is that  it is possible to motivate it from physics, see Example 5.2. 
The speech signal shown in  Figure 2.12, that will be analyzed later one, was 
recorded inside a car by the French National Agency for Telecommunications, 
as described  in  Andre-Obrecht (1988). The goal of segmentation might be 
speech recognition, where each segment corresponds to one phoneme,  or speech 
coding (compare  with Section 5.11). 
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Figure 2.12. A speech  signal  and  a possible segmentation. (Data provided  by  Prof. Michele 
Basseville, IRISA, France,  and Prof.  Regine  Andre-Obrecht, IRIT, France.) 

2.5. ARX model 

The ARX model (see equation (A.12) in  Appendix  A) an extension of the AR 
model for dynamic  systems  driven by an  input ut. 

2.5.1. DC motor  fault detection 

An application  studied extensively in Part IV and briefly in Part I11 is based 
on  simulated and measured data from a DC motor.  A  typical  application is 
to use the motor as a servo which requires an  appropriate controller designed 
to a model of the motor. If the dynamics of the motor change with  time, we 
have an adaptive control problem. In  that case, the controller needs to be 
redesigned, at regular time  instants  or when needed, based on  the  updated 
model. Here we are facing a fundamental isolation problem: 
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Figure 2.13. A closed loop control  system. Here G(q) is the DC motor dynamics, F ( q )  
is the controller, T the reference angle, U the controlled input voltage to  the engine, y the 
actual angle and v is a disturbance. 

Fundamental adaptive control  problem 
Disturbances  and  system changes must be isolated. An alarm 
caused by a system change requires that  the controller should be 
re-designed, while an alarm caused by a disturbance (false alarm) 
implies that  the controller should be frozen. I 

We here describe how data from a lab  motor were collected as presented 
in  Gustafsson and  Graebe (1998). The  data  are collected in a closed loop, as 
shown in the block diagram  in  Figure 2.13.  Below, the transfer  functions G(q) 
(using the discrete time shift  operator q,  see Appendix A) and  the controller 
F(q)  are defined. A common form of a transfer  function  describing a DC 
motor  in  continuous time (using  Laplace operator S )  is 

b 
s(s + a ) .  

G ( s )  = 

The  parameters were identified by a step response  experiment to 

b = 140, a = 3.5. 

The discrete time  transfer  function,  assuming piecewise constant  input, is for 
sampling  time T, = 0.1: 

0.625q + 0.5562  0.62501(q + 0.89) 
G(q)  = q2 - 1.705q + 0.7047 ( Q  - l ) (q  - 0.7047) 

The  PID  (Proportional,  Integrating  and Differentiating) structured  regulator 
is designed in a pole-placement fashion and is,  in  discrete time  with T, = 0.1, 

- - 

0.272q2 - 0.4469q + 0.1852 
F ( q )  = q2 - 1.383q + 0.3829 
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Table 2.1. Data  sets for the DC lab  motor 

Data set 1 No fault  or  disturbance. 
Data set 2 Several disturbances. 
Data set 3 Several system changes. 
Data set 4 Several disturbances  and one (very late)  system change. 

The reference signal is generated as a square wave pre-filtered by 1.67/(s+1.67) 
(to get rid of an overshoot due to  the zeros of the closed loop system)  with a 
small sinusoidal perturbation signal  added (0.02 sin(4.5 . t ) ) .  

The closed loop system  from r to y is,  with T, = 0.1, 

0.1459q3 - 0.1137q2 - 0.08699q + 0.0666 
q4 - 2.827q3 + 3.041q2 - 1.472q + 0.2698rt' (2.1) Yt = 

An alternative model is given in Section 2.7.1. 

summarized  in  Table 2.1. 
Data consist of y , r from the process under  four different experiments, as 

Disturbances were applied by physically holding the outgoing  motor axle. 
System changes were applied  in software by shifting the pole in the DC  motor 
from 3.5 to 2  (by  including a block ( S  + 3.5)/(s + 2) in the regulator). 

The  transfer function model in (2.1) is well suited for the case of detecting 
model changes, while the  state space  model to be defined in (2.2) is better for 
detecting  disturbances. 
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Figure 2.14. Model residuals defined as  measurements  subtracted by a  simulated  output. 
Torque  disturbances  and  dynamical  model  changes  are clearly  visible, but  they  are  hard  to 
distinguish. 
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The goal with change detection is to compute  residuals better  suited for 
change detection than simply  taking the error  signal  from the real  system 
and  the model. As can be seen from Figure 2.14, it is hard  to distinguish 
disturbances from model changes (the isolation problem), generally. 

This application is further  studied  in  Sections 5.10.2,  8.12.1 and 11.5.2. 

2.5.2. Belching  sheep 

The  input ut is the lung  volume of a  sheep and  the  output yt the air flow 
through  the  throat, see Figure 2.15 (the  data have been  rescaled). A possible 
model is 

where the noise variance 02 is large  under belches. 
The goal is to get a  model for how the  input relates to  the  output,  that 

is B(q),  A(q), and how different medicines affect this relation. A problem 
with  a  straightforward  system  identification  approach is that  the sheep belches 
regularly. Therefore, belching segments  must  be  detected before modeling. 
The approach here is that  the residuals from an ARX model  are  segmented 
according to  the variance level. This application is investigated  in  Section 
6.5.2. 

40001 
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Figure 2.15. The air  pressure in the  stomach  and air inflow through  the  throat of a  sheep. 
The belches are visible as negative flow dips. (Data provided by Draco and Prof. Bo 
Bernardsson,  Lund,  Sweden.) 
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2.6. Regression model 

The general form of the linear regression model (see equation  (A.3)  in Ap- 
pendix A) includes FIR, AR and ARX models as  special cases, but also ap- 
pears in contexts  other than modeling dynamical  time series. We have already 
seen the friction  estimation  application  in  Examples 1.2, 1.5 and 1.9. 

2.6.1. Path  segmentation and  navigation in  cars 

This case study will be examined  in Section 7.7.3. The  data were collected 
from test drives with  a Volvo  850 GLT using sensor signals from the ABS 
system. 

There  are several commercial products providing  guidance  systems for cars. 
These  require  a  position  estimate of the  car,  and proposed  solutions  are based 
on expensive GPS (Global  Positioning  System)  or a somewhat less expensive 
gyro. The idea is to compare  the  estimated position  with  a  digital  map. 
Digital  street  maps  are available for many  countries. The  map  and position 
estimator, possibly in  combination  with traffic information transmitted over 
the FM band  or from road  side  beacons,  are then used  for guidance. 

We demonstrate here how an  adaptive filter,  in  combination  with  a  change 
detector,  can  be used to develop an almost free position  estimator, where no 
additional  hardware is required. It has  a worse accuracy than  its  alternatives, 
but on the  other  hand, it seems to be  able to find relative  movements on a 
map, as will be demonstrated. 
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Figure 2.16. Driven path  and possible result of manoeuvre  detection. (Data collected by 
the  author in collaboration  with Volvo.) 
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Figure 2.16 shows an  estimated  path for a car,  starting  with  three  sharp 
turns  and including one large roundabout.  The velocities of the free-rolling 
wheels are measured using sensors available in the Anti-lock Braking  System 
(ABS). By comparing the wheel velocities W, and w1 on  the right and left side, 
respectively, the velocity v and curve  radius R can  be  computed  from 

where L is the wheel base, r is the nominal wheel radius  and E is the rela- 
tive difference in wheel radius  on the left and right sides. The wheel radius 
difference E gives an offset in heading  angle, and is thus  quite  important for 
how the  path looks (though  it is not important for segmentation). It is esti- 
mated  on a long-term basis, and is in this example 2.5 . 10W3. The algorithm 
is implemented  on a PC and  runs on a Volvo 850 GLT. 

The heading angle $t and global position ( X t ,  y t )  as functions of time  can 
be  computed  from 

The sampling  interval was chosen to Ts = 1 S. The approach  requires that  the 
initial  position and heading  angle X,, Yo, $0 are known. 

The  path shown in Figure 2.16 fits a street  map  quite well, but not  per- 
fectly. The reason for using segmentation is to use corners,  bends and  round- 
abouts for updating  the position  from the  digital  map. Any input to  the al- 
gorithm  dependent  on  the velocity will cause a lot of irrelevant alarms, which 
is obvious from the velocity plot in  Figure 2.17. The ripple  on the velocity 
signal is caused by gear changes. Thus, segmentation using velocity depen- 
dent  measurements  should be avoided. Only the heading  angle $t is needed 
for segmentation. 

The model is that  the heading  angle is piecewise constant  or piecewise lin- 
ear, corresponding to straight  paths  and  bends  or  roundabouts.  The regression 
model used is 
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Figure 2.17. Velocity in the  test drive. 

2.6.2. Storing EKG signals 

Databases for various medical applications are becoming  more and more fre- 
quent.  One of the biggest is the  FBI fingerprint  database. For storage effi- 
ciency, data should  be  compressed,  without losing information. The fingerprint 
database is compressed by  wavelet techniques. The EKG  signal  examined  here 
will be compressed by polynomial models with piecewise constant  parameters. 
For example,  a  linear  model is 

Figure 2.18  shows a  part of an EKG  signal and  a possible segmentation. For 
evaluation, the following statistics  are  interesting: 

Model Linear  model 
Error (%) 0.85 
Compression rate (%) 10 

The linear  model gives a decent error  rate  and a low compression rate. 
The compression rate is measured  here  as the number of parameters (here 2) 
times the  number of segments,  compared to  the  number of data. It says how 
many  real  numbers have to be  saved,  compared to  the original data. Details 
on the implementation  are given in Section 7.7.1. There is a design parameter 
in the algorithm to  trade off between the error  and compression rates. 
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Figure 2.18. An EKG signal (upper  plot)  and a piecewise constant linear  model (lower 
plot). 

2.7. State  space  model 

2.7.1. DC motor  fault detection 

Consider the DC motor  in Section 2.5.1.  For a particular choice of state vector, 
the  transfer function (2.1) can  be  written  as a state space model: 

2.8269  -1.5205  0.7361  -0.2698 
2.0000 0 0 

XtS1 = ( ; 1 .oooo 0 O 0 ) z t+ ( )  U t  

0 0.5000 0 
Y t  = (0.2918  -0.1137  -0.0870  0.1332) xt. (2.2) 

The  state space  model is preferable to  the transfer  function  approach for  de- 
tecting  actuator  and sensor faults  and  disturbances, which are  all  modeled 
well as  additive changes in  a state space model. This corresponds to case 2 in 
Figure 2.14. This model will be used in  Sections 8.12.1 and 11.5.2. 

2.8. Multiple  models 

A powerful generalization of the linear state space  model, is the multiple 
model, where a  discrete  mode parameter is introduced for switching between 
a  finite  number of modes  (or  operating  points). This is commonly used  for ap- 
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proximating non-linear dynamics.  A  non-standard  application which demon- 
strates  the flexibility of the somewhat abstract model, given in  equation (A.25) 
in  Appendix  A), is given  below. 

2.8.1. Valve stiction 

Static friction, stiction, occurs  in  all valves. Basically, the valve position  sticks 
when the valve movement is low.  For control and supervision  purposes,  it 
is important  to  detect when stiction  occurs.  A  control  action that can  be 
undertaken when stiction is severe is dithering, which forces the valve to go 
back and  forth rapidly. 

A block diagram over a possible stiction model is shown in  Figure 2.19. 
Mathematically, the  stiction model is 

Y t  = G(% 6)Xt 

Here 6, is a discrete  binary state, where 6, = 0 corresponds to  the valve 
following the control input,  and 6, = 1 is the stiction mode. Any prior  can 
be assigned to  the discrete state. For instance, a Markov model with  certain 
transition  probabilities is plausible. The parameters I3 in the  dynamical model 
for the valve dynamics are unknown, and should be  estimated simultaneously. 

Figure 2.20 shows  logged data from a steam valve, together  with the iden- 
tified discrete state  and a simulation of the stiction  model, using an algorithm 
described  in Chapter 10. We can clearly see in the lower plot that  the valve 
position is in the  stiction mode most of the time.  Another  approach based on 
monitoring oscillations of the closed loop system  can  be  found  in  Thornhill 
and Hagglund (1997). 

1 

Figure 2.19. A control loop (a) and  the  the assumed  stiction  model (b). 
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Figure 2.20. Valve input  and  output,  and  estimated valve position. (Data provided by 
Dr.  Krister Forsman, ABB Automation.) 

2.9. Parameterized  non-linear  models 

Linear  models,  as  linear regressions and  state space  models,  can  in  many  ap- 
plications give a  satisfactory  result. However, in  some cases tailored  non-linear 
models with  unknown parameters might give a considerable  improvement  in 
performance,  or may even be  the only alternative. We will  give some  examples 
of the  latter case here. 

One  application of models of the  type (A.17) is  for innovation processes. 
Innovation models are  common  in  various  disciplines, for instance: 

0 Biology: growth processes in  certain species or diseases or  bacteria. 

0 Economy:  increase and  saturation of sales figures. 

The two innovation processes used as  illustration  here  are  both based on a 
continuous time  state space  model of the kind: 

The  problem can be seen as  curve  fitting to a given differential  function. 
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2.9.1. Electronic  nose 

We start with  a biological example of the innovation process presented  in 
Holmberg  et  al.  (1998). The  data  are  taken  from  an artificial nose, which 
is using 15 sensors to classify bacteria. For feature  extraction, a differential 
equation  model is  used to  map  the  time series to a few parameters.  The 
‘nose’ works as follows. The  bacteria  sample is placed in  a substrate. To start 
with,  the bacteria  consume substrate  and  they increase  in  number (the growth 
phase).  After  a while, when the  substrate is consumed, the bacteria start  to 
die. Let f ( t )  denote the measurements.  One possible model for these is 

with gt = xt in equation (2.3). The physical interpretation of the  parameters 
are  as follows: 

Q’ Scaling (amplitude) 
Q2 Growth  factor  (steepness  in  descent) 
Q3 Growth  initial  time (defined by the 50% level) 
Q4 Death  factor  (steepness  in  ascent) 
Q5 Death  initial  time (defined by the 50% level) 

The basic signal processing idea of minimizing a  least  squares fit means 

Sample # 3 and  sensor # 9 
40 

Sample # 3 and  sensor # 11 

Sample # 3 and  sensor # 15 
600 

400 
- -  Sensor  response 
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2001 I 
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Figure 2.21. Example of least  squares fit of parametric differential equation  to  data. 
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that : 
N 

t=l 

is minimized with  respect to 8. The measure of fit 

min V(8)  
Ck f 

can  be used to judge  the performance. For the measurement responses in 
Figure 2.21, the fit values are 0.0120,  0.0062 and 0.0004, respectively. 

The classification idea is as follows: estimate  the  parametric model to each 
of the 15 sensor signals for each nose sample, each one  consisting of 19 time 
values. Then, use the  parameters  as  features in classification. As described 
in Holmberg et al.  (1998), a classification rate of 76%  was obtained using 
leave-one-out validation,  from five different bacteria.  Details of the  parameter 
identification are given in Example 5.10. 

2.9.2. Cell phone sales figures 

Economical innovation models are defined by an innovation that is communi- 
cated over certain  channels  in a social system  (Rogers, 1983). The example 
in  Figure 2.22 shows sales figures for telephones  in the  standards  NMT 450 
and NMT 900. The  latter is a newer standard, so the figures have not reached 
the  saturation level at  the final time. A possible application is to use the 
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Figure 2.22. Sales  figures for the telephone  standards  NMT 450 and  NMT 900. 
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innovation model for the previous model to predict both  saturation  time  and 
level from the  current information. 

Many models have been proposed, see Mahajan  et al. (1990). Most of 
them rely on the exponential  function for modeling the growth process and 
saturation phase. One  particular model is the so-called combined  model in 
Wahlbin (1982): 

In  this case, N is the final number of NMT  telephone owners, a is a growth pa- 
rameter  and b a saturation  parameter.  Details  on the  parameter identification 
and a fitted curve are presented  in  Example 5.11. 
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3.1. Introduction 

The basic assumption  in  this  part.  signal  estimation. is that  the measurements 
gt consist of a  deterministic  component Ot ~ the signal ~ and additive  white 
noise et. 

yt = Ot + et . 
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For change detection,  this will be labeled as a change in the  mean  model. 
The  task of determining Bt from yt will be referred to as estimation, and 
change detection or alarming is the  task of finding abrupt,  or  rapid, changes 
in dt ,  which is assumed to  start  at  time L, referred to  as  the change  time. 
Surveillance comprises all these  aspects,  and a typical  application is to monitor 
levels, flows and so on  in  industrial processes and  alarm for abnormal values. 

The basic assumptions  about model (3.1) in change detection are: 

0 The  deterministic component Bt undergoes an  abrupt change at  time 
t = k .  Once this change is detected, the procedure starts all over again 
to detect  the next change. The alternative is to consider Bt as piecewise 
constant  and focus on a sequence of change  times k1, kz,  . . . , kn, as shown 
in Chapter 4. This sequence is denoted P ,  where both Ici and n are free 
parameters.  The segmentation problem is to find both  the number and 
locations of the change times  in P .  

0 In  the  statistical approaches,  it will be assumed that  the noise is white 
and Gaussian et E N(0, R ) .  However, the formulas  can be generalized to 
other  distributions, as will be pointed out in Section 3.A. 

The change magnitude for a change at time k is defined as v a &+l - d k .  
Change  detection  approaches  can  be  divided  into  hypothesis  tests  and  estima- 
tion/information  approaches.  Algorithms belonging to  the class of hypothesis 
tests can be split  into the  parts shown in  Figure 3.1. 

For the change in the mean model, one  or more of these blocks become 
trivial,  but  the  picture is useful to keep in  mind for the general model-based 
case. Estimation  and information  approaches do everything  in one step,  and 
do not suit  the framework of Figure 3.1. 

The  alternative  to  the non-parametric approach in this  chapter is to model 
the  deterministic component of yt as a parametric model, and  this issue will 

Data e t ,  E t  
Filter -D Stopping  rule meas-  istance 

S t  Alarm 

Yt, Ut K 
(a) Change  detection  based  on  statistics  from  one  filter 

A] Averaging H Thresholding pm - - 
(b)  A  stopping rule  consists of averaging and thresholding 

Figure 3.1. The  steps in change  detection  based on hypothesis  tests.  The  stopping  rule  can 
be seen as  an  averaging filter and  a  thresholding decision device. 
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be  the dealt  with in Part 111. It must be noted that  the signal model (3.1), 
and  thus all  methods in this  part,  are special cases of what will be covered in 
Part 111. 

This  chapter  presents a review of averaging strategies,  stopping  rules,  and 
change detection ideas. Most of the ideas to follow in  subsequent  chapters are 
introduced here. 

3.2. Filtering approaches 

The  standard  approach in signal  processing for separating the signal Bt and 
the noise et is  by (typically low-pass) filtering 

Q, = H ( d Y t .  ( 3 4  

The filter can be of Finite  Impulse  Response (FIR) or  Infinite  Impulse Re- 
sponse (IIR) type,  and designed by any  standard  method  (Butterworth, Cheby- 
shev etc.). An alternative  interpretation of filters is data windowing 

00 

Q, = c WkYt -k ,  
k=O 

where the weights should  satisfy C w k  = 1. This is equal to  the filtering 
approach if the weights are  interpreted as the impulse  response of the (low- 
pass) filter H ( q ) ,  i.e. w k  = h k .  

An important special case of these is the exponential  forgetting  window, or 
Geometric  Moving  Average ( G M A )  

W k  = (1 - X ) P ,  0 5 X < 1.  (3.4) 

A natural,  and for change detection  fundamental,  principle is to use a sliding 
window, defined by 

A more general approach, which can  be  labeled Finite  Moving  Average ( F M A )  
is obtained by using arbitrary weights w k  in the sliding window with  the 
constraint w k  = 1, which is equivalent to a FIR filter. 

3.3. Summary of least  squares  approaches 

This section offers a summary of the  adaptive filters  presented  in a more 
general form  in Chapter 5. 
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A common framework for the most common  estimation  approaches is to 
let the signal  estimate  be  the minimizing  argument (arg  min) of a  certain loss 
function 

8, = argmin&(O). 

In  the next four subsections,  a  number of loss functions  are given, and  the 
corresponding  estimators are derived. For simplicity, the noise variance is 
assumed to be  constant Ee: = R. We are  interested  in the signal  estimate, 
and also its theoretical  variance Pt A E(& - and  its  estimate P t .  For 
adaptive  methods,  the  parameter variance is defined under the assumption 
that  the  parameter Qt is time invariant. 

0 (3.6) 

3.3.1. Recursive  least  squares 

To start  with,  the basic idea  in least squares is to minimize the  sum of squared 
errors: 

L 

T 

” i=l 

Pt = -&(Q) 1 -  
t 2  
1 R, = ,&(e). 

(3.10) 

(3.11) 

‘his is an off-line approach which assumes that  the  parameter is time in- 
variant. If Qt is time-varying,  adaptivity  can  be  obtained by forgetting old 
measurements using the following  loss function: 

t 

i=l 
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Here X is referred to  as  the forgetting  factor. This formula yields the recursive 
least squares (RLS) estimate. Note that  the  estimate et is unbiased only if the 
true  parameter is time invariant. A recursive version of the RLS estimate is 

e, = xet-1 + (1 - X) yt 

= et-1 + (1 - X)&t, (3.12) 

where Et = (yt - 6t-1) is the prediction  error. This  latter formulation of RLS 
will be used frequently  in the sequel, and a general  derivation is presented  in 
Chapter 5. 

3.3.2. The least squares over sliding  window 

Computing  the least  squares loss function over a sliding window of size L gives: 
t 

&(e)  c (yz - e)2 
i=t-L+l 

1 t 

et = c Yi 
i=t-L+l 

A 

= & l +  
Yt - Yt-L 

L 
t 

Y 

i=t-L+l 

P t  = ,&(e) 
k t  = -&(e). 

1 -  

L 
1 -  
L 

This  approach will be labeled the Windowed  Least  Squares (WLS) method. 
Note that a memory of size L is needed in this  approach to  store old measure- 
ments. 

3.3.3. least  mean square 

In  the Least Mean Square (LMS) approach,  the objective is to minimize 

&(e)  A E ( y t  - (3.13) 
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by a stochastic  gradient  algorithm defined by 

(3.14) 

Here, p is the step  size of the algorithm. The expectation  in (3.13) cannot  be 
evaluated, so the  standard approach is to  just ignore it. Differentiation then 
gives the LMS algorithm: 

A 

Ot = et-l + p&t. (3.15) 

That is, for signal  estimation, LMS and RLS coincide with p = 1 - X. This is 
not true in the general case in Chapter 5. 

3.3.4. The Kalman filter 

One  further  alternative is to explicitly  model the  parameter time-variations  as 
a so called random  walk 

Ot+l = ot + ut. (3.16) 

Let the variance of the noise ut be Q. Then  the Kalman  filter, as will be 
derived in Chapter 13, applies: 

(3.17) 

(3.18) 

If the  assumption (3.16) holds, the  Kalman filter is the  optimal  estimator in 
the following meanings: 

0 It is the minimum variance  estimator if ut and et (and also the  initial 
knowledge of do)  are  independent and Gaussian. That is,  there is  no 
other  estimator that gives a  smaller  variance  error Var(& - O t ) .  

0 Among all linear  estimators, it gives the  minimum variance  error inde- 
pendently of the  distribution of the noises. 

0 Since minimum  variance is related to  the least  squares  criterion, we also 
have a least squares  optimality  under the model  assumption (3.16). 

0 It is the conditional  expectation of dt,  given the observed values of yt. 

This  subject will be  thoroughly  treated  in Chapter 8. 
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Example 3.1 Signal  estimation  using  linear  filters 

Figure 3.2 shows an  example of a signal, and  the  estimates from RLS, 
LMS and  KF, respectively. The design parameters  are X = 0.9, p = 0.1 and 
Q = 0.02, respectively. RLS and LMS are identical and  the  Kalman filter is 
very similar for these  settings. 

3.4. Stopping  rules and the CUSUM test 

A stopping rule is  used in  surveillance for giving an  alarm when Bt has exceeded 
a  certain  threshold.  Often,  a  stopping  rule is  used as a part of a  change 
detection  algorithm. It can  be  characterized  as follows: 

0 The definition of a  stopping  rule  here is that, in  contrast to change 
detection, no statistical  assumptions on its  input  are given. 

0 The change from et = 0 to a positive value may be  abrupt, linear  or 
incipient, whereas in change  detection the theoretical  assumption  in the 
derivation is that  the change is abrupt. 

0 There is prior  information on how large the threshold is. 

An auxiliary  test statistic gt is introduced, which  is  used  for alarm decisions 
using a  threshold h. The purpose of the stopping  rule is to give an  alarm when 

1.5 - 
I. a 

0 50 100  150 

Figure 3.2. A signal  observed  with noise. The almost  identical lines show the signal estimate 
from RLS, LMS and KF. 
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gt exceeds a certain value, 

Alarm if gt > h. (3.19) 

Stopping rules will be used frequently when discussing change  detection based 
on filter residual  whiteness tests  and model validation. 

3.4.1. Distance  measures 

The  input  to a stopping  rule is, as  illustrated  in  Figure 3.3, a distance  measure 
S t .  Several possibilities exist: 

0 A  simple  approach is to take the residuals 
,. 

S t  = E t  = yt - &l ,  (3.20) 

where 8t-l (based  on  measurements up  to  time t-l) is any  estimate from 
Sections 3.2 or 3.3. This is suitable for the change  in the mean  problem, 
which should  be  robust to variance changes. A good alternative is to 
normalize to unit variance. The variance of the residuals will be shown 
to equal R + Pt, so use instead 

(3.21) 

This scaling facilitates the design somewhat,  in that approximately the 
same design parameters  can  be used for different applications. 

0 An alternative is to square  the residuals 

S t  = E t .  2 (3.22) 

This is useful for detecting  both variance and  parameter changes. Again, 
normalization, now to unit  expectation,  facilitates design 

n 

Ek 

p? 
S t  = -. (3.23) 

Other options are based on likelihood ratios to be defined. For general filter 
formulations,  certain  correlation based methods apply. See Sections 5.6 and 
8.10. 

1-I Averaging  Thresholding pm 
l I l I 

Figure 3.3. Structure of a stopping  rule. 
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3.4.2. One-sided tests 

As shown in Figure 3.3, the  stopping  rule first averages the  inputs st to get a 
test  statistic gt, which is then thresholded.  An alarm is given when gt = > h 
and  the  test  statistic is reset, gt = 0. Indeed,  any of the averaging strategies 
discussed in Section 3.2 can  be used. In  particular, the sliding window and 
GMA filters can  be used. 

As an example of a wellknown combination, we can  take the squared resid- 
ual  as  distance  measure  from  the no change  hypothesis, st = E?, and average 
over a sliding window. Then we get a X’ test, where the distribution of gt is 
x’(L) if there is no change. There is more  on this issue in  subsequent chap- 
ters.  Particular  named  algorithms  are  obtained for the exponential  forgetting 
window and finite moving average filter. In  this way, stopping  rules based on 
FMA  or GMA are  obtained. 

The  methods so far have been  linear  in data,  or for the X’ test  quadratic 
in data. We  now turn our  attention  to a fundamental  and historically very 
important class of non-linear stopping rules. First,  the Sequential  Probability 
Ratio Test (SPRT) is given. 

Algorithm 3.1 SPRT 

gt = gt-1 + S t  - v (3.24) ,. 
g t = O ,  a n d k = t i f g t < a < O  (3.25) 
gt = 0, and t, = t and  alarm if gt > h > 0. (3.26) 

Design parameters: Drift v, threshold h and reset level a. 
Output: Alarm time(s) t,. 

In words, the  test  statistic gt sums  up  its  input st, with the idea to give 
an alarm when the  sum exceeds a threshold h. With a white noise input, 
the  test  statistic will drift away similar to a random walk. There  are two 
mechanisms to prevent this  natural  fluctuation. To prevent positive drifts, 
eventually yielding a false alarm, a small  drift term v is subtracted at each 
time  instant. To prevent a negative drift, which would increase the  time  to 
detection  after a change, the  test  statistic is reset to 0 each time in becomes 
less than a negative constant a. 

The level crossing parameter a should be chosen to be  small  in  magnitude, 
and  it has been thoroughly  explained why a = 0 is a good choice. This 
important special case yields the cumulative sum (CUSUM) algorithm. 
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Algorithm  3.2  CUSUM 

gt = gt-1 + St - v (3.27) ,. 
g t = 0 ,   a n d k = t i f g t < O  (3.28) 
gt = 0, and ta  = t and  alarm if gt > h > 0. (3.29) 

Design parameters: Drift U and threshold h. 
Output: Alarm time(s) t ,  and  estimated change time L. 

Both  algorithms were originally derived in the context of quality  control  (Page, 
1954).  A more recent reference with a few variations  analyzed is Malladi and 
Speyer (1999). 

In  both  SPRT  and CUSUM, the  alarm  time  ta is the primary  output,  and 
the drift  should  be chosen as half of the critical level that must  not be exceeded 
by the physical variable Bt. A non-standard,  but very simple, suggestion for 
how to  estimate  the change time is included in the parameter L ,  but remember 
that  the change is not necessarily abrupt when using stopping  rules  in general. 
The  estimate of the change time is logical for the following reason  (although 
the change location  problem  does not seem to be  dealt  with  in  literature  in 
this  context).  When Ot = 0 the  test  statistic will be set to zero at almost every 
time  instant  (depending  on  the noise  level and if a < -U is used).  After a 
change to Ot > v, gt  will start  to grow and will not be reset until the  alarm 
comes, in which case is  close to  the correct change time. As a rule of thumb, 
the drift  should be chosen as one half of the expected  change  magnitude. 

Robustness and decreased false alarm  rate may be achieved by requiring 
several gt > h. This is in  quality  control called a run test. 

Example  3.2  Surveillance using the CUSUM test 

Suppose we want to make surveillance of a signal to detect if its level 
reaches or exceeds 1. The CUSUM test  with U = 0.5 and h = 5 gives an 
output  illustrated in  Figure 3.4. Shortly  after the level of the signal exceeds 
0.5, the  test  statistic  starts  to grow until  it reaches the  threshold, where we 
get an  alarm. After this, we continuously get alarms for level crossing. A run 
test where five stops in the CUSUM test generates an  alarm would  give an 
alarm  at sample 150. 
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Figure 3.4. A signal observed with noise. The lower plot shows the  test  statistic gt from 
(3.27)-(3.29) in the CUSUM test. 

3.4.3. Two-sided  tests 

The  tests in the previous  section are based on the  assumption  that Bt is  posi- 
tive. A two-sided test is obtained as follows: 

0 For the averaging and  estimation  approaches where gt is a  linear  function 
of data, simply  test if gt > h1 or gt < -h2. 

0 For the non-linear  (in data)  methods CUSUM and  SPRT, apply two 
tests in  parallel. The second one  can  be seen as having -yt as  the  input 
and h2 as  the threshold. We get an  alarm when  one of the single tests 
signals an  alarm. 

In  a  fault  detection  context, we here get a very basic diagnosis based on the 
sign of the change. 

3.4.4. The CUSUM adaptive filter 

To illustrate one of the  main  themes in this book, we here combine adaptive 
filters  with the CUSUM test as a change  detector,  according to  the general pic- 
ture shown in Figure 1.18. The first  idea is to consider the signal  as piecewise 
constant  and  update  the least  squares  estimate  in between the  alarm times. 
After the  alarm,  the LS algorithm is restarted. 
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Algorithm 3.3 The CUSUM LS filter 

ot = - C Y k  t - t o  k=to+l 

After an  alarm, reset g:') = 0, gj2) = 0 and t o  = t. 
Design parameters: v, h. 
output: et. 

Since the  output from the algorithm is a piecewise constant  parameter 
estimate,  the algorithm  can  be seen as a smoothing filter. Given the detected 
change times, the  computed  parameter  estimates  are  the best possible off-line 
estimates. 

Example 3.3 Surveillance using the CUSUM test 

Consider the  same signal  as  in  Example 3.2. Algorithm 3.3 gives the signal 
estimate  and  the  test  statistics in  Figure 3.5. We only get one  alarm, at time 
79, and  the  parameter  estimate quickly adapts afterwards. 

A variant is obtained by including  a  forgetting  factor  in the least  squares 
estimation. Technically, this  corresponds to  an  assumption of a signal that 
normally changes slowly (caught by the forgetting  factor) but  sometimes un- 
dergoes abrupt changes. 
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Figure 3.5. A  signal and  its  measurements,  with  an  estimate from the CUSUM filter in 
Algorithm 3.3. The solid line shows the  test  statistic g ( t )  in the CUSUM test. 

Algorithm 3.4 The CUSUM RlS filter 

After an  alarm, reset g!') = 0, gj2) = 0 and 8, = yt. 
Design parameters: v, h. 
output: e,. 

The point  with the reset 8, = yt is that  the algorithm  forgets  all old infor- 
mation  instantaneously, while, at  the  same  time, avoids bias and  a  transient. 

Finally,  some  general  advice for tuning  these  algorithms, which are defined 
by combinations of the CUSUM test  and  adaptive filters, are given. 
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Tuning of CUSUM filtering  algorithms 
Start  with a very large threshold h. Choose v to one half of the 
expected  change, or adjust v such that gt = 0 more than 50% of 
the time. Then set the threshold so the required  number of false 
alarms  (this  can  be  done  automatically)  or delay for detection is 
obtained. 

0 If faster  detection is sought, try  to decrease v. 

0 If fewer false alarms  are wanted, try  to increase v. 

0 If there is a subset of the change  times that does  not make 
sense, try  to increase v. 

3.5. likelihood  based change detection 

This section provides a compact  presentation of the  methods derived in  Chap- 
ters 6 and 10, for the special case of signal  estimation. 

3.5.1. likelihood  theory 

Likelihood is a measure of likeliness of what we have observed, given the 
assumptions we have made. In  this way,  we can  compare,  on the basis of 
observed data, different assumptions  on  the change  time. For the model 

yt = 8 + et,  et E N(0, R) ,  (3.30) 

the likelihood is denoted p(yt18, R)  or Zt(8, R).  This should be  read  as  “the like- 
lihood for data gt given the  parameters 8, R”. Independence and Gaussianity 
give 

The  parameters  are here nuisance, which means they  are irrelevant for change 
detection. There  are two ways to eliminate them if they  are unknown: esti- 
mation or marginalization. 
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3.5.2. M1 estimation of nuisance  parameters 

The Muzimum Likelihood (ML)  estimate of 19 (or  any parameter) is formally 
defined as 

Rewrite the exponent of (3.31) as  a  quadratic  form in 19, 

t 
C ( y 2  - e)2 = t(y” - 2ey + e2> = t ( ( 0  - + y2 - y2) 
i=l 

(3.33) 

where 

1 
t .  

t 
- 
Y = -CYi 

2=1 

t y”=:xY; 
2=1 

denote  sample averages of y and y2, respectively. From  this, we see that 

J M L  - - l - Y  = - X Y i  t .  
2=1 

(3.34) 

which is, of course,  a wellknown result. Similarly, the joint ML estimate of 8 
and R is  given by 

(4, klML = arg maxZt(8, R) 
0 3  

= (4, arg mpZt(6, R))  

= (4, arg max(27r-t/2~-t/2e-Y 2~ >. 
- 

2 - 5 2  

R 

By taking  the logarithm, we get 

-2 log Zt(4, R) = t log(27r) + t log(R) + -(y2 - y2). t -  
R 

Setting  the derivative  with  respect to R equal to zero gives 

(3.35) 
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Compare to  the formula Var(X) = E(X2) - ( E ( X ) ) 2 .  Note, however, that  the 
ML estimate of R is not unbiased, which can  be easily checked. An unbiased 
estimator is obtained by using the normalization  factor l/(t - 1) instead of 
l / t  in (3.35). 

Example 3.4 Likelihood  estimation 

Let the  true values in (3.30) be 19 = 2 and R = 1. Figure 3.6 shows how the 
likelihood (3.31) becomes more and more concentrated  around  the  true values 
as more observations become available. Note that  the distribution is narrower 
along the 8 axle, which indicates that successful estimation of the mean is 
easier than  the variance. Marginalization  in this example  can be elegantly 
performed numerically by projections.  Marginalization  with  respect to R and 
8, respectively, are shown in  Figure 3.7. Another  twist  in  this  example is to 

N = l  
~ -- .-- I'. N = 5  

(c) ( 4  

Figure 3.6. Likelihood of the  mean f3 and variance R from l, 5 ,  20 and 40 observations, 
respectively. 



3.5 Likelihood  based chanae  detection 73 

Marginal distribution for R Marginal distribution for e 

ML  estimate of 0 as a  function of time ML estimate of R as  a function of time 
3 7 1  1 . 5 7 1  

2 . 5 k  rr"" 
1 .  

2 0.5 

1.5 
0 20 40 OO 20 40 

Figure 3.7. Upper row of plots shows the marginalized likelihood using 40 observations. 
Lower row of plots shows how the  estimates converge in time. 

study  the  time response of the  maximum likelihood estimator, which  is also 
illustrated in Figure 3.7. 

The numerical  evaluation is performed using the point  mass  jilter, see 
Bergman (1999), where a  grid of the  parameter space is used. 

3.5.3. M1 estimation of a  single change time 

We will now extend ML to change time estimation. Let p(ytlk) denote the 
likelihood' for measurements yt = y1, y2,. . . , yt, given the change time k.  The 
change time is then  estimated by the maximum likelihood principle: 

i = arg  mkaxp(ytlk). (3.36) 

This is basically an off-line formulation. The convention is that i = t should 
be  interpreted  as no change. If the test is repeated for each new measurement, 
an on-line version is obtained, where there could be efficient  ways to  compute 
the likelihood recursively. 

If we assume that 6' before and  after  the change  are  independent,  the 
likelihood p ( y t l k )  can be divided  into two parts by using the rule P(A,  BIC) = 
P(AIC)P(BIC), which holds if A and B are independent. That is, 

P W l k )  = P(Y"k)P(YL+llk) = P(Y"P(YL+l). (3.37) 

'This  notation is equivalent to  that commonly used for conditional distribution. 
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Here yh+l = y,++1,. . . , yt. The conditioning  on a change at time k does  not 
influence the likelihoods in the  right-hand side and is omitted.  That is,  all 
that is needed is to compute the likelihood for data in  all possible splits of 
data into two parts.  The number of such  splits is t, so the complexity of the 
algorithm increases with  time. A common  remedy to this problem is to use 
the sliding window approach  and only consider k E [t - L, t] .  

Equation (3.37) shows that change detection based on likelihoods brakes 
down to computing  the likelihoods for batches of data,  and  then combine 
these using (3.37). Section 3.A contains explicit formulas for how to compute 
these likelihoods, depending  on  what is known about  the model. Below is 
a summary of the  results for the different cases needed to  be distinguished 
in  applications. Here MML refers to Maximum Marginalized  Likelihood and 
MGL refers to Maximum Generalized Likelihood. See Section 3.A or  Chapters 
7 and 10 for details of  how these  are defined. 

1. The  parameter Q is unknown and  the noise variance R is known: 

tR 
-2  log Z,n/rML(R) M (t - 1) log(27rR) + log(t) + R. 

(3.38) 

(3.39) 

Note that k is a compact and convenient way  of writing (3.35), and 
should not be confused with an estimate of what is assumed to  be known. 

2. The  parameter Q is unknown and  the noise variance R is unknown, but 
known to be  constant.  The derivation of this practically quite interesting 
case is postponed to  Chapter 7. 

3. The  parameter Q is unknown and  the noise variance R is unknown, and 
might alter  after  the change time: 

-2  log l,n/rGL  Mt log(27r) + t + t log(&), (3.40) 

-2  log l,n/rML Mt log(27r) + (t - 5) + log@) - (t - 3)  log@ - 5) + 
(t - 3)  log(&). (3.41) 

4. The  parameter Q is known (typically to be zero) and  the noise variance 
R is unknown and  abruptly changing: 

-2logl,n/rGL(Q) M tlog(27r) + t + tlog(R), (3.42) 

-2 log l t " L ( 0 )  M t log(27r) + (t - 4) - (t - 2) log@ - 4) + (t - 2) log@). 
(3.43) 
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Note that  the last case is for detection of variance  changes. The likelihoods 
above can now be combined before and  after a possible change, and we get 
the following algorithm. 

Algorithm  3.5 likelihood based  signal change detection 

Define the likelihood Z m z n  = p(&) ,  where Zt = Zpt. The log likelihood for a 
change at time k is  given  by 

A 

- log Zt(k) = - log Z1:k - log Zk+l:t, 

where each log likelihood is computed by one of the six alternatives (3.38)- 
(3.43). 

The  algorithm is applied to  the simplest possible example below. 

Example  3.5  likelihood  estimation 
Consider the signal 

Y t =  { 0 + e ( t ) ,  for 0 < t 5 250 
1 + e ( t ) ,  for 250 < t 5 500. 

The different likelihood functions as a function of change time  are  illustrated 
in  Figure 3.8, for the cases: 

e unknown Q and R, 
e R known and Q unknown, 
e Q known both before and  after change, while R is unknown. 

Note that MGL has  problem when the noise variance is unknown. 

The example clearly illustrates that marginalization is to  be preferred to 
maximization of nuisance parameters  in  this  example. 

3.5.4. likelihood  ratio  ideas 

In  the context of hypothesis  testing, the likelihood ratios  rather  than  the like- 
lihoods are used. The Likelihood Ratio ( L R )  test is a multiple  hypotheses test, 
where the different jump hypotheses are compared to  the no jump hypothesis 
pairwise. In  the LR test,  the  jump  magnitude is assumed to be known. The 
hypotheses  under  consideration are 

H0 : no jump 
H l ( k ,  v) : a jump of magnitude v at  time k .  
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Figure 3.8. Maximum generalized and marginalized likelihoods, respectively (MGL above, 
MML below). Cases: unknown 8 and R in (a), unknown 8 in (b) and unknown R (8 known 
both before and  after change)  in (c). 

The  test is as follows. Introduce the log likelihood ratio for the hypotheses as 
the  test  statistic: 

The factor 2 is just used  for later  notational convenience. The notation gt 
has been chosen to highlight that  this is a distance  measure between two 
hypotheses. We use the convention that Hl(t ,v) = Ho, so that k = t means 
no jump.  Then  the LR estimate can be expressed as 

i L R  - - argmk=gt(k, v>, (3.45) 

when v is known. 
There  are again two possibilities of  how to eliminate the unknown nuisance 

parameter v. Maximization gives the  GLR  test, proposed for change  detection 
by Willsky and Jones  (1976), and marginalization  results  in the MLR test 
(Gustafsson, 1996). 

Starting  with  the likelihood ratio in (3.45), the  GLR  test is a double max- 
imization over k and v, 

By definition, D(k) is the maximum likelihood estimate of v, given a jump  at 
time k .  The  jump  candidate in the GLR test is accepted if 

gt(i,D(k)) > h. (3.46) 
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The idea in MLR is to assume that v is a random  variable  with a certain  prior 
distribution p ( v ) .  Then 

As a comparison and  summary of  of GLR  and MLR, it follows from the deriva- 
tions in Section 3.A.2 that  the two tests  are 

(3.47) 

(3.48) 

Here the prior in MLR is assumed flat, p ( v )  = 1. The theoretical  distribution 
of gFLR(k)  is ~ ’ (1 ) .  The threshold  can be  taken  from  standard  distribution 
tables. It  can  be remarked that  the distribution is rather  robust  to  the as- 
sumed  Gaussian  distribution. Since (1) 5 is an average, (2) averages converge 
according to  the central limit theorem to a Gaussian  distribution,  and  (3)  the 
square of the Gaussian variable is x2(1) distributed, we can conclude that  the 
the  test  statistic approaches x2 (1) distribution  asymptotically. 

GLR and MLR are conceptually different, since they represent two different 
philosophies. 

0 GLR is a hypothesis  test where g t (k ,D(k ) )  is always positive. Thus a 
threshold is needed, and  the size of the threshold  determines how large 
a change is needed to get an  alarm. 

0 MLR is an  estimation  approach, so there is no threshold. The threshold 
0 in (3.48)  is explicitely written  out  just to highlight the similarities  in 
implementation  (note, however, that  the constant  can  be  interpreted as 
a non-tunable  threshold). No change is estimated if g t ( k )  < 0 for all 
k < t ,  since g t ( t )  = 0 and k = t means that no change has  occured 
yet. Here, the prior  on U can  be used to specify what a sufficiently large 
change is. 

More on  these issues can  be  found  in  Chapters  7  and 10. 

3.5.5. Model  validation  based  on sliding  windows 

The basic idea in this model validation approach is to compare two models 
where one is obtained  from a sliding window. Any averaging function  can be 
used, but we will only discuss a rectangular  sliding window here. This model is 
compared to a nominal model obtained  from  either a longer window or off-line 
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analysis  (system  identification  or  a physical model). Equation (3.49) illustrate 
two possibilities of  how to split data.  The  option in (3.49.a) is common  in 
applications, but  the one in (3.49.b) is somewhat  simpler to analyze, and will 
be used here: 

(3.49) 

The slow filter, that estimates M1, uses data from  a very large  sliding window, 
or even  uses all past data (since the last alarm).  Then two estimates, 81 and 
6 2  with variances P1 and P2, are  obtained. If there is  no abrupt change  in 
the  data, these  estimates will be consistent.  Otherwise, a hypothesis  test will 
reject H0 and  a change is detected. 

There  are several ways to construct  such  a  hypothesis test.  The simplest 
one is to  study  the difference 

61 - 6 2  E N(0, P1 + Pz), under H0 (3.50) 

or,  to make the  test single sided, 

(61  - 62)2  
E x2(1), under H0 

p1 + p2 
from which a  standard hypothesis  test  can  be  formulated. 

From  (3.49.b), we immediately see that 

t-L R 
CYi, p1 = - 
2=1 t - L  

61 = - 
t - L .  

so that 

if t is large. 

R t  R p1 + P2 = -- M - 
L t - L  L 

(3.51) 
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Example  3.6  Hypothesis rests: Gaussian and x2 
Suppose we want to design a test  with a probability of false alarm of 5%, 

that is, 

161 - 621 
P ( dm > h )  = 0.05. 

A table over the Gaussian  distribution shows that P ( X  < 1.96) = 0.975, so 
that P(lXl < 1.96) = 0.95, where X E N(0,l).  That is, the  test becomes 

Similarly, using a squared  test statistic  and a table over the x2(1) distribution 
( P ( X 2  < 3.86) = 0.95)  gives 

(61  - e2>2 3 3.86 = 1.962, 
P1 + p2 

which of course is the  same  test  as above. 

The GLR  test  restricted to only considering the change time t - L gives 

This version of GLR where no search for the change time is performed is 
commonly referred to as  Brandt’s GLR  (Appel  and  Brandt, 1983). The sliding 
window approach is according to (3.49.a). 

Algorithm  3.6  Brandt’s GLR 

Filter  statistics: 
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Test statistics: 

gt = gt-1 + St 

Alarm if gt > h 

After an  alarm, reset gt = 0 and t o  = t .  
Design parameters: h, L (also Ri if they  are known). 
output: i p .  

The follow general design rules for sliding windows apply here: 

Design of sliding windows 
The window  size  is coupled to  the desired delay for detection. 
A good starting value is the specified or  wanted  mean delay for 
detection. Set the threshold to get the specified false alarm  rate. 
Diagnosis: 

0 Visually check the variance error  in the parameter  estimate 
in the sliding window. If the variance is high, this may 
lead to many false alarms  and  the window  size should be 
increased. 

0 If the  estimated change times look  like random  numbers,  too 
little  information is available and  the window  size should be 
increased. 

0 If the change times make sense, the mean delay for detection 
might be improved by decreasing the window. 

- 

As a side comment,  it is straightforward to make the  updates in  Algorithm 
3.6 truly recursive. For instance, the noise variance estimate  can  be  computed 
by f i t  = 2 - 7J2 where both  the signal and  squared signal  means are  updated 
recursively. 

More approaches to sliding window change detection will be presented  in 
Chapter 6. 
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3.6. Applications 

Two  illustrative  on-line  applications are given here. Similar  applications on 
the signal  estimation  problem, which are based on off-line analysis, are given 
in Section 4.6. In recent literature,  there  are applications of change  detection 
in  a  heat exchanger (Weyer et  al.,  2000),  Combined  Heat and Power (CHP) 
unit  (Thomson  et  al., 2000) and  growth  rate in  a  slaughter-pig  production  unit 
(Nejsum  Madsen  and  Ruby, 2000). 

3.6.1. Fuel monitoring 

Consider the fuel consumption  filter  problem discussed in  in  Examples 1.1, 1.4 
and 1.8. Here Algorithms 3.2,  3.3 and 3.6 are applied.  These  algorithms  are 
only capable to follow abrupt changes. For incipient  changes, the algorithm 
will  give an  alarm only after the  total change is large  or  after  a long time. In 
both algorithms,  it is advisable to include data forgetting,  as  done  in  Algorithm 
3.4, in the  parameter  estimation  to allow  for a slow drift  in the  mean of the 
signal. 

Table 3.1  shows how the above change detection  algorithms  perform  on this 
signal.  Figure 3.9  shows the result using the CUSUM LS Algorithm 3.3 with 
threshold h = 5, drift v = 0.5, but in  contrast to  the algorithm, we here use 
the squared  residuals  as  distance  measure S t .  Compared to  the existing  filter, 
the tracking  ability has improved and, even more  importantly,  the accuracy 
gets better  and  better in segments  with  constant fuel consumption. 

25 - 
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Figure 3.9. Filtering  with the CUSUM LS algorithm. 
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Table 3.1. Simulation  result for fuel consumption 

Method 

60  8.40 13 h = 20. v = 3. L = 3 Brandt's GLR 
20  8.39 14 h = 3 ,   v = 2  CUSUM 
19 - - R = 0.9, quant = 0.3 RLS 
kFlops MDL fi Design parameters 

I ML 
I I I I 

u2 = 3 I 14 I 8.02 I 256 

3.6.2. Paper  refinery 

Consider now the  paper refinery problem  from Section 2.1.2, where the power 
signal to  the grinder needs to be filtered. As a preliminary  analysis, RLS 
provides some useful information, as seen from the plots  in  Figure 3.11. 

0 There  are two segments where the power clearly decreases quickly. Fur- 
thermore,  there is a starting  and  stopping  transient  that should be de- 
tected  as change times. 

0 The noise  level  is fairly constant (0.05) during the observed interval. 

The CUSUM LS approach  in  Algorithm 3.3 is applied,  with h = 10 and v = 1. 
Figure 3.12 shows gt which behaves well and reaches the threshold quickly after 
level changes. The resulting power estimate  (both recursive and  smoothed)  are 
compared to  the filter implemented  in Sund in the right  plots of Figure 3.10. 

l o o o l l  l 
W 

2000 4000  6000  8000 10000  12000 

2000 4000  6000  8000 10000  12000 
2 

I l l  l 
"0 2000 4000  6000  8000 10000  12000 

Figure 3.10. Estimated power signal using the filter currently used in  Sund, 
LS filter and  smoother, respectively. 

the CUSUM 
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Figure 3.11. Filtered power signal (RLS with X = 0.99) in  Sund's defibrator. Lower plot is 
an  estimate of noise variance. 
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Figure 3.12. The CUSUM test  statistic gt for Sund's  paper  refinery  data. 

Both  tracking and noise rejection are improved. A good alternative would be 
to make the algorithm  adaptive and  thus  to include a small data forgetting to 
track slow variations. Here Algorithm 3.4 can  be used. 
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3.A. Derivations 

3.A.1. Marginalization of likelihoods 

The idea  in  marginalization is to assign a  prior to  the unknown parameter  and 
eliminate it. 

Marginalization of 0 

A flat  prior p ( 0 )  = 1 is  used here for simplicity. Other proper  density func- 
tions, which integrate to one,  can of course  be used but only a few  give explicit 
formulas. The resulting likelihood would only marginally differ from the ex- 
pressions here.  Straightforward  integration yields 

where the  quadratic form (3.33) is used. Identification  with the Gaussian 
distribution II: E N(y, R/ t ) ,  which integrates to one, gives 

(3.52) 

That is, 

R M L  R 
-2 log Zt(R) = -2 logp(ytlR) = t- - log - + t log(2rR) - l og (2~) .  R t 

(3.53) 

Marginalization of R 

In  the  same way, conditioning the  data distribution  on the  parameter only 
gives 
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where p ( R )  = 1 has been assumed.  Identification  with the inverse Wishart 
distribution (or gamma distribution in this scalar  case), 

(3.54) 

gives m = t - 2 and V = C(yi - Q). The  distribution integrates to one, so 

Hence, 

-210gz,(o) = -2logp(ytle) = t i o g ( 2 ~ )  - (t - 2)10g(2) - 210gr - ( t 2 2 )  
+ (t  - 2) log E(& - q 2  . 

C l  ) (3.56) 

This result  can  be  somewhat simplified by using Stirling’s  formula 

r(n + 1) M &nn+1/2 e .  -n (3.57) 

The gamma function is related to  the factorial by n! = F(n+l).  It follows that 
the following expression can be used  for reasonably  large  t (t > 30 roughly): 

t - 4  
2 

= (t - 4) - (t - 2) log - + O(log(t)). 

In  the last  equality,  a term  3  log((t-4)/2) was subtracted  and  O(log(t))  added. 
With  this small  trick, we get a simplified form of the likelihood as follows: 

Z,(Q) M tlog(2i.r) + (t  - 4) - (t  - 2) log@ - 4) + (t - 2) log 

(3.58) 

Marginalization of both Q and R 

When  eliminating both Q and R by marginalization,  there is the  option  to  start 
from either (3.55) or  (3.52). It  turns  out  that (3.52) gives simpler  calculations: 

d Y t )  = /P(YtlR)p(R)dR 

= /(2nR) -(t-l)/2 t- 112 e -~ 2RltdR. 
R 
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Again,  identification  with the inverse Wishart  distribution (3.54) g’ Ives m = 
t - 3 and V = tR,  and 

Using Stirling’s  approximation  (3.57) finally gives 

A 
zt = -210gp(yt) 

M t log(27r) + (t - 5) + log(t) - (t - 3)  log@ - 5) + (t - 3)  log(&). (3.59) 

3.A.2. likelihood  ratio  approaches 

The use of likelihood ratios is quite  widespread  in the change  detection  lit- 
erature,  and  its  main motivation is the Neyman  Pearson  lemma (Lehmann, 
1991). For change detection, it says that  the likelihood ratio is the  optimal 
test  statistic  to  test H0 against H1(k ,  v )  for a given change v and  a given 
change time k .  It does, however, not say anything  about  the composite  test 
when all change times k are  considered. 

We will, without loss of generality, consider the case of known Ot = 0 before 
the change and unknown Ot  = v after the change, 

0 if i < L, 
v if i > k.  

oi = 

The  likelihood  ratio 

We denote the likelihood ratio  with gt to highlight that  it is a distance  measure 
between two hypothesis, which  is going to be  thresholded. The definition is 

(3.60) 

As can be seen from (3.31), all constants  and all terms for i < k will cancel, 
leaving 

4 t  < t  
l 

g t ( k , v )  = -- c (Yi - .l2 + c YH 
l 

R 
i=k+l  i=k+l 

= -- c (v2 - 2 4  l 

R 
i=k+l  

2v t 

= - R c (Yi- i). 
i=k+l  

(3.61) 
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The generalized  likelihood  ratio 

The Generalized  Likelihood Ratio (GLR) is obtained by maximizing over the 
change magnitude: 

From (3.61), the maximizing argument is seen to  be 

1 
t - k  

t 
D(k) = ~ c Yi. 

i=k+l 

(3.62) 

(3.63) 

which of course is the maximum likelihood estimate of the change,  conditioned 
on the change time k .  The GLR in (3.61) can  then  be  written 

a L R  2 q k )  g f L R ( k )  = gt ( k ,   q k ) )  = - W )  (t - k ) ( f i ( k )  - -) = ' 2 ( k )  . (3.64) 
R 2 R/@ - 

The  latter form, the squared  estimate normalized by the  estimation variance, 
will be extended to more general cases in Chapter 7. 
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4.1. Basics 

This  chapter  surveys off-line formulations of single and multiple change point 
estimation . Although  the  problem formulation yields algorithms that process 
data batch.wise, many important algorithms have natural on-line  implemen- 
tations  and recursive approximations . This  chapter is basically a projection of 
the more  general  results  in Chapter 7 to  the case of signal  estimation . There 
are, however.  some dedicated  algorithms for estimating one change  point off- 
line that apply to  the current case of a  scalar  signal  model . In  the  literature 
of mathematical  statistics.  this  area is known as change  point  estimation . 

In segmentation. the goal  is to find a sequence kn = ( k ~ .  k2. .... kn)  of time 
indices. where both  the  number n and  the locations Ici are  unknown. such that 
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the signal can  be  accurately  described as piecewise constant, i.e., 

is a good description of the observed signal yt. The noise variance will be 
denoted E(ei) = R. The  standard  assumption is that et E N(0, R), but  there 
are  other possibilities. Equation (4.1) will be  the signal model used throughout 
this  chapter,  but  it should be noted that  an  important extension to  the case 
where the  parameter is slowly varying within each segment is possible with 
minor modifications. However, equation (4.1) illustrates  the basic ideas. 

One way to guarantee that  the best possible solution is found is to consider 
all possible segmentations kn, estimate  the mean  in each segment, and  then 
choose the  particular kn that minimizes an optimality  criteria, 

h 

kn = arg min V ( k n ) .  
n>l,O<kl<.. .<k,=N 

The procedure is illustrated below: 

Note that  the segmentation kn has n - 1 degrees of freedom. Two  types of 
optimality  criteria have been proposed: 

0 Statistical  criteria:  The  maximum likelihood or  maximum a posteriori 
estimate of kn is studied. 

0 Information based criteria: The information of data in each segment is 
V ( i )  (the  sum of squared  residuals),  and the  total information is the  sum 
of these. Since the  total information is minimized for the degenerated 
solution kn = 1,2,3, .  . . , N ,  giving V ( i )  = 0, a penalty  term is needed. 
Similar problems have been studied  in the context of model structure 
selection, and from this  literature Akaike’s AIC and BIC  criteria have 
been proposed for segmentation. 

The real challenge in  segmentation is to cope with the curse of dimensionality. 
The number of segmentations kn is 2N (there  can  be  either a change  or no 
change at each time  instant). Here, several strategies have been proposed: 

0 Numerical searches based on  dynamic  programming  or Markov Chain 
Monte  Carlo  (MCMC)  techniques. 

0 Recursive local search schemes. 



4.2 Seamentation  criteria 91 

A section is devoted to each of these two approaches. First, a summary of 
possible loss functions, or segmentation  criteria, V ( k n )  is given. Chapter 7 is 
a direct  continuation of this  chapter for the case of segmentation of parameter 
vectors. 

4.2. Segmentation  criteria 

This section  describes the available statistical  and information based optimiza- 
tion  criteria. 

4.2.1. M1 change  time  sequence estimation 

Consider first an off-line problem, where the sequence of change  times kn = 
kl, k2,. . . , k,  is estimated  from  the  data sequence yt. Later, on-line algorithms 
will be derived from this  approach. We will use the likelihood for data, given 
that  the vector of change points is p(ytlkn). 

Repeatedly using independence of 8 in different segments gives 

using the  notation  and segmentation in (4.3). The  notational convention is 
that no change is estimated if n = 1 and kl = t .  The likelihood in each 
segment is defined exactly  as in Section 3.5.3: 

0 The  advantage of dealing with  multiple  change  times is that  it provides 
an elegant approach to  the  start-up problem when a change is detected. 
A consequence of this is that very short  segments  can be found. 

0 The disadvantage is that  the number of likelihoods (4.4) increases expo- 
nentially with  time  as 2t. 
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A slight variation of this  approach is provided in a Bayesian setting.  In  the 
Bayesian world, everything that is unknown is treated as a random variable. 
Here the change time  has to be  interpreted as a random variable, and one idea 
is to assign a probability q for a change at each time  instant,  and assuming 
independence. That is, 

P(change  at  time i )  = Q, 0 < q < 1. 

The a  posteriori probability for k is defined by p(kIy t ) .  Bayes'  rule P(AIB) = 

U P ( B 1 A )  thus gives 
P ( B )  

The  denominator p(yt) is a scaling factor  independent of the change times, 
which is uninteresting for our  purposes. Its role is to make the integral of the 
probability  density  function  equal to one. The last term is recognized as  the 
likelihood (4.4), so the difference to  the ML estimate of kn stems from the last 
factor (the prior for P ) .  The maximizing argument is called the maximum  a 
posteriori (MAP) estimate, which is not influenced by the scaling factor p ( y t ) ,  

One  advantage of the  MAP  estimator might be  that we get a tuning knob to 
control the number of estimated  change  points.  Note that with q = 0.5, the 
MAP  and ML estimators coincide. 

4.2.2. Information based  segmentation 

A natural  estimation  approach to segmentation would be to form a loss func- 
tion  similar to (3 .7) .  An off-line formulation using N observations is 

n 

V N ( P + l ,  kn) = c K(&) (4.8) 
i = O  

where the  dummy variables ko = 0 and kn+l = N are used to define the first 
and last segments. Straightforward  minimization of K(&) gives 

(4.10) 

n 

(4.11) 
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Unfortunately,  it is quite easy to realize that  this  approach will fail. The 
more change points, the smaller loss function. The easiest way to see this is 
to consider the  extreme case where the number of change  points  equals the 
number of data, n = N .  Then k will equal zero in each segment (data  point) 
because there is no error.  In  fact,  the loss function is monotonously decreasing 
in n for all  segmentations. This  has motivated the use of a penalty  term for 
the number of change points. This is in  accordance  with the parsimonious 
principle, which says that  the best data description is a compromise between 
performance  (small loss function)  and complexity (few parameters).  This is 
also sometimes referred to as Ockham’s razor. The typical  application of this 
principle is the choice of model structures in  system identification. Penalty 
terms occuring  in model order selection problems  can also be used in this 
application, for instance: 

Akaike’s AIC (Akaike, 1969) with  penalty  term  2n(d + 1). 

The asymptotically equivalent criteria: Akaike’s BIC (Akaike, 1977), 
Rissanen’s Minimum  Description  Length (MDL) approach  (Rissanen, 
1989) and Schwartz criterion  (Schwartz, 1978). The  penalty  term is 
n(d + 1) log N .  

See also Gustafsson and Hjalmarsson (1995) for a list of likelihood-based 
penalty  terms. Here, d refers to  the number of parameters  in the model, 
which is 1 in this  part since 8 is scalar. Other  penalty  terms  are reviewed in 
Section 5.3.2. 

AIC is proposed in Kitagawa and Akaike (1978) for auto-regressive models 
(see Chapter 5) with a changing noise variance. For change  in the mean 
models, it would read 

(4.12) 

BIC is suggested in Yao (1988) for a changing mean model and unknown 
constant noise variance, leading to 

h 

kn = arg min N log C L  W )  
N 

+ 3n log N .  
kn,n 

(4.13) 

Both (4.12) and (4.13) are globally maximized for n = N and Ici = i. That 
is, the wanted  segmentation is a local (and not the global) minimum. This 
problem is  solved in Yao (1988) by assuming that  an upper  bound  on  n is 
known, but  it is not commented  upon  in  Kitagawa and Akaike (1978). 

The MDL theory provides a nice interpretation of the segmentation  prob- 
lem: Choose the segments such that  the fewest possible data  bits  are used to 
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describe the signal up to a certain accuracy, given that  both  the  parameter 
vectors and  the prediction  errors are  stored  with finite accuracy. 

Both AIC and BIC are based on an assumption  on a large number of 
data,  and  its use in  segmentation where each segment could be  quite  short 
is questioned  in  Kitagawa and Akaike (1978). Simulations  in  Djuric (1994) 
indicate  that AIC and BIC tend  to over-segment data in a simple  example 
where marginalized ML works fine. 

4.3. On-line local search  for  optimum 

Computing  the exact likelihood or  information-based estimate is computa- 
tionally  intractable because of the exponential complexity. Here a recursive 
on-line algorithm is presented and  illustrated  with a simulation  example, also 
used in the following section. 

4.3.1. local tree  search 

The exponential complexity of the segmentation  problem  can be  illustrated 
with a tree  as in  Figure 4.1. Each  branch  marked  with a ‘1’ corresponds to  an 
abrupt change, a jump,  and ‘0’ means no change  in the signal level. In a local 
search, we make a time  to  time decision of which branches to examine. The 
other  alternative using global search strategies,  examined  in  the  next  section, 
decides which branches to examine on  an off-line basis. 

The  algorithm below explores a finite  memory  property, which has much 
in common with  the famous  Viterbi  algorithm  in  equalization; see Algorithm 
5.5 and  the references Viterbi (1967) and Forney (1973). 

Algorithm 4.1 Recursive  signal segmentation 

Choose an optimality  criterion. The  options  are likelihoods, a posteriori 
probabilities  or  information-based  criteria. 

Compute recursively the  optimality criterion using a bank of least  squares 
estimators of the signal mean value, each filter is matched to a particular 
segmentation. 

Use the following rules for maintaining the hypotheses and keeping the 
number of considered sequences ( M )  fixed: 

a) Let only the most probable sequence split. 
b)  Cut off the least probable sequence, so only M ones are left. 
c) Assume a minimum segment length:  let the most probable sequence 

split only if it i s  not too young. 
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Figure 4.1. The  tree of jump sequences. A path labeled 0 corresponds to no  jump, while 1 
corresponds to a jump. 

d) Assure that sequences are not cut off immediately  after they  are  born: 
cut off the least probable sequences among  those  that are older  than 
a certain  minimum lafe-length, until only M are left. 

The last two restrictions are optional, but might be useful in some cases. 

The most important design parameter is the number of filters. It will be 
shown in a more general framework in  Appendix 7.A that  the exact ML esti- 
mate is computed using M = N .  That is, the algorithm  has  quadratic  rather 
than exponential complexity in the  data size, which would be  the consequence 
of any  straightforward  approach. It should be  noted,  as  argued  in  Chapter 
7, that all design parameters  in  the  algorithm  can  be assigned good default 
values a priori, given only the signal model. 

4.3.2. A simulation example 

Consider the change in the mean  signal  in  Figure 4.2. There  are  three  abrupt 
changes of magnitudes 2,3,4, respectively. The noise is white and Gaussian 
with variance 1. The local search algorithm is applied to minimize the max- 
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12 
Measurements and real parameters 

Figure 4.2. A change in the  mean signal with  three  abrupt changes of increasing magnitude. 

imum likelihood criterion  with known noise variance in (4.10). The design 
parameters  are M parallel  filters  with life-length M - 4 and minimum seg- 
ment length 0. The plots in Figure 4.3  show the cases M = 5 and M = 8, 
respectively. The plot mimics Figure 4.1 but is ‘upside down’. Each line rep- 
resents one hypothesis and shows how the number of change points evolves for 
that hypothesis.  Branches that  are cut off have an open  end,  and  the most 
likely branch at each time  instant is marked  with a circle. This  branch  splits 
into a new change hypothesis. The upper  plot shows that, in the beginning, 
there is one filter that performs  best and  the  other filters are used to evaluate 
change points at each time  instant. After having lived for three samples  with- 
out becoming the most likely, they  are  cut off and a new one is started. At 
time 22 one filter reacts  and at  time 23 the correct change time is found. After 
the last change, it  takes three samples  until the correct hypothesis becomes 
the most likely. 

Unfortunately, the first change is not found  with M = 5. It takes  more 
than 3 samples to prove a small change in  mean.  Therefore, M is increased to 
8 in the lower plot.  Apparently, six samples are needed to prove a change at 
time 10. 

Finally, we compute  the exact ML estimate using M = 40 = N (using a 
result  from  Appendix  7.A).  Figure 4.4 shows how the hypotheses  examine  all 
branches that need to be considered. 
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Figure 4.3. Evolution of change hypotheses for a local search with M = 5 and M = 8, 
respectively. A small offset is added to  the  number of change points for each  hypothesis. 
Each line corresponds to one  hypothesis and  the one marked  with ‘0’ is the most likely at 
this  time. By increasing the  number of parallel  filters, the search becomes more efficient, 
and  the first and smallest change at sample 10 can  be found. 
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Figure 4.4. Evolution of change hypotheses for a local search with M = 40. A small offset 
is added  to  the  number of change points for each  hypothesis. 
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4.4. Off-line  global  search for  optimum 

There  are essentially two possibilities to find the  optimum of a loss function 

maxV(kn) 
kn 

from N measurements: 

0 Gradient based methods where small changes in the current  estimate kn 
are evaluated. 

0 MCMC based methods, where random  change  points are  computed. 

4.4.1. local minima 

We discuss here why any global and numerical  algorithm will suffer from local 
minima. 

Example 4.7 Local  minimum for one change point 
The signal in Figure 4.5 has a change at  the end of the  data sequence. 

Assume that we model this noisefree signal as a change  in the mean model 
with  Gaussian noise. Assume we start  with n = 1 and want to find the best 
possible change point. If the initial  estimate of k is small, the likelihood in 
Figure 4.5  shows that we will converge to k = 0, which means  no change! 

This example shows that we must do  an exhaustive search for the change 
point. However, this might not improve the likelihood if there  are two change 
points  as  the following example  demonstrates. 

Example 4.2 Local  minimum for two change points 
The signal in Figure 4.6 is constant  and zero, except for a small segment 

in the middle of the  data record. The global minimum of the likelihood is 
attained for kn = (100,110). However, there is no single change point which 
will improve the null hypotheses, since - logp(k) > - logp(k = O)! 

Such an example might motivate an approach where a complete search of 
one and two change points is performed. This will  work in  most cases, but 
as  the last  example shows, it is not  guaranteed to work. Furthermore,  the 
computational complexity will be cubic  in  time; there  are (F) = N ( N  - 1)/2 
pairs ( k ~ ,  k2) to evaluate  (plus N single change points),  and each sequence 
requires a filter to  be  run, which in itself is linear  in  time. The local search  in 
Algorithm 4.1  will find the  optimum  with N 2 / 2  filter recursions (there  are in 
average N / 2  filters, each requiring N recursions). 
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Figure 4.5. Upper plot: signal. Lower plot:  negative log likelihood p ( k )  with global mini- 
mum at k = 100 but local minimum at k = 0. 
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Upper plot: signal. Lower plot:  negative log likelihood p ( k )  with global mini- 
= (100,110) but local minimum at k = 0. No improvement for k" = m, m = 
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Example 4.3 Global  search using one  and  two change points 

Consider a change in the mean  signal  with two abrupt changes as shown 
in  Figure 4.7. The likelihood as a function of two change  times shows that  the 
larger change at time 20 is more significant (the likelihood is narrower in one 
direction).  Note  that  the likelihood is a symmetric  function  in Icl and Ic2. 

In  the example above, a two-dimensional exhaustive  search  finds the  true 
maximum of the likelihood function. However, this does  not  imply that a 
complete search over all combinations of one or two changes would find the 
true change times generally. 

Example 4.4 Counterexample of convergence of global  search 
Consider a signal with only two non-zero elements + A  and -A, respec- 

tively, surrounded by M zeros at each side. See Figure 4.8 for an example. 
Assume the following exponential  distribution  on  the noise: 

Then  the negative log likelihood for no  change  point is 

- logp(y1kn = 0) = c + 2 J A .  

As usual, kn = 0 is the  notation for no change. The best way to place two 
change points is to pick up one of the spikes, and leave the  other one as 'noise'. 

10, 
Estimated (solid) and real  (dotted)  parameters 

I 
5 10  15  20  25 30 

Sampel number 
0 0  

( 4  (b) 

Figure 4.7. A signal with two changes with different amplitudes  (a),  and  the likelihood as 
a function of kl  and kz (b). 
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Figure 4.8. The signal in the counter  example with M = 10. 

The  estimated mean in the segment that is left with a spike is then A / M .  The 
residuals  in two of the segments are identically zero, so their likelihood vanish 
(except for a constant).  The likelihood for the whole data set is thus essentially 
the likelihood for the segment with a spike. For instance, we have 

- logp(yIkn = ( M ,  A4 + 1)) = 3C+ A - - + (A4 - 1) - M (1 +&)d. /< 6 
That is, its negative log likelihood is larger than  the likelihood given no change 
at all. Thus, we will never find the global optimum by trying all  combinations 
of one and two change points. In  this example, we have to make a complete 
search for three change points. 

4.4.2. An MCMC approach 

Markov Chain Monte Carlo (MCMC) approaches are surveyed in Chapter 
12 and applied to particular models here and in Chapters 7 and 10. The 
MCMC algorithm proposed in  Fitzgerald et al. (1994) for signal  estimation is 
a combination of Gibbs  sampling and  the Metropolis  algorithm. The algorithm 
below  is based solely on the knowledge of the likelihood function for data given 
a certain  segmentation. 

It is the last step in the  algorithm, where a random  rejection  sampling is 
applied, which defines the Metropolis  algorithm: the  candidate will be rejected 
with large probability if its value is unlikely. 
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Algorithm 4.2 MCMC signal  segmentation 

Decide the number of changes n, then: 

1. Iterate Monte Carlo run i. 
2. Iterate Gibbs  sampler for component j in kn,  where a random  number 

from - p(kj1k;" except 5 )  

is taken.  Denote the new candidate sequence p. The  distribution may 
be  taken  as  flat, or Gaussian  centered around  the previous estimate. 

3. The  candidate j is accepted  with  probability 

That is, the  candidate sequence is always accepted if it increases the 
likelihood. 

After the burn-in  time (convergence), the  distribution of change times  can  be 
computed by Monte Carlo techniques. 

Note that  there  are no design parameters at all, except the number of changes 
and  that one has to decide what  the  burn-in  time is. 

Example 4.5 MCMC search for  two change points 

Consider again the signal in  Figure 4.7. The Algorithm 4.2 provides a 
histogram over estimated  change  times as shown in  Figure 4.9. The left plot 
shows the considered jump sequence in each MC iteration. The burn-in  time is 
about 60 iterations here. After this,  the change at  time 20 is very significant, 
while the smaller change at  time 10 is sometimes  estimated as 9. 

4.5. Change point  estimation 

The  detection problem is often recognized as change point  estimation in the 
statistical  literature.  The  assumption is that  the mean of a white  stochastic 
process changes at  time k under Hl(k ) :  
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Figure 4.9. Result of the MCMC Algorithm 4.2. Left plot  (a) shows the examined jump 
sequence in each  iteration.  The  best  encountered  sequence is marked  with  dashed lines. The 
right  plot (b) shows an  histogram over all considered jump sequences.  The  burn-in  time is 
not  excluded in the  histogram. 

The following summary is based on  the survey  paper Sen and Srivastava 
(1975), where different procedures to  test H0 to H1 are described. The meth- 
ods are off-line and only one change  point may exist in the  data.  The Bayesian 
and likelihood methods  are closely related to  the already  described  algorithms. 
However, the  non-parametric approaches below are  interesting  and  unique for 
this problem. 

The following sub-problems are considered: 

P1: 81 > 80, where 190 is unknown. 
P2: 81 > 80, where 130 = 0 is known. 
P3: 81 # 80, where 190 is unknown. 
P4: 81 # 80, where 130 = 0 is known. 

4.5.1. The  Bayesian approach 

A Bayesian approach, where the prior  probability of all  hypothesis are  the 
same, gives: 

N 

t=2 
N 

t=2 
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~ N - l  N 

L. k=l  t=k+l 

where tj is the sample  mean of yt. If g > h, where h is a pre-specified threshold, 
one possible estimate of the  jump  time (change  point) is given  by 

N 

p3 ,if = arg  max - c (yt - 
l 

I<k<N N - k 
t=k+l 

for P3 and similarly for P4. 

4.5.2. The maximum  likelihood approach 

Using the ML method  the  test  statistics  are  as follows: 

PI g y L  = max Yk+l ,N  - Y l , k  

k d k - l +  (N - k) - l  
P2 

p3 g F L  =max  (Yk+l ,N  - Y l , k ) 2  

k k - l +  (N - k)-l  

where ym,n = yt. If H 1  is decided, the  jump  time  estimate is 
given  by replacing maxk  by arg maxk. 

1 n 

4.5.3. A non-parametric approach 

The Bayesian and maximum likelihood approaches  presumed a Gaussian dis- 
tribution for the noise. Non-parametric tests for the first problem,  assuming 
only whiteness, are based on  the decision rule: 
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where the  distance measure s i  is one of the following ones: 

N 
S; = c sign(yt - med(y)) 

t=lc+l 
N N  

t=lc+l m=l 

Here, med denotes the median and sign is the sign function. The first method 
is a variant of a sign test, while the  other one is an example of ordered statistics. 
These  are a kind of whiteness test, based on  the idea that under Ho, yt is larger 
than  its mean  with  probability 50%. Determining  expectation and variance 
of s i  is a standard probability  theory  problem. For instance, the  distribution 
of S; is hyper-geometric  under Ho. Again, if H1 is decided the  jump  time 
estimate is given  by the maximizing argument. 

Example 4.6 Change point  estimation 

To get a feeling of the different test  statistics, we compare the  statistics 
for the formulation P1. Two signals are  simulated, one which is zero and 
one which undergoes an  abrupt change in the middle of the  data ( k  = 50) 
from zero to one. Both signals have white  Gaussian  measurement noise with 
variance 1 added.  Figure 4.10 shows that all  methods give a rather clear peak 
for the  abruptly changing data (though the Bayesian statistic seems to have 

Bayes 
l 

Maximum  Likelihood 
I 

Non-parametric I Non-parametric II 

10 

5 
2 

0 
0 50 100 0 50 100 

Figure 4.10. Comparison of four change point  estimation  algorithm for two signals: one 
with  an  abrupt change at  time 50, and one without. 
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some probability of over-estimating the change time),  and  that  there should 
be no problem  in designing a good threshold. 

The explicit formulas given in this section, using the maximum likelihood 
and Bayesian approaches,  should  in  certain  problem  formulations come out as 
special cases of the more general  formulas  in Section 4.2, which can  be verified 
by the  reader. 

4.6. Applications 

4.6.1. Photon  emissions 

The signal model for photon emissions in Section 2.1.3 is 

Here E(et) = 0 so et is white noise. There is no  problem  in modifying the 
likelihood based algorithms  with  respect to any  distribution of the noise. The 
exponential  distribution  has  the nice property of offering explicit and compact 
expressions for the likelihood after  marginalization ("L) or  maximization 
(MGL). The  standard  algorithm assumes  Gaussian noise, but  can  still  be 
used with a good result,  though.  This is an illustration of the  robustness 
of the algorithms  with  respect to incorrectly modeled noise distribution.  To 
save time,  and  to improve the model, the  time for 100 arrivals is used as  the 
measurement yt in the model. A processed signal  sample  is, thus, a sum of 

50  100  150 200 250 
Time  [sampels] 

Figure 4.11. The noise variance in the  photon  data is estimated by  applying a forgetting 
factor low-pass filter with X = 0.85 to  the measured  arrival rates.  The  stationary values 
indicate a variance of slightly less than 1. 
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Figure 4.12. 

Signal and segmentation 

100 150 200  250 50 100 150 200  250 
Time [sampels] Time [sampels] 

( 4  (b) 

In  (a)  the  time differences between 100 arrivals is shown together  with a 
segmentation.  The  quantity is a scaled version of the  mean  time between  arrivals (the 
intensity).  In  (b)  the recursively estimated  and segmented values of the  intensity  parameter 
are shown, with a low-pass filtered version of the arrival  times. 

100 exponentially  distributed  variables, which can  be well approximated by 
a  Gaussian  variable  according to  the central  limit  theorem. To design the 
detector,  a  preliminary data analysis is performed. An adaptive  filter  with 
forgetting  factor X = 0.85 is applied to yt. The squared  residuals from this 
filter  are  filtered  with the  same filter to get an idea of the measurement noise R. 
The result is shown in Figure 4.11. Clearly, there  are non-stationarities  in the 
signal that should  be  discarded at  this  step,  and  the  stationary values seems to 
be  slightly  smaller than 1. Now, the filter  bank ML algorithm is applied  with 
M = 3  parallel  filter and  an  assumed  measurement noise variance of R = 1. 
Figure 4.12 shows that a  quite  realistic  result is obtained,  and  this algorithm 
might be used in  real-time automatic surveillance. 

4.6.2. Altitude  sensor  quality 

The  altitude  estimate in an aircraft is computed  mainly by deadreckoning using 
the  inertial navigation  system. To avoid drift  in the  altitude,  the  estimator 
is stabilized by air  pressure  sensors  in pivot tubes  as a barometric altitude 
sensor. This gets increased variance when Mach 1 is passed,  as  explained  in 
Section 2.2.1. One  problem is to detect the critical regions of variance  increases 
from measured  data. Figure 4.13  shows the  errors from a calibrated  (no  bias) 
barometric  sensor, and low-pass filtered  squared  errors. Here a forgetting 
factor  algorithm  has been used with X = 0.97. 

Figure 4.13  shows the  same low-pass filtered  variance  estimate  (in  logarith- 
mic scale) and  the result  from the ML variance  segmentation  algorithm. The 
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Figure 4.1 3. Low-pass filtered and  segmented  squared  residuals for altitude  data. 

latter  estimates  the change times and noise variance  as  a  function of sample 
number.  That is, we know precisely where the  measurements  are useful. 

4.6.3. Rat EEG 

The  rat EEG can be considered as a signal  with piecewise constant noise 
variance,  as discussed in  Section 2.2.2. The method used  by the researchers is 
based on a  band  pass  filter  and level thresholding  on the  output power. This 

EEG signal on a rat 25 

20 

15 

10 

5 

0 '0 500 1000 1500  2000  2500 3000 3500 4000 , 
Time  [samples]  Time  [samples] 

( 4  (b) 

Figure 4.14. Rat EEG and  a  segmentation  (a)  and an adaptive  and  segmented  estimate of 
the signal  energy (b). 
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gives 

[l096  1543  1887  2265  2980  3455  3832  39341. 

This is a signal where the ML estimator for changes in noise variance can  be 
applied. This gives 

C754  1058  1358  1891  2192  2492  2796  3098  3398  36991. 

It can  be  noted that  the changes are  hardly  abrupt for this signal. 
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5.1. Basics 

The signal model in this  chapter  is,  in  its  most  general  form, 

The noise  is here  assumed  white  with variance X, and will sometimes be re- 
stricted to  be Gaussian. The last expression is in a polynomial  form, whereas 
G, H are filters. Time-variability is modeled by time-varying  parameters Bt .  
The  adaptive filtering  problem is to  estimate  these  parameters by an adaptive 
filter, 

&+l = Qt + Kt% 

where E t  is an application  dependent  error  from the model. 

archetypical  applications will be  presented: 
We point out  particular cases of (5.1) of special  interest,  but  first,  three 

0 Consider first Figure 5.l(a).  The main  approach to system  identification 
is to  run a model in  parallel  with the  true  system,  and  the goal is to get 
F(B) M G. See Section 5.3.  

0 The  radio channel in a digital communication system is well described 
by a filter G(q; B ) .  An important problem is to find an inverse filter, 
and  this problem is depicted  in  Figure 5.l(b).  This is also known as  the 
inverse  system  identijication problem. It is often necessary to include 
an overall delay. The goal is to get F(B)G M 4-O. In equalization, a 
feed-forward signal qPDut, called training sequence, is available during 
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a learning  phase. In blind equalization, no training signal is available. 
The delay, as well as the order of the equalizer are design parameters. 
Both  equalization and blind  equalization are  treated in Section 5.8. 

The noise  cancelation, or Acoustic  Echo  Cancelation  (AEC), problem  in 
Figure 5.l(c) is to remove the noise component  in y = s+v by making use 
of an external sensor measuring the  disturbance U in v = Gu. The goal 
is to get F ( 0 )  M G, so that d M S. This problem is identical to system 
identification, which can  be realized by redrawing the block diagram. 
However, there  are some particular  twists  unique for noise cancelation. 
See Section 5.9. 

Literature 

There  are many  books covering the  area of adaptive filtering. Among those 
most cited, we mention Alexander (1986), Bellanger (1988), Benveniste et al. 
(1987b), Cowan and  Grant (1985),  Goodwin and Sin (1984), Hayes (1996), 
Haykin (1996),  C.R.  Johnson  (1988),  Ljung and Soderstrom (1983), Mulgrew 
and Cowan (1988), Treichler et al.  (1987), Widrow and  Stearns (1985) and 
Young (1984). 

Survey papers of general interest are Glentis et al.  (1999), Sayed and 
Kailath (1994) and Shynk (1989). Concerning the applications,  system iden- 
tification is described in Johansson (1993), Ljung (1999) and Soderstrom 
and Stoica  (1989),  equalization  in the books  Gardner (1993), Haykin (1994), 
Proakis (1995) and survey paper Treichler et al. (1996), and finally acoustic 
echo cancelation in the survey papers Breining et al.  (1999),  Elliott and Nelson 
(1993) and Youhong and Morris (1999). 

5.2. Signal models 

In  Chapter 2, we have seen a number of applications that can  be  recast to 
estimating  the  parameters in  linear regression models. This section  summa- 
rizes more systematically the different special cases of linear regressions and 
possible extensions. 

5.2.1. linear regression  models 

We here  point out some common special cases of the general filter structure 
(5.1) that can be modeled as linear regression models, characterized by a 
regression vector V t  and a parameter vector 19. The linear regression is defined 
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(a)  System identification. The goal is to get a perfect 
system model F ( 0 )  = G. 

Training 

(b) Equalization. The goal is to get a perfect  channel 
inverse F ( 0 )  = GP', in which case the  transmitted 
information is perfectly recovered. 

(c) Noise cancelation. The goal is to get a perfect  model F ( 0 )  = G of 
the acoustic path from disturbance to listener. 

Figure 5.1. Adaptive filtering  applications. 
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The  measurement yt is assumed to be  scalar,  and a possible extension to  the 
multi-variable case is  given at  the end of this  section. 

The most common  model  in  communication  applications is the Finite Im- 
pulse  Response ( F I R )  model: 

To explicitely  include the  model  order,  FIR(n) is a  standard  shorthand nota- 
tion. It is natural  to use this  model for communication  channels, where echoes 
give rise to  the dynamics. It is also the dominating  model  structure  in  real- 
time  signal processing applications, such as  equalization and noise cancelling. 

Example 5.7 Multi-path  fading 

In mobile communications,  multi-path  fading is caused by reflections, or 
echoes, in the environment, This specular multi-path is illustrated  in  Figure 
5.2. Depending  upon where the reflections occur, we get different phenomena: 

0 Local scattering occurs  near the receiver. Here the difference in  arrival 
time of the different rays is  less than  the  symbol period, which means 
that no dynamic  model  can  describe the phenomenon  in  discrete  time. 
Instead,  the envelope of the received signal is modeled  as  a  stochastic 
variable  with Rayleigh  distribution or Rice  distribution. The former dis- 
tribution arises when the receiver is completely  shielded from the  trans- 
mitter, while the  latter includes the effect of a  stronger  direct ray. The 
dynamical effects of this 'channel'  are much faster than  the  symbol fre- 
quency  and imply  a  distortion of the waveform. This  phenomonen is 
called frequency selective fading. 

0 Near-field  scattering occurs at intermediate  distance between the trans- 
mitter  and receiver. Here the difference in  arrival time of the different 
rays is larger than  the  symbol period, so a discrete time echo model  can 
be used to model the  dynamic behaviour. First, in  continuous time  the 
scattering  can be modeled as 
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Figure 5.2. Multi-path fading is caused by reflections in environment. 

where q are real-valued time delays rather  than multiples of a sample 
interval. This becomes a FIR model  after  sampling to discrete  time. 

0 Far-field  scattering occurs close to  the  transmitter.  The received rays  can 
be  treated  as  just one ray. 

Good  surveys of multi-path  fading  are Ahlin and Zander (1998) and Sklar 
(1997), while identification of such a radio  channel is described  in Newson and 
Mulgrew (1994). 

For modeling time series, an Auto-Regressive (AR) model is often used: 

(Pt = (-%l, , -Yt-n) 

l9 = (a1, a2,. . . , a J T .  

T 

(5.9) 

(5.10) 

(5.11) 

AR(n) is a shorthand  notation.  This is a flexible structure for many real-world 
signals like speech signals (Section 2.4.4), seismical data (Section 2.4.3) and 
biological data (Sections 2.4.1 and 2.4.2). One  particular  application is to use 
the model for spectral analysis  as an alternative to transform based methods. 

Example 5.2 Speech  modeling 

Speech is generated in three different ways.  Voiced sound, like all vowels 
and ‘m’, is originating in the vocal chord. In signal processing terms,  the vocal 
cord generates pulses which are  modulated in the  throat  and  mouth. Unvoiced 
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sound, like ’S’ and ’v’, is a modulated  air  stream, where the air  pressure  from 
the lungs  can  be  modeled  as  white noise. Implosive sound, like ‘k’ and ‘b’, is 
generated by building  up an  air pressure which  is suddenly released. 

In all three cases, the  human vocal system  can  be  modeled  as a series of 
cylinders and  an excitation  source (the ‘noise’ et)  which  is either  a  pulse  train, 
white noise  or a pulse. Each  cylinder  can  be  represented by a second order AR 
model, which leads to a physical motivation of why AR models are  suitable for 
speech analysis and modeling. Time-variability  in the  parameters is explained 
by the fact that  the speaker is continuously  changing the  geometry of the vocal 
tract. 

In  control and  adaptive  control, where there is a known control  signal 
U available and where e represents  measurement noise, the Auto-Regressive 
model  with  eXogenous input (ARX) is common: 

(5.12) 

(5.13) 

ARX(n,,nb,n,) is a  compact  shorthand  notation.  This  structure does  not 
follow in  a  straightforward way from physical modeling, but is rather a rich 
structure whose main  advantage is that  there  are simple  estimation  algorithms 
for it. 

5.2.2. Pseudo-linear  regression  models 

In  system  modeling, physical arguments often lead to  the deterministic  signal 
part of the  measurements being  expressed  as a linear  filter, 

The  main difference of commonly used model structures is how and where the 
noise enters the system. Possible model structures,  that  do not exactly fit the 
linear regression framework,  are ARMA, OE  and ARMAX models. These  can 
be  expressed  as  a pseudo-linear  regression, where the regressor p t ( 8 )  depends 
on the  parameter. 



120 AdaDtive  filterina 

The AR model has  certain  shortcomings for some other real world signals 
that  are less resonant.  Then the Auto-Regressive  Moving  Average ( A R M A )  
model might be  better  suited, 

(5.16) 

The Output Error (OE)  model, which is of the Infinite  Impulse  Response (IIR) 
type, is defined as  additive noise to  the signal part 

(5.19) 

H ( q ; 6 )  = 1 (5.20) 

Pt(6) = (-Yt-1 + et-l, .  . . , yt-,, + et-,,, ut-1, .  . . , ~ t - , ~ ) ~  (5.21) - 

6 = ( f l ,  f2,. . ., fn,, h ,  b2,. . . , b , y .  (5.22) 

Note that  the regressor contains the noise-free output, which can  be  written 
yt - et. That is, the noise never enters  the dynamics. The OE models follow 
naturally  from physical modeling of systems,  assuming only measurement noise 
as  stochastic  disturbance. 

For modeling systems where the measurement noise is not  white but still 
more correlated than  that described by an ARX model, an Auto-Regressive 
Moving  Average model with  eXogenous  input ( A R M A X )  model is often used: 

(5.23) 

(5.24) 

This model has found a standard application  in  adaptive  control. 

be  written  as a pseudo-linear regression 
The common theme in ARMA, ARMAX and OE models is that  they  can 

Yt = 'Pt(Q)Q + et, (5.27) 

where the regressor depends  on  the  true  parameters.  The  parameter depen- 
dence comes from the fact that  the regressor is a function of the noise.  For an 
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ARMA model, the regressor in (5.17) contains  et, which can  be  computed as 

and similarly for ARMAX and OE models. 

of the noise. That is, replace et with the residuals E t ,  

The  natural  approximation is to  just plug  in the latest possible estimate 

4 4 ;  8) et = E t  = ~ 

C(q; 8) yt, 

This is the  approach in the extended least squares algorithm  described  in the 
next section. The  adaptive algorithms and change  detectors developed in the 
sequel are mainly discussed with  respect to linear regression models. However, 
they  can  be  applied to OE, ARMA and ARMAX as well, with  the approxi- 
mation  that  the noise  et is replaced by the residuals. 

Multi-Input  Multi-Output (MIMO) models are usually considered to be 
built up  as ng X nu independent models, where ny = dim(y)  and nu = dim(u), 
one from each input  to each output. MIMO adaptive  filters  can  thus  be 
considered as a two-dimensional array of Single-Input  Single-Output  (SISO) 
adaptive filters. 

5.3. System  identification 

This section overviews and gives some examples of optimization  algorithms 
used in  system identification in general. As it  turns  out, these  algorithms  are 
fundamental for the  understanding  and derivation of adaptive  algorithms as 
well. 

5.3.1. Stochastic and  deterministic  least  squares 

The algorithms will be derived from a minimization problem. Let 

4 0 )  = Yt - bt = Yt - p p .  (5.28) 

Least squares  optimization  aims at minimizing a quadratic loss function V(e), 

8 = argminV(0). e 
The (generally unsolvable) adaptive  filtering  problem  can be  stated  as min- 

imizing the loss function 

v(e) = &;(e) (5.29) 
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with  respect to Q for each time  instant. For system  identification, we can dis- 
tinguish two conceptually different formulations of the least  squares  criterion: 
the  stochastic  and  deterministic least  squares. 

Stochastic  least  squares 

The solution to  the stochastic least squares is defined as the minimizing argu- 
ment to 

V(8)  = E[E;(~)]. (5.30) 

Substituting  the residual (5.28) in  (5.30),  differentiating and  equating to zero, 
gives the minimum mean square  error solution 

This  equation defines the normal  equations for the least  squares  problem. The 
solution to  this problem will be  denoted 8* and is in case of invertible E[cptcpF] 
given by 

Q* = E[cptcpt 1 E[cptYtl. T -1 (5.31) 

In practice, the  expectation  cannot  be evaluated and  the problem is how to 
estimate  the expected values from  real data. 

Example 5.3 Stochastic  least  squares  solution for FIR model 

For a second order FIR model, (5.31) becomes 

Q * =  ( 
In Section 13.3, this is identified as  the solution to  the Wiener-Hopf  equation 
(13.10). The least  squares  solution is sometimes referred to  as  the Wiener 
filter. 

Deterministic  least  squares 

On  the  other  hand,  the solution to  the deterministic least squares is defined 
as  the minimizing argument to 

t 
V(8)  = C E ; ( e ) .  

k=I  
(5.32) 
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The normal  equations  are  found by differentiation, 

and  the minimizing argument is thus 

(5.33) 

It is here assumed that  the  parameters  are time-invariant, so the question is 
how to generalize the  estimate  to  the time-varying case. 

Example 5.4 Deterministic least squares  solution  for FIR model 

For a second order FIR model, (5.33) becomes 

where the  estimated covariances are defined as 

. t  

Note the similarity between stochastic  and  deterministic least  squares. In  the 
limit t + 00, we have convergence 8, + b'* under mild conditions. 

Example 5.5 AR estimation  for rat €€G 

Consider the  rat EEG in Section 2.4.1, also shown in  Figure 5.3. The least 
squares  parameter  estimate for an AR(2) model is 

e,,,, = (-0.85, 0.40)T, 

corresponding to two complex conjugated poles in 0.43 f i0.47. The least 
squares loss function is V ( @  = 1.91, which can  be  interpreted  as the energy 
in the model noise et. This figure should be compared to  the energy  in the 
signal itself, that is the loss function  without  model, V(0)  = 3.60. This means 
that  the model can  explain  roughly half of the energy in the signal. 

We can  evaluate the least squares estimate at any  time.  Figure 5.3 shows 
how the  estimate converges. This plot  must not be confused with  the  adaptive 
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Figure 5.3. Rat EEG and  estimated  parameters of an  AR(2)  model for each  time  instant. 

algorithms  later  on, since there is no  forgetting of old information here. If 
we try a higher order  model, say AR(4),  the loss function only decreases to 
V ( @  = 1.86. This means that  it  hardly pays off to use higher order models in 
this example. 

5.3.2. Model structure  selection 

The last  comment  in  Example 5.5 generalizes to  an  important problem: which 
is the best model order for a given signal? One of the most important conclu- 
sions from  signal modeling, also valid for change detection  and segmentation, 
is that  the more free parameters  in  the model, the  better fit. In  the example 
above, the loss function decreases when going from  AR(2) to  AR(4),  but not 
significantly. That is the engineering problem: increase the model order  until 
the loss function does not decrease signijicantly. 

There  are several formal attempts  to  try  to get an objective  measure of fit. 
All these  can  be  interpreted as the least  squares loss function  plus a penalty 
term, that penalizes the number of parameters.  This is in  accordance  with the 
parsimonious  principle (or Ockam’s  razor after a greek philosoph). We have 
encountered this problem  in Chapter 4, and a few penalty  terms were listed in 
Section 4.2.2. These  and some more approaches are summarized below, where 
d denotes the model order: 

0 Akaike’s Final  Prediction Error (FPE) (Akaike, 1971; Davisson, 1965): 

1 + d / N  d^ = arg min Vjv ( d )  
d 1 - d / N ‘  
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0 Akaike’s Information  Criterion A (AIC) (Akaike, 1969): 

2d d^ = argminlog(VN(d)) + -. 
d N 

This is asymptotically the same as  FPE, which is easily realized by taking 
the  logarithm of FPE. 

0 The asymptotically equivalent criteria Akaike’s Information  Criterion 
B (BIC) (Akaike, 1977), Rissanen’s minimum  description  length (MDL) 
approach  (Rissanen,  1989), see Section 12.3.1, and Schwartz  criterion 
(Schwartz, 1978). 

2d  log (N) 
d = argminlog(VN(d)) + 

d N 

0 Mallow’s C, criterion (Mallows, 1973) is 

d = a r g m i n W + + d - N ,  d R  

which assumes known noise variance R. 

0 For time series with few data points, say 10-20, the aforementioned  ap- 
proaches do not work very well, since they  are based on  asymptotic 
arguments.  In  the field of econometrics, refined criteria have appeared. 
The corrected AIC (Hurvich and  Tsai, 1989) is 

2d 2(d + l ) (d  + 2) d^ = argminlog(VN(d)) + - + 
d N N - d - 2  

0 The criterion (Hannan  and  Quinn, 1979) 

d = arg min log(VN(d)) + 2d  log  log N 
d N .  

FPE  and AIC tend  to over-estimate the model  order, while BIC and MDL 
are consistent. That is, if  we simulate a model and  then  try  to find its model 
order, BIC will find it when the number of data N tends  to infinity with  prob- 
ability one. The @ criterion is also consistent.  A  somewhat different approach, 
yielding a consistent  estimator of d,  is based on  the Predictive  Least  Squares 
(PLS) (Rissanen,  1986). Here the unnormalized sum of squared  residuals is 
used: 

N 
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where m is a design parameter to exclude the transient.  Compare  this to  the 
standard loss function, where the final estimate is used. Using (5.96), the  sum 
of squared  residuals  can be  written as 

which is a smaller  number than  PLS suggests. This difference makes PLS 
parsimonious. Consistency and  asymptotic  equality  with  BIC  are proven in 
Wei (1992). 

5.3.3. Steepest  descent  minimization 

The steepest  descent  algorithm is defined by 

(5.34) 

Hence, the  estimate is modified in the direction of the negative gradient. In 
case the gradient is approximated using measurements, the  algorithm is called 
a stochastic  gradient  algorithm. 

Example 5.6 The  steepest  descent  algorithm 

Consider the loss function 

V(x) = X1 + XlX2 + 2 2 .  
2 2 

The  steepest descent algorithm  in (5.34) becomes (replace 8 by X)  

The left plot in Figure 5.4 shows the convergence (or learning  curves) for 
different initializations  with p = 0.03 and 100 iterations. A stochastic version 
is obtained by adding noise with variance 10 to  the gradient,  as  illustrated  in 
the right  plot. 

This example  illustrates how the algorithm follows the gradient down to 
the minimum. 
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Steepest descent minimization of f(x)=x3xl%+< Stochastic steepest descent minimization of f(x)=x3xl%+< 

Figure 5.4. Deterministic (left) and  stochastic  (right)  steepest descent  algorithms. 

5.3.4. Newton-Raphson  minimization 

The Newton-Raphson algorithm 

(5.35) 

usually has  superior convergence properties,  compared to  the steepest descent 
algorithm. The price is a computational much more demanding  algorithm, 
where the Hessian needs to  be  computed  and also inverted. Sufficiently close 
to  the minimum,  all loss functions are approximately quadratic functions, and 
there  the Newton-Raphson algorithm  takes  step  straight to  the minima as 
illustrated by the example below. 

Example 5.7 The  Newton-Raphson  algorithm 

Consider the application of the Newton-Raphson algorithm to Example 
5.6 under  the same premises. Figure 5.5 shows that  the algorithm now finds 
the closest way to  the minimum. 

It is interesting to compare how the Hessian modifies the step-size. Newton- 
Raphson  takes  steps in more equidistant  steps, while the gradient  algorithm 
takes huge steps where the gradient is large. 

Models linear in the  parameters (linear regressions) give a quadratic least 
squares loss function, which implies that convergence can  be  obtained  in one 
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Newton-Raphson minimization of f(x)=+xlx2+< Stochastic Newton-Raphson minimization of f(x)=+x,x2+x; 

Figure 5.5. Deterministic (left) and  stochastic  (right) Newton-Raphson algorithms 

iteration by Newton-Raphson using p = 1. On  the  other  hand, model struc- 
tures corresponding to pseudo-linear regressions can have loss functions  with 
local minima,  in which case initialization becomes an  important  matter. 

Example 5.8 Newton-Raphson  with local minima 

The function 

f (X) = x5 - 6x4 + 6x3 + 20x2 - 3 8 ~  + 20 

has a local and a global minimum, as  the plot in  Figure 5.6 shows. A few 
iterations of the Newton-Raphson algorithm (5.35) for initializations xo = 0 
and zo = 4, respectively, are also illustrated  in  the plot by circles and  stars, 
respectively. 

5.3.5. Gauss-Newton  minimization 

Hitherto,  the discussion holds for general  optimization  problems. Now, the 
algorithms will be applied to model  estimation,  or system identzjicatzon. No- 
tationally, we can merge stochastic  and  deterministic least  squares by using 

V ( 0 )  = E@) = E(yt - p;(e)e)2, (5.36) 

where E should be  interpreted as a computable  approximation to  the expec- 
tation  operator  instead of (5.30) or an adaptive version of the averaging sum 
in  (5.32), respectively. 
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6 o f i  

f=x5-6*x4+6*x3+20*x2-38*x+20 for xO=O (0) and x0=4 (X) 

0' 
0 0.5 1 1.5 2 2.5 3 3.5 

X 

Figure 5.6. The Newton-Raphson  algorithm  applied to a  function  with  several  minima. 

For generality, we will consider the pseudo-linear regression case. The 
gradient and Hessian are: 

d V ( d )  = -2E$t(Q)et(Q) 
dd 

The last  approximation gives the Gauss-Newton  algorithm. The approxima- 
tion is motivated  as follows: first,  the gradient  should be uncorrelated  with 
the residuals close to  the minimum and not point  in  any  particular direc- 
tion. Thus,  the  expectation should be zero. Secondly, the residuals  should, 
with  any weighting function, average to something very small  compared to  the 
other  term which is a quadratic form. 

The gradient $t(Q) depends  upon the model. One  approximation for 
pseudo-linear models is to use pt(d), which gives the extended least squares 
algorithm. The  approximation is to neglect one term in 

MO 
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in the  gradient. A related and in  many  situations  better  algorithm is the 
recursive maximum likelihood method given  below without  comments. 

Algorithm 5.7 Gauss-Newton  for  ARMAX  models 
Consider the model 

where the C(q) polynomial is assumed to  be monial  with CO = 1. The Gauss- 
Newton algorithm is 

The  extended least squares  algorithm uses 
A 

?h = = ( -Yt-1, . . .  7 - Yt-'7h,7Ut-1,... ?Ut- '7hb7&1,. . .  
T 

Ct = Y t  - v:(&)&, 
while the recursive maximum likelihood method uses 

Some practical  implemenation steps  are given  below: 

0 A stopping  criterion is needed to  abort  the iterations. Usually, this 
decision involves checking the relative  change  in the objective  function 
V and  the size of the gradient $J. 

0 The  step size p is equal to unity  in  the original algorithm.  Sometimes this 
is a too large a step. For objective  functions whose values decrease in the 
direction of the gradient for a short while, and  then  start  to increase, a 
shorter  step size  is needed. One  approach is to always test if V decreases 
before updating  the  parameters. If not,  the  step size is halved, and  the 
procedure  repeated.  Another  approach is to always optimize the  step 
size. This is a scalar  optimization which can  be  done relatively efficient, 
and  the gain  can be a considerable reduction  in  iterations. 
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Figure 5.7. 10 iterations of Gauss-Newton (a).  The  logarithm of the least squares loss 
function with  the GN iterations  marked as a path (b). 

A thorough  treatment of such algorithms is given in  Ljung and Soderstrom 
(1983) and Ljung (1999). 

A revealing example  with only one local minima  but  with a non-quadratic 
loss function is presented below. 

Example 5.9 Gauss-Newton  optimization of an ARMA(7,l) model 

The ARMA(1, l )  model below is simulated using Gaussian noise of length 
N = 200: 

y ( t )  - 0.5y(t - 1) = e(t) + 0.5e(t - 1). 

The Gauss-Newton iterations  starting at  the origin are  illustrated  both  as an 
iteration plot and in the level curves of the loss function  in  Figure 5.7. The loss 
function is also illustrated as a mesh plot in  Figure 5.8, which shows that  there 
is one global minimum,  and that  the loss function  has a quadratic behavior 
locally. Note that any ARMA model  can be  restricted to  be  stable  and non- 
minimum  phase, which implies that  the intervals [-l, l] for the parameters 
cover all possible ARMA(1, l )  models. The  non-quadratic form fa r  from the 
optimum  explains why the first few iterations of Gauss-Newton are sensitive 
to noise. In  this example, the  algorithm never reaches the optimum, which is 
due  to finite data length. The final estimation  error decreases with  simulation 
length. 

To end  this section, two quite general  system  identification  examples are 
given, where the problem is to adjust  the  parameters of given ordinary differ- 
ential  equations to measured data. 
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Figure 5.8. The  logarithm of the least  squares loss function. 

Example 5.70 Gauss-Newton  identification of electronic  nose  signals 

Consider the electronic nose for classifying bacteria  in Section 2.9.1.  We 
illustrate  here how standard  routines for Gauss-Newton minimization  can be 
applied to general signal processing problems. Recall the signal model for the 
sensor signals given in predictor form: 

A main  feature  in  many  standard packages, is that we do not have to compute 
the gradient $t. The algorithm  can  compute  it numerically. The result of an 
estimated model to  three sensor signals was shown in  Figure 2.21. 

Example 5.7 1 Gauss-Newton  identification of cell phone sales 

Consider the sales figures for the cellular phones  NMT  in Section 2.9.2. 
The differential equation used as a signal  model is 

This non-linear differential equation  can  be solved analytically and  then dis- 
cretized to suit  the discrete time measurements. However, in  many cases, 
there is either no analytical  solution  or  it is very hard to find. Then one  can 
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Figure 5.9. Convergence of signal  modeling of the NMT 450 sales figures (thick solid line) 
using the Gauss-Newton algorithm. The  initial  estimate is the  thin solid line, and  then  the 
dashed  thin lines show how each iteration improves the result. The  thick  dashed line shows 
the final model. 

use a numerical  simulation  tool to compute the mapping  from  parameters to 
predictions &(e), and  then proceed as in  Example 5.10. 

Figure 5.9 shows how the  initial  estimate successively converges to a curve 
very close to  the measurements. A possible problem is local minima. In 
this example, we have to  start  with a I3 very close to  the best values to get 
convergence. Here we used I3 = (-0.0001,  0.1, max(y)), using the fact that 
the  stationary solution  must have yt + 193 and  then some trial  and  error for 
varying 81, 82. The final parameter  estimate is 6 = (0.0011, 0.0444, 1.075)T. 

5.4. Adaptive  algorithms 

System identification by using off-line optimization  performs an iterative min- 
imization of the  type 

N 

t=l 

initiated at 6'. Here Kt is either the gradient of the loss function,  or the inverse 
Hessian times  the gradient. As a starting point for motivating the  adaptive 
algorithms, we can think of them  as as an iterative  minimization where one 
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new data point is included in each iteration. That is, we let N = i above. 
However, the algorithms will neither become recursive nor truly  adaptive by 
this  method (since they will probably converge to a kind of overall average). 
A better  try is to use the previous estimate  as  the  starting point  in a new 
minimization, 

Taking the limited  information  in each measurement into  account,  it is logical 
to only make one iteratation  per measurement. That is, a generic adaptive 
algorithm derived from an off-line method  can  be  written 

8, = 8t-1 + pKt&t 

o o = e .  ,. ^O 

Here, only Kt needs to  be specified. 

5.4.1. LMS 

The idea in the Least  Mean Square (LMS) algorithm is to apply a steepest 
descent algorithm (5.34) to (5.29). Using (5.28), this gives the following  algo- 
rithm. 

Algorithm 5.2 LMS 

For general  linear regression models yt = $&+et, the LMS algorithm  updates 
the  parameter  estimate by the recursion 

et = 8t-l + Pucpt(Yt - (PTe,-l>. (5.37) 

The design parameter p is a user chosen step-size. A good starting value of 
the  step size  is p = 0.01/ Std(y). 

The  algorithm is applied to  data from a simulated  model  in the following 
example. 

Example 5.72 Adaptive filtering  with LMS 

Consider an AR(2) model 

Y t  = -alYt-l - a2Yt-2 + et, 
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Figure 5.10. 
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Figure 5.11. Convergence of LMS for an AR(2) model  averaged over 25 Monte  Carlo  sim- 
ulations and  illustrated  as a time plot (a)  and  in  the loss function’s level curves (b). 

simulated  with a1 = 0.8 and a2 = 0.16 (two poles in 0.4). Figure 5.10  shows 
the logarithm of the least squares loss function  as  a  function of the parameters. 
The LMS algorithm  with  a step size p = 0.01  is applied to 1000 data items 
and  the  parameter  estimates  are averaged over 25 Monte  Carlo  simulations. 
Figure  5.11(a) shows the  parameter convergence as a function of time,  and 
Figure  5.11(b) convergence in the level curves of the loss function. 
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There  are  certain variants of LMS. The Normalized LMS  (NLMS)  is 

et = L 1  + PtVt(Yt - V F L ) ,  (5.38) 

where 

(5.39) 

and a is a small  number close to  the machine precision. The main  advantage 
of NLMS is that it gives simpler design rules and stabilizes the  algorithm in 
case of energy increases in pt. The choice p = 0.01 should always give a 
stable algorithm  independent of model structure  and  parameter scalings. An 
interpretation of NLMS is that it uses the a posteriori residual  in LMS: 

et = 6t-l + PVt(Yt - p:&). (5.40) 

This formulation is implicit, since the new parameter  estimate is found  on 
both sides. Other proposed variants of LMS include: 

e The leaky LMS algorithm regularizes the solution  towards zero, in  order 
to avoid instability  in case of poor  excitation: 

(5.41) 

Here 0 < y << 1 forces unexcited modes to approach zero. 

e The sign-error  algorithm where the residual is replaced by its sign, 
sign(&t).  The idea is to choose the step-size as a power of two p = 2Tk, 
so that  the multiplications  in 2-’psign(et) can  be  implemented as data 
shifts. In a DSP  application, only additions  are needed to implement. 
An interesting  interpretation is that  this is the stochastic  gradient algo- 
rithm for the loss function V ( 0 )  = Eletl. This is a criterion that is more 
robust to outliers. 

e The sign data algorithm where pt is replaced by sign(pt) (component- 
wise sign) is another way to avoid multiplications. However, the gradient 
is  now changed and convergence properties  are influenced. 

e The sign-sign  algorithm: 

et = psign(pt) sign(yt - p:&). (5.42) 

This algorithm is extremely  simple to implement  in  hardware, which 
makes it  interesting  in  practical  situations where speed and  hardware 
resources are critical  parameters. For example, it is a part in the  CCITT 
standard for 32 kbps  modulation scheme ADPCM  (adaptive pulse code 
modulation). 
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Figure 5.12. Averaging of a stochastic gradient algorithm implies asymptotically  the  same 
covariance matrix as for LS. 

0 Variable step size algorithms. Choices based on p ( t )  = p / t  are logical 
approximations of the LS solution. In  the case of time-invariant  param- 
eters,  the LMS estimate will then converge. This  type of algorithm is 
sometimes referred to as a stochastic  gradient  algorithm. 

0 Filtered regressors are often used in noise cancelation  applications. 

0 Many modifications of the basic algorithm have been suggested to get 
computational efficiency (Chen  et  al., 1999). 

There  are some interesting recent contributions to stochastic  gradient al- 
gorithms  (Kushner  and Yin, 1997). One is based on averaging theory. First, 
choose the  step size of LMS as 

The  step size decays slower than for a stochastic  gradient  algorithm, where 
y = 1. Denote the  output of the LMS filter et .  Secondly, the  output vector is 
averaged, 

.. 

- k = l  

The series of linear filters is illustrated  in  Figure 5.12. It has been shown 
(Kushner  and Yang, 1995; Polyak and  Juditsky, 1992) that  this procedure is 
asymptotically efficient, in that  the covariance matrix will approach that of the 
LS estimate  as t goes to infinity. The  advantage is that  the complexity is Q(&) 
rather  than O(d2 t ) .  An application of a similar  idea of series connection of two 
linear filters is given in Wigren (1998). Tracking properties of such algorithms 
are examined  in  Ljung (1994). 

One  approach to self-tuning is to  update  the step-size of LMS. The result is 
two cross-coupled LMS algorithms relying on a kind of certainty equivalence; 
each algorithm relies on the fact that  the  other one is working. The gradient 
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of the mean  least  square loss function  with  respect to p is straightforward. 
Instead,  the main  problem is to compute a certain  gradient which has to be 
done numerically. This algorithm is analyzed  in  Kushner and Yang (1995), and 
it is shown that  the  estimates of I3 and p converge weakly to a local minimum 
of the loss function. 

5.4.2. RLS 

The Recursive Least  Squares (RLS) algorithm minimizes the criteria 

t 
(5.43) 

k=I 

as  an  approximation  to (5.29). The derivation of the RLS algorithm below is 
straightforward,  and  similar to  the one in  Appendix 5.B.1. 

Algorithm 5.3 RLS 

For general linear regression models yt = p?Ot+et, the RLS algorithm  updates 
the  parameter  estimate by the recursion 

(5.44) 

(5.45) 

(5.46) 

The design parameter X (usually  in [0.9,0.999]) is called the forgetting  factor. 
The  matrix Pt is related to  the covariance matrix,  but Pt # Cov 6 .  

The intuitive  understanding of the size of the forgetting  factor might be 
facilitated by the fact that  the least  squares  estimate using a batch of N data 
can  be shown to give approximately the same covariance matrix Cov 6 as RLS 
if 

This  can be proven by directly  studying the loss function.  Compare  with the 
windowed least squares  approach  in  Lemma 5.1. 

Example 5.73 Adaptive filtering  with RLS 

Consider the  same example as in  Example 5.12. RLS with  forgetting  factor 
X = 0.99 is applied to 1000 data  and  the  parameter  estimates  are averaged over 
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'1 
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Figure 5.13. Convergence of RLS for an AR(2) model  averaged over 25 Monte Carlo simu- 
lations and  illustrated as  a time plot (a)  and in the loss function (b). 

25 Monte Carlo  simulations.  Figure  5.13(a) shows the  parameter convergence 
as a function of time,  and  Figure  5.13(b) convergence in the level curves of 
the loss function. To slow down the  transient,  the  initial PO is chosen to 
0.112. With a larger value of PO, we will get convergence in the mean  after 
essentially two samples. It  can  be noted that a very large value, say PO = 
10012, essentially gives us NLMS (just simplify (5.45)) for a few recursions, 
until Pt becomes small. 

Compared to LMS, RLS gives parameter convergence in the  parameter 
plane as a straighter line rather  than a steepest descent curve. The reason for 
not being completely straight is the incorrect  initialization PO. 

As  for LMS, there will be  practical  problems when the signals are not 
exciting. The covariance matrix will become almost  singular and  the  param- 
eter  estimate may diverge. The solution is regularization, where the inverse 
covariance matrix is increased by a small  scalar  times the  unit  matrix: 

Note that  this R: is not the same as the measurement covariance. Another 
problem is due to energy changes in the regressor. Speech signals modeled as 
AR models have this behavior. When the energy decreases in silent periods, 
it  takes a long time for the  matrix R: in (5.47) to  adapt.  One solution is to 
use the WLS estimator below. 
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In RLS, expectation in (5.30) is approximated by 

t 
E ( Q )  = (1 - X) c Xt-'C2& 

k=-CO 

Another  idea is to use a finite window instead of an exponential  one, 

(5.48) 

(5.49) 

This leads to Wandowed Least Squares ( WLS), which is derived in Section 5.B, 
see Lemma 5.1. Basically, WLS applies two updates for each new sample, so 
the complexity increases a factor of two. A memory of the last L measurements 
is another drawback. 

Example 5.74 Time-frequency  analysis 

Adaptive filters can  be used to analyze the frequency content of a signal as 
a function of time, in contrast to spectral analysis which is a batch  method. 
Consider the chirp  signal which is often used a benchmark  example: 

2Tt2 
y t = s i n ( N ) ,   t = 0 , 1 , 2  ... N. 

Defining momentaneous frequency as W = darg(yt)/dt,  the Fourier transform 
of a small  neighborhood of t is 4 ~ t / N .  Due to aliasing, a sampled version 
of the signal with  sample  interval 1 will have a folded frequency response, 
with a maximum frequency of T .  Thus,  the theoretical  transforms  assuming 
continuous time  and discrete  time  measurements, respectively, are shown in 
Figure 5.14. A  non-parametric  method based on FFT spectral analysis of 
data over a sliding window  is shown in  Figure  5.15(a). As the window size 
L increases, the frequency resolution increases at the cost of decreased time 
resolution. This wellknown trade-off is related to Heisenberg's uncertainty: 
the  product of time  and frequency resolution is constant. 

The  parametric  alternative is to use an AR model, which has the capabil- 
ity of obtaining  better frequency resolution.  An  AR(2)  model is adaptively 
estimated  with WLS and L = 20, and  Figure 5.15(b) shows the result. The 
frequency resolution is in theory infinite. The practical  limitation comes from 
the variance error  in  the  parameter  estimate.  There is a time versus frequency 
resolution trade-off for this  parametric  method as well. The larger time win- 
dow L,  the  better  parameter  estimate  and  thus frequency estimate. 
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Figure 5.14. Time-frequency  content (upper  plot) of a chirp  signal (lower plot). 
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.15. Time-frequency content of a  chirp  signal. Non-parametric (left) and  parametric 
(right)  methods, where the  latter uses an AR(2) model and WLS with L = 20. 

The larger AR model, the more  frequency  components  can  be  estimated. 
That is, the model  order is another critical design parameter. We also know 
that  the more  parameters, the larger  uncertainty  in the  estimate,  and  this 
implies another  trade-off. 
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5.4.3. Kalman filter 

If the linear regression model is interpreted as the measurement  equation  in a 
state space  model, 

&+l = et + wt, Cov(vt) = Qt yt = + et,  Cov(et) = Rt, (5.50) 

then  the  Kalman filter (see Chapters  13  and 8) applies. 

Algorithm 5.4 Kalman filter  for  linear  regressions 

For general linear regression models yt = PT& + et, the  Kalman filter updates 
the  parameter  estimate by the recursion 

(5.51) 

(5.52) 

(5.53) 

The design parameters  are Qt and Rt. Without loss of generality, Rt can  be 
taken  as 1 in the case of scalar  measurement. 

There  are different possibilities for how to interpret the physics behind the 
state model noise wt: 

e A random walk model, where ut is white noise. 

e Abrupt changes, where 

'Ut= { 0 with  probability 1 - q 
v with  probability q,  where Cov(v) = iQt .  

e Hidden Markov models, where 0 switches between a finite  number of 
values. Here one has to specify a transition  matrix,  with probabilities 
for going from one vector to another. An example is speech recognition, 
where each phoneme  has its own a priori known parameter vector, and 
the  transition  matrix can be  constructed by studying  the language to 
see how frequent different transitions  are. 

These  three  assumptions  are  all,  in a way, equivalent up  to second order  statis- 
tics, since Cov(wt) = Qt in all cases. The  Kalman filter is the best possible 
conditional  linear  filter, but  there might be  better non-linear algorithms for 
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the cases of abrupt changes and hidden Markov models. See Chapters 6 and 
7 for details and Section 5.10  for examples. 

In cases where physical knowledge  is available about  the  time variations of 
the  parameters,  this can  be  included  in  a multi-step algorithm. For instance,  it 
may be known that certain parameters have local or global trends, or abrupt 
changes lead to drifts  etc.  This  can  be  handled by including this knowledge in 
the  state model. The  Kalman filter then gives a so called multi-step  algorithm. 
See Section 8.2.4 and  Examples 8.5 and 8.6. 

5.4.4. Connections  and  optimal  simulation 

An interesting  question is whether, for each adaptive  filter,  there  does  exist  a 
signal for  which the filter is optimal. The answer is  yes  for all  linear  filters, 
and  this is most easily realized by interpreting  the algorithms  as  special cases 
of the  Kalman filter  (Ljung and  Gunnarsson, 1990). 

The RLS algorithm  can  be  written  in  a state space form with 

Rt = X, 

and NLMS corresponds to (let a! = l/p in  (5.39)) 
m 

Rt = 1 
PO = p I .  

The  interpretation of these  formulas  are: 

0 Both RLS and NLMS can  be seen as  Kalman  filters  with  particular 
assumptions on the  random walk parameters.  The  results can  be gen- 
eralized so that all  linear  adaptive  filters  can  be  interpreted  as  Kalman 
filters. The relationship  can  be used to derive new algorithms lying in 
between RLS and  KF (Haykin  et  al.,  1995). This  property is  used in 
Gustafsson  et  al.  (1997), where Qt is designed to mimic the wavelets, 
and faster  tracking of parameters affecting high frequencies is achieved. 

0 For  each linear  adaptive  filter,  the  formulas define a state space  model 
that can be simulated to generate  signals for  which it is impossible to 
outperform  that  particular filter. 

The  latter  interpretation makes it possible to perform an optimal  simulation 
for each given linear  filter. 
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5.5. Performance  analysis 

The  error sources for filters  in  general, and  adaptive filters  in  particular,  are: 

0 Transient  error caused by incorrect  initialization of the algorithms. For 
LMS and NLMS it  depends  on  the  initial  parameter value, and for RLS 
and KF it also depends on the  initial covariance matrix PO. By making 
this very large, the  transient can  be  reduced to a few samples. 

0 Variance  error, caused by  noise and disturbances. In simulation  studies, 
this  term can be reduced by Monte  Carlo  simulations. 

0 Tracking  errors due to  parameter changes. 

0 Bias  error caused by a model that is not rich enough to describe the 
true signal. Generally, we will denote 8* for the best possible parameter 
value within the considered model  structure,  and 8' the  true  parameters 

A si 

when available. 

iandard design consists  in the following steps: 

Design of adaptive filters 

1. Model structure selection from off-line experiments (for in- 
stance using BIC  type  criteria)  or  prior knowledge to reduce 
the bias  error. 

2. Include  prior knowledge of the initial values 190 and PO or de- 
cide what  a sufficiently large PO is from knowledge of typical 
parameter sizes to minimize the  transient  error. 

3. Tune  the filter to trade-off the  compromise between tracking 
and variance  errors. 

4. Compare different algorithms  with  respect to performance, 
real-time  requirements and implementational complexity. 

We first define a  formal  performance  measure. Let 

~ ( 8 )  = E [ ( y t  - ~ F 1 9 t ) ~ l  = Vmin + V,,, (5.54) 

(5.55) 

where 
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assuming that  the  true  system belongs to  the model class. V,, is the excessive 
mean square error. Define the misadjustment: 

M(t)  = ~ 

v,, +B, a s t + o o .  (5.56) 
Vmin 

The  assumptions used, for example,  in Widrow and  Stearns (1985), Bellanger 
(1988),  Gunnarsson  and  Ljung (1989) and  Gunnarsson (1991) are  the follow- 
ing: 

Oo exists no bias  error 

Q = Eutu? with ut = 0; - O:-, parameter changes quasi-stationary process 
2 = E[cptcpTl cpt quasi-stationary process 

et,  ut, (Pt independent  white processes 

That is, the  true system  can be exactly  described as the modeled linear re- 
gression, the regressors are  quasi-stationary  and the  parameter variations are 
a random walk. We  will study  the  parameter  estimation error: 

5.5.1. LMS 

The  parameter error for LMS is 

Transient and stability  for LMS 

As a simple  analysis of the  transient,  take  the SVD of 2 = E[cptcpT] = UDUT 
and assume  time-invariant true  parameters 0: = 0'. The  matrix D is diagonal 
and contains the singular values ai of 2 in  descending  order, and U satisfies 
UTU = I .  Let us also assume that 60 = 0: 
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That is, LMS is stable only if 

p 2 /01 .  

More formally, the analysis shows that we get convergence in the mean if and 
only if p < 2/01. 

We note that  the transient decays as (1 - ~0,)~. If we choose p = 1/01, 
so the first component converges directly, then  the convergence rate is 

-) t = ( l -  
0 1  

That is, the possible convergence rate  depends  on  the condition  number of the 
matrix 2. If possible, the signals in the regressors should be pre-whitened to 
give cond(2) = 1. 

A practically  computable  bound on p can  be  found by the following rela- 
tions: 

2 2 n  
* p < - <  

01 E(cpTcpt) 
Here the  expectation is simple to approximate  in an off-line study,  or to make 
it  adaptive by exponential  forgetting.  Note the similarity to NLMS. It should 
be mentioned that p in  practice  should be chosen to  be  about 100 times  smaller 
than  this value, to ensure  stability. 

Misadjustment for LMS 

The  stationary  misadjustment for LMS can  be shown to equal: 

(5.57) 

variance error  track& 

0 The  stationary  misadjustment M splits  into variance and  tracking  parts. 
The variance error is proportional to  the  adaptation gain p while the 
tracking  error is inversely proportional to  the gain. 

0 The tracking  error is proportional to  the signal to noise ratio R .  IIQII 

0 The  optimal  step size is 
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5.5.2. RLS 

The dynamics for the RLS parameter  error is 

Misadjustment and transient  for RLS 

As for LMS, the  stationary  misadjustment A4 splits  into variance and  tracking 
parts.  The  transient can be expressed in  misadjustment  as a function of time, 
M ( t )  for constant Q!. The following results  can  be shown to hold (see the 
references in the beginning of the  section): 

M 

n  n(1 - X) tr(ZQ) 
M ( t )  - 

$ 2  + 2(1 - X)R . t + l  - kJ v 
(5.58) 

transient error variance error tracking 
v 

0 Transient and variance errors  are  proportional to  the number of param- 
eters n. 

0 As for LMS, the  stationary  misadjustment M splits  into variance and 
tracking  parts. Again, as for LMS, the variance error is proportional to 
the  adaptation gain 1 - X, while the tracking  error is inversely propor- 
tional to  the gain. 

0 As  for LMS, the tracking  error is proportional to  the signal to noise ratio 
M 
R '  

0 By minimizing (5.58) w.r.t. X, the  optimal  step size 1 - X is found to  be 

A refined analysis of the  transient  term in both RLS and LMS (with  variants) 
is given in Eweda (1999). 

5.5.3. Algorithm optimization 

Note that  the  stationary expressions make it possible to optimize the design 
parameter to get the best possible trade-off between tracking  and variance 
errors,  as a function of the  true  time variability and covariances. For instance, 
we might ask which algorithm  performs  best for a certain  Q  and 2, in terms of 
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excessive mean  square  error.  Optimization of step size p and forgetting  factor 
X in the expression for M in NLMS and RLS gives 

- 

M;VLMS = t rZ  t rQ 

M k L S  ntrZQ * J 
The  trace  operator can be rewritten  as  the  sum of eigenvalues, tr(Q) = 
C o i ( Q ) .  If  we put Z = Q, we get 

with  equality only if oi = oj for all i, j. As another  example,  take Q = Z-l,  

with  equality only if oi = uj for all i, j. That is, if Z = Q  then NLMS performs 
best and if 2 = Q-', then RLS is better  and we have  by examples proven that 
no algorithm is generally better  than  the  other one, see also  Eleftheriou and 
Falconer (1986) and Benveniste et  al.  (1987b). 

5.6. Whiteness based change detection 

The basic idea is to feed the residuals  from the adaptive  filter to a  change 
detector,  and use its  alarm  as feedback information to  the adaptive  filter, see 
Figure 5.16. Here the detector is any  scalar alarm device from Chapter 3 using 
a  transformation st = f ( ~ t )  and  a  stopping  rule from Section 3.4. There  are 
a few alternatives of  how to  compute  a  test  statistic st, which  is zero mean 
when there is  no change, and non-zero mean  after  the change. First, note that 
if all noises are  Gaussian, and if the  true  system is time-invariant and belongs 
to  the modeled linear regression, then 

E t  E N(O7 St), st = Rt + cpptcpt. (5.59) 

Ut 
et 

c 

Ad. filter 
E t  

Yt 
c Detector c Alarm 

c pt , 'Pt 

4 

Figure 5.16. Change  detection as  a  whiteness  residual test, using e.g. the CUSUM test, for 
an  arbitrary  adaptive filter,  where the  alarm feedback controls the  adaptation gain. 
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0 The normalized residual 

(5.60) 

is then  a  suitable  candidate for change detection. 

0 The  main  alternative is to use the squared  residual 

S t  = E t  T S, -1 E t  E x2(n,) .  (5.61) 

0 Another  idea is to check if there is a  systematic  drift  in the  parameter 
updates: 

Here the  test  statistic is vector valued. 

0 Parallel update  steps A& = Ktet for the  parameters in an  adaptive 
algorithm is an indication of that a  systematic  drift  has  started. It is 
proposed in Hagglund (1983) to use 

S t  = (A&)TA6’-l = Et-lKt-lKtEt T T  (5.63) 

as the residual. A certain  filtering  approach of the  updates was also 
proposed. 

The first  approach is the original CUSUM test  in  Page  (1954).  The second 
one is usually  labeled  as just  the x2 test, since the  test  statistic is x2  distributed 
under  certain  assumptions, while a  variant of the  third approach is called the 
asymptotic local approach in Benveniste et  al.  (1987a). 

After an  alarm,  the basic action is to increase the gain  in the filter mo- 
mentarily. For  LMS and  KF, we can use a  scalar  factor a and set ,3t = ap t  
and Qt = aQt ,  respectively. For RLS, we can use a small  forgetting  factor, for 
instance At = 0. 

Applications of this  idea  are  presented  in Section 5.10;  see also, for instance, 
Medvedev (1996). 

5.7. A simulation example 

The signal in this  section will be a first  order  AR  model, 
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The  parameter is estimated by LS, RLS, LMS and LS with a change  detector, 
respectively. The  latter will be refered to as  Detection LS, and  the  detector 
is the two-sided CUSUM test  with the residuals  as input. For each method 
and design parameter,  the loss function and code  length  are  evaluated on all 
but  the 20 first data samples, to avoid possible influence of transients  and 
initialization. The RLS and LMS algorithms are  standard,  and  the design 
parameters  are  the forgetting  factor X and  step size p, respectively. 

5.7.1. Time-invariant AR model 

Consider  first the case of a  constant AR parameter a = -0.5. Figure 5.17 
shows MDL, as  described  in Section 12.3.1, and  the loss function 

as  a  function of the design parameter  and  the  parameter tracking, where the 
true  parameter value is indicated by a dotted line. Table 5.1 summarizes  the 
optimal design parameters  and code lengths  according to  the MDL measure 
for this  particular  example. 

Note that  the  optimal design parameter in RLS corresponds to  the LS 
solution and  that  the  step size of LMS  is  very small  (compared to  the ones 
to follow). All methods have approximately the  same code length, which  is 
logical. 

5.7.2. Abruptly  changing AR model 

Consider the piecewise constant  AR parameter 

-0.5 if t 5 100 
at = { 0.5 if t > 100 

Table 5.1. Optimal code length  and design parameters for RLS, LMS and whiteness  detec- 
tion LS, respectively, for constant  parameters in  simulation  model. For comparison, the LS 
result is shown. 

Method 
~ LS 

V MDL Optimal  par. 

1.13  1.13 LL = 0.002  LMS 
1.11 1.12 X = l  RLS 
1.08 1.11 

I Detection LS I v = 1.1 I 1.11 I 1.08 I 1 ,  ~~~ I I 
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Table 5.2. Optimal code length  and design parameters for RLS, LMS and whiteness  detec- 
tion LS, respectively, for abruptly changing parameters in simulation model. For comparison, 
the LS result is shown. 

I Method I Optimal  par. I MDL I V I 
X = 0.9 

LMS ,U = 0.07 

Figure 5.18 shows MDL and  the loss function V as  a  function of the design 
parameter  and  the  parameter tracking, where the  true  parameter value is in- 
dicated by a  dotted line. Table 5.2 summarizes the  optimal design parameters 
and code lengths for this  particular  example. Clearly, an  adaptive algorithm is 
here much better  than  a fixed estimate.  The  updates A& are of much smaller 
magnitude  than  the residuals. That is, for coding  purposes  it is more efficient 
to  transmit  the small parameter  updates  then  the much larger  residuals for a 
given numerical accuracy. This is exactly  what MDL measures. 

5.7.3. Time-varying AR model 

The simulation setup is exactly  as  before, but  the  parameter vector is linearly 
changing from -0.5 to 0.5 over  100 samples.  Figure 5.19 and Table 5.3 sum- 
marize the  result. As before, the difference between the adaptive  algorithms is 
insignificant and  there is  no clear winner. The choice of adaptation mechanism 
is arbitrary for this  signal. 

Table 5.3. Optimal code length  and design parameters for RLS, LMS and whiteness  detec- 
tion LS, respectively, for slowly varying parameters  in  simulation model. For comparison, 
the LS result is shown. 

Method 

1.16  1.16 U = 0.05 LMS 
1.15  1.15 X = 0.92 RLS 
1.36  1.39 LS 
V MDL Optimal  par. 

~ 

I Detection LS I v = 0.46 I 1.24 I 1.13 I 
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Figure 5.17. MDL and V as  a  function of design parameter  and  parameter  tracking for 
RLS (a), LMS (b) and  detection LS (c),  respectively, for constant  parameters in simulation 
model. 
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Figure 5.18. MDL and V as  a  function of design parameter  and  parameter  tracking for 
RLS (a), LMS (b) and  detection LS (c), respectively, for abruptly changing parameters in 
simulation  model. 
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Figure 5.19. MDL and V as a function of design parameter  and  parameter  tracking for RLS 
(a), LMS (b) and  detection LS (c), respectively, for slowly varying parameters. 
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5.8. Adaptive  filters  in  communication 

Figure 5.20 illustrates  the equalization  problem. The  transmitted signal ut is 
distorted  in  a  channel  and the receiver measures its  output yt with  additive 
noise et. The  distortion implies that  the  output may be  far away from  the 
transmitted signal, and is thus not useful directly. The received output is 
passed to a  filter (equalizer), with the objective to essentially  invert the channel 
to recover ut. 

In  general,  it is hard  to  implement  the inversion without  accepting a delay 
D of the overall system. For example, since the channel might encompass  time 
delays,  a delayless inversion would  involve predictions of ut. Furthermore,  the 
performance may be improved if accepting  additional  time delay. The delay 
D can  be  determined  beforehand based on expected time delays and filter 
order of the channel. An alternate  approach is to include the  parameter in the 
channel inversion optimization. 

The  input signal belongs to a finite  alphabet  in  digital  communication. 
For the discussion and most of the examples, we will assume a binary input 
(in  modulation  theory called BPSK,  Binary  Phase  Shift  Keying), 

U t  = *l. 

In  this  case,  it is natural  to  estimate  the  transmitted signal  with the sign of 
the received signal, i i - D  = sign(yt). 

If the time  constant of the channel  dynamics is longer than  the length of 
one symbol  period, the  symbols will reach the receiver with  overlap. The 
phenomenon is called Inter-Symbol  Interference (ISI) ,  and  it implies that 
i i - D  = sign(yt) # Ut-D.  If incorrect decisions occur  too  frequently, the need 
for equalization arises. 

Example 5.75 lnter-symbol  interference 
As a  standard  example in  this  section, the following channel will be used: 

B(q)  = 1 - 2.2q-1 + 1.17qP2 
ut = *l. 

Ut S t  
c Equalizer Yt c Channel 

U t - D  
c 

Figure 5.20. The  equalization  principle. 
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Figure 5.21. The  transmitted signal  (first plot) is distorted by the  channel  and  the received 
signal  (second  plot)  does  not always have the  correct sign,  implying decision errors Gt - 
sign(yt)  (third  plot). 

N = 50 binary  inputs  are  simulated  according to  the first plot in  Figure 5.21. 
The  output yt after  the channel  dynamics is shown in the second plot. If a 
decision is taken  directly fit = sign(yt),  without equalization, a number of 
errors will occur according to  the last plot which shows ut - sign(yt).  Similar 
results  are  obtained when plotting Ut-D - sign(yt) for D = 1 and D = 2. 

Example 5.76 IS1 for 16-QAM 

The IS1 is best  illustrated when complex modulation is used. Consider, 
for instance, 16-&AM (Quadrature  Amplitude  Modulation), where the  trans- 
mitted symbol  can  take  on  one of 16 different values, represented by four 
equidistant levels of both  the real and imaginary part.  The received signal 
distribution  can  then look  like the left plot in  Figure 5.22. After successful 
equalization, 16  well distinguished  clusters appear, as illustrated  in the right 
plot of Figure 5.22. One  interpretation of the so called open-eye  condition, is 
that  it is satisfied when all  clusters are well separated. 

For evaluation, the Bit Error  Rate (BER) is commonly used, and  it is 
defined as 

BER = 
number of non-zero (ut - fit) 

N 
(5.64) 
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Figure 5.22. Signal  constellation for 16-&AM for the recieved  signal  (left) and equalized 
signal (right). 

where trivial  phase  shifts  (sign  change) of the  estimate should  be  discarded. It 
is naturally  extended to Symbol Error  Rate (SER) for general input  alphabets 
(not only binary  signals). 

Another  important  parameter for algorithm  evaluation is the Signal-to- 
Noise  Ratio (SNR): 

(5.65) 

A typical  evaluation shows BER  as  a  function of SNR. For high SNR one 
should have BER = 0 for an algorithm to be  meaningful, and conversely BER 
will always approach 0.5 when SNR decreases. 

Now, when the most fundamental  quantities  are defined, we will survey 
the most common  approaches. The algorithms belong to one of two  classes: 

0 Equalizers that assume  a known model for the channel. The equalizer is 
either  a  linear  filter  or two filters, where one is in  a feedback loop,  or  a 
filter  bank  with some discrete logics. 

0 Blind equalizers that simultaneous  estimate the  transmitted signal and 
the channel  parameters, which may even be  time-varying. 

5.8.1. linear equalization 

Consider the linear  equalizer structure in  Figure 5.23. The linear  filter  tries 
to invert the channel  dynamics  and  the decision device is a  static  mapping, 
working according to  the nearest neighbor principle. 

The underlying  aassumption is that  the transmission  protocol is such that 
a training  sequence, known to  the reciever, is transmitted regularly. This 
sequence is  used to estimate  the inverse channel  dynamics C(q) according to 
the least  squares  principle. The  dominating model structure for both channel 
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Ut cChannel Decision - Eq. C(q) B ( q ) A  
Zt U t - D  

Figure 5.23. A linear equalizer consists of a linear  filter C(q) followed by a decision device 
(6t-n = sign(zt) for a binary signal). The equalizer is computed from knowledge of a 
training sequence of ut. 

and linear equalizer is FIR filters. A few attempts exist for using other more 
flexible structures  (Grohan  and Marcos, 1996). The  FIR model for the channel 
is motivated by physical reasons; the signal is subject to multi-path  fading  or 
echoes, which implies delayed and scaled versions of the signal at the receiver. 
The  FIR model for equalizer structures, where the equalizer consists of a linear 
filter in series with  the channel, is motivated by practical reasons. The FIR 
model of the channel  is, most likely, non-minimum  phase, so the  natural AR 
model for inverting the channel would be unstable. 

An equalizer of order n, C,, is to  be  estimated from L training  symbols ut 
aiming at a total  time delay of D. Introduce  the loss function 

The least squares  estimate of the equalizer is now 

C,(D) = argminVL(C,, D) .  

The designer of the communication  system  has three degrees of freedom. The 
first,  and most important, choice for performance and  spectrum efficiency is 
the length of the  training sequence, L. This  has  to  be fixed at an early design 
phase when the protocol, and for commercial systems the  standard, is decided 
upon.  Then,  the order n and delay D have to be chosen. This  can  be  done by 
comparing the loss function  in the three-dimensional  discrete  space L, n, D. 
All this has to  be done  together  with the design of channel  coding  (error 
correcting codes that accept a certain  amount of bit  errors). The example 
below shows a smaller study. 

C,  

Example 5.7 7 Linear equalization:  structure 
As a continuation of Example 5.15, let the channel be 

B(q) = 1 - 2.2q-1 + 1.17qP2 
L = 25 

U t  = *l, 
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Impulse response for channel 
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Figure 5.24. The loss function V20o(Cn ,  D) as a function of time delay D = 1 , 2 , .  . . , n 
for n = 5,7,9,  respectively (a). In (b), the impulse  response of the channel,  equalizer and 
combined  channel  equalizer, is shown, respectively. 

where the  transmitted signal is white. Compute  the linear  equalizer C(q) = 
CO + c1q-l + ... + c,q-, and  its loss function V L ( C ~ , D )  as a function of the 
delay D. Figure 5.24(a) shows the result for n = 5,7,9,  respectively. For each 
n, there is a clear minimum for D M n/2 .  

The more taps n in the equalizer, the  better result. The choise  is a  trade- 
off between complexity and performance. Since BER is a  monotone  function 
of the loss function, the larger n, the  better performance.  In  this case, a 
reasonable  compromize is n = 7 and D = 4. 

Suppose now that  the  structure of the equalizer L,  n, D is  fixed. What is 
the performance  under different circumstances? 

Example 5.78 linear equalization: SNR vs. BER 

A standard plot when designing a communication  system is to plot BER 
as  a  function of SNR. 

For that reason, we add channel noise to  the simulation setup in  Example 
5.17: 

yt = ~ ( q ) u t  + et,  Var(et) = o2 

B(q) = 1 - 2.2q-1 + 1.17qP2 
N = 200 
L = 25 
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l 

Figure 5.25. BER (Bit Error Rate) as a  function of signal-to-noise  ratio (SNR) for a linear 
equalizer. 

SNR is  now a function of the noise variance 02. Let the  training sequence 
consists of the L = 25 first symbols in the  total sequnce of length N = 200. 
Suppose we have chosen n = 8 and D = 4, and we use 100 Monte  Carlo 
simulations to evaluate the performance. Figure 5.25 shows BER as a function 
of SNR  under  these premises. 

If we can  accept a 5% error  rate,  then we must design the transmission 
link so the SNR is larger than 100, which is quite a high value. 

For future comparison, we note that  this  particular implementation uses 
4 .  104 floating point  operations, which include the design of the equalizer. 

5.8.2. Decision feedback equalization 

Figure 5.26 shows the  structure of a decision  feedback equalizer. The  upper 
part is identical to a linear equalizer with a linear feed-forward filter, followed 
by a decision device. The difference lies in the feedback path from the non- 
linear decisions. 

One  fundamental  problem  with a linear equalizer of FIR  type, is the many 
taps  that  are needed to approximate a zero close to  the unit circle in the 
channel. For instance, to equalize 1 + 0.9qp1, the inverse filter 1 - 0.9q-1 + 
0.92q-2-0.93q-3.. . is needed. With  the  extra degree of freedom we  now have, 
these zeros can  be put in the feedback path, where no inversion is needed. In 
theory, D ( q )  = B ( q )  and C(q) = 1 would be a perfect equalizer. However, 
if the noise induces a decision  error, then  there might be a recovery problem 
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Figure 5.26. The decision feedback equalizer has one feedforward filter and a decision device 
(for binary  input a sign function, or relay),  exactly as the linear  equalizer, and one feedback 
filter  from past decisions. 

for the  DFE equalizer. There is the  fundamental design trade-off  split the 
dynamics of the channel between C(q) and D(q)  so few taps  and  robustness 
to decision errors  are achieved. 

In  the design, we assume that  the channel is known. In practice,  it is 
estimated  from a training sequence. To  analyse and design a non-linear system 
is generally very difficult, and so is this problem. A simplifying assumption, 
that  dominates  the design described  in literature, is the one of so called Correct 
Past  Decisions (CPD).  The  assumption implies that we can  take the  input  to 
the feedback filter from the  true  input  and we get the block diagram  in  Figure 
5.27. The  assumption is sound when the SNR is high, so a DFE  can only be 
assumed to work properly in such  systems. 

We have from  Figure 5.27 that, if there  are no decision errors,  then 

For the  CPD  assumption  to hold, the  estimation  errors must be small. That 
is, choose C(q) and D(q)  to minimize 

There  are two principles described  in the  literature: 

0 The zero forcing equalizer. Neglect the noise in the design (as is quite 
common in  equalization design) and choose C(q) and D(q) so that q P D  - 
B(q)C(q) - D(q)  = 0. 
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Decision errors 

Figure 5.27. Equivalent DFE under  the  correct  past decision (CPD) which  implies that  the 
input  to  the feedback filter  can be  taken from the real input. 

e The minimum variance equalizer 

+ Ic(ei")H(ei")12  ae(eiw>. 

Here we have used Parseval's  formula and  an independence  assumption 
between U and e. 

In  both cases, a constraint of the  type CO = 1 is needed to avoid the trivial 
minimum for C(q) = 0, in case the block diagram  in  Figure 5.27 does not hold. 

The  advantage of DFE is a possible considerable  performance  gain at the 
cost of an only slightly more complex algorithm,  compared to a linear equalizer. 
Its applicability is limited to cases with high SNR. 

As a final remark,  the  introduction of equalization  in very fast  modems, 
introduces a new kind of implementation problem. The basic reason is that 
the  data  rate comes close to  the clock frequency in the computer,  and  the 
feedback path  computations  introduce a significant time delay in the feedback 
loop. This means that  the  DFE  approach collapses, since no feedback delay 
can  be  accepted. 

5.8.3. Equalization  using  the  Viterbi  algorithm 

The  structure of the Viterbi equalizer is depicted  in  Figure 5.28. The idea 
in  Viterbi  equalization is to enumerate  all possible input sequences, and  the 
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Figure 5.28. Equalization  principle. 

one that in a simulation using g(q) produces the  output most similar to  the 
measured output is taken  as  the  estimate. 

Technically, the similarity  measure is the maximum likelihood criterion, 
assuming  Gaussian noise. This is quite  similar to taking  the  sum of squared 
residuals C t ( y t  - ~ t ( i i ) ) ~  for each possible sequence G. Luckily, not all se- 
quences have to  be considered. It turns  out  that only S n b  sequences have to 
be examined, where S is the number of symbols  in the finite alphabet,  and n b  

is the channel  order. 
There is an  optimal search algorithm for a finite  memory  channel  (where 

FIR is a special case), namely the Viterbi  algorithm. 

Algorithm 5.5 Viterbi 

Consider a channel  described by yt = j ( d ,  e t ) ,  where the  input ut belongs to 
a finite alphabet of size S and et is white noise. If the channel  has a finite 
memory n b ,  so gt = f ( ~ : & + ~ ,  e t ) ,  the search for the ML estimate of ut can 
be restricted to S n b  sequences. These sequences are  an  enumeration of all 
possible sequences in the interval [t - n b  + 1, t] .  For the preceding inputs only 
the most likely one has to  be considered. 

Derivation: an induction proof of the  algorithm is given here. From Bayes’ 
rule we have 

In  the second equality the finite  memory  property is used. Suppose that 
we have computed  the most likely sequence at time t - 1 for each sequence 
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&-l t-nb+l, so we have p ( z ~ - ~ I u : : k ~ + ~ ,  u t P n b )  as a function of u::kbtl. From the 

expression above, it follows that, independently of what value yt has,  the most 
likely sequence at time t can  be  found  just by maximizing over ui-nb+l, since 
the maximization over u tPnb  has  already been done. 0 

The proof above is non-standard.  Standard references like Viterbi (1967), 
Forney (1973) and Haykin (1988) identify the problem  with a shortest  route 
problem  in a trellis diagram  and  apply forward  dynamic  programming. The 
proof here is much more compact. 

In  other words, the  Viterbi  algorithm ‘inverts’ the channel model B(q) 
without  applying k l ( q ) ,  which is likely to be  unstable.  This works due to 
the finite alphabet of the  input sequence. 

1. Enumerate all possible input sequences within  the sliding window of size 
n (the channel model length).  Append  these  candidates to  the estimated 
sequence i P n .  

2. Filter all candidate sequences with B(q).  

3. Estimate  the  input sequence by the best possible candidate sequence. 
That is, 

N 

Example 5.79 BER vs.  SNR evaluation 

Consider the  BER vs. SNR plot in  Example 5.18, obtained using a training 
sequence L = 25. Exactly the same  simulation setup is used here as for the 
Viterbi  algorithm. 

Figure  5.29(a) shows the plot of BER vs. SNR for L = 25. The per- 
formance is improved, and we can  in  principle  tolerate 100 times more noise 
energy. The number of flops is here  in the order  2 . 105, so five times  more 
computations  are needed compared to  the linear equalizer. 

Alternatively, we can use the performance  gain to save bandwidth by de- 
creasing the length of the  training sequence. Figure  5.29(b)  plots  SNR vs. 
BER for different lengths of the  training sequence. As can  be seen, a rather 
short  training sequence, say 7, gives good performance. We can  thus ‘buy’ 
bandwidth by using a more powerful signal processor. 
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(a) (b) 

Figure 5.29. Bit  error  rate  versus  signal-to-noise  ratio for L = 25 (a) and  some  other 
different  lengths L of the  training  sequence (b). 

5.8.4. Channel estimation  in  equalization 

We describe here how to estimate the channel parameters  from a training 
sequence in an efficient way, suitable for hardware  implementation. As pointed 
out  before, an equalizer works in two phases: 

1. Parameter estimation. 

2. Equalization. 

The  standard model for channels is the FIR model, 

where 

Parameter  estimation is a  standard least  squares  problem,  with the solution 

N 

t=l 
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Figure 5.30. Matched  filter for estimating  the  channel from a  training  sequence. 

The second expression is  useful since the training sequence is known before- 
hand so p t  can  be  precomputed. This gives an efficient implementation  usually 
referred to as  a matched filter. Generally, a  filter A(q)  which  is matched to a 
signal U has the  property (U * a)t M 60, so that 

& = ( U  * y)t = (U  * b * u)t = ( b  * (U  * u))t M bt. 

In  our  case, we want a  filter a such that 
N 

( U  * u)t = C U t - k U k  M 60, 

k = l  

and it  can  be  taken  as 
4 )  

a t -k  = 'Pt . 
That is, each tap in the channel  model is estimated by applying a linear  filter 
to  the  training sequence, see Figure 5.30. 

Example 5.20 Equalization and training  in GSM 
In mobile communication the  transmitted signal is reflected in the  terrain, 

and reaches the receiver with different delays and complex amplitudes. Mo- 
bility of the  terminal makes the channel  impulse  response  time-varying. We 
will here detail  the solution  implemented  in the GSM system. 

The  standard  burst consists of 148 bits, see Section 5.11. Of these, 26 
bits  located  in the middle of the burst  are used  solely  for the equalizer. The 
training sequence is  of length 16 bits,  and  the  other 5 bits  on each side  are 
chosen to get a  quasi-stationary sequence. The training sequence is the same 
all the  time,  and  its design is based on optimization, by searching through 
all 2'' sequences and  taking  the one that gives the best  pulse  approximation, 
(U  * .)t M so. 

From the 16 training  bits, we can  estimate 16 impulse  response coefficients 
by a  matched  filter. However, only 4  are used in the GSM system. This 
is considered sufficient to equalize multi-path  fading for velocities up  to 250 
km/h.  The  normal  burst will be  described  in  detail  in  Section 5.11. 
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Ut WChannel - Eq. C(q) B ( q ) A  
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Figure 5.31. Structure of a blind  equalizer, which adapts itself for knowledge of yt and zt ,  
only.. 

5.8.5. Blind equalization 

The best known application of blind deconvolution is to remove the  distortion 
caused by the channel  in  digital  communication  systems. The problem also 
occurs in seismological and underwater  acoustics  applications.  Figure 5.31 
shows a block diagram for the adaptive  blind equalizer approach. The channel 
is as usual modeled as a FIR filter 

and  the same model structure is used for the blind equalizer 

The impulse  response of the combined channel and equalizer,  assuming FIR 
models for both, is 

h k  = ( b  * C ) k ,  

where * denotes convolution. Again, the best one can  hope for is h k  M m B k - D ,  

where D is an unknown time-delay, and m with Iml = 1 is an unknown 
modulus. For instance,  it is impossible to  estimate  the sign of the channel. 
The modulus and delay do not matter for the performance, and  can  be ignored 
in  applications. 

Assume binary  signal ut (BPSK). For this special case, the two most pop- 
ular loss functions defining the  adaptive  algorithm  are given  by: 

1 
2 

V = - E[(1 - z’)’] modulus restoral ( Godard) (5.68) 

1 
2 

V = - E[(sign(z) - z)’] decision directed (Sato) (5.69) 

The modulus  restoral  algorithm also goes under the name Constant  Modulus 
Algorithm (CMA) .  Note the convention that decision directed  means that  the 
decision is used in a parameter  update  equation, whereas decision feedback 
means that  the decisions are used in a linear feedback path.  The  steepest 
descent algorithm  applied to these two loss functions gives the following two 
algorithms, differing only in the definition of residual: 
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Algorithm 5.6 Blind equalization 

A  stochastic  gradient  algorithm for minimizing one of (5.68) or (5.69) in the 
case of binary  input is given  by 

Pt = (Yt-1, Yt-2,. . ., Yt-n) 

xt = Pt Qt-l 

&Pdard - - &(l - 2,") 

T 

T A  

= sign(xt) - xt 

Qt = Qt-1 + PPtEt 
..  .. 

i i -D  = sign(zt). 

(5.70) 

(5.71) 

(5.72) 

(5.73) 

(5.74) 
(5.75) 

The extension to  other  input  alphabets  than f l  is trivial for the decision 
directed  approach.  Modulus  restoral  can be generalized to any  phase  shift 
coding. 

Consider the case of input  alphabet ut = fl.  For successful demodulation 
and assuming no measurement noise, it is enough that  the largest component 
of h k  is larger than  the  sum of the  other components. Then  the decoder 
Qt-D = sign(xt) would  give zero error.  This condition  can be expressed as 
mt > 0, where 

If the equalizer is a perfect inverse of the channel (which is impossible for 
FIR channel and  equalizer),  then  mt = 1. The  standard definition of a so 
called open-eye  condition corresponds to mt > 0, when perfect reconstruction 
is possible, if there is no noise. The larger mt,  the larger noise can  be  tolerated. 

Example 5.21 Blind equalization 

Look at  the plot in  Figure 5.32 for an example of  how a blind equalizer 
improves the open-eye measure  with  time. In  this example, the channel B(q) = 
0.3q-1 + lq-' + O.3qp3  is simulated using an  input sequence taken  from  the 
alphabet [-l,  l]. The initial equalizer parameters  are  quite critical for the 
performance. They should at least  satisfy the open-eye condition  mt > 0 
(here m0 M 0.5). The algorithms are  initiated  with C(q) = 0 - 0.L-1 + 
lq-' - O.lqP3 + OqP4. At the end, the equalizer is a good approximation of 
the channel  impulse  response, as seen from  Figure 5.33. 
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Figure 5.32. Open-eye  measure (a)  and  residual  sequences (b) for Sato’s  and  Godard’s 
algorithms,  as  a  function of number of samples. 

5.9. Noise cancelation 

Noise cancelation,  comprising Acoustic  Echo  Cancelation (AEC) as one  ap- 
plication,  has  found  many  applications  in various areas,  and typical  examples 
include: 

0 Loudspeaker telephone  systems  in  cars, conference rooms  or  hands-free 
systems  connected to a computer, where the feedback path from  speaker 
to microphone  should be suppressed. 

0 Echo path cancelation  in  telephone networks (Homer et al., 1995). 

The  standard formulation of noise cancelation as shown in  Figure 5.1 falls into 
the class of general adaptive  filtering problems. However, in  practice there  are 
certain  complications  worth  special attention, discussed below. 

5.9.1. Feed-forward  dynamics 

In many cases, the dynamics between speaker and microphone are not negligi- 
ble. Then,  the block diagram  must  be modified by the feed-forward dynamics 
H ( q )  in Figure  5.34(a).  This case also includes the  situation when the  trans- 
fer function of the speaker itself is significant. The signal estimate  at  the 
microphone is 

i t  = S t  + (G(4) - F(q;  Q)H(q))ut.  (5.76) 

For perfect noise cancelation, we would  like the adaptive filter to mimic 
G ( q ) / H ( q ) .  We make two immediate reflections: 
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Figure 5.33. Impulse  response of channel,  equalizer and combined channel-equalizer. The 
overall response is  close to an impulse  function with a delay of D = 4 samples. 

1. A necessary requirement for successful cancelation is that  there must be 
a causal and  stable realization of the  adaptive filter F(q;  13) for approx- 
imating G(q) /H(q) .  This is guaranteed if H ( q )  is minimum phase. If 
H ( q )  contains a time delay, then G(q) must also contain a time delay. 

2. Least squares  minimization of the residuals E t  in  Figure  5.34(a) will 
generally not give the answer F(q;  6 )  M G ( q ) / H ( q ) .  The reason is that 
the gradient of (5.76) is not the usual  one, and may point  in  any  direction. 

However, with a little modification of the block diagram we can  return  to  the 
standard problem. A very simple algebraic  manipulation of (5.76) yields 

This means that we should pre-filter the  input  to get back to  the  standard 
least  squares framework of system identification. The improved alternative 
structure with pre-filter is illustrated  in  Figure  5.34(b)  and  (c) 

For a FIR structure on F(q;  Q) ,  this means that we should pre-filter the 
regressors in a linear regression. This  input pre-filtering should not be confused 
with the pre-filtering often  done  in  system  identification  (Ljung, 1999), in 
which case the identified system does not change. The pre-filtering is the 
background for the so called filtered-input LMS, or filtered-X LMS, algorithm. 
The algorithm includes two phases: 
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1. Estimation of the feed-forward dynamics. This can  be  done off-line if H 
is time-invariant.  Otherwise,  it  has to be  estimated  adaptively on-line 
and here it seems inevitably to use a  perturbation signal,  uncorrelated 
with U and S ,  to guarantee convergence. With  a  perturbation signal, 
we are facing a  standard  adaptive filtering  problem  with  straightforward 
design for estimating H .  

2. With H known, up to a given accuracy, the  input U can  be  pre-filtered. In 
our  notation,  a  more  suitable  name would be  filtered-u LMS, or  filtered 
regressor LMS. 

Generally, time-varying  dynamics like F and H in  Figure  5.34(a) do not com- 
mute. If, however, the time  variations of both filters  are slow compared to 
the  time constant of the filter, we can  change  their  order and  obtain  the block 
diagram  in  Figure  5.34(b)  and  (c). 

Example 5.22 Adaptive noise cancelation in the SAAB 2000 

As a  quite challenging application, we mention the adaptive noise cance- 
lation  system  implemented  in  all SAAB 2000 aircraft around  the world. The 
goal  is to  attenuate  the engine noise in the cabin at  the positions of all the 
passenger heads. By using 64 microphones and 32 loudspeakers, the overall 
noise attenuation is 10 dB on the average for all passengers. This  system 
contributes to making SAAB 2000 the most  quiet  propeller  aircraft on the 
market. 

The  disturbance U is in this  system  artificially  generated by using the 
engine speed.  Non-linearities  introduce  harmonics so the  parametric signal 
model is a  linear regression of the form 

rather  than  the conventional  dynamic FIR filter fed  by a microphone  input 
ut. The multi-variable  situation  in  this  application implies that  the measured 
residual vector is 64-dimensional and  the speaker output is 32-dimensional. 

The speaker  dynamics,  as a 64 X 32 dimensional  filter, is identified off-line 
on the  ground, when the engines are  turned off. 
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5.9.2. Feedback  dynamics 

Acoustic feedback is a major  problem  in  many  sound  applications. The most 
wellknown example is in presentations and  other performances when the sound 
amplification is too high, where the feedback can  be a painful experience. The 
hearing  aid  application below is another example. 

The  setup is as in Figure 5.35. The amplifier has a gain G(q), while the 
acoustic feedback block is included  in  Figure 5.35 to model the dynamics H ( q )  
between speaker and microphone. In contrast to noise cancelation, there is 
only one microphone here. To counteract the acoustic feedback, an internal 
and artificial feedback path is created  in  the  adaptive filter F(q;  0). 

H .  

G y Speaker 

- 4 Alg. 

be 
-F(B) . 

Figure 5.35. Feedback dynamics  in noise cancelation: the speaker  signal goes to  the micro- 
phone. 

The least  squares goal of minimizing the residual E t  from the filter input 
gt (speaker  signal)  means that  the filter minimizes 

E t  = U t  - F(% 0>Yt + HMYt .  

When F is of FIR  type,  this works fine. Otherwise there will be a bias  in the 
parameters when the  input signal ut is colored, see Hellgren (1999), Siqueira 
and Alwan (1998) and Siqueira and Alwan (1999). This is a wellknown fact  in 
closed loop system  identification, see Ljung (1999) and Forssell (1999): colored 
noise implies bias  in the identified system. Here we should  interpret H as the 
system to be identified, G is the known feedback and U the  system  disturbance. 

Example 5.23 Hearing  aids adaptive noise cancelation 
Hearing  aids are used to amplify  external  sound by a possibly frequency 

shaped  gain.  Modern  hearing  aids  implement a filter customized for the user. 
However, acoustic feedback caused by leakage from the speaker to  the mi- 
crophone is very annoying to hearing-aid users. In principle, if the feedback 
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Figure 5.36. An ‘in-the-ear’  hearing  aid with  a  built  in  adaptive filter.  (Reproduced by 
permission of Oticon.) 

transfer  function was known, it  can  be compensated for in the hardware.  One 
problem  here is the  time variability of the dynamics, caused by a change  in in- 
terference  characteristics. Possible causes are hugs or  objects like a telephone 
coming close to  the ear.  The solution is to implement an adaptive filter in the 
hearing  aid. 

There is a number of different companies producing such devices. Figure 
5.36 shows a commercial product  from  Oticon, which is the result of a joint 
research project (Hellgren, 1999). Here it should be noted that  the feedback 
path differs quite a lot between the types of hearing  aids. The  ‘behind-the- 
ear’ model has  the worst feedback path.  The ‘in-the-ear’ models attenuate 
the direct path by their  construction. For ventilation, there must always be a 
small  air  channel  from the  inner to  the  outer  ear,  and  this causes a feedback 
path. 
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5.1 0. Applications 

5.10.1. Human EEG 

The  data described in Section 2.4.2 are  measurements  from  human  occipital 
area.  The experiment  aims at  testing  the reaction delay for health diagnosis. 
Before a  time t b  = 387 the lights are  on in  a  test  room and  the  test person 
is looking at  something interesting. The neurons  in the  brain  are processing 
information in visual  cortex, and only noise  is  seen in  measurements.  When 
lights  are turned off, the visual  cortex  has  nothing to do. The  neuron clusters 
start 10  Hz periodical  'rest  rhythm'. The delay between t b  and  the  actual 
time when the  rhythm  starts varies strongly between healthy people and, for 
instance,  those  with Alzheimer's decease. 

Figure 5.37  shows a  quite precise location of the change  point. The delay 
for detection  can thus be used as one feature  in  health diagnosis. That is, 
medical diagnosis can  be, at least  partly,  automized. 

EEG signal  on a  human  when  lights  turned  on  at  time  387 
I '  

-60 ~ I 
-80 

0 100 200 300 400 500 600 700 
Sampel  number 

Figure 5.37. Human EEG, where the brain is excited at sample 387. 

5.10.2. DC motor 

Consider the DC motor  lab  experiment  described  in  Section 2.5.1. Here we 
apply the RLS algorithm  with a whiteness  residual  test  with the goal to detect 
system changes while being  insensitive to disturbances. The squared  residuals 
are fed to  the CUSUM test  with h = 7  and v = 0.1. The physical model  struc- 
ture is from (2.1) an  ARX(4,4,1) model  (with  appropriate noise assumptions), 
which  is also used here. All test cases in  Table 2.1 are considered. 
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Figure 5.38. Recursive parameter  estimation  with change detection of a DC motor. Nominal 
system  (a),  with  torque  disturbances  (b),  with change  in  dynamics (c) and  both  disturbance 
and change (d) . 

From Figure 5.38 we can conclude the following: 

0 Not even in the nominal case, the parameters converge to  the vicinity 
of the values of the theoretical expressions in  (2.1). The  explanation is 
that  the closed loop system is over-modeled, so there  are poles and zeros 
that cancel and  thus  introduce ambiguity. An  ARX(2,2,1) model gives 
very similar  test  statistics but  better  parameter plots. 

0 It is virtually impossible to  tune  the CUSUM test to give an  alarm 
for system changes while not giving alarms for the non-modeled distur- 
bances. 
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5.10.3. Friction  estimation 

This section continues the case study discussed in Chapter 1 in the series of 
Examples 1.2, 1.5 and 1.9. The relations of interest are 

wd 

W n  
S ,  = 

P m = P + e p  

_ -  l = s + S , + b ~ + e ,  

N is a computable  normal force on  the  tire, S, is an unknown offset in  slip 
that  depends on a small difference in wheel radii - which will be referred to 
as slip offset ~ and e is an error that comes from  measurement  errors  in wheel 
velocities. As before, st is the measured wheel slip, and pt is a measured 
normalized traction force. Collecting the equations, gives a linear regression 
model 

1 
k v V v  

S r n - 6 R =  - p m +  1 . S, .  (5.78) 

Y( t )  Xdt) 4 t )  @dt)  

The theoretical  relation between slip and  traction force is shown in  Figure 5.39. 
The classical tire  theory does not explain the difference in  initial  slope, so em- 
pirical evidence is included in this schematic  picture.  During  normal  driving, 
the normalized traction force is in the order of 0.1. That is, measurements are 
normally  quite close to  the origin. 

are used, for different purposes. 
Figure 5.40 summarizes the  estimation problem. Two  estimation  approaches 

0 The least squares method is used for off-line analysis of data, for testing 
the  data quality, debugging of pre-calculations, and most importantly 
for constructing  the  mapping between slip  slope and friction. Here one 
single value of the slip slope is estimated for each batch of data, which 
is known to correspond to a uniform and known friction. 

0 The Kalman filter is used for on-line implementation. The main  ad- 
vantage of the  Kalman filter over RLS and LMS is that  it can  be assigned 
different tracking  speeds for the slip  slope and slip offset. 

Least  squares  estimation 

The least squares  estimate is as usually computed by 
\ - l  N 
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Figure 5.39. Theoretical and empirical relation between wheel slip and traction force. 

l*m 4 Filter I 
Figure 5.40. Filter for friction estimation. 

There  are some challenging practical  problems  worth mentioning: 

1. Outliers. Some measurements just  do not make sense to  the model. 
There may be  many reasons for this,  and one  should be careful which 
measurements are  put  into  the filter. 

2. The variation  in normalized traction force determines  the  stochastic un- 
certainty in the  estimates, as shown by the following result for the pa- 
rameter covariance PN = C o d ( N )  from N data, assuming  constant 
parameters: 

(5.79) 

That is, if the variation in normalized traction force is small  during  the 
time  constant N of the filter, the  parameter  uncertainty will be large. 

3. A wellknown problem  in the least  squares  theory  occurs in the case of 
errors in the regression vector. A general treatment  on  this  matter, usu- 
ally referred to as errors in variables or  the total  least  squares problem, 
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is  given in van Huffel and Vandewalle (1991). In our case, we have mea- 
surement and  computation  errors  in  the normalized traction force p t .  
Assume that 

p? = pt + W:, Var(v:) = X, (5.80) 

is  used in p t .  Here, Var(v:) means the variance of the error  in  the 
measurement p?. Some straightforward  calculations show that  the noise 
in p? leads to a positive bias  in the slip  slope, 

(5.81) 

Here, =(p) is the variation of the normalized traction force defined as 

N 

N t=l  t=l 
(5.82) 

This variation is identical to how one  estimates  the variance of a stochas- 
tic variable. Normally, the bias is small  because =(p)  >> X,. That is, 
the variation  in normalized traction force is much larger than  its mea- 
surement  error. 

An example of a least  squares fit of a straight line to a set of data, when 
the friction  undergoes an  abrupt change at a known time  instant, is shown in 
Figure 5.41. 

The Kalman filter 

We will here allow time variability  in the parameters, kt and St. In  this  ap- 
plication, the  Kalman filter is the most logical linear  adaptive  filter,  because 
it is easily tuned  to  track  parameters  with different speeds.  Equation (1.9) 
is extended to a state space model where the  parameter values vary like a 
random walk: 

O(t + 1) = ot + vt 

Yt = ' P p t  + et, (5.83) 
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Figure 5.41. Least squares  estimation of friction  model parameters  to a set of data where 
the friction changes at a known time  instant, when the least squares  estimation is restarted. 

where 

T 

Qt = (;, S,) * 
Here ut and et are considered as  independent  white noise processes. The basic 
problems of lack of excitation,  outliers  and  bias  in  the  slip  slope  during  cruising 
are  the same  as for least  squares  estimation, but explicit expressions are  harder 
to find. A good rule of thumb, is to relate the  time  constant of the filter, to  the 
time window N in the least  squares  method, which can lead to useful insights. 

The filter originally presented  in  Gustafsson (1997b) was extended to a 
dynamic model in Yi et al. (1999). The idea  here is to include a complete 
model of the driveline in the  Kalman filter,  instead of using the  static  mapping 
from engine torque to pt, as above. 

Practical  experience from  test  trials 

This section summarizes  results  in  Gustafsson (199713) and Gustafsson (1998). 
The filter has been running for more than 10000 km,  and almost 1000 docu- 
mented tests have been stored. The overall result is that  the linear regression 
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model and  Kalman filter are fully validated. The noise et in (5.83) has been an- 
alyzed by studying  the residuals from the filter, and can  be well approximated 
by white  Gaussian noise with  variance  10W7. The offset S is  slowly time-varying 
and  (almost) surface  independent.  Typical values of the slip  slope L are also 
known, and most importantly,  they  are  found to differ  for different surfaces. 
The theoretical  result that filter  performance  depends  on  excitation  in pt is 
also validated, and it  has also turned  out  that  measurements for small  slip and 
p (pt < 0.05) values are  not  reliable and should  be  discarded. 

A simulation  study 

The general knowledge described  in Section 5.10.3 makes  it possible to perform 
realistic  Monte  Carlo  simulations for studying  the filter  response, which  is  very 
hard  to  do for real data.  What is important here is to use real  measured pt, 
below denoted PT. The slip data is simulated from the slip model: 

(5.84) 

The noise et is simulated  according to a distribution  estimated  from field tests, 
while real data are used  in pp. In the simulation, 

St = 0.005, kt = 40, t < 200 
St = 0.005, kt = 30, t 2 200. 

This corresponds to a change from asphalt to snow  for a  particular  tire.  The 
slip offset  is  given a  high, but still  normal value. The noise has  variance  10W7, 
which implies that  the signal is of the order 8 times  larger than  the noise. The 
used normalized traction force pt and  one realization of st is shown  in  Figure 
5.42. 

As in the real-time  implementation, the sampling  interval is  chosen to 0.2s. 
Note that  the change time  at 200 is carefully chosen to give the worst possible 
condition in terms of excitation, since the variation  in normalized traction 
force  is  very small  after  this  time, see Section 5.10.3. 

First,  the response of the  Kalman filter  presented  in the previous  section 
is examined. The design parameters  are chosen as 

Qt = ( 0  0) 
0.3 0 

This implies that  the slip slope is estimated  adaptively, while the offset has 
no adaptation mechanism. In  practice, the (2,2) element of Q is assigned 
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Figure 5.42. The measured  normalized traction force (lower plot)  and one  realization 
of a simulated st (upper  plot).  Data collected by the  author  in collaboration with Volvo. 

a small value. The result  from the filter using the  data in  Figure 5.42 are 
shown in Figure 5.43. It is evident that  the convergence time of 50 samples, 
corresponding to 10 seconds, is too long. 

In  the real-time  implementation,  the  Kalman filter is supplemented by a 
CUSUM detector. For the evaluation  purpose  in this section, we use an RLS 
filter without  adaptation (X = 1). That is, we are not able to follow  slow 
variations in the  parameters,  but  can expect excellent performance for piece- 
wise constant  parameters (see Algorithm 3.3). The LS filter (see Algorithm 
5.7) residuals are fed into a two-sided CUSUM detector,  and  the LS filter is 
restarted  after an alarm.  The design parameters  in the CUSUM test  are a 
threshold h = 3 .  10P3 and a drift v = 5 .  10P4. The  drift  parameter effectively 
makes changes smaller than 5% impossible to detect.  After a detected change, 
the RLS filter is restarted. 

The performance  measures  are: 

0 Delay  for detection (DFD). 

0 Missed detection rate  (MDR). 

0 Mean time  to  detection  (MTD). 

0 The  sum of squared  prediction  errors  from each filter, 
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Figure 5.43. Illustration of parameter  tracking  after  an  abrupt friction  change at sample 
200 using the  data in  Figure 5.42 and a Kalman filter. 

Here a delayed start index is  used in the  sum  to rule  out effects from  the 
transient. 

0 As argued  in  Gustafsson  (1997a), the Minimum  Description  Length 
(MDL) can be interpreted  as  a  norm for each method. 

0 The root  mean  square parameter  error 

0 Algorithmic  simplicity,  short computation  time  and design complexity. 
This kind of algorithm is implemented  in C or even Assembler, and  the 
hardware is shared  with  other  functionalities. There should  preferably  be 
no design parameters if the algorithm  has to be  re-designed, for instance 
for another  car model. 

The  parameter  norm PE is perhaps a naive alternative, since the size of the 
parameter errors is not always a  good  measure of performance. Anyway, it is 
a  measure of discrepancy in the  parameter plots to follow. 

Figures 5.44 and 5.45  show the  parameter  estimates from these  filters aver- 
aged over 100 realizations and  the histogram of alarm times, respectively. The 
main  problem  with  the CUSUM test is the transient  behavior  after  an  alarm. 
In  this  implementation,  a new identification is initiated  after each alarm,  but 
there might be other  (non-recursive)  alternatives that  are  better. 
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Figure 5.44. Illustration of parameter  tracking  after  an  abrupt friction  change at sample 
200 using the  data in  Figure 5.42 and CUSUM LS filter. 
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Figure 5.45. Histogram over delay for detection  in  number of samples (T, = 0.2s) for 
CUSUM LS filter for 100  realizations. The  same  estimates  as  in  Figure 5.44 averaged over 
100 realizations are also shown. 

Table 5.4. Comparison of some norms for the examined filters. The smaller the  norm,  the 
better  the performance. 

Method 

14.7 0 0 1.41 . 10P7  6.3.  10P7 0.0058 1.11 CUSUM 
~ ~ 1.57.  10P7  5.1. 10P7 0.0043 l ~ RLS 

MTD MDR FAR VN MDL PE Time 
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The  quantitative  results  are summarized  in  Table 5.4. The forgetting fac- 
tor in RLS is optimized  here to minimize the loss function VN. The  other 
parameter is chosen to give zero false alarm  rate,  and  the best possible per- 
formance. 

Real-time  implementation 

The design goals for the real-time  application are as follows: 

0 It must  be  computationally  fast. 

0 The mean time  to  detection should be in the order of a few seconds, 
while the mean  time between false alarms  should be  quite  large  in case 
the driver is informed about  the  alarms. If the  system is only used for 
friction surveillance, the false alarm  rate is not critical. 

The CUSUM test satisfies both conditions, and was chosen for real-time im- 
plementation and evaluation. The next  sub-sections  describe the chosen im- 
plementation. 

The CUSUM test 

The tracking  ability of the Kalman filter is proportional to  the size of Q. 
The  Kalman filter is required to give quite  accurate values of the slip  slope 
and must by necessity have a small Q, see Anderson and Moore (1979). On 
the  other  hand, we want the filter to react quickly to sudden decreases in 
k due to worse friction  conditions. This is solved  by running the CUSUM 
detector  in  parallel  with  the  Kalman filter. If it  indicates that something  has 
changed, then  the diagonal  elements of Q corresponding to  the slip  slope are 
momentarily increased to a large value. This allows a very quick parameter 
convergence (typically one or two samples). 

In words, the CUSUM test looks at the prediction  errors E t  = SF - (p?& of 
the slip value. If the slip  slope  has  actually  decreased, we will get predictions 
that  tend  to  underestimate  the real slip. The CUSUM test gives an  alarm 
when the recent prediction  errors have been sufficiently positive for a while. 
Another  test, where the sign of E is changed, is used for detecting increases in 
slip slope. 

Example  of  filter  response 

In  this section, an example is given to illustrate  the  interaction between the 
Kalman filter and  the change detector, using data collected at  the  test  track 
CERAM  outside  Paris.  A  road  with a sudden change from asphalt to gravel 



184 AdaDtive  filterina 

70 l- 

101 
5 10 15 20 25 

Tlme p ]  
0 

Figure 5.46. Illustration of tracking ability in  the  estimated slip  slope as a function of time. 
After 8 S an  asphalt  road changes to a short gravel path  that  ends at 16 S, so the  true slip 
slope is expected to have abrupt changes at these  time  instants. 

and  then back to asphalt is considered.  Figure 5.46  shows the  estimated slip 
slope  as  a  function of time  in  one of the  tests, where the gravel path  starts 
after 8 seconds and ends  after 16 seconds. Gravel roads have a much smaller 
slip slope than  asphalt roads. 

Note that  the Kalman  filter  first starts  to  adapt  to a smaller  slip  slope at 
t = 8 S, but  after  three samples (0.6 S) something  happens.  This is where 
the CUSUM detector signals for an  alarm  and we have  convergence after one 
more  sample.  Similar  behavior is noted at  the  end of the gravel path.  The 
Kalman  filter  first  increases L slightly, and  after some  samples  it  speeds up 
dramatically and  then takes  a couple of seconds to converge to a stable value. 

Final remarks 

A summary of the project is shown  in  Figure 5.47. This application study 
shows the similarity between the use of adaptive  (linear)  filters  and  change 
detectors for solving parameter  estimation  problems. A linear  adaptive fil- 
ter  can  be  tailored to  the prior  information of parameter changes, but  the 
performance was still not good  enough. A non-linear  adaptive  filter  as  a com- 
bination of a  linear  adaptive  filter and a change detector was able to meet 
the requirements of noise attenuation  and fast  tracking. As a by-product, the 
skid alarm functionality was achieved, which  is a relative  measure of abrupt 
friction changes. It  turned  out  that  tire changes and weariness of tires  made 
it necessary to calibrate the algorithm. If an absolute  measure of friction is 
needed, an  automatic calibration  routine is needed. However, as a skid alarm 
unit, it works without  calibration. 
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1 
Classification  Filter 

Figure 5.47. Overview of the friction estimation algorithm. 

5.11. Speech  coding  in GSM 

Figure 5.48 shows an overview of the signal processing in a second generation 
digital mobile telephone  system. In  this section, we will present the ideas  in 
speech coding. Equalization is dealt  with  in  Example 5.20. 

Generally, signal modeling consists of a filter and  an  input model. For the 
GSM speech coder,  the filter is an estimated AR(8) model (parameterized  with 
a Lattice  structure)  and  the  input is a pulse train.  There  are many  tricks to 
get an efficient quantization  and  robustness to bit  errors, which will be briefly 
mentioned. However, the  main  purpose is to present the adaptive  estimator 
for coding. Decoding is essentially the inverse operation. 

The algorithm  outlined below is rather  compact,  and  the goal is to get a 
flavour of the complexity of the chosen approach. 

Filter model 

Denote the sampled  (sampling frequency 8192 Hz) speech signal by St. The 
main  steps  in  adaptive filter estimation  are: 

1. Pre-filter  with 
S{ = (1 - 0.9q-l)st. 

This high pass filter highlights the subjectively important high frequen- 
cies around 3 kHz. 

2. Segment the speech in fixed segments of 160 samples,  corresponding to 20 
ms speech. Each segment is treated  independently  from now on. 

3. Apply the Hamming window 

sigw = CWtSt f s  
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Figure 5.48. Overview of a  digital mobile telephone system, e.g. GSM. The underlined 
blocks are described  in detail in this book. 

to avoid any influence from the signal  tails. The  constant c = 1.59 makes 
the energy invariant to  the windowing, that is c2 C W: = 1. 

Estimation of AR(8) model 

4. The AR(8) model is determined by first estimating  the covariance function 

160 

t=l 

f o r k = 0 , 1 , 2  , . . . ,  8. 

5. The AR coefficients could be  estimated  from  the Wiener-Hopf equations. 
For numerical  purposes, another  parameterization using reflection coef- 
ficients p1, p2, . . . , p8 is used. The  algorithm is called a Schur recursion. 

6. The reflection coefficients are not suitable to quantize, since the resolution 
needs to  be  better when their  numerical values are close to f l .  Instead 
the so called logarithmic area  ratio is used 
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The number of bits  spent  on each parameter is summarized below: 

The decoder interpolates the LAR parameters to get a softer transition 
between the segments. 

Input model 

The  input is essentially modeled as a pulse train motivated by the vocal chord, 
which generates pulses that  are  modulated in the  throat  and  mouth.  The coder 
works as follows: 

7. Decode the filter model. That is,  invert the  steps 4-6. This gives ifsw and 

This is essentially the prediction  error, but  it also contains  quantization 
effects. 

8. Split each segment into four subsegments of length 40. These  are  treated 
independently for each input model. Initialize a buffer with  the 128 
latest  prediction  errors. 

9. Estimate  the covariances 

40 

t=l 

for k = 41,42,.  . . ,128. 

10. Compute 

~ = a r g  max R k  
411k1128 

G =  max Rk, 
41<k<128 

where D corresponds to  the pulse interval and G is the amplification 
of the pulse size compared to  the previous  subsegment. G is quantized 
with 2 bits  and D with 7 bits (D E [l, 1281). 
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11. Each pulse size is saved. To get efficient quantization, a long term 
prediction filter models the pulse size variations, 

Et = E t  - GEt-D. 

Since D > 40 the last term is taken  from  the buffer. This  can  be seen 
as an  AR(1) model with  sampling  interval D units  and a1 = G.  Note 
that  the overall filter operation is now a cascade of two filters on two 
different time scales. 

12. Decimate the sequence Et a factor of 3. That is LP filter with cut-off 
frequency wg = 4096/3 Hz and pick out every third sample. This gives 
13  samples. 

13. Depending  on at which sample (1,2 or  3)  the decimation starts,  there  are 
three possible sequences. This offset is chosen to maximize the energy 
in the pulse sequence. The decoder  constructs the pulse train by using 
this offset and inserting two zeros between each two pulses. 

14. Normalize the pulses for a more efficient quantization: 

p. - _. Pi 
a -  

V 

Because of the  structure,  the  input model is sometimes referred to as the long 
time  prediction and  the filter as  the  short  time prediction. 

The number of bits used for modeling each subsegment of the  input is 
shown below: 

Code length 

All in all, each segment of 160 sample (20 ms) requires: 

156 
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Channel coding 

The 260 bits  to each segment are  sorted  after  priority of importance. 

I 50 most important I 132 important I 78 less important I 

To the most important,  three  parity  bits  are  added to detect  bit  errors.  To 
these 53 bits  and  the next 132 a cyclical convolution code is applied  (denoted 
CC(2,1,5), which is a fifth  order FIR filter).  This gives 2 x  189=  378 bits.  The 
less important  bits  are sent as they are. 

Thus, in total 456 bits  are sent to each segment.  These are  transmitted in 
four independent  bursts, each consisting of 116 bits. 

They  are complemented by a training sequence of 26 bits used for equal- 
ization (see Example 5.20), and  three zeros at each side. This  results  in a so 
called normal  burst, constructed  as 

I 3 zeros I 58 I 26 training  bits I 58 I 3 zeros I 

The code rate is thus 

81921160.4.148 
8192.8 

= 0.46, 

so the coded speech signal requires 46% of the  bandwidth of what an uncoded 
signal would require. 

5.A. Square  root  implementation 

To motivate the problem, consider the linear regression problem  in matrix 
notation Y = QT8 + E. One way to derive the LS estimate is to solve the 
over-determined  system of equations 

Y = QTe. (5.85) 

Multiple both sides with @ and solving for 8 gives 

QY = * e = (@@T)-l @Y. 

It is the inversion of @QT which may be numerically ill-conditioned, and  the 
problem  occurs  already when the  matrix  product is formed.  One  remedy is to 
apply  the QR-factorization to  the regression matrix, which yields 
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where Q is a square  orthonormal  matrix (QTQ = &QT = I )  and R is an upper 
triangular  matrix.  In MATLABTM , it is computed by [Q, R1 =qr (Phi ' 1. 

Now, multiply (5.85) with Q-l = QT: 

The solution is  now computed by solving the triangular  system of equations 
given  by 

which has good numerical  properties. Technically, the condition  number of 
@QT is the  square of the condition  number of R, which follows from 

It should  be  noted that MATLABTM 'S backslash operator  performs a QR 
factorization  in the call thhat=Phi \Y. As a further  advantage,  the minimizing 
loss function is easily computed as 

v(e) = (Y - @T(Y - @.e) = %?-K. 

Square  root  implementations of recursive algorithms also exist. For RLS, 
Bierman's UD factorization can  be used. See, for instance,  Friedlander (1982), 
Ljung and Soderstrom  (1983), Sayed and  Kailath (1994),  Shynk (1989), Slock 
(1993) and  Strobach (1991) for other fast  implementations. 

5.B. Derivations 

In  this section, different aspects of the least  squares  solution will be high- 
lighted. The  importance of these  results will become clear in  later  chapters, 
in  particular for likelihood-based change detection. First a recursive version 
of weighted least squares is derived together  with the LS  over a sliding win- 
dow (WLS).  Then  it is shown how certain off-line expressions that will nat- 
urally appear in change detection  algorithms  can be  updated on-line. Some 
asymptotic  approximations  are  derived, which are useful when implementing 
change detectors. Finally, marginalization  corresponding to  the computations 
in Chapter 3 for linear regression models are given. Here the  parameter vector 
19 generalizes the mean  in a changing mean model. 
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5.B.1. Derivation of LS algorithms 

We  now derive a recursive implementation of the weighted LS algorithms. 
In  contrast to a common practice  in the  literature when RLS is cited, no 
forgetting  factor will be used here. 

Weighted  least  squares  in  recursive  form 

algorithm. The weighted multi-variable recursive least  squares  without forget- 
ting  factor (see Ljung and Soderstrom  (1983)) minimizes the loss function 

t 

W )  = C ( Y k  - cpk 0) R, (Yk - 43) T T -1 (5.86) 
k=l 

with  respect to 8. Here RI, should be  interpreted  as  the  measurement variance, 
which in this  appendix  can  be a matrix corresponding to a vector valued 
measurement. Differentiation of (5.86) gives 

t 

v , ( Q )  = 2 C(-'PlcR,lYI, + cpkR,lp;Q). (5.87) 
k=l 

Equating (5.87) to zero gives the least  squares  estimate: 

\ -1 t 
(5.88) 

This is the recursive update for the RLS estimate,  together  with the obvious 
update of R:: 

R: = R:-1 + ptRt pt  . -1 T (5.90) 
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It is convenient to introduce Pt = (R:)-'. The reasons are  to avoid the 
inversion of R:, and so that Pt can  be  interpreted  as the covariance matrix of 
8. The matrix  inversion  lemma 

applied to (5.90) gives 

Pt = [PL; + 'P& 'Pt 1- -1 T 1 

= Pt-l - Pt-l'Pt['P:Pt-l'Pt +&l  -1 'Pt T Pt-l. (5.92) 

With  this  update formula for Pt we can  rewrite (R?)-'pt in (5.89) in the 
following manner: 

(R, 1 'Pt = Pt-lPt - Pt-l'Pt['Pt Pt-lPt + RtI-l'P:Pt-l'Pt 
'p -1 T 

= pt-l'Pt['Pt Pt-lcpt + &-l&. 
T (5.93) 

We summarize the recursive implementation of the LS algorithm: 

Algorithm 5.7 Weighted LS in  recursive  form 

Consider the linear regression (5.3) and  the loss function (5.86). Assume that 
the LS estimate  at  time t - 1 is 8t-1 with covariance matrix Pt-l. Then a new 
measurement gives the  update formulas: 

8, = 8t-l + Pt-l'Pt['P, Pt-lcpt + &-l(y t  - 'PT8t-1) 
T 

(5.94) 
Pt = pt-l - Pt-l'Pt['P, Pt-lcpt + RtI-l'PTPt-1. 

T 
(5.95) 

Here the  initial conditions are given by the prior, 8 E N(80,Po). The a poste- 
riori distribution of the  parameter vector is 

Ot E N(Jt,Pt). 

The  interpretation of Pt as a covariance matrix,  and  the  distribution of Ot 

follows from the  Kalman filter. Note that  the  matrix  that  has  to  be inverted 
above is usually of lower dimension than R? (if dim y < dim 8). 

Windowed LS 

In some algorithms,  the  parameter  distribution given the measurements  in a 
sliding window is needed. This  can  be derived in the following way. The trick 
is to re-use old measurements  with negative variance. 
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Lemma 5.1 (Windowed  LS  (WLS)) 
The  mean and  covariance at  time t for  the  parameter  vector in (5.3), given  the 
measurements yi-k+l - - {y t - k+l ,   y t - k+2 , .  . . , y t} ,  axe computed  by  applying 
the RLS scheme in Algorithm 5.7 to  the linear  regression 

( y t  Yt -k  ) = (  >s+et, 
'Pt-k 

where  the  (artificial) covaxiance matrix  of Et is 

Proof: This result follows directly by rewriting the loss function  being mini- 
mized: 

t=l Yt-k 'Pt-k 

Y t - k   y t - k  

N 

t=l 
N 

Thus,  the influence of the k first measurements cancels, and a minimization 
gives the  distribution for 8 conditioned on  the measurements &k+l.  0 

5.B.2. Comparing  on-line and off-line  expressions 

In  this section, some different ways of computing the parameters  in the density 
function of the  data  are given. The following interesting  equalities will turn 
out  to  be  fundamental for change detection,  and  are summarized  here for 
convenience. 
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The density  function for the measurements  can equivalently be 
computed  from  the residuals. With a little  abuse of notation, 
p(yN) = The  sum of squared on-line residuals  relates to 
the  sum of squared off-line residuals as: 

N 

C(Yt - PFJt-dT (PFPt-lPt + (Yt - P F L )  
t=l 

(5.96) 
N 

The on-line residual covariances relate to  the a posteriori param- 
eter covariance as: 

N 

t=l 
N 

= C log det Rt + log det PO - log det PN. (5.97) 
t=l 

Together, this means that  the likelihood given all available mea- 
surements  can  be  computed  from off-line statistics as: 

p(yN) - P ( Y ~ I ~ N > P ~ ( ~ N )  ( d e t ~ N ) l ’ ~  , (5.98) 

which holds for both a Gaussian  prior p o ( z )  and a flat non- 
informative one pe(x) = 1. 

The  matrix  notation 

Y =@6+E (5.99) 

will be convenient for collecting N measurements  in (5.3) into one equation. 
Here 
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Thus, A is a block diagonal  matrix. The off-line version of RLS in  Algorithm 
5.7 can then  be  written 

ON = (R: + R%)-l(fN + f0) 
PN = (R: + R%)-', (5.100) 

where 

N 

t=l 

N 

t=l 

or, in matrix  notation, 

Here 00 and R: are given  by the prior. With a Gaussian  prior we have that 0 E 
N(O0, (R:)-') and a flat non-informative  prior is achieved by letting R: = 0. 
Note that a flat prior  cannot be used on-line (at least not directly). 

First,  an on-line expression for the density  function of the  data is given. 
This is essentially a sum of squared  prediction  errors. Then,  an off-line ex- 
pression is given, which is interpreted  as the  sum of squared  errors one would 
have obtained if the final parameter  estimate was used as  the  true one  from 
the beginning. 

Lemma 5.2 (On-line  expression for  the  density  function) 
The  density  function of the sequence y N  = {yk}k=l  from (5.3) is computed 
recursively by 

logp(yN) = logp(yN-') - P - log 27r - - 1 log det (&PN-~(PN + R N )  
2 2 

= logp(EN). 
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Here 0, and Pt are given  by the RLS scheme in  Algorithm 5.7 with initial 
conditions 80 and PO. 

Proof: Iteratively using Bayes’  law  gives 

Since 8tlyt-l E N(et-1,Pt-l), where 6t-1 and Pt-1 are  the RLS estimate  and 
covariance matrix respectively, it follows that 

and  the on-line expression follows from the definition of the Gaussian PDF. 0 

Lemma 5.3 (Off-line  expression  for  the  density  function) 
Consider the linear regression (5.3) with a prior pe(8)  of the  parameter vector 
8, which can be either Gaussian with mean 190 and covariance (R{)-’ or non- 
informative (pe(8)  = 1). Then  the  density function of the  measurements can 
be calculated by 

if the  prior is Gaussian or 

if the  prior is non-informative. Here d = dimI9. 

Proof: Starting with the Gaussian  prior we have 

(5.101) 

(5.102) 

p ( y N )  = J_”,p(yN18)p(8)d8 = ( 2 , ) - 7  (det A)-+ (det R{)$ (5.103) 
Np+d  

X exp (-; ( (Y - @T19)TA-1(Y - + (I9 - 19o)~R{(I9 - 1 9 0 ) ) )  dB 
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By completing the squares the exponent  can be  rewritten  as  (where 8 = 8,) 

X exp (-: ((Y - @ T 8 ~ ) T A - ' ( Y  - aT8,) + (8, - 80)TR,"(8N - 8 0 ) ) )  

X S ( 2 7 r - f  (det R: + R$); exp (-z ( 8  - 8,) (R: +R$) ( 8  - 8,)) d8 
1 T 

= p ( y N  1 6 , ) ~ ~  (e,) (det P,)'" (27~)  z. 
The case of non-informative prior, pe(0 )  = 1 in (5.103), is treated by letting 

R: = 0 in the exponential expressions, which gives 

p ( y ~ )  = p ( y ~ l e N )  /(2n)-r d exp (-: (0 - (R: +R%) (0 - 6,)) 

= p(yNle,)  (det pl~)'''. 
0 

It is interesting to note that  the density  function  can be  computed by just 
inserting the final parameter  estimate  into  the  prior  densities p(yNlO) and 
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pe(Q), apart from a data  independent correcting  factor. The prediction  errors 
in the on-line expression is essentially replaced by the  smoothing errors. 

Lemma 5.4 
Consider  the  covariance  matrix Pt given by the RLS algorithm 5.7. The fol- 
lowing  relation  holds: 

N c 1% det (cpTPt-lcpt + Rt) 
t=l 

N 
= c log det Rt + log det PO - log det PN. 

t=l 

Proof: By using the  alternative  update formula for the covariance matrix, 
P;' = P;: + vtRt -1 cpt T and  the equality de t ( l+  AB) = det ( I+  BA) we have 

t=l 
N 

= c (log det Rt + log det (I + RF'pFPt-lcpt)) 
t=l 
N 

= c (log det Rt + log det (I + cptR;'cpFPt-l)) 
t=l 
N 

= c (log det Rt - log det P;; + log det (P;; + cptR;'cpT)) 
t=l 
N 

= c (log det Rt - log det P;: + log det P;') 
t=l 
N 

= c log det Rt + log det PO - log det PN 
t=l 

and  the off-line expression follows. In  the last  equality we used, most of the 
terms cancel. 0 

Actually, the  third equality (5.98) we want to show  follows from the first 
two (5.97) and (5.96),  as  can be seen by writing  out  the density  functions  in 
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Lemmas 5.2 and 5.3, 

Thus, we do not have to prove all of them. Since the first (5.97) and  third 
(5.98) are proved the second one (5.96) follows. A direct proof of the second 
equality is found in Ljung and Soderstrom  (1983),  p 434. 

5.B.3. Asymptotic  expressions 

The next  lemma  explains  the behavior of the  other model dependent  factor 
log det PN (besides the  smoothing  errors) in  Lemma 5.3. 

Lemma 5.5 (Asymptotic  parameter covariance) 
Assume  that  the regressors satisfy  the  condition  that 

exists  and  is  non-singular.  Then 

log det PN 
log N 

+ - d ,  N + C C  

with  probability  one.  Thus,  for  large N ,  logdet PN approximately  equals 
-dlog N. 
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Proof: We have from the definition of R; 

- log det PN = log  det(R: + R;) 

t=l 
N 

= log det NId + log det 
t=l 

Here the first term equals d log N and  the second one tends  to log det Q, and 
the result follows. 0 

5.B.4. Derivation of marginalization 

Throughout  this  section,  assume that 

where { e t }  is Gaussian  distributed  with zero mean and variance X and where 
Q is a stochastic variable of dimension d. The regression vector pt is known at 
time t - 1. 

This means that  the analysis is conditioned on  the model. The fact that all 
the PDF:s are conditioned  on a particular  model  structure will be suppressed. 

The simplest case is the joint likelihood for the  parameter vector and  the 
noise variance. 

Theorem 5.6 (No marginalization) 
For given X and Q the PDF of yN is 

(5.104) 

where v N ( Q )  = C K l ( y t  - 

Proof: The proof is trivial when {pt} is a known sequence. In  the general case 
when (pt may contain  past  disturbances (through feedback), Bayes' rule gives 

and  the  theorem follows  by noticing that 

since (pt contains  past  information only. 
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Next,  continue  with the likelihood involving only the noise variance. Since 

P ( Y N 1 4  = S p ( Y N I 0 ,   4 P ( 6 l W ,  

the previous theorem  can be used. 

Theorem 5.7 (Marginalization of 6 )  
The PDF of yN conditioned on the noise variance X when 

is given by 

where ON is given by 
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Using this  together  with (5.104) gives 

and  thus 

(5.109) 

(5.110) 

which proves the theorem. 0 

The likelihood involving the  parameter vector 8 is given by 

P ( Y N  l ?  = 1 p(yNlQ7 4 P ( x l W .  

Computing  this  integral gives the next  theorem. 

Theorem 5.8 (Marginalization of X) 
The PDF of yN conditioned on I9 when X is W-l(m, a )  is given by 
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Proof: In order to prove (5.111), write 

Then (5.111) follows  by identifying the integral  with a multiple of an integral 
of an W-'(VN (Q), N + m + d )  PDF. 0 

The  distribution of the  data conditioned only on the model structure is 
given  by Theorem 5.9. 

Theorem 5.9 (Marginalization of Q and X) 
The PDF of yN when X is W-l(rn, o) and Q is  distributed as in (5.105) is 
given by 

where v~(0)  and 8, are  defined by (5.112) and (5.107), respectively. 

Remark 5.10 
Remember  that  the  theorem  gives  the  posterior  distribution of the  data con- 
ditioned  on  a  certain  model  structure, so p ( y N I M )  is  more  exact. 

Proof: From (5.106) and  the definition of the Wishart  distribution (3.54) it 
follows 

(5.115) 

(5.116) 
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which proves the  theorem. 
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6.1. Basics 

Model validation is the  problem of deciding whether observed data  are consis- 
tent  with  a  nominal  model . Change  detection based on  model  validation  aims 
at applying  a  consistency  test  in  one of the following  ways: 

0 The  data are  taken  from  a sliding  window . This is the typical  application 
of model validation . 

0 The  data are  taken  from an increasing window . This is one way to 
motivate the local approach . The  detector becomes  more  sensitive  when 
the  data size increases. by looking for smaller and smaller changes . 
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The nominal model will be represented by the  parameter vector 190. This may 
be  obtained  in one of the following  ways: 

0 Q0 is recursively identified from  past data, except for the ones in the 
sliding window. This will be  our  typical case. 

0 80 corresponds to a nominal model, obtained  from physical modeling or 
system identification. 

The  standard  setup is illustrated  in (6.1): 

A model (Q)  based on data from a sliding window of size L is compared to 
a model (00) based on  all  past data or a substantially  larger sliding window. 
Let us denote  the vector of L measurements  in the sliding window  by Y = 
(Y:-~+~, . . . , y E l ,  Y ? ) ~ .  Note the convention that Y is a column vector of 
dimension Ln5, (ng = dim(y)). We will, as usual  in this  part, assume  scalar 
measurements. In a linear regression model, Y can  be  written 

where E = . . , e:-l, e:)T is the vector of noise components and  the 
regression matrix is = ( ( ~ t - ~ + 1 , .  . . , pt-1, pt). The noise variance is E(e:) = 
X. 

We want to  test  the following hypotheses: 

H0 : The  parameter vectors are  the  same, Q = 130. That is, the model is 
validated. 

H1 : The  parameter vector Q is significantly different from 80, and  the null 
hypothesis  can be rejected. 

We  will argue,  from  the examples below, that all  plausible  change  detection 
tests can be expressed in one of the following  ways: 

1. The  parameter  estimation error is e" = M Y  - 190, where M is a matrix to 
be specified. Standard  statistical  tests  can  be  applied  from  the  Gaussian 
assumption  on  the noise 

e" = M Y  - 190 E N(O,P) ,  under Ho. 

Both M and P are provided by the method. 
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2. The  test  statistic is the  norm of the simulation  error, which is denoted 
a loss function V in resemblance with  the weighted least  squares loss 
function: 

V = IIY - Yolli a (Y - Yo)~Q(Y - Yo). 

The above generalizations hold for our  standard models only when the noise 
variance is known. The case of unknown or  changing variance is treated in 
later  sections, and leads to  the same  kind of projection  interpretations,  but 
with non-linear transformations  (logarithms). 

In  the examples below, there is a certain  geometric interpretation in that Q 
turns  out  to  be a projection matrix, i.e., &Q = Q. The figure below (adopted 
from Section 13.1) is useful in the following calculations for illustrating  the 
geometrical  properties of the least  squares  solution (Y = YO + E below): 

Y 

Example 6.7 Linear  regression and  parameter norm 

Standard calculations give 

The Gaussian  distribution  requires  that  the noise is Gaussian.  Otherwise, the 
distribution is only asymptotically  Gaussian. A logical test  statistic is 
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which is as  indicated x2  distributed  with d = dim(8) degrees of freedom. A 
standard  table can be used to design a threshold, so the  test becomes 

118 - 8011$-1 3 h,. 

The  alternative formulation is derived by using a simulated  signal YO = @80, 

which means we can  write 80 = (@QT) and P = X (@QT) -l,  so 

Q 
= XP1(Y - Y o ) ~ Q ( Y  - Yo). 

Note that Q = QT (@QT)-' is a projection matrix &Q = Q. Here we have 
assumed  persistent  excitation so that @QT is invertible. 

It should be noted that  the  alternative  norm 

118 - 8011~7 

without weighting with the inverse covariance matrix, is rather na'ive. One 
example  being an AR model, where the last coefficient is very small  (it is 
the  product of all poles, which are all less than  one), so a change  in  it will 
not affect this  norm very much, although  the poles of the model can  change 
dramatically. 

Example 6.2 Linear  regression and GLR 

The Likelihood Ratio ( L R )  for testing the hypothesis of a new parameter 
vector and  the nominal one is 

Assuming Gaussian noise with  constant variance we get the log likelihood ratio 
( L W  
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Replacing the unknown parameter vector by its most likely value (the maxi- 
mum likelihood estimate @, we get the Generalized  Likelihood Ratio (GLR)  

VGLR = 2X GLR 
= IIY - @TBo112 - IIY - @TB112 

= IIY - Yo112 - IIY - P112 

= YTY - 2YTyo + YZyo - YTY + 2YTY - YTP 

= -2YTyo + YZyo + 2YTP - PTP 
= -2YTQ& + Y,TQfi + 2YTQY - YTQY 

= -2YTQ& + Y,TQfi + YTQY 

= (Y - fi)TQ(Y - y0) 
= IIY - YOll& 

This idea of combining GLR and a sliding window  was proposed  in  Appel and 
Brandt (1983). 

Example 6.3 Linear  regression and  model  differences 
A loss function, not very common  in the  literature, is the  sum of model 

differences rather  than prediction  errors. The loss function based on model 
digerences (MD) is 

V M D  = I p T B o  - @ 8112 

= l lyo  - YII& 

T A  2 

= IIQYo - QYll; 

which is again the same  norm. 

Example 6.4 Linear  regression and  divergence test 

and is  reviewed in Section 6.2. Assuming constant noise variance, it gives 
The divergence test was proposed in Basseville and Benveniste (1983b), 

V D I V  = IIY - @ B O I I ;  - (Y - @'TBO)T(Y - @ V )  

= IIY - Yolli - (Y - Y o ) ~ ( Y  - QY) 

= YTY + Y,TYo - 2YTY - YTY + YTQY + YZY - YZQY 

= Y,TQYo - 2YTQY + YTQY + YZQY - YZQY 

= IIY - YOll& 
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Again, the same  distance  measure is obtained. 

Example 6.5 Linear  regression  and  the local approach 
The  test  statistic in the local approach reviewed in Section 6.2.5 is 

See Section 6.2.5 for details. Since a test  statistic does  not lose information 
during  linear  transformation, we can equivalently take 

vLA = 2/Nprl E ASN(B", P ) ,  

and we are essentially back to Example 6.1. 

To summarize,  the  test  statistic is (asymptotically) the same for all of the 
linear regression examples above, and  can  be  written as the two-norm of the 
projection Q(Y - Yo), 

IIY - yell; E x2(4  
or as  the  parameter  estimation  error 

8 - 00 E N(0,P) .  

These  methods coincide for Gaussian noise with known variance, otherwise 
they  are generally different. 

There  are similar  methods for state space models. A possible approach is 
shown in the example below. 

Example 6.6 State space  model with additive  changes 

State space models are discussed in the next part,  but  this example defines 
a parameter  estimation  problem  in a state space framework: 

Zt+1 = Atxt + Bu,tut + Bv,tvt + B6,tO (6.2) 
yt = Ctxt + et + Du,tut + De,tO. (6.3) 

The  Kalman filter applied to  an augmented  state space model 
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gives a  parameter  estimator 

which can be expanded to a linear  function of data, where the  parameter 
estimate  after L measurements  can  be  written 

8, = LyY + LuU E N(0, Pi'), under Ho. 

Here we have split the  Kalman filter  quantities  as 

In  a  general and  somewhat  abstract way, the idea of a consistency  test 
is to compute  a  residual vector as a linear  transformation of a batch of data, 
for instance  taken from a  sliding window, E = AiY + bi. The transformation 
matrices  depend on the approach. The  norm of the residual  can  be taken  as 
the distance  measure 

9 = IlAiY + bill 

between the hypothesis H1 and H0 (no  change/fault).  The  statistical  approach 
in  this  chapter decides if the size of the distance  measure is statistically signifi- 
cant,  and  this  test is repeated at each time  instant.  This can  be  compared  with 
the approach in Chapter 11, where algebraic  projections are used to decide 
significance in  a  non-probabilistic  framework. 

6.2. Distance  measures 

We here review some  proposed  distance  functions.  In  contrast to  the  examples 
in Section 6.1, the possibility of a changing noise variance is included. 

6.2.1. Prediction  error 

A test  statistic proposed  in Segen and Sanderson (1980) is based on the pre- 
diction  error 

Here X0 is the  nominal variance on the noise before the change. This  statistic 
is small if no jump occurs and  starts  to grow after a jump. 
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6.2.2.  Generalized  likelihood  ratio 

In Basseville and Benveniste (1983c), two different test  statistics for the case of 
two different models are given. A straightforward  extension of the generalized 
likelihood ratio  test in Example 6.2 leads to 

The  test  statistic (6.7) was at  the same  time  proposed  in  Appel  and  Brandt 
(1983), and will in the sequel be referred to  as Brandt's GLR method. 

6.2.3.  Information  based  norms 

To measure the  distance between two models, any  norm  can  be used, and we 
will here  outline some general statistical  information based approaches, see 
Kumamaru  et al. (1989) for details  and a number of alternatives. First,  the 
Kullback  discrimination  information between two probability  density  functions 
p1 and p2 is defined as 

with  equality only if p1 (X) = pz(z).  In  the special case of Gaussian  distribution 
we are focusing on, we get 

Pi(X:) = N(&, Pi) 

The Kullback information is not a norm  and  thus not suitable as a distance 
measure,  simply because it is not symmetric 1(1,2) # 1(2,1). However, this 
minor problem is easily resolved, and  the Kullback divergence is defined as 

V(1,2) = 1(1 ,2)  + 1(2,1) 2 0. 

6.2.4.  The divergence test 

From the Kullback divergence, the divergence test  can  be derived and  it is an 
extension of the ideas leading to (6.6). It equals 

(Y - @'TBO)'T(Y - 
- 2  
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Table 6.1. Estimated  change  times for different methods. 

Signal 

445 645 1550 1800 2151 2797 3626 16 Divergence Filtered 
593 1450 2125  2830  3626 2 Brandt’s GLR Noisy 

451 611 1450 1900 2125  2830  3626 16 Brandt’s GLR Noisy 
451 611 1450 1900 2125  2830  3626 16 Divergence Noisy 

Estimated change times na Method 

I Y I I 

Filtered I Brandt’s GLR I 16 I 445 645 1550 1800 2151 2797 3626 
Filtered I Brandt’s GLR I 2 I 445 645 1550 1750 2151 2797 3400  3626 

The corresponding  algorithm will be called the divergence test. Both  these 
statistics  start  to grow when a jump has  occured, and again the  task of the 
stopping  rule is to decide whether the growth is significant. Some other pro- 
posed distance  measures,  in the context of speech processing, are listed  in 
de Souza and  Thomson (1982). 

These two statistics  are  evaluated  on a number of real speech data sets  in 
Andre-Obrecht (1988) for the growing window approach.  A  similar investiga- 
tion  with  the same data is found  in  Example 6.7 below. 

Example 6.7 Speech  segmentation 

To illustrate  an  application where the divergence and GLR tests have been 
applied, a speech recognition system for use in  cars is studied.  The first task 
of this  system, which is the  target of our  example, is to segment the signal. 

The speech signal under  consideration was recorded inside a car by the 
French National Agency for Telecommunications as described by Andre-Obrecht 
(1988). The sampling frequency is 12.8 kHz, and a part of the signal is shown 
in  Figure 6.1, together  with a high-pass filtered version with cut-off frequency 
150 Hz, and  the resolution is 16 bits. 

Two segmentation  methods were applied and  tuned  to these signals in 
Andre-Obrecht (1988). The  methods  are  the divergence test  and  Brandt’s 
GLR algorithm. The sliding window  size is L = 160, the threshold h = 40 
and  the  drift  parameter v = 0.2.  For the pre-filtered signal, a simple  detector 
for finding voiced and unvoiced parts of the speech is used as a first step. In 
the case of unvoiced speech, the design parameters  are changed to h = 80 
and U = 0.8. A summary of the  results is given in  Table 6.1, and is also 
found in Basseville and Nikiforov (1993), for the same  part of the signal as 
considered here. In  the cited reference, see Figure 11.14 for the divergence 
test  and  Figures 11.18 and 11.20 for Brandt’s GLR test. A  comparison to a 
filter bank  approach is given in Section 7.7.2. 
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Speech  data  with  car  noise 

0 

5000 
Speech  data  with  pre-filter 

1 

-5000' 
0 0.05 0.1 0.15  0.2  0.25 0.3 

Time [S] 

Figure 6.1. A speech signal  recorded  in a car (upper  plot)  and a high-pass  filtered version 
(lower plot). 

6.2.5. The asymptotic local approach 

The asymptotic local approach was proposed in Benveniste et al. (1987a) as a 
means for monitoring  any  adaptive parameter  estimation  algorithm for abrupt 
parameter changes. The  method is revisited and generalized to non-linear 
systems  in  Zhang et al. (1994). 

The size of the  data record L will be kept as an index  in this section. The 
hypothesis  test is 

1 
HI  : Change t 9 ~  = 130 + -v. JL (6.10) 

The assumed alternate hypothesis may look strange  at first glance. Why 
should the change by any physical reason become less when time evolves? 
There is no reason. The correct interpretation is that  the hypothesis makes 
use of the fact that  the  test can  be  made  more  sensitive when the number of 
data increases. In  this way, an  estimate of the change  magnitude will have a 
covariance of constant size, rather  than decreasing like 1/L.  Other approaches 
described in Section 6.1  implicitly have this property, since the covariance 
matrix P decays like one over L.  The main  advantages of this hypothesis test 
are  the following: 

0 The  asymptotic local approach, which is standard in  statistics,  can  be 
applied. Thus,  asymptotic  analysis is facilitated.  Note, however, from 
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Example 6.5 that algorithmically it is asymptotically the same  as  many 
other  approaches when it comes to a standard  model  structure. 

0 The  problem formulation  can  be generalized to, for example,  non-linear 
models. 

Let 2, be the available data at time L. Assume we are given a function 
K(Z,+, 6 0 ) .  If it satisfies 

then it is called a primary residual. 
Define what is called an improved residual,  or quasi-score, as 

Assume that it is differentiable and  the following quantities  exist: 

One way to motivate the improved residual follows from a first  order Taylor 
expansion 

By neglecting the rest term, it follows from  the  asymptotic  distribution  and  a 
variant of the central  limit  theorem that 

From the  asymptotic  distribution,  standard  tests can  be  applied  as will be 
outlined below. A more  formal proof  is  given in Benveniste et  al.  (1987a) 
using the  ODE  method. 
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Example 6.8 Asymptotic local approach for linear  regression model 

Consider as a special case the linear regression model, for which these 
definitions become quite  intuitive. For a linear regression model  with the 
following standard definitions: 

-- 
RL fL 

PL = XRi1 
8, E AsN(6' - 00, PL). 

the  data,  primary residual and improved residual (quasi-score) are defined as 
follows: 

Using the least  squares  statistics above, we can  rewrite the definition of q ~ ( B 0 )  
as 

Thus,  it follows that  the asymptotic  distribution is 

Note that  the covariance matrix ;Pi1 tends  to a constant  matrix C ( & )  when- 
ever the elements in the regressor are quasi-stationary. 
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The last  remark is one of the key points  in  the  asymptotic  approach.  The 
scaling of the change makes the covariance matrix  independent of the sliding 
window size, and  thus  the  algorithm  has  constant sensitivity. 

The  primary residual K(Zk,  130) resembles the  update  step in an adaptive 
algorithm such as RLS or LMS. One  interpretation is that under the no  change 
hypothesis, then K(Z,+, 00)  M AI3 in the  adaptive algorithm. The detection 
algorithm proposed in Hagglund (1983) is related to this  approach, see also 
(5.63). 

Assume now that 7 E AsN(Mv, C), where we have dropped indices for 
simplicity. A standard Gaussian  hypothesis test to test H0 : v = 0 can  be 
used in the case that 7 is scalar (see Example  3.6). How can we obtain a 
hypothesis test in the case that is not  scalar? If M is a square  matrix, a x2 
test is readily obtained by noting that 

M-lq E AsN(v, M-lCM-T) 

( M - I C M - T ) - ~ / ~  E A~N((M-ICM-T)- ' /~ v, I~,) 
V 

vTw E Asx2(n,), 

where the last  distribution holds when v = 0. A  hypothesis test threshold is 
taken  from  the x2  distribution.  The difficulty occurs when M is a thin  matrix, 
when a projection is needed. Introduce  the  test  statistic 

W = (MTC- lM)  MTC-lq. -1/2 

We have 

E(w) = (MTC-1M)-1/2 MTC-lMv 

= ( M T C - q q 1 ' 2  v 

Cov(.) = ( M T C - % p 2  MTC-lM ( M T C - I M )  -112 = Inn,. 

We have  now  verified that  the  test  statistic satisfies ?W E x2(nv) under Ho, 
so again a standard  test can  be  applied. 

6.2.6. General  parallel filters 

The idea of parallel  filtering is more general than doing model validation  on 
a batch of data. Figure 6.2 illustrates how two adaptive  linear filters with 
different adaptation  rates  are  run in parallel. For example, we can  take one 
RLS filter with  forgetting  factor 0.999 as  the slow filter and one LS estimator 
over a sliding window of size 20 as the fast filter. The  task of the slow filter 



21 8 Chanae detection based on slidina  windows 

I I I 

Switch 

4 Filter 

Figure 6.2. Two parallel filters. One slow to get  good noise attenuation  and one  fast to  get 
fast  tracking. 

is to produce low variance state  estimates in  normal  mode,  and  the  fast  filter 
takes over after abrupt of fast changes. The switch makes the decision. Using 
the guidelines from Section 6.1, we can  test  the size of 

(4' - eO)T(pl)-l($ - 40 > *  

The idea is that P' is a valid measure of the uncertainty  in Q', while the 
covariance PO of the slow filter is  negligible. 

6.3. likelihood  based  detection  and  isolation 

6.3.1. Diagnosis 

Diagnosis is the combined task of detection and isolation. Isolation is the 
problem of deciding what  has  happened  after the change  detector  has noticed 
that something has happened. 

Let the  parameter vector be  divided  into two parts, 

Y = aTO = (;;)T (Bg;) . 

Here the  parameter might have been  reordered  such that  the  important ones 
to diagnose come first. The difference between change  detection and isolation 
can be stated  as 

Detection H0 : 0 = 00 HI  : 0 # 00 
Isolation H: : Oa = 0; H; : Oa # 0; 

Note that there might be  several  isolation  tests. For instance, we may want 
to test H; at  the  same  time, or another  partitioning of the  parameter vector. 
There  are two  ways to  treat  the  part Ob of the  parameter vector not  included 
in the  test: 
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o b  = @, SO the  fault in Ba does  not influence the  other elements  in the 
parameter vector. 

O b  is a nuisance, and  its value before and  after a fault in Ba is unknown 
and irrelevant. 

The  notation below is that Y denotes the vector of measurements and Yo = 
Q T O O  is the result of a simulation of the nominal model. The first alternative 
gives the following GLR (where Ba = 19; + ABa is used): 

The second alternative is 

We  now make some comments  on  these  results: 

0 For detection, we use the  test  statistic V = (Y - Y ~ I > ~ Q ( Y  - Yo). This 
test is sensitive to all changes in 19. 
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0 For isolation, we compute  either V 1  or V 2  (depending  upon the philoso- 
phy  used) for different sub-vectors of I3 - 8" and Ob being two possibilities 

~ corresponding to different errors. The result of isolation is that  the 
sub-vector  with  smallest loss V 3  has  changed. 

0 The spaces {X : &"X = X} and {X : Qbx = X} can  be  interpreted  as 
subspaces of the {X : Qx = X} subspace of RL. 

0 There is  no simple way to  compute Qb from Q. 

0 Qb - Q is  no projection  matrix. 

0 It can  be  shown that Q 2 Qb + Q", with  equality only when Q is  block 
diagonal, which happens  when = 0. This  means that  the second 
alternative gives a  smaller  test  statistic. 

The geometrical  interpretation is as follows. V 1  is the  part of the residual 
energy V = IIY -YolIt that belongs to  the subspace  generated by the projection 
Q". Similarly, V 2  is the residual energy V subtracted by part of it that belongs 
to  the subspace  generated by the projection Qb. The measures V 1  and V 2  are 
equal only if these  subspaces (Q" and Qb) are orthogonal. 

Example 6.9 Diagnosis  of  sensor  faults 

Suppose that we measure  signals  from two sensors, where each one  can  be 
subject to  an offset (fault). After removing the known signal part, a simple 
model of the offset problem is 

Yt  = (;;) + et. 

That is, the  measurements here  take the role of residuals  in the general case. 
Suppose also that  the nominal  model  has no sensor offset, so 130 = 0 and 
YO = 0. Consider a change detection and isolation  algorithm using a sliding 
window of size L. First, for detection, the following distance  measure  should 
be used 

t 2 

i=t-L+l j=1 
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Secondly, for fault isolation, we compute the following two measures for ap- 
proach 1: 

t 
@'=diag(1,0,1,0 ,..., l ,O)+Va=Y T a  Q Y =  c (yi ( 1 )  ) 2 

i=t-L+l 
t 

@'=diag(0,1,0,1, ..., O , l ) + V b = Y  T b  Q Y =  c (yi (2) ) .  2 

Note that Y is a column  vector, and  the projection Q" picks out every second 
entry in Y ,  that is every sensor 1 sample, and similarly for Qb. As a remark, 
approach 2 will coincide in this example, since Q" = Q - Qb in this example. 

To simplify isolation, we can make a table  with possible faults  and  their 

i=t-L+l 

influence of the  distance measures: 

m v2 0 1 

Here 1 should be  read 'large' and 0 means 'small' in some measure. Com- 
pare  with  Figure 11.1 and  the approaches  in Chapter 11. 

6.3.2. A general  approach 

General  approaches to detection  and isolation using likelihood-based methods 
can  be derived from the formulas  in Section 5.B. Consider a general expression 
for the likelihood of a hypothesis 

p ( Y I H J  = p ( Y l B  = Bi ,  X = Xi). 

Several hypotheses may be considered simultaneously, each one considering 
changes in different subsets of the  parameters, which can  be  divided  in  subsets 
as ( P ,  O b ,  X). Nuisance parameters  can  be  treated  as  described  in Section 6.3.1, 
by nullifying or  estimating  them. A third  alternative is marginalization. The 
likelihoods are  computed  exactly as described  in Section 5.B.4. This section 
outlines how this  can  be achieved for the  particular case of isolating  parametric 
and variance changes. See also the application  in Section 6.5.3. 

6.3.3. Diagnosis of parameter  and  variance  changes 

The following signal model can  be used in  order to determine  whether an 
abrupt change in the  parameters  or noise variance has  occurred at time t o :  
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For generality, a known time-varying noise (co-)variance Rt is introduced. We 
can  think of X as  either a scaling of the noise variance or the variance itself 
(Rt = 1). Neither 80, 81, X0 or X1 are known. 

The following hypotheses are used: 

Figure 6.3 illustrates  the  setup  and  the sufficient statistics from the filters are 
given in (6.13). 

Data y1, y2 7 . . . 7 %-L 7 Yt-L+17 . . . 7 !h (6.13) -- 
Model MO M1 

Time  interval TO Tl 
RLS quantities e o ,  P O  61, p1 

Loss function v, V1 
Number of data no = t - L n1 = L,  

where Pj, j = 071, denotes the covariance of the  parameter  estimate achieved 
from the RLS algorithm. The loss functions are defined by 

4(8) = c ( y k  - (,.TO)' (XjRk)-l (yk - Pfe) 7 j = 0, (6.14) 
k C f j  

Note that  it makes sense to compute V1 ( eo )  to  test how the first model performs 
on the new data set.  The maximum likelihood approach will here be  stated 
in the slightly more general  maximum a posteriori approach, where the prior 

Y t ,   U t  M 1  Adaptive - HO l0 
filter 

Decision€ 
{ H o ,   H I ,   H z )  

device ~a;,,, 
- H1 I IZ  l1 
- . Decision 

~ 

Y t ,   U t  12 
H2 

-- Adaptive - 
filter 

Figure 6.3. The  model  used  to  describe  the  detection scheme. 
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probabilities qi for each hypothesis  can be  incorporated.  The exact a posteriori 
probabilities 

are derived below. 
Assuming that Hi, i = 0,1,2, is Bernoulli distributed  with  probability qi,  

i.e. 

does not hold, with  probability 1 - qi 
holds, with  probability qi, 

(6.16) 

logp(Hi) is  given  by 

logp(Hz) = log (qt(1 - qp+n1-2) 
= 2 log(qJ + (no + 721 - 2)  log(1 - qz), i = 0,1,2. (6.17) 

Consider model (6.11), where e E N ( 0 ,  X). For marginalization  purposes, the 
prior  distribution  on X can be  taken  as inverse Wishart.  The inverse Wishart 
distribution  has two parameters,  m  and a,  and is denoted by W-’(m, a) .  Its 
probability  density  function is given by 

The expected  mean value of X is 

E(X) = ~ 

a 
m - 2  

and  the variance is given  by 

2a2 
(m - 2)2(m - 4) * 

Var(X) = 

(6.18) 

(6.19) 

(6.20) 

The mean value (6.19) and noise variance (6.20) are design parameters. From 
these, the  Wishart  parameter m and a can  be  computed. 
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Algorithm 6.1 Diagnosis of parameter  and  variance  changes 

Consider the signal model (6.11) and  the hypotheses given in (6.12). Let the 
prior for X be  as in (6.18) and  the prior for the  parameter vector be 13 E 
N(0, PO). With  the loss function (6.14) and  standard least  squares  estimation, 
the a posteriori probabilities are approximately given by 

+ log de t (P t l  + Pc1) + 2  log(qo), (6.21) 

- log det PO - log det P1 + 2 log(ql), (6.22) 

12 =(no - 2 + m) log ( no-4  ) vo(ao) + + (n1 - 2 + m) log 

- 2 log det PO + 2 log(q2). (6.23) 

Derivation: Using the  same  type of calculations as in Section 5.B.4, the follow- 
ing a posteriori probabilities  can be derived. They  are  the  sum of the negative 
log likelihood and  the prior  in (6.17): 

(6.24) 
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(6.26) 

By using 

no+nl 
Di = log det PO - log det Pi + c log det Rt, (6.27) 

removing terms  that  are small for large t and L,  t >> L,  and removing constants 
that  are equal in Equations  (6.24), (6.25) and (6.26), and Stirling’s formula 
l7 (n  + 1) M finnS1/2e-n,  the approximate  formulas  are achieved. 

t=l 

6.4. Design  optimization 

It is wellknown that low order models are usually preferred to  the full model 
in change detection. An example is speech signals, where a high order AR 
model is used for modeling, but a second order  AR  model is sufficient for seg- 
mentation; see Section 11.1.3 in Basseville and Nikiforov (1993), and  Example 
6.7. One  advantage of using low order models is of course lower complexity. 
Another  heuristic  argument is that, since the variance on  the model is propor- 
tional to  the model order, a change  can be  determined  faster  with a constant 
significance level  for a low order model. The price paid is that certain changes 
are not visible in the model anymore, and  are  thus not detectable.  A good 
example is a FIR model for the impulse  response of an  IIR filter; changes in 
the impulse  response beyond the FIR truncation level are not detectable. 

Model  order selection for change detection 
The smaller the model order, the easier it is to detect changes. A 
reduced  order model implies that  there  are  certain subspaces of 
the  parameter vector that  are not  detectable. By proper model 
reduction,  these  subspaces  can  be designed so that  they would not 
be  detectable in any model order  due to  the a poor signal-to-noise 
ratio for that change. 

It is customary to fix the significance level, that is the probability for false 
alarms,  and  try  to maximize the power of the  test  or, equivalently, minimize 
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the average delay for detection. The power is of course a function of the  true 
change, and using low order models there  are always some changes that cannot 
be  detected. However,  for large enough  model  orders the variance contribution 
will inevitably outweigh the  contribution from the  system change. These  ideas 
were first presented  in Ninness and Goodwin (1991) and Ninness and Goodwin 
(February,  1992), and  then refined in  Gustafsson and Ninness (1995). 

There is a close link between this work and  the identification of transfer 
functions, where the trade-off between bias and variance is wellknown; see, for 
instance,  Ljung (1985). In  the cited work, an expression for the variance term 
is derived which is asymptotic  in  model  order  and  number of data.  Asymptot- 
ically, the variance term is proportional to  the model  order and since the bias 
is decreasing in the model order,  this shows that  the model  order  cannot be 
increased indefinitely. That is, a finite  model  order gives the smallest overall 
error  in the  estimate,  although  the  true  system might be infinitely dimensional. 

Example 6.70 Under-modeling of an FlR system 

In Gustafsson and Ninness (1995), an asymptotic  analysis is presented for 
the case of 8 being the impulse  response of a system, using an  FIR model. 
The  data  are generated by the so called ‘Astrom’  system  under the no change 
hypothesis 

qP1+ 0.5qP2 
Yt = 1 - 1.5q-1 + 0.7qP2 ut + et. 

The change is a shift in the phase  angle of the complex pole pair  from 0.46 
to 0.4. The corresponding  impulse responses are  plotted  in  Figure  6.4(a). 
Both  the  input  and noise are white  Gaussian noise with variance 1 and 0.1, 
respectively. The number of data in the sliding window is L = 50. 

Figure  6.4(b) shows a Monte  Carlo  simulation for 1000  noise realizations.  A 
x2  test was designed to give the desired confidence level. The upper plot shows 
the chosen and  obtained confidence level. The lower plot shows the asymptotic 
power function (which can  be  pre-computed) and  the result  from the Monte 
Carlo  simulation.  Qualitatively, they  are very similar,  with local maxima  and 
minima where expected and a large  increase between model orders  4  and 8. 
The power from the Monte  Carlo  simulation is, however, much smaller, which 
depends  on a crude  approximation of a x2 distribution that probably could be 
refined. 
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Figure 6.4. Impulse  response before and  after a change for the  system  under consideration 
(a). Significance level and power from asymptotic expression and  simulation  as a function 
of the  number of parameters in the model (b). 

6.5. Applications 

6.5.1. Rat EEG 

Algorithm 6.1 is applied  here to  the  rat EEG described  in Section 2.4.1, using 
an AR(2) model. The size of the sliding window is chosen to L = n1 = 100 
and  both  types of parameter  and variance changes are considered. The result 
is 

I Change  times I 1085  1586  1945  2363  2949  3632  3735 I 
I Winning  hypothesis I 2 2  2  2  2  2 11 

That is, the first six changes are  due  to variance changes, and  the last one 
is a change in dynamics, which is minor, as seen from the parameter  plot  in 
Figure 6.5. 

6.5.2. Belching sheep 

In developing medicine for asthma, sheep are used to  study  its effects as de- 
scribed in Section 2.5.2. The dynamics between air volume and pressure is 
believed to depend  on  the medicine’s effect. The dynamics  can  accurately be 
adaptively modeled by an  ARX model. The  main problem is the so-called 
outliers: segments  with  bad data, caused by belches. One  should  therefore 
detect  the belch segments, and remove them before modeling. We have here 
taken a batch of data (shown in  Figure 6.6), estimated an ARX(5,5,0) model 
to all data  and applied  Algorithm 6.1 as a variance change  detector. 
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Figure 6.5. EEG for a rat  and segmented noise variance from an AR(2) model. 
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That is, only hypothesis H2 is considered. The result is illustrated  in  the 
lower plot in Figure 6.6. The solid line is a low-pass filtered version of E;,  

and  the dashed line the  detected belch segments, where the variance is much 
higher. 

6.5.3. Application to digital  communication 

In  this section,  it is demonstrated how Algorithm 6.1 can  be  applied to de- 
tect  the occurrence of double  talk and  abrupt changes in the echo path in a 
communication  system. 

In a telephone  system,  it is important to detect a change in the echo path 
quickly, but not confuse it  with  double  talk, since the echo canceler should 
react differently for these two phenomena.  Figure 6.7 illustrates  the echo path 
of a telephone  system. The  task for the hybrid is to convert 4-wire to 2-wire 
connection, which is used by all  end users. This device is not perfect, but a 
part of the far-end  talker is reflected and  transmitted back again. The  total 
echo path is commonly modeled by a FIR model. The  adaptive FIR filter 
estimates  the echo path  and  subtracts a prediction of the echo. Usually, the 
adaptation  rate is  low, but  on two events  it  should be modified: 

0 After an echo path  change, caused by a completely different physical 
connection being used, the  adaption  rate should be increased. 

0 During double talk, which means that  the near-end  listener starts  to talk 
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Figure 6.7. The communication system  with  an echo return  path (from Carlemalm and 
Gustafsson  (1998)). 
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simultaneously, the  adaptation  rate should  be  decreased (the residuals 
are  large,  implying  fast adaptation)  and  must not be  increased. 

That is,  correct  isolation is far  more important  than detection. It is better 
to do nothing than  to change adaptation  rate in the wrong  direction. 
conclusion is generalized below. 

Fundamental  adaptive  filtering  problem 
Disturbances and system changes must  be  isolated. An alarm 
caused by a  system change requires that  the  adaptation  rate should 
be  increased, while an  alarm caused by a  disturbance (false alarm) 
implies that  the adaptivity  should  be frozen. 

This 

The impulse  response of a telephone  channel is short, i.e. about 4 ms long 
(i.e. 32 samples  with the  standard 8 kHz sampling  frequency), but since the 
delay can  be  large, the  FIR filter is often of a  length of between 128-512. 

Algorithm 6.1 can  be  applied  directly to  the current  problem.  Hypothesis 
H1 corresponds to echo path change and H2 to double  talk. The details of the 
design and successful numerical  evaluation  are  presented  in  Carlemalm and 
Gustafsson  (1998). 
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7.1. Basics 

Let us start with considering change detection  in  linear regressions as  an off- 
line problem. which  will be  referred to as segmentation . The goal is to find a 
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sequence of time indices kn = ( k l ,  k2, .., kn) ,  where both  the number n and  the 
locations ki are unknown,  such that a linear regression model with piecewise 
constant  parameters, 

is a good description of the observed signal yt. In  this  chapter, the measure- 
ments may be vector valued, and  the nominal covariance matrix of the noise 
is Rt, and X ( i )  is a possibly unknown scaling, which is piecewise constant. 

One way to guarantee that  the best possible solution is found, is to con- 
sider all possible segmentations kn, estimate one linear regression model  in 
each segment, and  then choose the particular kn that minimizes an optimality 
criteria, 

h 

kn = arg min V ( k n ) .  
n>l,O<kl<...<k,=N 

The procedure and,  as  it  turns  out, sufficient statistics as are defined in (7.6)- 
(7.8), are shown below: 

What is needed from each data segment is the sufficient statistics V (sum 
of squared  residuals), D (- log det of the covariance matrix)  and number of 
data N in each segment,  as defined in  equations (7.6),  (7.7) and (7.8). The 
segmentation kn has n - 1 degrees of freedom. 

Two types of optimality  criteria have been proposed: 

0 Statistical  criterion:  the  maximum likelihood or  maximum a  posteriori 
estimate of kn is studied. 

0 Information based criterion: the information of data in each segment is 
V ( i )  (the  sum of squared  residuals),  and the  total information is the  sum 
of these. Since the  total information is minimized for the degenerated 
solution kn = 1,2,3,  ..., N ,  giving V ( i )  = 0, a penalty  term is needed. 
Similar problems have been studied  in the context of model structure 
selection, and from this  literature Akaike's AIC and BIC  criteria have 
been proposed for segmentation. 

The real challenge in  segmentation is to cope with the curse of dimensionality. 
The number of segmentations kn is 2N (there  can  be  either a change  or no 
change at each time  instant). Here, several strategies have been proposed: 
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0 Numerical searches based on  dynamic  programming  or MCMC tech- 
niques. 

0 Recursive local search schemes. 

The main part of this  chapter is devoted to  the second approach, which pro- 
vides a solution to adaptive  filtering, which is an on-line problem. 

7.2. Problem setup 

7.2.1. The changing regression model 

The segmentation model is based on a linear regression with piecewise constant 
parameters, 

yt = cp;O(i) + et, when ki-1 < t 5 ki. (7.2) 

Here O ( i )  is the &dimensional parameter vector in segment i, pt is the regressor 
and ki denotes the change times. The measurement vector is assumed to have 
dimension p .  The noise  et in (7.2) is assumed to  be Gaussian  with variance 
X(i)Rt, where X ( i )  is a possibly segment dependent scaling of the noise. We 
will assume Rt to be known and  the scaling as a possibly unknown parameter. 
The problem is now to  estimate  the number of segments n and  the sequence 
of change times,  denoted kn = ( k l ,  k2, .., kn). Note that  both  the number n 
and positions of change times ki are considered unknown. 

Two important special cases of (7.2) are a changing mean model where 
cpt = 1 and  an auto-regression, where pt = (-yt-1, .., -yt-d) T . 

For the analysis  in Section 7.A, and for defining the prior  on each seg- 
mentation,  the following equivalent state space model turns  out  be  be more 
convenient: 

Here St is a binary variable, which equals  one when the parameter vector 
changes and is zero otherwise, and ut is a sequence of unknown parameter 
vectors. Putting St = 0 into (7.3) gives a standard regression model with con- 
stant  parameters,  but when St = 1 it is assigned a completely new parameter 
vector ut taken at random.  Thus, models (7.3) and (7.2) are equivalent. For 
convenience, it is assumed that ko = 0 and 60 = 1, so the first segment be- 
gins at  time 1. The segmentation  problem  can be formulated as estimating 
the number of jumps n and  the  jump  instants kn, or  alternatively  the  jump 
parameter sequence S N  = (61, ..,S,). 
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The models (7 .3)  and (7.2) will be referred to  as changing regressions, 
because  they change between different regression models. The most impor- 
tant  feature with the changing regression model is that  the  jumps divide the 
measurements  into a number of independent segments. This follows, since the 
parameter vectors in the different segments are  independent;  they  are two 
different samples of the  stochastic process {ut}. 

A  related model studied  in  Andersson (1985) is a jumping regression model. 
The difference to  the approach  herein, is that  the changes are  added to  the 
paremeter vector. In (7.3), this would mean that  the parameter  variation 
model is &+l = Ot + &ut. We lose the property of independent segments. The 
optimal  algorithms proposed here are  then only sub-optimal. 

7.2.2.  Notation 

Given a segmentation kn ,  it will be useful to introduce  compact  notation Y( i )  
for the measurements  in the  ith segment, that is Yki- l+ l ,  ..,yki = yk;-l+l. 
The least  squares estimate  and  its covariance matrix for the  ith segment are 
denoted: 

k .  

Although  these are off-line expressions, 8(i) and P(i )  can of course be com- 
puted recursively using the Recursive Least  Squares (RLS) scheme. 

Finally, the following quantities will be shown to represent sufficient statis- 
tics in each segment: 

7.3. Statistical  criteria 

7.3.1. The MM1 estimator 

Let kn ,  O n ,  An denote  the  sets of jump times,  parameter vectors and noise scal- 
ings, respectively, needed in the signal model (7.2). The likelihood for data 
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yN given all parameters is denoted p(yNIkn ,  P ,  An). We will assume  indepen- 
dent  Gaussian noise distributions, so p ( e N )  = nt&-l+l (27rA(i))-P/2- 
(det  exp(-e?RF1et/(2X(i))).  Then, we have 

- 2logP(Y Ik ,on,  An)  N n  

N n 

= N p  log(27r) + c log det Rt + c N ( i )  log(A(i)p) 
t=l i=l 

Here and in the sequel, p is the dimension of the measurement vector yt. 
There  are two ways of eliminating the nuisance parameters P ,  An, leading to 
the marginalixed and generalized likelihoods, respectively. The  latter is the 
standard  approach where the nuisance parameters  are removed by minimiza- 
tion of (7.9). A relation between these is given in Section 7.4. See Wald (1947) 
for a discussion on generalized and marginalized (or weighted) likelihoods. 

We next investigate the use of the marginalized likelihood, where (7.9) is 
integrated  with  respect to a prior  distribution of the nuisance parameters.  The 
likelihood given only kn is then given  by 

p(yNIkn ,  P ,  Xn)p(enIXn)p(Xn)dendAn. (7.10) 
n,X" 

In  this expression, the prior for 19, p ( P I A n ) ,  is technically a function of the 
noise variance scaling X, but is usually chosen as an independent  function.  The 
maximum likelihood estimator is given  by maximization of p(yNIkn) .  Finally, 
the a posteriori probabilities  can be  computed  from Bayes' law, 

(7.11) 

where p ( y N )  is just a constant,  and  the Maximum A posteriori Probability 
( M A P )  estimate is  given  by maximization. In  this way, a prior  on the segmen- 
tation  can be  included. In  the sequel, only the more general MAP estimator 
is considered. 

The prior p ( k n )  = p(knln)p(n) or, equivalently, p ( S N )  on  the segmentation 
is a user's choice (in fact the only one). A natural  and powerful possibility 
is to use p ( J N )  and assume a fixed probability q of jump  at each new time 
instant.  That is, consider the  jump sequence SN as independent Bernoulli 
variables 6, E Be(q), which means 

0 with  probability 1 - q 
J t = {  1 with  probability Q. 
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It might be useful in some applications to  tune  the  jump probability q above, 
because  it  controls the number of jumps  estimated. Since there is a one-to-one 
correspondence between kn and b N ,  both priors are given by 

p(k")  = p ( P )  = - 4) N-n (7.12) 

A q less than 0.5 penalizes a large  number of segments. A non-informative 
prior p ( k n )  = 0.5N is obtained  with q = 0.5. In  this case, the  MAP  estimator 
equals the Muzirnurn Likelihood ( M L )  estimator, which follows from (7.11). 

7.3.2. The a posteriori probabilities 

In  Appendix 7.B, the U posteriori probabilities are derived in three  theorems 
for the  three different cases of treating  the measurement covariance: com- 
pletely known, known except for a constant scaling and finally known with 
an unknown changing scaling. The case of completely unknown covariance 
matrix is not solved in the  literature.  These  are generalizations and exten- 
sions of results for a changing mean models (cpt = 1) presented  in Chapter 3; 
see also Smith (1975) and Lee and Hefhinian (1978). Appendix 7.B also con- 
tains a discussion and motivation of the  particular prior  distributions used in 
marginalization. The different steps  in  the  MAP  estimator  can  be summarized 
as follows;  see also (7.16). 

Filter bank segmentation 

0 Examine every possible segmentation,  parameterized  in the 
number of jumps n and  jump  times kn, separately. 

0 For each segmentation,  compute the best models in each 
segment parameterized  in the least  squares  estimates 8( i )  
and  their covariance matrices P(i) .  

0 Compute  the  sum of squared  prediction  errors V ( i )  and 
D ( i )  = - log det P(i)  in each segment. 

0 The  MAP  estimate of the model structure for the  three 
different assumptions  on noise scaling (known X ( i )  = X,, 
unknown but  constant X ( i )  = X and finally unknown and 
changing X ( i ) )  is  given in  equations  (7.13), (7.14) and (7.15), 
respectively, 
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n G = a r g m i n x D ( i ) + ( N p - n d - 2 ) l o g x  V ( i )  
k " P  Z=l i=l N p - n d - 4  

+ 2n log - l - q  
4 

D ( i )  + ( N ( i ) p  - d - 2) log 
N ( i ) p  - d - 4 

+ 2nlog -. l - q  
4 

(7.13) 

(7.14) 

(7.15) 

The last two a posteriori probabilities are only approximate, since Stirling's 
formula  has been used to eliminate gamma functions; the exact expressions 
are found in Appendix 7.B. Equation (7.16) defines the involved statistics. 

Data Y1, YZ,.., Ykl Ykl+l, 0 . 7  Y k z  . . . -- - Yk,_l+l, 0 . 7  Yk,  

Segmentation Segment 1 Segment 2 . . . Segment n (7.16) 
LS estimates @I), ~ ( 1 )  8 ( 2 ) , ~ ( 2 )  ... W ,  P(n)  
Statistics  V(1L W V P ) ,  W )  * * * V(n>, W4 

The required  steps  in  computing the MAP estimated  segmentation are as 
follows. First, every possible segmentation of the  data is examined  separately. 
For each segmentation, one model for every segment is estimated  and  the  test 
statistics  are  computed. Finally, one of equations (7.13)-(7.15) is evaluated. 

In all cases, constants  in  the a posteriori probabilities are  omitted.  The 
difference in the  three approaches is thus basically only how to  treat  the  sum 
of squared  prediction  errors.  A  prior  probability q causes a penalty  term 
increasing linearly in n for q < 0.5. As noted before, q = 0.5 corresponds to 
ML estimation. 

The derivations of (7.13) to (7.15) are valid only if all terms  are well- 
defined. The condition is that P(i )  has full rank for all i ,  and  that  the de- 
nominator  under V(i) is positive. That is, N p  - nd  - 4 > 0 in (7.14) and 
N ( i ) p  - d - 4 > 0 in (7.15). The segments  must  therefore be forced to  be long 
enough. 

7.3.3. On the choice of priors 

The Gaussian  assumption  on the noise is a standard one, partly because  it 
gives analytical expressions and  partly because it  has proven to work  well in 
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practice. Other alternatives  are  rarely seen. The Laplacian  distribution is 
shown  in Wu and Fitzgerald (1995) to also give an  analytical solution  in the 
case of unknown  mean models. It was there found that  it is  less sensitive to 
large  measurement  errors. 

The  standard approach used here for marginalization is to consider both 
Gaussian and non-informative  prior  in  parallel. We often give priority to a 
non-informative  prior on 8, using a  flat  density  function,  in  our  aim to have as 
few non-intuitive design parameters  as possible. That is, p ( P I X n )  = C is an 
arbitrary  constant in (7.10). The use of non-informative  priors, and especially 
improper  ones, is sometimes  criticized. See Aitken (1991) for an interesting 
discussion. Specifically, here the flat  prior  introduces an  arbitrary  term n log C 
in the log likelihood. The idea of using a flat prior,  or  non-informative  prior, 
in  marginalization is perhaps best  explained by an example. 

Example 7.7 Marginalized  likelihood for variance  estimation 

Suppose we have t observations  from a Gaussian  distribution; yt E N(p, X). 
Thus  the likelihood p(ytl,u, X) is Gaussian. We want to compute  the likelihood 
conditioned on just X using marginalization: p(ytIX) = Jp(ytlp,X)p(p)dp. 
Two  alternatives of priors are a Gaussian, p E N(p0, PO), and  a flat prior, 
p ( p )  = C. In  both cases, we end  up  with  an inverse Wishart density  function 
(3.54) with  maximas 

where jj is the  sample average. Note the scaling  factor l / ( t  - l), which makes 
the  estimate unbiased. The joint likelihood estimate of both  mean  and variance 
gives a  variance  estimator scaling factor l/t. The prior thus induces  a  bias  in 
the  estimate. 

Thus,  a flat  prior  eliminates the bias  induced by the prior. We remark 
that  the likelihood interpreted  as  a  conditional  density  function is proper,  and 
it does not depend  upon  the  constant C. 

The use of a  flat  prior  can  be  motivated  as follows: 

0 The  data dependent  terms in the log likelihood increase like  log N .  That 
is, whatever the choice of C, the prior  dependent  term will be insignifi- 
cant for a  large amount of data. 
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0 The choice C M 1 can be shown to give approximately the  same like- 
lihood as a proper  informative  Gaussian  prior would  give if the  true 
parameters were known and used in the prior. See Gustafsson (1996), 
where an example is given. 

More precisely, with  the prior N(I90, PO), where 130 is the  true value of O(i )  the 
constant  should  be chosen as C = det PO. The uncertainty  about 190 reflected 
in PO should  be much larger than  the  data information  in P(i)  if one  wants 
the  data  to speak for themselves. Still, the choice of PO is ambiguous. The 
larger value, the higher is the penalty  on a large  number of segments. This is 
exactly Lind ley ' s   paradox  (Lindley, 1957): 

Lindley's  paradox 
The more non-informative  prior, the more the zero-hypothesis is 
favored. I 

Thus,  the prior  should be chosen to be  as informative as possible without 
interfering  with data. For auto-regressions and  other regressions where the 
parameters  are scaled to  be  around  or less than 1, the choice PO = I is appro- 
priate. Since the  true value 80 is not known, this discussion seems to validate 
the use of a flat prior  with the choice C = 1, which has also been confirmed to 
work  well by simulations. An unknown noise variance is assigned a flat prior 
as well with the  same  pragmatic  motivation. 

Example 7.2 Lindley's paradox 

Consider the hypothesis test 

H0 :y E N(0,l)  

H1 :Y E N ( 4  11, 

and assume that  the prior  on I9 is N(I30,Po). Equation (5.98) gives for scalar 
measurements that 

Here we have N = 1, P1 = (P;' + l)-' + 1 and 81 = P l y  + y. Then  the 
likelihood ratio is 
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since the whole expression behaves like 1 / a .  This fact is not influenced by 
the number of data or what  the  true mean is, or  what 130 is. That is, the more 
non-informative the  prior,  the more H0 is favored! 

7.4. Information  based  criteria 

The information based approach of this section  can be called a penalized Max- 
imum Generalized  Likelihood (MGL) approach. 

7.4.1. The MGL estimator 

It is straightforward to show that  the minimum of (7.9) with  respect to P ,  
assuming a known X(i),  is 

MGL(P) = min -2 logp(yN I P ,  P ,  x ~ )  
on 

N 

= Np log(27r) + c log det(Rt) 
t=l 

n 

+ c (a + N(i) log(X(i)p)) . 
i=l W )  

(7.17) 

Minimizing the  right-hand side of (7.17) with  respect to a constant unknown 
noise scaling X(i) = X gives 

and finally, for a changing noise scaling 

MGL(kn) = min -210gp(yNIlcn, P ,  An) 
0" ,X" 

N 

= N p  log(27r) + c log det (Rt) 
t=l 

n 

i=l 
(7.19) 
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In  summary,  the  counterparts  to  the MML estimates (7.13)-(7.15) are given 
by the MGL estimates 

n, 

(7.20) 

(7.21) 

(7.22) 

It is easily realized that these generalized likelihoods cannot  directly be used 
for estimating kn ,  where n is unknown,  because 

0 for any given segmentation, inclusion of one more change time will 
strictly increase the generalized likelihood (C V ( i )  decreases), and 

0 the generalized likelihoods (7.18) and (7.19) can  be  made  arbitrarily 
large, since C V ( i )  = 0 and V ( i )  = 0, respectively, if there  are enough 
segments. Note that n = N and Ici = i is one  permissible  solution. 

That is, the parsimonious  principle is not fulfilled-there is no trade-off between 
model complexity and  data fit. 

7.4.2. MGL with penalty  term 

An attempt  to satisfy the parsimonious  principle is to  add a penalty  term to 
the generalized likelihoods (7.17)-(7.19). A  general  form of suggested penalty 
terms is n ( d +  l )y (N) ,  which is proportional to  the number of parameters used 
to describe the signal (here  the change time itself is counted as one  parame- 
ter).  Penalty  terms occuring  in model order selection problems  can be used in 
this application  as well,  like  Akaike's AIC (Akaike, 1969) or  the equivalent cri- 
teria: Akaike's BIC (Akaike, 1977),  Rissanen's Minimum  Description  Length 
(MDL)  approach  (Rissanen, 1989) and Schwartz  criterion (Schwartz, 1978). 
The  penalty  term in AIC is 2n(d + 1) and in  BIC n ( d  + 1) log N .  

AIC is proposed in Kitagawa and Akaike (1978) for auto-regressive models 
with a changing noise variance (one  more parameter  per  segment), leading to 

(7.23) 



242 Chanae detection based on filter  banks 

and BIC is suggested in Yao (1988) for a changing mean  model (cpt = 1) and 
unknown constant noise variance: 

h 

kn = arg min Np log + n ( d  + 1) log N C L  W )  
kn,n NP 

(7.24) 

Both (7.23) and (7.24) are globally maximized for n = N and ki = i. This is 
solved in Yao (1988) by assuming that  an  upper  bound  on n is known, but  it 
is not commented  upon in Kitagawa and Akaike (1978). 

The MDL theory provides a nice interpretation of the segmentation  prob- 
lem: choose the segments such that  the fewest possible data  bits  are used to 
describe the signal up to a certain accuracy, given that  both  the  parameter 
vectors and  the prediction  errors are  stored  with finite accuracy. 

Both AIC and BIC are based on an assumption  on a large number of 
data,  and  its use in  segmentation where each segment could be  quite  short 
is questioned  in  Kitagawa and Akaike (1978). Simulations  in  Djuric (1994) 
indicate  that AIC and BIC tend  to over-segment data in a simple  example 
where marginalized ML works fine. 

7.4.3. Relation to MML 

A  comparison of the generalized likelihoods (7.17)-(7.19) with the marginal- 
ized likelihoods (7.13)-(7.15) (assuming q = 1/2), shows that  the penalty 
term  introduced by marginalization is '& D ( i )  in  all cases. It is therefore 
interesting to  study  this  term in  more  detail. 

Lemma 5.5 shows 
log det PN 

log N 
- + d ,  N +CO. 

This implies that D ( i )  = - logdet P(i)  M C:=l dlog N(i). The 
penalty  term in MML  is thus of the same  form  asymptotically as BIC. If the 
segments are roughly of the same  length,  then C:=l D(i )  M ndlog(N/n). Note 
however, that  the behavior for short  segments might improve using MML. 

The BIC criterion in the context of model  order selection is known to  be a 
consistent estimate of the model order. It is shown in Yao (1988) that BIC is a 
weakly consistent estimate of the number of the change  times  in  segmentation 
of changing mean models. The  asymptotic link with  BIC  supports  the use of 
marginalized likelihoods. 

7.5. On-line local search for optimum 

Computing  the exact likelihood or  information based estimate is computation- 
ally intractable because of the exponential complexity. This section reviews 
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0 0 0 

\ o  0 

Figure 7.1. The  tree of jump sequences. A path marked 0 corresponds to no jump, while 1 
in the  S-parameterization of the  jump sequence  corresponds to a jump. 

local search techniques, while the next  section  comments on numerical  meth- 
ods. 

7.5.1. local tree  search 

In Section 7.A, an exact  pruning possibility having quadratic in time com- 
plexity is described. Here a natural recursive (linear  in  time)  approximate 
algorithm will be given. The complexity of the problem  can be compared to 
the growing tree in Figure 7.1. The algorithm will use terminology from this 
analogy, like cutting,  pruning  and merging branches. Generally, the global 
maximum  can  be found only by searching through  the whole tree. However, 
the following arguments  indicate  heuristically how the complexity can  be de- 
creased dramatically. 

At time t ,  every branch  splits  into two branches where one  corresponds to 
a jump.  Past  data contain  no  information about  what  happens  after a jump. 
Therefore, only one sequence among  all  those  with a jump  at a given time 
instant has to  be considered, i.e. the most likely one. This is the point  in the 
first step,  after which only one new branch  in the  tree is started at each time 
instant.  That is, there  are only N branches left. This exploration of a finite 
memory property  has much in common with  the famous  Viterbi  algorithm 
in  equalization, see Algorithm 5.5 or the articles  Viterbi (1967) and Forney 
(1973). 
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It seems to be a waste of computational power to keep updating proba- 
bilities for sequences which have been unlikely for a long time. However, one 
still  cannot  be  sure  that one of them will not start  to grow and become the 
MAP  estimate.  The solution offered in Section 7.A, is to compute a common 
upper  bound  on  the a posteriori probabilities. If this  bound  does not exceed 
the  MAP estimate’s  probability, which is normally the case, one can  be  sure 
that  the  true  MAP  estimate is found. The approximation  in  the following 
algorithm is to simply reject these sequences. 

The following algorithm is a straightforward  extension of Algorithm 4.1. 

Algorithm 7.7 Recursive parameter  segmentation 

Choose an  optimality  criterion. The options  are  the a posteriori prob- 
abilities as in Theorem 7.3,  7.4 or 7.5, or the information  criteria AIC 
(7.23) or BIC (7.24). 
Compute recursively the  optimality criterion using a bank of least  squares 
estimators, each one matched to a particular  segmentation. 
Use the following rules for maintaining the hypotheses and keeping the 
number of considered sequences ( M )  fixed: 
a) Let only the most probable sequence split. 
b)  Cut off the least probable sequence, so only M are left. 
c) Assume a minimum segment length:  let the most probable sequence 

split only if it is  not too young. A  suitable  default value is 0. 
d) Assure that sequences are not cut off immediately  after they  are  born: 

cut off the least probable sequences among  those  that are older  than 
a certain  minimum  lifelength, until only M are left. This should 
mostly be chosen as large as possible. 

The last two restrictions are  important for performance.  A tuning rule 
in  simulations is to simulate the signal  without noise for tuning  the local 
search parameters. 

The  output of the  algorithm  at  time t is the  parameter  estimate of the most 
probable sequence, or possibly a weighted sum of all  estimates. However, it 
should  be  pointed out  that  the fixed interval  smoothing  estimate is readily 
available by back-tracking the history of the most  probable sequence, which 
can  be realized from (7.16). Algorithm 7.1 is similar to  the one proposed in 
Andersson  (1985). However, this  algorithm is ad hoc, and works only for the 
case of known noise. 

Section 4.3 contains some illustrative  examples, while Section 7.7  uses the 
algorithm in a number of applications. 
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7.5.2. Design  parameters 

It  has  already been noted that  the segments have to  be longer than a minimum 
segment length,  otherwise the derivations  in  Appendix 7.B of (7.14) and (7.15) 
are not valid. Consider Theorem 7.5. Since there is a term  r((N(i)p-d-2)/2) 
and  the  gamma function r ( z )  has poles for z = 0, -1, -2,. . . , the segment 
lengths  must  be larger than (2 + d ) / p  This is intuitively logical, since d data 
points  are  required to  estimate I9 and two more to estimate X. 

That  it could be wise to use a minimum lifelength of the sequences can  be 
determined  as follows. Suppose the model structure on the regression is a third 
order model. Then  at least three measurements are needed to estimate  the 
parameters,  and more are needed to judge the fit of the model to  data.  That 
is,  after at least four samples,  something intelligent can  be  said  about  the  data 
fit. Thus,  the choice of a minimum lifelength is related to  the identifiability of 
the model, and should  be chosen larger than dim(I9) + 2. 

It is interesting to point out  the possibility of forcing the algorithm to give 
the exact  MAP  estimate by specifying the minimum lifelength and  the number 
of sequences to N .  In  this way, only the first rule is actually  performed (which 
is the first step in Algorithm 7.3). The  MAP  estimate is, in this way, found 
in quadratic time. 

Finally, the  jump probability q is used to  tune  the number of segments. 

7.6. Off-line  global  search for  optimum 

Numerical  approximations that have been suggested include  dynamic pro- 
gramming  (Djuric,  1992), batch-wise processing where only a small  number 
of jump  times is considered (Kitagawa and Akaike, 1978), and MCMC meth- 
ods,  but  it is fairly easy to construct  examples where these  approaches have 
shortcomings,  as  demonstrated  in Section 4.4. 

Algorithm 4.2  for signal estimation is straightforward to generalize to  the 
parameter  estimation problem. This more general  form is given in  Fitzgerald 
et al.  (1994), and is a combination of Gibbs  sampling and  the Metropolis 
algorithm. 
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Algorithm 7.2 MCMC segmentation 

Decide the number of changes n and choose which likelihood to use. The 
options are  the a posteriori probabilities  in  Theorems 7.3,  7.4 or 7.5 with 
q = 0.5: 

1. Iterate Monte Carlo run i. 
2. Iterate Gibbs  sampler for component j in kn ,  where a random  number 

from - p(kj1kT except 5 )  

is taken.  Denote the new candidate sequence p. The  distribution may 
be  taken  as  flat, or Gaussian  centered around  the previous estimate. 

3. The  candidate j is accepted if the likelihood increases, p ( F )  > p ( k n ) .  
Otherwise,  candidate j is accepted (the Metropolis step) if a random 
number  from a uniform distribution is less than  the likelihood ratio 

After the burn-in (convergence) time,  the  distribution of change times  can  be 
computed by Monte Carlo techniques. 

The last step of random rejection sampling defines the Metropolis algo- 
rithm. Here the  candidate will be rejected  with large probability if its value 
is unlikely. 

We refer to Section 4.4 for illustrative  examples and Section 7.7.3 for an 
application. 

7.7. Applications 

The first application uses segmentation as a means for signal compression, 
modeling an EKG signal as a piecewise constant polynomial. In  the second 
application,  the proposed method is compared to existing  segmentation  meth- 
ods.  In  an  attempt  to  be as fair as possible, first we choose a test signal that 
has been examined before in the literature. In  this way, it is clear that  the al- 
gorithms  under  comparison  are  tuned as well as possible. The last  application 
concerns real time  estimation for navigation  in a car. 
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Figure 7.2. An EKG signal and  a piecewise constant linear  model (a)  and  quadratic model 
(b), respectively. 

7.7.1. Storing EKG signals 

The EKG compression problem defined in Section 2.6.2 is here  approached 
by segmentation.  Algorithm 7.1 is  used with 10 parallel  filters and fixed  noise 
variance u2 = 0.01. The  assumption of fixed variance gives  us a tool to control 
the accuracy in the compression, and  to  trade it off to compression rate.  Figure 
7.2 shows the EKG signal and  a possible segmentation. For evaluation, the 
following statistics  are  interesting: 

Model type Linear Quadratic 
Regression 

0.032 

Number of parameters 
Commession rate (%) 10 

With  this  algorithm,  the  linear  model gives far less error  and almost the 
same compression rate.  The numerical  resolution is the reason for the poor 
performance of the  quadratic model, which includes the linear  one  as  a  special 
case. If the lower value of u2 is supplied, then  the performance will degrade 
substantially. The  remedy seems to be  another basis for the  quadratic poly- 
nomial. 
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Table 7.1. Estimated  change  times for different methods. 

I Method I na I Estimated change times 
Noisy  signal 

Divergence I 16 I 451  611  1450  1900  2125  2830  3626 
Brandt’s GLR I 16 I 451  611  1450  1900  2125  2830  3626 
Brandt’s GLR 

Pre-filtered  signal 
451  593  1608  2116  2741  2822  3626  2  Approx ML 

593  1450  2125  2830  3626  2 

Divergence 16 445  645  1550  1800  2151  2797  3626 
Brandt’s GLR  16 

445  626  1609  2151  2797  3627  2  Approx  ML 
445  645  1550  1750  2151  2797  3400  3626 2 Brandt’s GLR 
445  645  1550  1800  2151  2797  3626 

7.7.2. Speech  segmentation 

The speech signal’ under  consideration was recorded  inside  a  car by the French 
National Agency  for Telecommunications,  as  described  in  Andre-Obrecht (1988). 
This  example is an continuation of Example 6.7, and  the performance of the 
filter  bank will be  compared to  the consistency tests  examined  in  Chapter 6. 

To  get a  direct  comparison  with  the  segmentation  result  in Basseville and 
Nikiforov (1993), a second order AR model is used. The  approximate ML 
estimate is derived ( 4  = 1/2), using 10 parallel  filters where each new segment 
has a  guaranteed lifelength of seven. The following should  be  stressed: 

The resemblance with the result of Brandt’s  GLR  test  and  the divergence 
test  presented  in Basseville and Nikiforov (1993) is striking. 

No tuning  parameters  are involved (although q # 1/2 can  be used to 
influence the  number of segments, if not satisfactory).  This  should  be 
compared  with  the tricky choice of threshold, window size and drift 
parameter in the divergence test  and  Brandt’s  GLR test-which, further- 
more,  should  be different for  voiced and unvoiced  zones. Presumably,  a 
considerable  tuning effort  was required  in  Andre-Obrecht (1988) to ob- 
tain  a result  similar to  that which the proposed  method gave in a first 
try using default parameters  tuned  on simple  test  signals. 

The  drawback  compared  to  the two previously mentioned  methods is a 
somewhat higher computational complexity. Using the same  implemen- 
tation of the required RLS filters, the  number of floating  point  operations 
for AR(2) models were 1.6 106 for Brandt’s  GLR  test  and 5.8 . 106 for 
the  approximate ML method. 

‘The  author would  like to  thank Michele Basseville and  Regine  Andree-Obrecht for sharing 
the  speech signals in this  application. 



7.7 Amlications 249 

0 The design parameters of the search scheme are  not very critical. There 
is a  certain lower bound where the performance  drastically  deteriorates, 
but  there is  no trade-off,  as is common for design parameters. 

0 With  the chosen search  strategy,  the algorithm is recursive and  the es- 
timated change points are delivered with  a time delay of 10 samples. 
This is  much faster than  the  other  methods  due  to  their sliding win- 
dow  of width 160.  For instance,  the change at  time 2741  for the noisy 
signal, where the noise variance  increases by a factor 3 (see below), is 
only 80 samples away from a more significant change, and cannot  be 
distinguished  with the chosen sliding window. 

Much of the power of the algorithm is due  to  the  model with  changing noise 
variance. A speech signal  has very large  variations  in the driving noise.  For 
these two signals, the sequences of noise variances are  estimated to 

105 X (0.035, 0.13, 1.6, 0.37, 1.3, 0.058, 1.7) 

105 X (0.038, 0.11, 1.6, 0.38, 1.6, 0.54,  0.055, 1.8), 

respectively. Note, that  the noise variance differs as much as  a  factor 50. No 
algorithm based on a fixed  noise variance  can  handle that. 

Therefore, the proposed  algorithm seems to be  an efficient tool for getting  a 
quick and reliable result. The lack of design parameters makes it very suitable 
for general  purpose software implementations. 

and 

7.7.3. Segmentation of a  car's  driven  path 

We will here study  the case described  in  Section 2.6.1. 

Signal model 

The model is that  the heading  angle is  piecewise constant  or piecewise linear, 
corresponding to straight  paths  and  bends or roundabouts.  The changing 
regression model is here 

&+l = (1 - + &ut 

+t = @ +  t& + et 

E e i  = At. 

The  approximate MAP estimate of the change  times  can now be  computed  in 
real time  (the sampling  interval is  100 times  larger than needed  for compu- 
tations).  The  number of parallel  filters is 10, the  minimum allowed segment 
length is 0 and each new jump hypothesis is guaranteed to survive at least  six 
samples. The prior  probability of a jump is  0.05 at each time. 
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Local  search 

Segmentation  with a fixed accuracy of the model, using a fixed  noise variance 
X = 0.05, gives the result  in  Figure 7.3. Figure 7.3 also shows the segmentation 
where the noise variance is unknown and changing over the segments. In  both 
cases, the  roundabout is perfectly modeled by one segment and  the  bends  are 
detected.  The seemingly bad  performance  after the first turn is actually a 
proof of the power of this  approach.  Little data  are available, and  there is no 
good model for them, so why waste  segments? It is more logical to tolerate 
larger errors  here  and  just use one model. This proves that  the adaptive noise 
variance works for this application as well. In any case, the model with fixed 
noise scaling seems to  be  the most appropriate for this application. The main 
reason is to exclude small, though significant, changes, like lane changes on 
highways. 

Optimal  search 

The  optimal segmentation using Algorithm 7.3  gives almost the  same segmen- 
tation.  The  estimated change time sequences are 

= (20, 46, 83, 111, 130, 173) 

Greclmarg = (18, 42, 66, 79,  89, 121, 136, 165, 173, 180) 
g T J t , m a r g  

= (18, 42, 65, 79,  88, 110, 133, 162, 173, 180), 

respectively. 

Robustness  to  design  parameters 

The  robustness  with respect to  the design parameters of the approximation is 
as follows: 

0 The exact  MAP estimate is almost  identical to  the approximation.  The 
number of segments is correct, but  three  jumps differ slightly. 

0 A  number of different values on  the  jump probability were examined. 
Any value between q = 0.001 and q = 0.1 gives the  same number of 
segments. A q between 0.1 and 0.5  gives one more segment, just at the 
entrance to  the  roundabout. 

0 A  smaller  number of filters than A4 = 10 gives one  or two more segments. 

That is, a reasonable  performance is obtained for almost  any choice of design 
parameters. 
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Figure 7.3. The  path  with  estimated change  points and  the  actual  and  segmented  heading 
angle. First row for fix  noise variance 0.05, second row for marginalized noise variance, and 
finally, optimal ML estimate for marginalized noise variance. 
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60 

L 1 
140 160 180 

Figure 7.4. Result of the MCMC Algorithm 7.2. The left plot  shows the  jump sequence 
examined in each iteration.  The  encountered  sequence  with  the overall largest likelihood 
is marked  with  dashed lines. The right  plot shows a  histogram over all  considered jump 
sequences.  The  burn-in  time is not  excluded. 

MCMC search 

Figure 7.4 shows the result of the MCMC algorithm  in  Algorithm 7.2. The 
algorithm was initiated at the estimated  change  times  from  Algorithm 7.1. 
We note that two change times at the entrance to  the  roundabout  are merged 
into one after 25 iterations. The histogram shows that some of the changes 
are easier to locate in time. This follows intuitively when studying  the  path. 
For example, the first two turns  are  sharper  than  the following ones. 

7.A. Two inequalities for likelihoods 

In  this section, two inequalities for the likelihoods will be derived. They hold 
for both generalized and marginalized likelihoods, although  they will be  ap- 
plied to  the  latter only. 

7.A.1. The  first inequality 

The following theorems consider the S-parameterized changing regression model 
(7 .3) .  

Theorem 7.1 
Consider the  problem of either maximum  likelihood  segmentation  using (7.13) 
or (7.15) with q = 0.5, or MAP segmentation  using (7.13) or (7.15), or  in- 
formation based segmentation  using (7.20),  (7.21) or (7.22) with an  arbitrary 
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Remarks: 

0 Similar to  the Viterbi  algorithm 5.5, there is a finite  memory  property 
after a change which implies that we can  take  the most likely sequence 
before the change and dismiss with  all  other possibilities. 

0 For MAP  and ML segmentation,  the a posteriori  probabilities below are 
given in Theorems 7.3 and 7.5. 

0 Note that  the case (7.14) is not covered  by the theorem. The reason is 
that  the segments are not  independent for the  assumption of a constant 
and unknown noise scaling. 

0 The  theorem implies that, conditioned on a change at time to ,  the  MAP 
sequences at  time t ,  SLAP, must begin with the MAP sequence at time 

t o ,  S S A p .  

Proof: Given a jump  at to ,  

The second equality is  Bayes'  law and  the last one follows since the supposed 
jump implies that  the measurements before the  jump  are uncorrelated  with the 
jump sequence after  the  jump,  and vice  versa.  We  have also used causality at 
several instances. The  theorem now  follows from the fact that  the first factor 
is always less than or equal to p(StolytO). 0 

The reason that  the case of unknown and  constant noise scaling does  not 
work can  be realized form the last  sentence of the proof. All measurements 
contain  information about X, so measurements  from  all  segments influence the 
model and St .  

The  Viterbi algorithm proposed in  Viterbi (1967) is a powerful tool  in 
equalization; see Forney (1973). There is a close connection between this 
step  and  the  Viterbi algorithm.  Compare  with the derivation of the  Viterbi 
Algorithm 5.5. 

h 
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Theorem  7.1 leaves the following t + 1 candidates for the MAP estimate of 
the  jump sequence at  time t: 

S(0) = (O,O,  ..., 0) 

S ( k )  = (q/&, 1,0, ..., 0) k = 1,2,  ..., t. (7.27) 

At time  t,  t filters are  updated which should be compared to 2t for a straight- 
forward implementation.  The  total number of updates  sums  up to  t2/2. 

7.A.2. The second  inequality 

Consider the two jump sequences 

The second step intuitively works as follows. Given a jump at time to or to + 1, 
the measurements before t o ,  ytoP1, are  independent of the  jump sequence af- 
ter to + 1 and vice versa. Thus,  it is only the measurement yt, that contains 
any  information about which jump sequence is the correct one. If this mea- 
surement was not available, then  these two sequences would be  the  same  and 
indistinguishable.  One then compensates for the 'deleted'  measurement yt, 
according to  the worst case, and  gets  an  upper  bound  on  the probabilities. 

Theorem 7.2 
Consider the  problem of either maximum  likelihood  segmentation  using (7.13) 
or (7.15) with q = 0.5, or MAP segmentation  using (7.13) or (7.15), or  in- 
formation based segmentation  using (7.20),  (7.21) or (7.22) with an  arbitrary 
penalty  term. Consider theparticularsequencesp(St(to)Iyt) andp(St(to-l)lyt) 
in (7.28). These are  both bounded  from  above, 

where 

and ymaX = (27r-Pl2 det R,, . -1 12 

Proof: The a posteriori probability  p(S(t0 - l)lyt) is expanded by using Bayes' 
law and  the fact that  the supposed jump  at t o  divides the measurements into 
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two independent  parts: 

Expanding p(b( t0)  Iyt) in a similar way  gives 

Note that  the last  factor of each expansion is the same,  and  the first is known 
at  time t o .  The point is that p(ytol whatsoever ) is bounded  from above by 
ymaz = y(0, Rto) and  the  theorem follows. 0 

Note that all probabilities needed are  already available. Also, note that 
merged sequences may be merged again, which implies that one upper  bound 
is in common for more than two sequences. An  interesting  question is how 
powerful this second inequality is. It was shown in  Gustafsson (1992) that 
this second inequality reduces the complexity from O(t2) to 0 (&) if there 
is just one segment in the  data,  and  to O(nt) if the number of segments n is 
large. In simulated  examples, the number of sequences is very close to nt. In 
Section 7.7, the complexity is reduced by a factor of four  in an application 
with  real data  and imperfect modeling. 

7.A.3. The exact pruning  algorithm 

The two inequalities lead to  the following algorithm, which finds the exact 
MAP estimate  with less than t filters. 
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Algorithm 7.3 Optimal  segmentation 
Start from the a posteriori probabilities given in  Theorem 7.3 or  Theorem 7.5 
for the sequences under  consideration at time t: 

1. At time t + 1, let only the most likely sequence jump. 
2. Decide whether two or more sequences should be merged. If so, compute 

a common upper  bound  on  their a posteriori probabilities, and consider 
in the sequel these two merged branches as  just one. 

If the most probable sequence has  larger  probability than all  upper  bounds, 
then  the  MAP  estimate is found.  Otherwise, restart  the  algorithm  or backtrack 
the history of that upper  bound  and  be more restrictive  in merging. 

Note that  the case of unknown constant noise scaling does  not  apply here. 
The first step is the most powerful one: it is trivial to implement and makes 
it possible to compute  the exact ML and  MAP  estimate for real signals. It is 
also very useful for evaluating the accuracy of low-complexity approximations. 

The first steps in Algorithms 7.3 and 7.1 are  the same. The second step 
in  Algorithm 7.1 corresponds to  the merging step in  Algorithm 7.3. Instead 
of computing  an  upper  bound,  the unlikely sequences are  just  cut off. 

7.B. The  posterior  probabilities of a jump  sequence 

7.B.1. Main theorems 
Theorem 7.3 (Segmentation with known noise variance) 
Consider the changing regression model (7.3). The a posteriori probability of 
kn for a known noise scalings An and a Aat prior on On is given by 

n 

-210gp(knly , X ) = c + 2nlog ~ + C ( D ( i )  + V ( i ) )  N n  l - q  (7.29) 
4 i=l 

if P(i )  is non-singular  for all i. 

Proof: Without loss of generality, it  can  be  assumed that X ( i )  = 1 since it  can 
be included in Rt. Let Y ( i )  denote  the measurements ?J:-,+~ in segment i .  

Bayes' law implies the relations p(AIB) = p(BIA)# and p ( A l ,  Az ,   . . ,An)  = 

p(A1)p(A21Al)..p(AnIAl,  A2, .., An-l), and  this yields 
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Since the model parameters  are  independent between the segments, the mea- 
surements  from one segment are  independent of other segments, 

(7.30) 

The law of total probability gives 
r 

As mentioned, a flat and non-informative prior on B is assumed, that is p(B) - 
1, so 

To simplify the expressions somewhat, a constant Rt = R is assumed. It is 
now straightforward to complete the squares for B, similarly as done to prove 
(5.103), in order to rewrite the  integrand as a Gaussian  density  function which 
integrates to one. The result is the  counterpart  to  equation (5.98) for a non- 
informative  prior, and  the remaining  factor is 

P ( Y ( i ) )  =PT) -N(i)P/P(det R)-N(i)/2X(i)--N(i)p/2(2~)d/22/det X(i)p(i) 

where V ( i )  and D ( i )  are  as defined in (7.6) and (7.7), respectively. Taking 
the  logarithm, using (7.12) and collecting all terms  that  do not  depend  on  the 
jump sequence in the  constant C the result follows. 0 

Theorem 7.4 (Segmentation  with constant noise variance) 
The a posteriori probability of kn in the changing regression model (7.3) for 
an unknown but  constant noise covariance scaling X ( i )  = X, with a non- 
informative prior on both B ( i )  and X, is given by 

n 

-210gp(knlyN) = c + 2nlog - l - q  + C D ( i )  (7.32) 
Q i=l 
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if P( i )  is  non-singular  for all i and '& V ( i )  # 0. 

Proof: The proof starts from  equation (7.31), and  the conditioning on X is writ- 
ten  out explicitely: p ( k n l y N )  = p ( k n l y N , X )  in (7.30) and p ( Y N )  = p ( Y N I X )  
in (7.31). The law of total probability gives 

Here X is separated  from  the definitions (7.6) and (7.7). 
To solve the integral, the inverse Wishart Probability  Density  Function 

(PDF) 

is utilized, where is the gamma-function. A PDF integrates to one, so 

and  the result follows. 0 

Theorem 7.5 (Segmentation  with  changing  noise  variance) 
The a posteriori  probability o f  kn in  the  changing  regression  model (7.3) for 
an  unknown  changing  noise  scaling X ( i ) ,  with  a Aat prior  on  both O(i)  and 
X ( i ) ,  is  given  by 

- 2 logp(kn1yN) = c + 2n log - l - q  
4 

(7.33) 

D ( i )  + ( N ( i ) p  - d - 2) log -V(i)  - 2 log l? 
1 
2 

i=l 

if P( i )  is  non-singular and V ( i )  # 0 for all i. 
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Proof: The proof is almost  identical to  the one of Theorem 7.4. The difference 
is that  there is one integral for each segment, and again  they are solved by 
identification  with the inverse Wishart PDF. 

and  the result follows. 0 
The  results  can  be somewhat simplified by using r ( n + l )  M &nn+lj2ePn, 

which is Stirling's formula. It follows that  the following expression can  be used 
for reasonably large segment lengths (> 30 roughly): 

- 2 log r M - log(27r) + ( N ( i ) p  - d - 4) 

N( i )p  - d - 4 
2 

N ( i ) p  - d - 4 
2 

- ( N ( i ) p  - d - 5) log 

M - ( N ( i ) p  - d - 2)  log l 

and similarly for F( Np-Fd-2) .  This relation is used in (7.13)-(7.15). 
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8.1. Basics 

The goal in this section is to explain the  fundamentals of Kalman filter theory 
by a few illustrative examples. 

The  Kalman filter requires a state space  model for describing the signal 
dynamics. To describe its role, we need a concrete  example, so let us return  to 
the  target tracking  example  from Chapter 1. Assume that we want a model 
with the  states z1 = X ,  x2 = Y ,  x3 = X och x4 = Y .  This is the simplest 
possible case of state vector used in  practice. Before we derive a model in the 
next section, a few remarks will be given on  what role the different terms in 
the model has. 

Example 8.7 Target tracking:  function of Kalman  filter 

Figure 8.l(a) illustrates how the Kalman filter makes use of the model. 
Suppose the  object in a target  tracking  problem  (exactly  the  same  reasoning 
holds for navigation as well) is located at the origin with velocity vector (1,l). 
For simplicity, assume that we have an  estimate of the  state vector which 
coincides with the  true value 

&l0 = (O,O,  1,l) = xi. T 

In practice, there will of course be some error  or  uncertainty  in the esti- 
mate.  The  uncertainty  can  be  described by a confidence interval, which in 
the  Kalman filter approach is always shaped  as  an ellipsoid. In  the figure, the 
uncertainty is larger in the longitudinal  direction than in the  lateral direction. 

Given the  initial  state,  future positions  can be predicted by just  integrating 
the velocity vector (like in  dead reckoning). This simulation yields a straight 
line for the position. With a more complex state space  model  with  more states, 
more complex manoeuvres  can be simulated. In  the  state noise description, 
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Figure 8.1. The plot in (a) shows how the model  predicts  future  positions of the  object, 
given the  state vector at time 0, and how the  uncertainty region  increases in  time. The plot 
in (b) shows how the filter takes  care of the first  measurement  by  correcting the  state vector 
and decreasing the  uncertainty region. 

we can  model  what kind of manoeuvres  can  be  performed by the  aircraft, for 
instance, 1 m/s2 in  longitudinal  direction and 3 m/s2 in  lateral  direction.  The 
possible and unpredictable  manoeuvres  in the  future imply that  the uncer- 
tainty grows  in time,  just like illustrated by the ellipsoids in  Figure 8.l(a). 
Note that  the object makes a very sharp  manoeuvre  that makes the  actual 
path xt going outside the confidence interval. 

Figure 8.l(b) shows how the  Kalman filter  acts when the first  measurement 
x1 becomes available. 

1. First,  the  estimate is corrected  towards the  measurement.  The velocity 
state  component is adapted likewise. 

2. Then  the uncertainty is decreased accordingly. 

The index  rules  can now be  summarized  as: 

0 For the  true  trajectory xt, a single index is  used as  usual. Time is indeed 
continuous here. 

0 For a  simulation starting  at  time 0, as  shown  in  Figure S.l(a), the se- 
quence xol0, x1l0, ~ 3 1 0 , .  . . is used. The rule is that  the first  index is 
time and  the second one indicates  when the simulation is started. 

0 When  the  Kalman filter updates  the  estimate,  the second index is in- 
creased one unit.  The  Kalman filter is alternating between a one time 
step simulation, and  updating  the  state vector, which yields the sequence 
x O I O ,  x l l O ,  x l l l ,  x211, x212, 2312, * 
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0 Hats  are used on all computed  quantities  (simulated  or  estimated), for 
instance Qt.  

The  state space model used in this  chapter is 

Here yt is a measured signal, A, B, C, D are known matrices and xt an unknown 
state vector. There  are  three  inputs to  the system: the observable (and con- 
trollable) ut, the non-observable process noise vt and  the measurement noise 
et. The  Kalman filter is  given  by 

where the  update gain Kt is computed by the  the Kalman filter equations as 
a function 

Figure 8.2 summarizes the signal flow for the signal  model and  the  Kalman 
filter. 

Noises e t ,  wt  output  yt Y t  E t  M et 
Input ut P t  M 2t Kalman filter State xt  U t  System 

c c 

c c 

Figure 8.2. Definition of signals for the signal  model and  Kalman filter. 

Example 8.2 Target tracking:  function of  state space model 

The role of the  state space  model  in  Example 8.1 is summarized as follows: 

0 The  deterministic model (the A matrix) describes how to simulate  the 
state vector. In  the example, the velocity state is used to find future 
positions. 
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The  stochastic  term in the  state equation, &ut, decides how the confi- 
dence  interval grows (the size of the  random walk).  One  extreme case is 
Q + CO, when anything  can  happen  in  one  time  step  and  all old informa- 
tion  must be considered as useless, and  the ellipsoid becomes infinitely 
large. The  other  extreme case is Q + 0, which corresponds to  the ellip- 
soid not growing at all. 

The  deterministic  part of the measurement  equation yt = Cxt tells the 
Kalman filter in what  direction one measurement  should affect the esti- 
mate. 

The covariance R of the measurement noise  et describes how reliable the 
measurement  information is. Again, the  extreme  points  are  important 
to understand.  First, R = 0 says that  the measurement is exact,  and in 
the example this would imply that illl would coincide with x1, and  the 
corresponding ellipsoid must  break down to a point. Secondly, R + m 
means that  the measurement is useless and should be discarded. 

Much of the  advantage of using the Kalman filter compared to more ad hoc 
filters (low-pass) is that  the design is moved from an  abstract pole-zero place- 
ment to a more concrete level of model design. 

Literature 

The  standard reference for all  computational  aspects of the Kalman filter 
has for a long time been Anderson and Moore (1979), but from now on  it 
is likely that  the complete reference will be  Kailath  et al. (1998). This is a 
thorough work covering everything  related to  state space  estimation.  These 
two references are a bit weak regarding  applications.  A  suitable book with 
navigation  applications is Minkler and Minkler (1990). Other monographs are 
Brown and Hwang (1997) and  Chui  and  Chen (1987). 

8.2. State space  modeling 

Designing a good Kalman filter is indeed more a modeling than a filter design 
task. All that is needed to derive a good Kalman filter in an application is to 
understand  the modeling and a few tuning issues. The rest is implementation 
problems that  can be  hidden  in good software. That is, the first sub-goal is 
to derive a state space model 
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The model is completely specified by the matrices A, B = [B,, B,], C, D, Q, R. 
System modeling is a subject covered  by many  textbooks; see for instance 
Ljung and Glad (1996). The  purpose here is to give a few but representative 
examples to cover the applications  in this  part. Since many models are derived 
in  continuous  time, but we are concerned with  discrete time filtering, we start 
by reviewing some sampling formulas. 

8.2.1.  Sampling  formula 

Integration over one sample  period T of the continuous time model 

gives 

X t + T  =xt + (ACx, + B:u7) d r  

Assuming that  the  deterministic  input is constant  during  the sampling  interval, 
which is the case in for instance  computer controlled systems,  the solution  can 
be  written  as  the discrete time  state space model 

xt+T = Axt + &ut7 

where 

A =e ACT 

The same  sampling  formulas  can be used for the stochastic  input ut in  (8.4), 
although  it is seldom the case that ut is constant  during  the sampling intervals. 
Other  alternatives  are surveyed in Section 8.9. There  are  three main ways to 
compute  the  matrix exponential: using the Laplace  transform, series expansion 
or algebraic equations. See, for example,  Astrom and  Wittenmark (1984) for 
details. Standard  computer packages for control  theory  can be used, like the 
function c2d in  Control  System Toolbox in MATLABTM . 

8.2.2.  Physical  modeling 

Basic relations  from different disciplines in  form of differential equations  can 
be used to build  up a state space model. The example below illustrates  many 
aspects of  how the signal processing problem  can be seen as a modeling one, 
rather  than a pure filter design. Much can  be gained in  performance by de- 
signing the model appropriately. 
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Figure 8.3. Tracking  coordinates. 

Example 8.3 Target tracking:  modeling 

Consider an aircraft moving in two dimensions as in  Figure 8.3. Using 
Newton’s law F = mu separately  in two dimensions gives 

.. 1 F1 xt =- 
m 

.. 2 F 2  xt =-. 
m 

Here Fi are forces acting  on  the  aircraft, normally due  to  the pilot’s manoeu- 
vres, which are unknown to  the tracker. From now on, the right-hand  side 
will be considered as  random  components W:. In vector form, we get 

The  standard form of a state space  model only has first order derivatives in 
the left-hand side. We therefore  introduce dummy  states, which here  has the 
physical interpretation of velocities: 

2; =X; 
xt” =xt 
xt” =wt 

4 

1 

- 4  -w2 xt - t‘ 

Here the noise  is denoted wi rather  than v so as not to confuse it  with  the 
velocities vi = x i ,  i = 1’2. Assuming that  the position is measurable, we get 
a continuous time  state space model for the  state vector X = (xl, x2, v’, w2) in 
standard form: 
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0 0 1 0   0 0  

& = A C z t + B 3 u t =  (. 0 0 0 1  .)G+ (; 1) W t ,  

0 0 0 0  
1 0 0 0  

Yt = (o 1 o) xt +et.  

Here superscript c indicates  continuous  time. The sample  formula  with  sam- 
pling interval T gives 

There  are two possibilities for the choice of Q. The simplest is a diagonal 
Q = 412. An aircraft  can  accelerate much faster  orthogonally to  the velocity 
vector than parallel to  it.  That is, the forces during  turns  are much larger than 
during  acceleration and  retardation.  This implies that we would  like to have 
different adaptation gains in these two directions. The only problem is that 
the aircraft  has its own coordinate  system which is not  suitable for tracking. 
However, we can use the heading (velocity direction) estimate 

and assume that  the velocity changes mainly  orthogonally to h. It can  be 
shown that  the  appropriate  state  dependent covariance matrix is 

Q =  ( qw sin2(h) + qv cos2(h) (qv - q,,) sin(h)  cos(h) 
(qv - qw) sin(h)  cos(h) qw cos2 (h)  + qv sin2 (h)  ) . (8.8) 

Here qv is the force variance along the velocity vector and qw is perpendicular 
to  it, where qw >> qv. 

It has been pointed out by many authors  that  during manoeuvres,  bet- 
ter  tracking  can  be achieved by a so-called jerk model. Here two more ac- 
celeration states  are included in the model, and  the  state noise is now the 
jerk  rather  than acceleration. The  state space model for the  state vector 
IC = (X', x2 ,  v', w2,  U',  u2)T is: 
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~ 1 O T 0 0 0  
O l O T O O  
O O l O T O  
O O O l O T  
0 0 0 0 1 0  

\ 0 0 0 0 0 1  

xt + (i T 3 / 3  0 

‘0 0 

0 0 Wt .  
1 0  
0 1  :1 

wt. 

Again, the covariance matrix in (8.8) is a reasonable  option. 

Another strategy is a compromise between the acceleration and  jerk mod- 
els, inspired by the physical constraints of the motion of the aircraft. Since the 
acceleration is mainly orthogonal to  the velocity vector, one more state  can  be 
introduced for this acceleration. The acceleration  orthogonal to  the velocity is 
the turn rate W ,  and  the  state  equations for the  state vector (x l ,   x2 ,  vl,  v 2 ,  w ) ~  
is given  by: 

xt =ut 

xt =ut 

ut = - WtVt 

ut =W& 

W, =o. 

- 1  1 

- 2  2 

- 1  2 

- 2  1 

(8.11) 

The main  advantage of this model is that circular paths correspond to con- 
stant  turn  rate, so we have a parameter  estimation  problem  rather  than a 
tracking  problem in these segments. Paths consisting of straight lines and 
circle segments are called coordinated turns in the  literature of Air Trufic  
Control (ATC). 

One further  alternative is to use velocities in  polar  coordinates  rather  than 
Cartesian.  With  the  state vector ( x l ,   x 2 ,  v, h, w ) ~ ,  the  state dynamics become: 
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a; =ut cos(ht) 

at 2 =ut sin(ht) 
vt =o (8.12) 

ht =W 

W, =o. 
Both (8.11) and (8.12) are non-linear models, and sampling and filtering are 
not straightforward. Section 8.9 is devoted to  this problem, and several solu- 
tions to  this problem will be  described. 

As a summary,  there  are  plenty of options for choosing the model, and each 
one corresponds to one unique  Kalman filter. The choice is a compromise 
between algorithm complexity and performance, but  it is not at all  certain 
that a more complex model gives better accuracy. 

8.2.3. Using  known  transfer  functions 

There is a standard  transformation to go from a given transfer  function to a 
state space model which works both for continuous and discrete time models. 
The observer companion form for a transfer  function 

b1sn-' + + b,-ls + b, 
G(s) = 

sn + u1sn-'+ + U,-lS + U, 

is 

Here the  input ut can  be replaced by state noise wt, fault f t  or  disturbances 
dt . 

It should be mentioned that  the  state space  model is not  unique. There 
are many other  transformations. 
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Example 8.4 DC motor: model 

Consider a sampled state space  model of a DC  motor  with  continuous time 
transfer  function 

1 1 
G(s) = 

s(s + 1) S 2  + S' - - 

The continuous  time state space model is in so called observer canonical  form, 

2t = ( 0 o) xt + (3 Ut -1 1 

yt = (1 0) xt + et. 
A better choice of state variables for physical interpretations is x1 being the 
angle and x2 the  angular velocity of the  motor.  The derivation of the cor- 
responding state space model is straightforward,  and  can  be  found  in  any 
textbook  in  control theory. Sampling  with  sample  interval T, = 0.4 S gives 

Finally, we revisit the communication  channel modeling problem  from Chapter 
5 in two examples leading to  state space models and  Kalman filter approaches. 

Example 8.5 Fading  communication  channels 

Measurements of the FIR coefficients bz, i = 1,2, . . . , n b ,  in a fading com- 
munication  channel  can be used to estimate a model of the parameter vari- 
ability. The  spectral content is well modeled by a low order AR model. One 
possible realization of channel time variations will be shown in  Figure  10.6(a). 
Assume that we have estimated the model bl = -uibl-, - u$bd-2 + vi for each 
coefficient bi. The corresponding state space  model is 

= (-$ -$) X: + (3 v; 
Ai 

b: = (1 0) X:. 

An application  on how to utilize the predictive  ability of such a model is given 
in  Example 8.6. 
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Example 8.6 Equalization  using  hyper  models 
A so called hyper model of parameter variations  can  be used to improve 

tracking  ability.  Consider the digital  communication  channel  in  Example 8.5. 
Equalization  incorporating  this knowledge of parameter variation  can use the 
following state space  model  (assuming n b  = 2, i.e. an  FIR(2) channel  model): 

yt =(ut o ut-1 0) xt +et.  

See Lindbom (1995) for extensive  theory on this  matter,  and Davis et al. 
(1997) for one application. 

8.2.4. Modeling tricks 

A very  useful trick in Kalman  filtering is to augment the  state vector with  some 
auxiliary states xa, and  then  to apply the Kalman  filter to  the augmented state 
space model. We will denote the  augmented  state vector 3 = (xT, ( x ~ ) ~ ) ~ .  It 
should be noted  here that  the Kalman  filter is the  optimal  estimator of any 
linear  combination of the  state vector. That is, given the assumptions,  there is 
no better way to estimate  the  state vector xt than  to  estimate  the  augmented 
state.  This section  lists some important cases where this trick is useful. 

Colored  state  noise 

Assume the  state noise  is colored, so we can  write ut = H(q) f&,  where is 
white noise.  Let a  state space  realization of H ( q )  be 

=A"X; + BVV, 
ut =cv.;. 

The  augmented  state space  model is 

yt =(C, 0 ) ~ t  + et. 

The relation is easily verified  by expanding each row above separately. 
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Colored  measurement  noise 

Assume the measurement noise is colored, so we can  write et = H(q)Et, where 
et is white noise. We can  apply the same  trick as in the previous case, but in 
the case of Markov noise 

there is a way to avoid an increased state dimension. 
The obvious approach is to pre-filter the measurements, jjt = H-l(q)yt, 

where H ( q )  is a stable minimum  phase spectral factor of the measurement 
noise, so that  the measurement noise becomes white. The  actual way  of im- 
plementing this in state space  form is as follows. Modify the measurements 
as 

Thus, we have a standard  state space model again  (though the  time index of 
the measurement is non-standard), now with  correlated state  and measure- 
ment noises. 

Sensor  offset  or  trend 

Most sensors have an unknown offset. This  can  be solved by  off-line  cali- 
bration,  but a more general  alternative is given  below. Mathematically, this 
means that we must  estimate the mean of the measurements on-line. The 
straightforward  solution is to modify the  state  and measurement  equation as 
follows: 

&+l = (0 I) (2) + (:) A 0  
U t  (8.14) 

(8.15) 

Here it  should be remarked that in off-line situations, the mean  can be esti- 
mated  directly  from the measurements and removed before the  Kalman filter 
is applied. If there is an  input U ,  the deterministic  part of y should be sub- 
tracted before computing  the mean. According to least  squares  theory, the 
solution will be  the same. 
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In  the  same way, drifts  are  modeled  as 

zt+1= ( 0  I 0 )  (%) + (9) ut 
A 0 0  

0 0 1  

yt = (c I t I> (%) + et. 

An alternative is to include the drift  in  the offset state  as follows: 

(8.16) 

(8.17) 

zt+l = 0 0 I 
(8.18) 

(8.19) 

The advantage of this  latter  alternative is that  the  state space  model is time- 
invariant if the original  model is time-invariant. 

Sensor  faults 

The sensor offset and drift might be  due  to  a sensor fault.  One model of a 
sensor fault is as  a  sudden offset or  drift.  The  state space  model  corresponding 
to this is 

zt+l = (0 I 0) (%) + (!) ut + dt-k ($) (8.20) 
A 0 0  

0 0 1  
+ + 
B, ,t f 
- 

(8.21) 

where k denotes the  time  the fault  occurs. 

Actuator  faults 

In  the  same way as  a sensor fault,  a  sudden offset in an  actuator is modeled 
as 

ZtS1 =Atxt + &$Ut + &$ut + d t - k B u , t f u  (8.22) 
yt =Ctxt + et. (8.23) 
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If the offset lasts,  rather  than being just a pulse, more states xf, t  can  be 
included for keeping the  fault f u  in a memory 

zt+l = ( I ) (G) + ri.t> U t  + ut + bt-k ( y )  fu  (8.24) 
At Bu,t 

(8.25) 

State  disturbances 

The  third kind of additive  change  in  state space model, beside sensor and  actu- 
ator  fault is a state  disturbance.  Disturbances  and, for example,  manoeuvres 
in  target  tracking  are well described by 

xt+1 =Atxt + &$Ut + B?J,tvt + bt-kBff  (8.26) 
yt =Ctxt + et. (8.27) 

Parametric  state  space  models 

If unknown system  parameters 8 enter  the  state space model linearly, we have 
a model like 

This is  like an hybrid of a linear regression and a state space model. Using 
the  state vector zT = (xT, QT) ,  we get 

(8.31) 

The  Kalman filter applies, yielding a combined state  and  parameter  estimator. 
If the  parameter vector is time-varying,  it  can be  interpreted  as an unknown 
input. Variants of the  Kalman filter as such a kind of an unknown  input 
observer are given in for instance Keller and Darouach (1998, 1999). 

Smoothing 

The  method for fixed-lag smoothing given in Section 8.5 is a good example of 
state  augmentation. 
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8.3. The Kalman  filter 

Sections 13.1 and 13.2 contain two derivations of the  Kalman filter. It is 
advisable at  this  stage  to  study,  or  recapitulate,  the derivation that  suits one's 
background knowledge the  best. 

8.3.1. Basic formulas 

A general  time-varying state space  model for the Kalman filter is 

The dimensions of the matrices will be  denoted n,, nu, n,, ng, respectively. 
The  time  update  and measurement update in the Kalman filter are given  by: 

Comments: 

0 It is convenient to define and  compute  three auxiliary  quantities: 

E t  =Yt - CtQ-l (8.38) 
St =CtPtlt-lCT + Rt (8.39) 

Kt =Ptlt-lCF(CtPtlt-lCF + Rt)-' = Ptlt-lC,TSC1. (8.40) 

The  interpretations  are  that St is the covariance matrix of the innovation 
E t ,  and Kt is the  Kalman gain. 

0 With  the auxiliary  quantities above, equation (8.37) can  be  written  more 
compactly as Ptlt = PtltP1 - KtStKF. 

0 It is suitable to introduce a dummy variable L = Ptlt-lCF to save 
computations.  Then we compute St = CtL + Rt, Kt = LS;' and 
ptlt = - K ~ L ~ .  

0 The indexing  rule is that is the projection of xt onto the space 
spanned by the measurements y1, y2,. . . , yk,  or  in the statistical  frame- 
work the conditional  expectation of xt, given the set of measurements 
Y1, Y2, f f f , Yk. 



8.3  The Kalman filter 279 

0 P = E(z - k ) ( z  - k)T is the covariance matrix for the  state estimate. 

0 The  update equation for P is called the discrete  Riccati  equation.  Even 
if the  state space  model is time-invariant, the  Kalman filter will be  time- 
varying  due to  the  transient caused by unknown  initial  conditions. The 
filter will,  however,  converge to a  time-invariant one. More on  this  in 
Section 8.4. 

0 The  Kalman gain and covariance matrix  do not  depend  upon data,  and 
can  be  pre-computed. This is in  a way counter  intuitive,  because  the 
actual  filter  can diverge without  any  noticeable sign except for  very large 
innovations. The explanation is the prior belief in the model. More on 
this in Section 8.6.1. 

0 As for adaptive  filters, it is  very illuminating to analyze the estimation 
error in terms of bias,  variance and tracking  error. This will be  done  in 
Sections 8.6.3 for bias  error,  and Section 8.4.1 for the  other two errors, 
respectively. 

0 The signal  model (8.32) is quite  general  in that all  matrices,  including 
the dimensions of the  input  and  output vectors, may change in  time. For 
instance,  it is possible to have a  time-varying  number of sensors,  enabling 
a  straightforward  solution to  the so-called multi-rate signal  processing 
problem. 

0 The covariance matrix of the stochastic  contribution to  the  state equa- 
tion is B,,tQtBCt. It is implicitly  assumed that  the factorization is done 
so that Qt is non-singular. (This may imply that  its dimension is time- 
varying  as well.) In  many cases, this  term can  be  replaced by a  (singular) 
covariance matrix Qt = Bv,tQtBct of dimension n, X n,. However, cer- 
tain algorithms  require a non-singular Qt. 

There  are several ways to rewrite the basic  recursions. The most common ones 
are  summarized  in  the  algorithm below. 

Algorithm 8.1 Kalman filter 

The  Kalman filter  in its filter  form is defined by the recursion 
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The one-step  ahead  predictor  form of the  Kalman filter is defined by the 
recursion 

kt+llt = A t Q - l +  Bu,tut + AtKt(yt - C t Q - 1 )  
=(At - AtKtCt)itlt-l + Bu,tut + AtKtYt. (8.42) 

In  both cases, the covariance matrix given by the recursions (8.35) and (8.37) 
is needed. 

8.3.2. Numerical  examples 

The first numerical  example will illustrate  the underlying  projections  in a 
two-dimensional case. 

Example 8.7 Kalman  filter: a numerical example 
A two-dimensional example is very suitable for graphical  illustration.  The 

model under  consideration is 

X t + l  = ) xt, X0 = (;) 0 -1 

yt = (1 0) xt + et. 

The  state  equation describes a rotation of the  state vector 90' to  the left. 
The absence of state noise facilitates  illustration  in that  there is no  random 
walk in the  state process. The measurement  equation says that only the first 
state component is observed. Figure  8.4(a) shows the first three  state vec- 
tors XO, X I ,  z2, and  the corresponding  measurements, which are  the projection 
on the horizontal axis. The measurement noise is assumed negligible. Alter- 
natively, we may assume that  the realization of the measurement noise with 
covariance matrix R is eo = e1 = 0. 

The  Kalman filter is initialized with i o l - l  = (0, O ) T ,  and covariance matrix 

POI-1 = al.  

Simple and easily checked calculations give 

a 
K1 = - (1) 

a + R  0 
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J I 

Figure 8.4. True  states  and  estimated  estimates from the  Kalman filter's two first time 
recursions. In  (a),  the  measurements  are  included,  and  in (b) the covariance ellipses are 
marked. 

Note that & < 1. For large (U, or  small R,  it holds that 

Figure 8.4(b) illustrates  the change in shape in the covariance matrix  after 
each update. For each measurement,  one  dimension is compressed, and  the 
time update is due  to  the lack of state noise just  a  rotation. 

We make the following observations: 

0 The time update corresponds to a 90' rotation,  just in the  same way as 
for the  true  state. 
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0 A model error, when the  true  and modeled A matrices are not the same, 
implies that  the rotations  are not exactly the same. 

0 The  measurement  update is according to  the projection  theorem a pro- 
jection of the  true  state  onto  the  measurement. See the derivation  in 
Section 13.1. The plane II, is interpreted  here  as the last  measurement. 
It is only the  initial uncertainty reflected in P that prevents the estimate 
from coinciding exactly  with the projection. 

0 It is the  rotation of the  state vector that makes the  state vector observ- 
able! With A = I, the  true  state vector would be  constant  and x2 would 
not be possible to estimate.  This can  be verified with the observability 
criterion to be defined in Section 8.6.1 

The second example is scalar, and used  for illustrating how the  Kalman 
filter  equations look  like in the simplest possible case. 

Example 8.8 Kalman  filter: a scalar example 
It is often  illustrative to rewrite  complicated  expressions  as the simplest 

possible special case at  hand. For a state space  model,  this  corresponds to 
that all variables  are  scalars: 

xt+l  =axt + but 
yt =cxt + et 

E(& =4 
E(et) =T-. 2 

The  state equation  can  be  interpreted  as an  AR(1) process (1.1 < l), which 
is by the  measurement equation observed in  white noise. Figure 8.5  shows an 
example wit h 

a=0.9 ,  b=0.1,  c = 3 ,  q = 1 ,  r = l .  
The  Kalman filter  divided  into  residual  generation,  measurement update  and 

time update, with the corresponding covariance matrices, is  given  by 

(8.43) 
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Figure 8.5. Simulation of a  scalar state space model. For reference, a state space simulation 
without  state noise is shown, as well as the noise-free output. 

Note that  the  time  update is the  standard AR predictor. It might be  instruc- 
tive to  try  to figure out how the  structure relates to  the general  linear  filtering 
formulas  in  Sections 13.1.3 and 13.2.1,  which  is a  suitable exercise. 

Figure 8.6  shows an  example for the realization  in  Figure 8.5. Note how 
the  measurement  update improves the prediction  from the  time  update by 
using the information  in the current  measurement. Note also that  although 
we are using the best possible filter, we cannot  expect to get a  perfect  estimate 
of the  state. 

The  'dummy variables' P$, and St have the interpretation of covari- 
ance  matrices. We can  therefore  plot confidence intervals for the  estimates in 
which the  true  state is expected to be  in.  In this scalar  example, the confidence 
interval for the filtered  estimate is Qt f 2 f i .  Since all noises are Gaussian 
in  this  example,  this  corresponds to a 95% confidence interval, which  is shown 
in  Figure 8.6(b). We see that  the  true  state is within  this  interval for all 20 
samples (which is better  than  the average behavior where one sample  can  be 
expected to fall outside the  interval). 

Example 8.9 Kalman filter: DC motor 

Consider the  state space  model of a DC motor  in  Example 8.4. A sim- 
ulation of this  model is shown  in  Figure 8.7. It is assumed  here that only 
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Filtered X, 

Confidence  interval for xt 
- _ _  

(a)  (b) 

Figure 8.6. The  Kalman filter  applied to a  scalar state space model. In  (a), x t ,  & l t  and 
are compared. In (b), a 95% confidence interval ktlt f 2,& for xt is shown. For 

reference, a state space  simulation without  state noise is shown. X: denotes  the ensemble 
average. 

the angle is measured, and not the  other  state which  is angular velocity. The 
Kalman  filter  estimates of angle and angular velocity are  shown  in  Figure 8.8. 
As a reference, the  measurements  and  the difference of each two measurements 
as  a velocity measure  are  plotted. A suboptimal approach to estimate  angular 
velocity  would be to take the difference and  try  to  tune a low-pass filter. 

8.3.3. Optimality  properties 

There  are several interpretations of what  the  Kalman filter  actually  computes: 

0 The  Kalman filter  can  be  interpreted both  as  an  estimator or an algo- 
rithm for computing  an  estimate, cf. Section 13.2. 

0 If Q, ut, et are  Gaussian  variables, then 

That is, the  Kalman filter provides an algorithm for updating  the com- 
plete  conditional  density  function. 

0 If 20, ut, et are  Gaussian  variables, then  the  Kalman filter is the best 
possible estimator  among  all linear  and non-linear ones. Best can  here 
be defined in the mean  square  sense  (conditional  or  unconditional MSE), 
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Figure 8.7. Simulation of a DC motor. 
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Figure 8.8. Kalman filter estimate of angle (left plot)  and  angular velocity (right plot). 

or in the minimum variance sense, or  the maximum a posteriori sense, 
cf. Section 13.2. 

0 Independently of the  distribution of ZO, ut, et,  assuming the specified co- 
variance matrices reflect the  true second order  moments, the Kalman 
filter is the best possible linear filter. What is meant by ‘best’ is defined 
as above, but only in the unconditional  meaning. That is, PtltP1 is 
the unconditional covariance matrix of the MSE. As a counter  example, 
where there  are  better conditional filters than  the Kalman  filter, is when 
the  state or measurement noise have frequent  outliers. Since the noise is 
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still  being  white, the  Kalman filter is the best  linear  filter, but  then  ap- 
propriate change detectors  in  Chapters  9  and 10 often work much better 
as  state  estimators. 

0 All system  matrices may depend  on  data,  and  the  interpretation of 
and Pt+llt as conditional estimate  and covariance, respectively, 

still holds. An important case is the linear regression model, where the 
regression vector Ct contains old measurements. 

8.4. Time-invariant  signal model 

We will here study  the special case of a time-invariant state space model 

in more detail.  The reason for this special attention is that we can  obtain 
sharper  results for the  properties  and gain more insight into  the  Kalman filter. 

Assume the  Kalman filter is applied at  time t o  for the first time. The 
Kalman  gain Kt will then  approach  the steady  state  Kalman  gain K when 
t o  + -cc or when t + 00. These  interpretations  are equivalent. In  the 
same way, Pt + P .  The existence of such a limit  assumes  asymptotic  time- 
invariance and  stability IX(A)I < 1 of the signal model (8.44). To  actually 
prove convergence is quite  complicated, and  Kalman himself stated  it  to  be 
his main  contribution to  the Kalman filter theory. A full proof is found  in 
Anderson and Moore (1979) and  Kailath  et al. (1998). 

Algorithm 8.2 Stationary Kalman filter 

The  stationary  Kalman filter in  predictor  form is given by 

The  stationary covariance matrix, P ,  is found by solving the non-linear 
equation  system  (8.47), which is referred to  as  the  stationary Riccati  equation. 
Several approaches  exist, the simplest  one  being to iterate  the Riccati  equation 
until convergence, which will always work due  to  stability of the filter. Solving 
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the  stationary Riccati  equation is the  counterpart  to  spectral factorization  in 
Wiener filtering, cf. Section 13.3.7. 

It can be shown from the convergence theory that  the Kalman filter is 
stable, 

IX(A - AKC)I < 1. (8.49) 

It is interesting to note that stability is ensured even if the signal  model  in 
unstable. That is, the  Kalman filter is stable even if the system is not.  The 
conditions for stability  are that unstable  modes  in A are excited by the noise 
Bvut and  that these modes are observable. In  standard  terms  (Kailath, 1980), 
these two conditions  can be expressed as follows: 1) the pair [A, C] is de- 
tectable,  and 2) the pair [A,B,Q1/2] is stabilizable. Here Q1j2 denotes  any 
matrix such that Q1/2(Q1/2)T = Q (a square  root); see Section 8.7. 

8.4.1. Error sources 

The time-invariant  predictor  form is, substituting  the measurement  equation 
(8.45) into  (8.46), 

= ( A  - AKC)k'tlt-l + AKCxt + AKet. (8.50) 

In  the scalar case, this is an exponential filter with two inputs. The forgetting 
factor is then 1 -KC,  and  the  adaptation gain is KC. A small K thus implies 
slow forgetting. 

The  estimation  error = xt - is from (8.50) using the signal 
model, given  by 

Zt+llt = (A  - AKC)PtI't-l + AKet + B,vt. 

Thus,  the  transient  and variance errors  are (see Section 8.6.3 for a procedure 
how to measure the bias error): 

t 
i E t + l l t  = ( A  - AKC)tzo + C ( A  - AKC)"'  (AKek + B,vt) . - t=1 " / 

variance  error 

There  are now several philosophies for state  estimation: 

0 The  stationary  Kalman filter aims at minimizing the variance error, as- 
suming the  initial error  has  faded away. 

0 An observer minimizes the  transient, assuming no noise, or  assuming de- 
terministic  disturbances Bvut which cannot  be  characterized  in a stochas- 
tic framework (a deterministic  disturbance gives a perturbation on the 
state  that can be  interpreted  as a transient). 
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0 The time-varying  Kalman filter minimizes the  sum of transient  and vari- 
ance  errors. 

8.4.2. Observer 

We will assume here that  there is no process noise. To proceed as for adaptive 
filters in Section 5.5, we need a further  assumption. Assume all eigenvalues 
of A - AKC are  distinct.  Then we can factorize T-lDT = A - A K C ,  where 
D is a diagonal matrix  with diagonal  elements  being the eigenvalues. In  the 
general case with  multiple eigenvalues, we have to deal  with so-called Jordan 
forms (see Kailath  (1980)). The transient  error  can  then  be  written 

The  transient will decay to zero only if all eigenvalues are  strictly less than 
one, IX(A - AKC)I < 1. The  rate of decay depends  upon  the largest eigen- 
value max IX(A - AKC)I. The idea  in observer design is to choose K such 
that  the eigenvalues get pre-assigned values. This is possible if the pair [A, C] 
is observable (Kailath, 1980). The only thing  that prevents us from mak- 
ing the eigenvalues arbitrarily  small is that a disturbance  can  imply a huge 
contribution to  the error  (though  it decays quickly after the disturbance  has 
disappeared). Assume a step  disturbance  entering at  time 0, and  that  the 
transient  error is negligible at this time. Then 

t t-l 

A  fast decay of the  transient requires that  the gain K is large, so the direct 
term AK will be large as well, even if D = 0. 

Consider the case of a scalar output. We then have n degrees of freedom 
in designing K .  Since there  are n eigenvalues in D ,  and  these  can  be chosen 
arbitrarily, we have no degrees of freedom to shape T.  This is well known from 
control  theory, since the zeros of the observer are fixed, and  the poles can  be 
arbitrarily chosen. The special case of D = 0 corresponds to a deadbeat 
observer (Kailath, 1980). The compromise offered in the Kalman filter is 
to choose the eigenvalues so that  the transient  error  and variance error  are 
balanced. 
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8.4.3.  Frequency  response 

The  assumption on stationarity allows us to define the frequency response of 
the  Kalman filter.  Taking the x-transform of (8.46) gives 

That is, the  transfer functions of the  Kalman filter when t + 00 or t o  + -00 
are 

Here Hy(eiUTs ) is a nz X ny matrix of transfer  functions  (or  column vector when 
y is scalar), so there is one scalar  transfer  function  from each measurement to 
each state,  and similarly for Hu(eiWTs). Each  transfer  function  has  the  same 
n, poles, and generally n, - 1 zeros (there is at least  one time delay). 

We  now analyze the  transfer function to  the measurement y instead of to 
the  state X. Assume here that, without loss of generality, there is no input. 
Since Y = CX we immediately get 

~ $ ~ ; e d  = c ( ~ ~ w T ~ I  - A + A K C ) - ~ A K .  (8.53) 

Equation (8.53) gives the closed loop transfer  function  in the  input-output 
relation Y ( x )  = H K F  ( x ) Y ( x )  of the  Kalman filter. That is,  equation 
(8.53) gives the  transfer function  from y to ij in  Figure 8.9. An  open loop 
equivalent from innovation E to y is readily obtained  in the same way.  We get 

closed loop 

as  the  transfer functions of the model and  Kalman filter, respectively. See 
Figure 8.9. 

8.4.4.  Spectral  factorization 

An interesting  side effect of these  calculations, is that a spectral factoriza- 
tion  can  be  obtained  automatically.  The  calculations below are based on the 
super  formula: if Y ( x )  = S ( z ) U ( z ) ,  then  the  spectrum is given by Qgy(z) = 
lS(x)12@uu(x) = S(X)S(X-~)Q. , , (X)  on the unit circle. For matrix valued trans- 
fer functions, this formula  reads Qyg(x) = S(z)QUu(z)ST(x- ' ) .  
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Figure 8.9. Interplay of model and  Kalman filter transfer functions. 

It follows from  Figure 8.9 that  the  output power spectrum is 

QYy(z) =R + C ( x I -  A)-lB,QB,T(~I - A)-TCT (8.54) 

=R + Hmodel(2)QHmodel  (.-l). (8.55) 

The spectral factorization problem is now to find a transfer  function that gives 
the same spectrum QyU(z) for a white noise input  with QUU(z)  = 1. That is, 
find S ( z )  such that QyU(z) = s ( ~ ) S ~ ( z - ~ ) .  The result is not  immediate  from 
(8.55) because it is the  sum of two terms. 

Alternatively, we can  deduce  from  Figure 8.9 that E = y - HKFE,  so 
y = ( I  + H K F ) E ,  and 

Qgy(z) = (I + H K F ( Z ) ) ( R  + CPCT)(I + (8.56) 

Note that R + CPCT is the covariance matrix of the innovation. That is, the 
non-minimum  phase  stable  spectral  factor of the  output  spectrum is given  by 
S ( z )  = ( I  + H K F ( z ) ) ( R  + CPCT)1/2 (the  square  root is an ordinary  matrix 
one).  This expression can  be used to compute the Wiener filter for vector 
valued processes, a task  that  can  hardly  be done  without  computing the  sta- 
tionary  Kalman  filter.  The  derivation is based on  Anderson and Moore (1979), 
p. 86. 

8.5. Smoothing 

8.5.1. Fixed-lag smoothing 

Fixed-lag smoothing is to  estimate  the  state vector xt from  measurements 
y(s), S 5 t + m. If m is chosen in the order of two, say, time  constants of 
the  system, almost  all of the information  in the  data is utilized. The trick to 
derive the  optimal filter is to augment  the  state vector with delayed states, 

x;=xt- i ,  i = l ,  ... , m + l .  (8.57) 
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The augmented state vector is (cf. Section 8.2.4) 

zt = (8.58) 

For simplicity, we will drop  the  time indices on  the  state matrices  in this 
subsection. The full signal  model is 

where 

A 0 0 ... 0 0' 
I 0 0 * * *  0 0 
0 I 0 ... 0 0 
0 0 I * * *  0 0 
. . .  . . .  . .  . . .  (0 0 0 :.. I 0, 

Bv,t = i'i) 

(8.59) 
(8.60) 

(8.61) 

(8.62) 

Estimate kt-mlt,  kt-m+llt,. . . , Qt by applying the  Kalman filter on (8.59)- 
(8.60). The  estimate of xtPm given observations of ys, 0 5 S 5 t is given  by 
xt+llt. This is recognized as the last  sub-vector of the  Kalman filter prediction 

X t + l l t .  
To simplify the equations  somewhat,  let  us  write out  the  Kalman predictor 

formulas 

A m+1 

A - 

Next, we aim at simplifying (8.63)-(8.65). It follows from (8.62) that  the 
innovation covariance can  be simplified to  its usual low dimensional  form 
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Split Ptlt-l into n X n blocks 

- 

Ptlt-1 = 

which gives 

(8.67) 

(8.68) 

To compute  the  Kalman gain, we need to know Pi>’, i = 0, .  . . , m+l .  These 
are given  by a substitution of (8.67) in the Riccati  equation (8.65) 

P::&O = P:i;U_l(A - AKtC)T,  i = 0,. . . , m, (8.69) 

where Kt = I?:. That is, to compute  the  state  update we only need to know 
the  quantities from the  standard  Kalman predictor and  the original state space 
matrices of size n X n, and  the covariance matrices updated in (8.69). To 
compute  the diagonal  matrices P:i)te_l, i = 0, .  . . , m + 1, corresponding to  the 
smoothed  estimate’s covariance matrix, a substitution of (8.67) in the Riccati 
equation (8.65) gives 

(8.70) 

Polo tit-l is found  from the Riccati  equation for the original  signal model. 

8.5.2. Fixed-interval  smoothing 

In  this off-line filtering situation, we have access to all N measurements and 
want to find the best possible state  estimate QN. One  rather naive way 
is to use the fixed-lag smoother  from the previous section, let m = N and 
introduce N fictive measurements (e.g. zeros) with  infinite variance. Then 
we apply  the fixed-lag smoother  and at time t = 2N we have all  smoothed 
estimates available. The reason for introducing  information less measurements 
is solely to being able to  run  the Kalman filter until  all useful information  in the 
measurements have propagated down to  the last  sub-vector of the augmented 
state vector in (8.58). 

A better way is to use so-called forward-backward filters. We will study 
two different approaches. 
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Rauch-Tung-Striebel  formulas 

Algorithm 8.3 gives the Rauch-Tung-Striebel  formulas for fixed-interval smooth- 
ing, which are given without proof. The notation i i t l N  means as usual the 
estimate of xt given measurements up  to  time N .  

Algorithm 8.3 Fixed  interval  smoothing:  Rauch-Tung-Striebel 

Available observations are yt, t = 0,. . . , N .  Run  the  standard  Kalman fil- 
ter  and  store  both  the  time  and measurement updates, 2tlt,itlt-l,Ptlt, PtltP1. 
Apply the following time recursion backwards in  time: 

The covariance matrix of the estimation  error PtlN is 

This algorithm is quite  simple to implement, but  it requires that all state 
and covariance matrices, both for the prediction and filter errors,  are  stored. 
That also means that we must explicitely apply  both  time  and measurement 
updates. 

Two-filter  smoothing  formulas 

We will here derive a two-filter  smoothing  formula, which will turn  out  to  be 
useful for change detection. 

Denote the conditional  expectations of past  and  future  data 

respectively. Here Z F  and P$ are  the  estimates from the  Kalman filter (these 
will not be given explicitly). The index F is introduced to stress that  the 
filter runs forwards in time,  in  contrast to  the filter running  backwards  in 
time, yielding kit+, and P$+l, to  be  introduced.  Quite logically, 2it+l is the 
estimate of xt based on  measurements yt+l, yt+2,. . . , y ~ ,  which is up  to  time 
t + 1 backwards in  time. 

tlt 
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The  smoothed  estimate is, given these  distributions, a standard fusion 
problem, whose solution will be derived in Section 8.8.3. The result is 

There is an elegant way to use the Kalman filter backwards  on data  to compute 
O$+, and P$+l. What is needed is a so-called backward model. 

The following lemma gives the desired backwards Markovian model that 
is sample path equivalent to (8.32). The Markov property implies that  the 
noise process {ut},  and  the final value of the  state vector XN, are  independent. 
Not only are  the first and second order  statistics equal for these two models, 
but  they  are indeed sample  path equivalent, since they  both produce the same 
state  and  output vectors. 

Lemma 8.1 
The following  model  is  sample  path  equivalent  to (8.32) and is  its  correspond- 
ing backwaxd Markovian  model 

(8.72) 

Here 

where IIt = E[xtxT]  is  the a priori covaxiance matrix of the  state  vector, 
computed  recursively  by &+l = A&A? + Qt.  The  last  equalities of (8.73) 
and (8.75) hold if At is  invertible. 

Proof: See  Verghese and  Kailath (1979). 0 

Note that no inversion of the  state noise covariance matrix is needed, so 
we do not have to deal  with the factorized  form here. 

The  Kalman filter applied to  the model (8.72) in reverse time provides the 
quantities  sought: 
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The backward model can  be simplified by assuming  no  initial knowledge 
of the  state,  and  thus I I o  = Pllo = 001, or  more formally, = 0. Then 
IIt1 = 0 for all t ,  and  the  latter expressions assuming  invertible At give 

A," =At1  

Q," =AtlQtAtT.  

These  last two formulas are  quite  intuitive,  and  the  result of a straightforward 
inversion of the  state  equation as xt = A-lxt+l - A-lvt. 

Algorithm 8.4 Fixed  interval  smoothing:  forward-backward  filtering 

Consider the  state space model 

1. Run  the  standard  Kalman filter forwards  in time  and  store  the filter 
quantities Q t ,  P+. 

2. Compute  the backward model 

and  run  the  standard  Kalman filter backwards in time  and  store  both  the 
'predictions' ktlt+l, Ptlt+l. 

3. Merge the information  from the forward and backward filters 

8.6. Computational  aspects 

First, some brief comments on how to improve the numerical  properties  are 
given before we examine major issues: 
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In case the measurement noise covariance is singular, the filter may be 
numerically unstable,  although  the  solution to  the estimation  problem 
is  well defined. 

- One  solution to  this is to replace the inverse of St in Kt with a 
pseudo-inverse. 

- Another  solution is regularization. That is to  add a small  identity 
matrix  to Rt. This is a common  suggestion, especially when the 
measurement is scalar. 

- A  singular R means that one  or more linear  combinations of the 
state vector can be exactly  computed  from  one  measurement. A 
third solution is to compute a reduced  order filter (Anderson and 
Moore, 1979). This is quite  similar to  the Luenberger observer 
(Kailath, 1980; Luenberger, 1966). The idea is to transform  the 
state  and observation vector to ?,g such that  the exactly known 
part of g is a sub-vector of 2, which does  not need to be  estimated. 

Sometimes we have linearly dependent  measurements, which give cause 
to a rank deficient C,. Then  there is the possibility to reduce the com- 
plexity of the filter, by replacing the observation vector with an equiva- 
lent  observation, see Murdin  (1998),  obtained by solving the least  squares 
problem yt = Ctxt + et. For instance, when there  are more measurements 
than  states we get the least  squares  (snapshot)  estimate 

zt = (c,Tc~)- 1 T  C, yt = xt + (C,TCt)-'C,Tet A g t .  

Then 

1Jt = I x ~  + Et, et E N(0, (C,TCt>-'C,TRtCt(C,TCt)-l) 

can be fed to  the Kalman filter without loss of performance. 

Outliers should be removed from the filter. Here prior knowledge and 
data pre-processing can  be used, or impulsive disturbances  can  be incor- 
porated  into  the model (Niedzwiecki and Cisowski, 1996; Settineri  et al., 
1996). 

All numerical problems are significantly decreased by using square  root 
algorithms. Section 8.7 is devoted to  this issue. 

8.6.1. Divergence 

Divergence is the case when the covariance matrix does not reflect the  true 
uncertainty  in  the  state  estimate.  The simplest way to diagnose divergence 
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is to compare the innovation variance St with an  estimate formed  from the 
Kalman filter innovations, e.g. 

k=O 

Other whiteness-based innovation tests apply, see Section 8.10. Another indi- 
cation of divergence is that  the filter gain Kt tends  to zero. Possible causes of 
divergence are: 

0 Poor  excitation or signal-to-noise ratio. We have seen the importance of 
excitation in adaptive  filtering  (when At = I and Ct = p?). Basically, 
we want the  input signals to make Ct point  in  many different directions, 
in the sense that 

t 

k=t-L+l 

should  be  invertible for small L. This expression is a measure of the 
information in the measurements, as will become clear in the information 
filter, see Section 8.8.1. For a time-invariant  signal model, we must 
require observability, that is 

C 
C A  
CA2 

CAn-] 

has full column  rank; see Kailath (1980). To get good numerical  proper- 
ties, we should also require that  the condition  number is not too small. 

0 A small offset in combination  with  unstable  or  marginally  unstable  signal 
models is another case where divergence may occur.  Compare  this  with 
navigation  applications, where the position estimate may drift away, 
without  any possibility of detecting  this. 

0 Bias errors; see Section 8.6.3. 

8.6.2. Cross correlated noise 

If there is a correlation between the noise processes E(vte?) = Mt, so that 
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one trick to get  back on track is to replace the  state noise with 

(8.76) 

(8.77) 

Equation (8.76) gives 

The  Kalman filter  applies to this model. The last output  dependent  term in 
the  state equation  should  be  interpreted  as an  extra  input. 

8.6.3. Bias error 

A bias error due  to modeling errors  can  be  analyzed by distinguishing the  true 
system  and  the design model,  denoted by super-indices o and d, respectively. 
The  state space  model for the  true  system  and  the  Kalman filter for the design 
model is 

Let Z denote the  augmented  state vector with covariance matrix p .  This is 
a  state space  model  (without measurements), so the covariance matrix  time 
update can  be  applied, 

+ (B't 0 ) ( Q Y  0 )  0 ) T  
AtKf 0 R,O 0 AfKf * 

The  total error  (including both bias and variance)  can  be  expressed  as 

(8.81) 
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and  the  error correlation matrix  (note  that P is  no covariance matrix when 
there is a  bias error) is 

This  matrix is a  measure of the performance (hence the superscript p )  of the 
mean  square  error. This should not be confused with the  optimal performance 
P' and  the  measure  that comes out from the Kalman  filter Pd. Note that 
PP > P', and  the difference can  be  interpreted  as  the bias. Note also that 
although  the  Kalman filter is stable, PP may not even be  bounded.  This is 
the case in navigation using an  inertial navigation  system, where the position 
estimate will drift away. 

The  main use of (8.80) is a simple  test  procedure for evaluating the influ- 
ence of parameter variations  or  faults  in the  system matrices, and  measurement 
errors  or  faults  in the  input signal. This kind of sensitivity  analysis should al- 
ways be  performed before implementation. That is, vary each single partially 
unknown  parameter,  and  compare PP to PO. Sensitivity  analysis  can  here  be 
interpreted  as  a Taylor expansion 

dPO 
dB 

PP M PO + -AB. 

The more  sensitive P' is to a  certain  parameter, the more important  it is to 
model  it correctly. 

8.6.4. Sequential  processing 

For large  measurement  vectors,  the  main  computational  burden lies in the 
matrix inversion of S,. This can  be avoided by sequential  processing,  in which 
the  measurements  are processed one  at  a  time by several consecutive measure- 
ment  updates.  Another  advantage,  except for computation  time, is when a 
real-time  requirement occasionally makes  it  impossible to complete the mea- 
surement  update. Then we can interrupt  the  measurement  updates  and only 
lose  some of the information,  instead of all of it. 

Assume that R, is  block diagonal, R, = diag(R,', . . . , RP), which  is often 
the case in  practice.  Otherwise, the  measurements can  be  transformed  as 
outlined below. Assume also that  the measurement vector is partitioned  in 
the  same way, yt = ((Y:)~, . . . , ( Y P ) ~ ) ~  and C, = ((C,')', . . . , (C?)')'. Then 
we apply for each i = 0, .  . . , m - 1, the measurement  updates 
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with k:lt = ktltP1 and pit = & l t p l .  Then we let itlt = izPl and ptlt - - p m  

If Rt is not block-diagonal, or if the blocks are  large, the  measurement 
vector can easily be transformed to have a  diagonal covariance matrix. That 
is, let 

Here denotes the square root; see Section 8.7. For time-varying Rt this 
may be of little  help, since the factorization  requires  as  many  operations  as 
the  matrix inversion we wanted to avoid. However,  for time invariant Rt this 
is the  method  to use. 

8.7. Square  root  implementation 

Square  root  algorithms  are  motivated by numerical  problems when updating 
the covariance matrix P that often  occur  in  practice: 

0 P is not symmetric. This is easily checked, and  one  remedy is to replace 
it by 0.5(P + PT) .  

0 P is not positive  definite. This is not  as easy to check as  symmetry, 
and  there is  no good remedy. One  computationally  demanding  solution 
might be to compute  the SVD of P = UDUT after each update,  and  to 
replace negative values in the singular values in D with zero or  a  small 
positive  number. 

0 Due to large differences in the scalings of the  states,  there might be 
numerical  problems  in  representing P. Assume, for instance, that n, = 2 
and  that  the  states  are rescaled 

.=( 0 1 ) " j P = (  0 l ) P (  0 l ) ,  
10'O 0 10'O 0 1O1O 0 

and  there will almost  surely  be  numerical difficulties in  representing the 
covariance matrix, while there is no similar  problem for the  state.  The 
solution is a  thoughtful  scaling of measurements  and  states  from  the 
beginning. 

0 Due to a numerically sensitive state space  model (e.g an almost  singular 
R matrix),  there might be  numerical  problems  in  computing P. 
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The  square root  implementation resolves all  these  problems. We define the 
square  root  as  any  matrix P1l2 of the  same dimension as P,  satisfying P = 
P1/2PT/2.  The reason for the first requirement is to avoid solutions of the 
kind fi = (l/&, l/&). Note that sqrtm in MATLABTM defines a square 
root  without  transpose  as P = AA. This definition is equivalent to  the one 
used here, since P is symmetric. 

The idea of updating a square root is very old, and  fundamental  contribu- 
tions have been done in Bierman  (1977), Park  and  Kailath (1995) and  Potter 
(1963). The  theory now seems to have reached a very mature  and unified 
form, as described  in  Kailath et al. (1998). 

8.7.1. Time and  measurement  updates 

The idea is best  described by studying the  time  update, 

A first attempt of factorization 

(8.85) 

fails to  the condition that a square  root  must  be  quadratic. We can, however, 
apply a QR factorization to each factor  in (8.85). A QR factorization is defined 
as 

X = &R, (8.86) 

where Q is a unitary  matrix  such that QTQ = I and R is a upper  triangular 
matrix.  The R and Q here should  not be confused with Rt and Qt in the  state 
space model. 

Example 8.70 Q R  factorization 
The MATLABTM function qr efficiently computes  the factorization 

-0.1690  0.8971  0.4082  -5.9161  -7.4374 
-0.5071  0.2760  -0.8165) ( 0 0.8281 
-0.8452  -0.3450  0.4082 0 0 

Applying QR factorization to  the transpose of the first factor  in (8.85) 
gives 

(AtP;i2  Bv,tQ:/2) = R T T  Q . (8.87) 
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That is, the  time  update  can  be  written 

Pt+,lt = R Q QR = RTR. T T  (8.88) 

It is clear that Q is here  instrumental,  and  does  not have to  be saved after 
the factorization is completed. Here R consists of a quadratic  part  (actually 
triangular)  and a part  with only zeros. We can identify the  square  root as the 
first part of R, 

RT = (P:/;lt 0 )  . 

To summarize,  the  time  update is as follows. 

(8.89) 

Algorithm 8.5 Square  root  algorithm,  time update 

1. Form the  matrix in the left hand  side of (8.87). This involves computing 
one new square  root of Qt, which can  be  done by the  QR factorization 
( R  is taken  as  the  square  root)  or sqrtm in MATLABTM . 

2. Apply the QR factorization  in (8.87). 

3. Identify the  square  root of Pt+llt as in (8.89). 

More compactly, the relations are 

(8.90) 

The measurement update  can  be  treated analogously. However, we will 
give a somewhat more complex form that also provides the  Kalman gain and 
the innovation covariance matrix. Apply the  QR factorization to  the  matrix 

(8.91) 

where 

RT= (Y  z). 
X 0  

(8.92) 
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The  Kalman filter interpretations of the matrices X , Y ,  Z can  be  found by 
squaring  the  QR factorization 

R ~ Q ~ Q R  = R ~ R  = 

from which we can identify 

This gives the algorithm below. 

Algorithm 8.6 Square  root  algorithm,  measurement update 

1. Form the  matrix in the left-hand  side of (8.91). 

2. Apply the  QR factorization  in (8.91). 

3. Identify R with (8.92), where 

All in one equation: 

(8.94) 

Note that  the Y can be  interpreted  as the Kalman  gain  on a normalized 
innovation St-”’Et E N(0,I) .  That is, we have to multiply  either the gain Y 
or the innovation by the inverse of X .  
Remarks: 
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0 The only non-trivial part of these  algorithms, is to come up with the 
matrix  to be factorized  in the first place. Then, in  all cases here  it is 
trivial to verify that  it works. 

0 There  are many ways to factorize  a matrix  to get a square  root.  The 
QR  factorization is recommended  here for several  reasons. First,  there 
are  many efficient implementations available, e.g. MATLABTM ’S qr. 
Secondly, this gives the unique  triangular  square  root, which  is  useful 
partly because it is easily checked that it is positive  definite and  partly 
because inversion is simple (this is  needed in the  state  update). 

8.7.2. Kalman predictor 

The predictor  form,  eliminating the measurement  update, can  be  derived using 
the  matrix (8.95) below. The derivation is done by squaring up in the  same 
way as  before, and identifying the blocks. 

Algorithm 8.7 Square  root  Kalman  predictor 

Apply the QR  factorization 

The  state  update is computed by 

kt+llt = Atkt1t-l + B,,tut + AtKtSk/2SF1/2(yt - Ctit1t-l). (8.96) 

We need to multiply the gain vector KtSt f2  in the lower left corner  with 
the inverse of the  upper left corner element S;/’. Here the  triangular  structure 
can  be  utilized for matrix inversion. However, this  matrix inversion can  be 
avoided, by factorizing  a  larger  matrix; see Kailath  et al. (1998) for details. 

8.7.3. Kalman filter 

Similarly, a  square  root  algorithm for the  Kalman filter is  given  below. 
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Algorithm 8.8 Square  root  Kalman filter 

Apply the QR factorization 

(8.97) 

The  state  update is computed by 

Example 8.7 1 DC motor:  square  root  filtering 

Consider the DC motor  in  Examples 8.4 and 8.9, where 

A = (0 0.6703) ' B = (0.3297) ' = (l O) * 

1 0.3287  0.0703 

Assume that we initially have 

The left-hand side (LHS)  required for the QR factorization  in the filter for- 
mulation is  given  by 

LHS = (" "$:: " ) . 
0 0 0.6703  0.1000 

The sought  factor is 

-1.4521 0 0 
-0.7635  -0.7251 0 ") . 
-0.1522  -0.1445  -0.6444 0 
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From this  matrix, we identify the Kalman filter quantities 

-0.1445  -0.6444 

S:/2 = - 1.2815. 

Note that  the &R factorization  in this example gives negative signs of the 
square  roots of St and Kt. The usual  Kalman filter quantities  are recovered 
as 

(0.3911  0.1015) 
plI1 = 0.1015  0.1891 

0.3911 
= (0.1015) 

S1 =1.6423. 

8.8. Sensor fusion 

Sensor fusion is the problem of  how to merge information  from different sen- 
sors.  One  example is when we have sensor redundancy, so we could solve the 
filtering problem  with  either of the sensors. In more  complicated cases, each 
sensor provides unique  information. An interesting  question is posed in  Blair 
and Bar-Shalom (1996): “Does more data always mean better  estimates?”. 
The answer should  be yes in  most cases. 

Example 8.72 Fuel  consumption:  sensor  fusion 

Consider the fuel consumption  problem treated in Section 3.6.1. Here we 
used a sensor that provides a measurement of instantaneous fuel consumption. 
It is quite plausible that  this signal  has a small offset which is impossible to 
estimate  from  just  this sensor. 

A related  parameter that  the driver wishes to monitor is the  amount of fuel 
left in the  tank. Here a sensor in the  tank is used to measure fuel level. Because 
of slosh excited by accelerations, this sensor has low frequency measurement 
noise (or disturbance), so a filter with very small  gain is currently used by car 
manufacturers. 

That is, we have to sensors: 
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0 One sensor measures the derivative  with high accuracy, but with a small 
offset. 

0 One sensor measures the absolute value with  large  uncertainty. 

A natural idea, which  is probably  not used in  today’s  systems, is to merge 
the information  into one filter. The  rate sensor can  be used to get a quicker 
response to fuel level changes (for instance,  after  refueling),  and  more  impor- 
tantly,  the long term information about level changes can  be used to estimate 
the offset. 

A similar sensor fusion problem  as  in  Example 8.12  is found  in naviga- 
tion  systems, where one sensor is accurate for low frequencies (an  integrating 
sensor) and  the  other for high frequencies. 

Example 8.73 Navigation: sensor  fusion 

The Inertial  Navigation  System (INS) provides very accurate  measure- 
ments of accelerations (second derivative rather  than first  derivative  as  in 
Example  8.12).  The  problem is possible offsets in  accelerometers and gyros. 
These  must be estimated,  otherwise  the  position will drift away. 

As a  complement, low quality  measurements  such  as  the so-called baro- 
altitude  are used. This sensor uses only the barometric  pressure,  compares 
it to  the  ground level, and  computes  an  altitude. Of course, this sensor is 
unreliable  as the only sensor for altitude,  but in  combination  with the INS it 
can be used to stabilize the drift  in altitude. 

An important issue is whether the fusion should  be  made at a  central 
computer or in  a  distributed  fashion. Central fusion means that we have 
access to all  measurements when deriving the  optimal filter; see Figure 8.10. 
In  contrast, in decentralized fusion a filter is applied to each measurement, 
and  the global fusion process has access only to  the estimates  and  their  error 
covariances. Decentralized filtering  has  certain  advantages  in  fault  detection  in 
that  the different sub-systems  can  apply  a  ‘voting’  strategy for fault  detection. 
More on this is  given in Chapter 11. An obvious disadvantage is increased 
signaling, since the  state,  and in  particular  its covariance matrix, is often of 
much larger  dimension than  the  measurement vector.  One might argue  that 
the global processor can process the measurements  in a decentralized  fashion 
to get the advantages of both alternatives. However, many  sensoring  systems 
have built-in  filters. 
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Figure 8.10. The concepts of centralized and decentralized filtering. 

8.8.1. The  information  filter 

To understand  the relation between centralized and de-centralized filtering, 
the information filter formulation of the Kalman filter is useful. 

Linear regression models are special cases of the signal model (8.32) with 
At = I and Ct = p:. When  deriving recursive versions of the least  squares 
solution, we started with  formulas like (see Section 5.B) 

After noticing that  the  matrix inversion requires  many  operations, we used 
the  matrix inversion lemma to derive Kalman filter like equations, where no 
matrix inversion is needed (for scalar y). 

Here we will go the  other way around. We have a Kalman  filter, and we are 
attracted by the simplicity of the  time  update of P-' = R: above. To keep 
the efficiency of avoiding a matrix inversion, let us introduce  the  transformed 
state vector 

tlt 

Here, a can  be  interpreted as the vector ft in  least  squares above. That is, the 
state  estimate is never actually  computed. 
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Algorithm 8.9 The  information filter 

Introduce two auxiliary  matrices to simplify notation 

The equations for the covariance update follow from the  matrix inversion 
lemma  applied to  the  Kalman filter  equations. Note that  the measurement 
update here is trivial, while the  main  computational  burden comes from  the 
time update.  This is  in contrast to  the Kalman  filter. 
Comments: 

0 CTR,'Ct is the information  in a new measurement,  and C?RL1yt is a 
sufficient statistic for updating  the  estimate.  The  interpretation is that 
P-' contains the information  contained  in  all  past  measurements. The 
time  update implies a forgetting of information. 

tlt 

0 Note that this is one occasion where it is important  to factorize the  state 
noise covariance, so that Qt is non-singular. In most other  applications, 
the  term B,,tvt can be replaced  with U t  with  (singular) covariance matrix 
Qt = Bv,tQtBct. 

Main  advantages of the information  filter: 

0 Very  vague prior knowledge of the  state can now be  expressed  as P;' = 
0. 

0 The  Kalman filter  requires an ny X ny matrix  to  be inverted (ny = dim y), 
while the information  filter  requires an n, X n, matrix  to  be inverted. In 
navigation  applications, the  number of state noise inputs may be  quite 
small (3, say), while the  number of outputs can  be large. 
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0 A large measurement vector with block diagonal covariance Rt may be 
processed sequentially  in the Kalman  filter, as shown in Section 8.6.4 
so that  the matrices to  be inverted are considerably smaller than ny. 
There is a corresponding  result for the information filter. If Qt is block 
diagonal, the  time  update  can  be processed sequentially; see Anderson 
and Moore (1979) (pp. 146-147). 

8.8.2.  Centralized  fusion 

Much of the  beauty of the  Kalman filter theory is the powerful state space 
model. A large set of measurements is simply collected in  one  measurement 
equation, 

The only problem that might occur is that  the sensors are working in different 
state coordinates.  One  example is target  tracking, where the sensors might 
give positions in Cartesian  or  polar  coordinates,  or  perhaps only bearing. This 
is indeed an extended  Kalman  filtering  problem; see Section 8.9. 

8.8.3.  The general fusion  formula 

If there  are two independent  state  estimates 2' and i tz ,  with covariance ma- 
trices P' and P' respectively, fusion of these pieces of information is straight- 
forward: 

2 =P ( ( P ' ) - W +  (P2)-'22) (8.100) 

P = ( ( P y  + ( P Z ) - y .  (8.101) 

It is not difficult to show that  this is the minimum variance estimator.  The 
Kalman filter formulation of this fusion is somewhat awkwardly described by 
the  state space model 

ZtS1 = ut, Cov(vt) = col 

($ = (:> xt + (:;) , Cov(ei) = Pi. 

TO verify it, use the information filter. The infinite state variance gives P;;,, = 
0 for all t .  The measurement update becomes 

P$' = 0 + c T R -1 c = (Pit)-l + (PZt)-l. 
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8.8.4. Decentralized fusion 

Suppose we get estimates  from two Kalman  filters working with the same  state 
vector. The  total  state space  model for the decentralized filters is 

The diagonal  forms of A,  B and C imply: 

1. The  updates of the  estimates  can  be done  separately, and hence decen- 
tralized. 

2. The  state  estimates will be  independent. 

Thus, because of independence the general fusion  formula (8.100) applies. The 
state space model for decentralized filters and  the fusion  filter is now 

(::1::) X t + l  = (? 0 it 0 0  ") p )  + (7 j t  ") (1) 
0 0 1  

C O V ( V ~ )  =Q, COV(V:) = Q, COV(V;) = 001. 

That is, the  Kalman filter applied to this  state space  model provides the 
fusioned state  estimate as the  third sub-vector of the augmented state vector. 

The only problem in this formulation is that we have lost  information. 
The decentralized filters do not use the fact that they  are  estimating  the 
same  system, which have only one state noise. It can  be shown that  the 
covariance matrix will become too small,  compared to  that which the  Kalman 
filter provides for the model 

(8.103) 

To obtain  the  optimal  state  estimate, given the measurements and  the 
state space  model, we need to invert the Kalman filter and recover the raw 
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information  in  the  measurements. One way to  do  this is to ask  all  decentralized 
filters for the  Kalman filter transfer  functions itlt = Ht(q)y t ,  and  then  apply 
inverse filtering. It should be noted that  the inverse Kalman filter is likely to  be 
high-pass, and  thus amplifying numerical  errors. Perhaps a better  alternative 
is as follows. As indicated,  it is the information  in the measurements,  not the 
measurements themselves that  are needed. Sufficient statistics  are provided 
by the information  filter; see Section 8.8.1. We recapitulate the measurement 
update for convenience: 

&tit =+l + c, R, Yt 
T -1 

where Gtlt = ?$'Qt. Since the measurement  error covariance in (8.103) is 
block diagonal, the  time  update  can  be  split  into two parts 

&tit =+l + <C,','(W Yt + m T ( R t >  Yt, 
PG1 =P$', + (C;)T(@)-lc; + ( C ; ) T ( R y C ; .  

&& + ( c ; ) T ( R y y :  

(Piit)-l =(P;lt-l)-l + (c;)T(R:)-lc;. 

1 -1 1 2 -1 2 

Each  Kalman  filter,  interpreted as information  filters,  has  computed a mea- 
surement  update 

By backward computations, we can now  recover the information  in each mea- 
surement, expressed below in the available Kalman filter quantities: 

i -1 Yt i =h$ - && = (P&-li:it - (P&l) q - 1  
-1 -i 

( C y ( R ; ) - l c ;  =(P&-l - (P,"lt-l)-l. 

The findings are summarized and generalized to several sensors in the algo- 
rithm below. 

Algorithm 8.70 Decentralized  filtering 
Given the filter and prediction  quantities  from m Kalman  filters working on 
the  same  state space  model, the  optimal sensor fusion is given by the usual 
time  update  and  the following measurement update: 

m 
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The price paid for the decentralized structure is heavy signaling and many 
matrix inversions. Also for this  approach,  there might be numerical  prob- 
lems, since differences of terms of the  same  order  are to be  computed.  These 
differences correspond to a high-pass filter. 

8.9. The extended  Kalman  filter 

A  typical non-linear state space  model  with  discrete time observations is: 

(8.104) 
(8.105) 

Here and in the sequel, T will denote  the sampling  interval when used as 
an  argument, while it  means matrix  transpose when used as a superscript. 
The measurement and  time  update  are  treated separately. An initialization 
procedure is outlined in the simulation section. 

8.9.1. Measurement update 

Linearization 

The most straightforward  approach to linearize (8.105) is by using a Taylor 
expansion: 

H k T  

With a translation of the observation, we are approximately back to  the linear 
case, 

Y k T  = Y k T  - h(2kTlkT-T)  + HkT2kTlkT-T  M HkTxkT + ekT, (8.106) 

and  the  Kalman filter measurement update  can  be applied to (8.106). 

Non-linear  transformation 

An alternative to making (8.105) linear is to apply a non-linear transformation 
to  the observation. For instance, if ny = nx one can try y = h-l(y), which 
gives H,+T = I. The problem is now to transform the measurement covari- 
ance R to R. This can only be done  approximately, and Gaussianity is not 
preserved. This is illustrated  with an example. 
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Example 8.14 Target tracking:  output  transformation 

In  radar applications,  range r and bearing I3 to  the object  are  measured, 
while these  co-ordinates are not suitable to keep in the  state vector. The 
uncertainty of range and bearing  measurements is contained  in the variances 
a: and a;. The  measurements in  polar  coordinates  can  be  transformed  into 
Cartesian  position by 

The covariance matrix R of the measurement  error is neatly  expressed  in Li 
and  Bar-Shalom (1993) as 

b + cos(213)  sin(213) R =  
2 sin(213) b - cos(213) 

(8.107) 

(8.108) 

Indeed,  this is an approximation, but it is accurate for rai/or < 0.4, which  is 
the case normally. 

8.9.2. Time update 

There  are basically two alternatives  in  passing  from a continuous  non-linear 
model to a  discrete  linear one: first  linearizing and  then discretizing;  or the 
other way around. An important aspect is to quantify the linearization  error, 
which can  be  included  in the bias  error  (model  mismatch).  The conversion of 
state noise from continuous to discrete time is mostly a philosophical  problem, 
since the alternatives at  hand will  give about  the  same performance.  In this 
section, the discrete  time noise  will be  characterized by its  assumed covariance 
matrix Q ,  and Section 8.9.4  will discuss different alternatives how to  compute 
it from Q. 

Discretized  linearization 

A Taylor expansion of each component of the  state in (8.104) around  the 
current  estimate 2 yields 

1 
2 

& =f@) + fi'(2)(. - 2 )  + -(. - 2 ) T j ; ( [ ) ( Z  - 2 )  + Vi,$, (8.109) 
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where E is a point  in the neighborhood of z and 2. Here f l  denotes the 
derivative of the  ith row of f with  respect to  the  state vector z, and f: is 
similarly the second derivative. We will not investigate  transformations of the 
state noise yet. It will be  assumed that  the discrete time  counterpart  has a 
covariance matrix Q. 

Example 8.75 Target tracking:  coordinated turns 

In  Example 8.3, the dynamics for the  state vector (z('), d 2 ) ,  W('), d 2 ) ,  w ) ~  
is given  by: 

(8.110) 

This choice of state is natural when considering so called coordinated  turns, 
where turn  rate W is more or less  piecewise constant. The derivative  in the 
Taylor expansion (8.109) is 

0 0 1  0 0 
0 0 0  1 

f L ( x ) =  [ 0 0 0 -; ;+l). 
o o w  
0 0 0  0 

(8.111) 

This is the solution of (8.109) found by integration  from t to t+T, and assuming 
xt = 2 .  With  the  state vector (z('), d 2 ) ,  W, h, w ) ~ ,  the  state dynamics become: 

(8.112) 
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The derivative  in the Taylor expansion (8.109) is now 

0 0 cos(h)  -wsin(h) 0 

0 0 sin(h)  vcos(h) 0 

0 0 

0 0  0 0 1 

0 0  0 0 0 

(8.113) 

From standard  theory  on sampled  systems (see for instance  Kailath  (1980)) 
the continuous  time  system (8.109), neglecting the second order  rest term,  has 
the discrete time  counterpart 

(8.114) 

The  time discrete  Kalman filter can now be applied to  this  and (8.105) to 
provide a version of one of the wellknown Extended  Kalman  Filters (here called 
EKF 1) with  time  update: 

(8.115) 

(8.116) 

This will be referred to as  the discretized  linearization approach. 

Linearized  discretization 

A different and more accurate  approach is to first discretize (8.104). In some 
rare cases, of which tracking  with  constant turn  rate is one example, the  state 
space model can be discretized exactly by solving the sampling  formula 

xt+T =xt + lt+T f ( x ( 7 ) ) d r  (8.117) 

analytically. The solution  can be  written 

xt+T =g(x t ) -  (8.118) 

If this is not possible to  do analytically, we can get a good approximation of 
an exact  sampling by numerical  integration. This  can  be implemented using 
the discretized linearization  approach  in the following way. Suppose we have 
a function [X, P1 =tu(x,P ,T)  for the  time  update.  Then  the fast  sampling 
method,  in MATLABTM formalism, 
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f o r  i=l:M; 
[x,PI=tu(x,P,T/M); 

end ; 

provides a more accurate  time  update for the  state.  This is known as  the 
iterated Kalman jilter. In  the limit, we can  expect that  the resulting state 
update converges to g(x) .  An  advantage  with  numerical  integration is that it 
provides a natural  approximation of the  state noise. 

Example 8.76 Target tracking:  coordinated turns and exact sampling 

Consider the tracking  example  with xt = (Xt (1) , xt (2) , ut, ht,  The  ana- 
lytical  solution of (8.117) using (8.112) is 

(8.119) 

The  alternate  state coordinates X = (xt (1) , xt (2) , , ut (2) , wt)T give, with (8.110) 
in (8.117), 

V (1) 
ut 

(2) 
(2) - (2) + -(l - cos(wtT)) + - sin(wtT) 

W t  
xt+T -xt Wt 

v$)T =vi1) cos(wtT) - vi2) sin(wtT) 

‘t+T (2) -‘t - sin(wtT) + vi2) cos(wtT) 

(8.120) 

These  calculations are  quite  straightforward to compute using symbolic com- 
putation programs, such as MapleTM or MathematicaTM. 

A component-wise Taylor expansion around a point 2 gives 

1 
=g(i)(k)  + (g(i))’(2)(xt - 2 )  + z(xt - 2 )  T ( g  ( i )  ) / I  (t)(xt  - 2 ) .  (8.121) 
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Applying the  time discrete  Kalman filter to (8.121) and (8.106), and neglecting 
the second order Taylor term in the covariance matrix  update, we get the 
second version of the  extended  Kalman filter (EKF  2),  with  time  update: 

This will be referred to as the linearized discretization approach,  because we 
have linearized the exact time  update of the  state for updating  its covariance 
matrix. 

One further  alternative is to include the second order Taylor term in the 
state  time  update. Assuming a Gaussian  distribution of Q t ,  a second order 
covariance update is also possible (see equation (3-33) in Bar-Shalom and 
Fortmann  (1988)).  The component-wise time  update is given  by (EKF 3): 

(8.124) 

(8.125) 

(8.126) 

8.9.3. Linearization  error 

The error we make when going from (8.109) to (8.114) or from (8.118) to 
(8.121) depends only upon the size of (x - 2 ) T ( f ( i ) ) ” ( J ) ( ~  - 2 )  and, for the 
discrete case, (X - 2 ) T ( g ( z ) ) ” ( ( ) ( x  - 2 ) ,  respectively. This  error  propagates 
to  the covariance matrix  update  and for discretized linearization also to  the 
state  update.  This observation implies that we can use the same  analysis for 
linearized discretization and discretized linearization. The Hessian ( f i ) ”  of 
component i of f ( ~ )  will be used for notational convenience, but  the  same ex- 
pressions holds for (Si)” .  Let &+T = Z ~ + T  - denote the  state prediction 
error.  Then we have 

Care  must be  taken when comparing different state vectors  because 11x-2112 
is not an invariant  measure of state  error in different coordinate  systems. 

Example 8.7 7 Target tracking: best  state  coordinates 

In  target  tracking  with  coordinated  turns, we want to determine which of 
the following two coordinate  systems is likely to give the smallest  linearization 
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error: 

For notational simplicity, we will drop  the  time index  in this example. For 
these two cases, the  state dynamics are given  by 

fcv(z)  =(v(1), ?A2), -wv(2), WV(1), 0)T 

fpv(x) =(v cos(h), v sin(h), 0, W, o ) ~ ,  

respectively. 

Suppose the  initial  state  error is expressed in ~ ~ 5 , , ~ ~ ~  = (5(1))2 + (53(2))2 + 
+ (V(2) )2  + 6’. The problem is that  the error  in  heading  angle is nu- 

merically much smaller than in velocity. We need to find the scaling matrix 
such that I l 5 & , I I ~  is a comparable  error. Using 

we have 

M ( W  - c)2 + v2(h - L)? 

The  approximation is accurate for angular  errors less than, say, 40’ and relative 
velocity errors less than, say, 10%. Thus, a weighting matrix 

JP, = diag (1,1,1, v, 1) 

should be used in (8.127) for polar velocity and  the  identity  matrix J,, for 
Cartesian velocity. 

The error in linearizing state variable i is 
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The  total error is then 

(8.129) 
i=l 

The above calculations show that if  we start  with  the  same  initial  error in two 
different state  coordinate systems, (8.128) quantizes the linearization  error, 
which can be  upper  bounded by taking the Frobenius  norm  instead of two- 
norm,  on how large the error  in the  time  update of the  extended  Kalman filter 
can  be. 

The remaining  task is to give explicit and exact expressions of the rest 
terms in the Taylor expansion. The following results  are  taken from  Gustafsson 
and Isaksson (1996). For discretized linearization, the Frobenius  norm of the 
Hessian for the  state  transition function f ( x )  is 

i=l 

for coordinates (dl), d 2 ) ,  d’), d 2 ) ,  u ) ~ ,  and 

for coordinates (&I, d 2 ) ,  v, h, w ) ~ .  Here we have scaled the result  with T2 to 
get the  integrated  error  during one sampling  period, so as  to  be able to compare 
it  with the  results below.  For linearized discretization, the corresponding 
norms are 

5 c II(g,$))”Il$ M 4T2 + T4 (1 + v2) (8.130) 
i=l 

1 
240 12600  1088640 

( U T ) 6  + 0 ( ( U T ) 8 )  
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and 

(8.131) 

1 
240 12600  1088640 ( W T y  + 0 ( ( W T ) 8 )  

The  approximation here is that w2 is neglected compared to 471. The proof is 
straightforward,  but  the use of symbolic computation  programs as Maple or 
Mathematica is recommended. 

Note first that linearized discretization gives an additive  extra  term  that 
grows with  the sampling  interval, but vanishes for small  sampling  intervals, 
compared to discretized linearization.  Note also that 

That is, the continuous  time  result is consistent  with the discrete time result. 
We can thus conclude the following: 

The formulas imply an upper  bound  on the rest  term  that is neglected 
in the  EKF.  Other weighting matrices  can be used in the derivation to 
obtain explicit expressions for  how  e.g. an initial  position  error influences 
the  time  update.  This case, where J = diag(1, 1,0,0,0), is particularly 
interesting,  because now both weighting matrices are  exact,  and no ap- 
proximation will be involved. 
The Frobenius  error for Cartesian velocity has an  extra  term v2T4 com- 
pared to  the one for polar velocity.  For T = 3 and W = 0 this implies 
twice as large a bound. For W = 0, the bounds converge as T + 00. 
We can  summarize the  results in the plot  in  Figure 8.11 illustrating  the 
ratio of (8.130) and (8.131) for W = 0 and  three different velocities. As 
noted above, the  asymptotes  are 4 and 1, respectively. Note the huge 
peak  around T M 0.1.  For T = 5, Cartesian velocity is only 50% worse. 

8.9.4. Discretization of state noise 

The  state noise in (8.104) has  hitherto been neglected. In  this section, we 
discuss different ideas  on how to define the  state noise Q in the  EKF. 
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Figure 8.1 1. Ratio of the  upper  bounds (8.130) and (8.131)  versus  sampling  interval. Carte- 
sian  velocity  has  a  larger upper  bound for all sampling intervals. 

There  are basically five different alternatives for computing a time discrete 
state noise covariance from a time continuous one. Using one of the  alternate 
models 

we might try 

(8.132) 

(8.133) 

(8.134) 
(8.135) 

(8.136) 

All expressions are normalized with T ,  so that one and  the  same Q  can  be 
used  for all of the sampling intervals. 

These  methods  correspond to more  or less ad hoc assumptions  on  the  state 
noise  for modeling the manoeuvres: 

a. ut is continuous  white noise with variance Q. 
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Figure 8.12. Examples of assumptions  on the  state noise. The arrow denotes  impulses  in 
continuous  time and pulses  in  discrete  time. 

b. vt = vk is a  stochastic  variable which  is constant  in each sample  interval 
with  variance Q/T. That is, each manoeuvre is distributed over the 
whole sample  interval. 

c. vt is a sequence of Dirac  impulses  active  immediately  after a sample is 
taken. Loosely speaking, we assume k = f(x) + Ck T J ~ B ~ T - ~  where T J ~  is 
discrete  white noise with  variance TQ. 

d. vt is white noise such that  its  total influence during one sample  interval is 
TQ. 

e. vt is a  discrete  white noise sequence with  variance TQ. That is, we assume 
that all manoeuvres  occur  suddenly  immediately  after a sample  time, so 
ZtS1 = S b t  + U t ) .  

The first two approaches  require  a  linear time invariant  model for the  state 
noise propagation to be exact.  Figure 8.12  shows examples of noise realizations 
corresponding to assumptions a-c. 

It is impossible to say a priori which assumption is the most logical one. In- 
stead, one should  investigate the  alternatives (8.132)-(8.136) by Monte  Carlo 
simulations and determine the  importance of this choice  for a certain  trajec- 
tory. 
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8.10. Whiteness based change detection using  the 
Kalman  filter 

The simplest form of change detection for state space  model is to apply one 
of the  distance measures and  stopping rules suggested in Chapter 3, to  the 
normalized innovation, which takes the place as a signal. The principle is 
illustrated in Figure 8.13. 

%It-l 
Ut c 

W 

KF 
E t  

Yt 
c CUSUM c Alarm 

W Pt 

4 

Figure 8.1 3. Change  detection as a whiteness  innovation  test  (here  CUSUM) for the  Kalman 
filter,  where the alarm  feedback  controls the  adaptation gain. 

The distance  measure st is one of the following: 

0 Normalized innovations 

S t  = st-1/2&t. (8.137) 

For vector valued measurements and residuals, we use the  sum 

S t  = -l,,S, T -1/2&,, 
& 

(8.138) 

which will be N(0, l )  distributed  under Ho. Here l,, is a vector with ny 
unit elements. 

0 The  squared normalized innovations 

st = Et S, E t  - ny. T -1 (8.139) 

The  interpretation here is that we compare the observed error sizes with  the 
predicted ones (St) from  prior  information only. A result along these lines is 
presented in Bakhache and Nikiforov (1999) for GPS navigation. This idea 
is used explicitely for comparing confidence intervals of predictions and prior 
model knowledge in Zolghadri (1996) to detect filter divergence. Generally, an 
important role of the whiteness test is to monitor divergence, and  this might 
be a stand-alone  application. 

The  advantage of (8.139) is that changes which increase the variance with- 
out affecting the mean  can  be  detected as well. The disadvantage of (8.139) 
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Figure 8.14. Different ways to monitor the innovations  from a Kalman filter. First,  the two 
innovations are shown.  Second, the normalized square (8.139) (without  subtraction of nl).  
Third,  the  test  statistics in the CUSUM test using the  sum of innovations as input. 

is the sensitivity to noise scalings. It is well known that  the  state estimates 
are not sensitive to scalings, but  the covariances are: 

The usual  requirement that  the distance  measure st is zero mean  during non- 
faulty  operation is thus sensitive to scalings. 

After an  alarm,  an  appropriate  action is to increase the process noise  co- 
variance matrix momentarily, for instance by multiplying  it  with a scalar  factor 
Q. 

Example 8.78 Target tracking: whiteness  test 

Consider the  target tracking  example.  Figure  8.15(a) shows the  trajectory 
and  estimate from a Kalman filter. Figure 8.14 visualizes the size in different 
ways. Clearly, the means of the innovations (upper  plot)  are  indicators of 
manoeuvre  detection, at least  after the transient  has  faded away around  sample 
25. The normalized versions from (8.139) also become large  in the manoeuvre. 
The  test  statistics  from  the CUSUM test using the innovations as  input  are 
shown in the lower plot. It is quite easy here to  tune  the threshold (and  the 
drift)  to get reliable change detection.  Manoeuvre  detection  enables improved 
tracking,  as seen in  Figure  8.15(b). 
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Figure 8.15. (a) Tracking using a Kalman filter, and (b) where a residual  whiteness test is 
used. The CUSUM parameters  are a threshold of 5 and a drift of 0.25. The  test  statistic is 
shown as the last subplot in Figure 8.14. 

8.1 1. Estimation of covariances  in  state space 
models 

A successful design hinges on good tuning of the process noise covariance ma- 
trix Q. Several attempts have been  presented to estimate Q (Bohlin, 1976; 
Gutman  and Velger,  1990; Isaksson, 1988; Valappila and Georgakisa, 2000; 
Waller and Sax&, 2000), but as we shall see, there is a fundamental observ- 
ability problem. At least if both Q and R are  to  be  estimated. 

A state space model corresponds to a filter (or differential equation). For 
a model with  scalar process and measurement noise, we can  formulate an 
estimation  problem  from 

where vt and et are  independent  white noises with  unit variances. Form the 
vectors Y = (y1 ,y2  ,... , Y N ) ~ ,  V = (211,212 ,..., w N ) ~ ,  E = (el,e2 ,... ,eN)T 
and use the impulse  response  matrices of the  state space  model  (or filter 
model) : 

Y = HvV + H e E .  
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Assuming Gaussian noise, the  distribution for the measurements is given by 

Y E N(0, H,H:a; + H,H:a:). 

P(uv,ue) 

The maximum likelihood estimate of the  parameters is thus 

arg min Y P (o,, ae)Y + logdet P(u,, a,). T -1 
(Tu j u e  

For Kalman  filtering, only the  ratio u,/u, is of importance,  and we can use, 
for instance, o, = 1. 

Example 8.19 Covariance  estimation in state space  models 

Consider a one-dimensional motion  model 

The  true  parameters in the simulation are N = 36, a$ = 1 and a,O = 3. 

Figure  8.16(a) shows that  the likelihood gets a well specified minimum. 
Note, however, that  the likelihood will not become convex (compare to Figure 
1.21(a)), so the most efficient standard tools for optimization  cannot  be used. 
Here we used a global search with a point  grid  approach. 

For change detection, we need good values of both U, and U,. The joint 
likelihood for data given both a,, U, is illustrated  in  Figure  8.16(b).  Note  here 
that  the influence of o, is minor, and  optimization is not well conditioned. This 
means that  the  estimates  are  far from the  true values in both approaches. 

As a final remark,  the numerical efficiency of evaluating the likelihood given 
here is awkward for large number of data, since large  impulse  response  matrices 
of dimension N X N has to  be formed, and inversions and  determinants of their 
squares have to  be  computed. More efficient implementation  can  be derived 
in the frequency domain by applying Parseval’s formula to  the likelihood. 

8.1 2. Applications 

8.1 2.1. DC motor 

Consider the DC  motor  lab  experiment  described  in Sections 2.5.1 and 2.7.1. 
It was examined  with  respect to system changes in Section 5.10.2. Here we 
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Figure 8.16. Likelihood for ou when oe = 1 is assumed (a),  and likelihood for ou, oe (b). 

apply the  Kalman filter  with a whiteness  residual test, where the goal is to 
detect the  torque  disturbances while being  insensitive to system changes. The 
test cases in  Table 2.1 are  considered. The squared  residuals  are fed to  the 
CUSUM test  with h = 10 and v = 2. The  state space  model is  given in (2.2). 

From  Figure 8.17 we conclude the following: 

0 The design of the CUSUM test is much simpler  here than in the para- 
metric case. The basic reason is that  state changes are simpler to detect 
than  parameter changes. 

0 We get alarms  at all  faults,  both  system changes and disturbances. 

0 It does not seem possible to solve the fault  isolation  problem  reliably 
with  this  method. 

8.1 2.2. Target  tracking 

A typical  application of target  tracking is to estimate  the position of aircraft. 
A civil application is Air f i u f i c  Control (ATC), where the traffic surveillor at 
each airport  wants to get the position and predicted  positions of all  aircraft at 
a  certain  distance from the  airport.  There  are plenty of military  applications 
where, for several  reasons, the position and predicted  position of hostile  air- 
craft  are  crucial  information. There  are also a few other  applications where the 
target is not an  aircraft. See, for instance, the highway surveillance  problem 
below. 
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Figure 8.1 7. Simulation  error  using the  state space  model in (2.2) and  test  statistics from the 
CUSUM test. Nominal  system (a),  with  torque  disturbances  (b),  with change in dynamics 
(c)  and  with  both  disturbance  and change (d). 

The classical sensor for target  tracking is radar,  that  at regular sweeps 
measures  range and bearing to  the object.  Measurements  from  one flight test 
are  shown  in  Figure 8.18. 

Sensors 

The most characteristic  features of such a  target  tracking  problem  are  the 
available sensors and  the  dynamical model of the  target. Possible sensors 
include: 

0 A radar where bearing and range to  the object  are  measured. 

0 Bearing  only  sensors including  Infra-Red (IR)  and  radar  warning sys- 
tems.  The advantage of these  in  military  applications is that  they  are 
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Figure 8.18. Measurements  and  trajectory  from  dead reckoning. 

passive and do not reveal the position of the tracker. 

0 The range only information  in  a GPS should also be  mentioned  here, 
although the tracker and  target  are  the  same  objects in  navigation  ap- 
plications  as in a GPS. 

0 Camera  and  computer vision algorithms. 

0 Tracking information from other  trackers. 

Possible models are  listed in the ATC application below. 

Air Traffic  Control  (ATC) 

There  are many  sub-problems  in  target  tracking before the Kalman  filter  can 
be  applied: 

0 First, one Kalman  filter is  needed  for each aircraft. 

0 The aircraft is navigating  in  open-loop  in altitude, because altitude is 
not included  in the  state vector. The aircraft  are  supposed to follow 
their given altitude reference, where a  large  navigation  uncertainty is 
assumed. 

0 The association problem: each measurement is to be  associated  with an 
aircraft  trajectory. If this is not working, the  Kalman filters are fed with 
incorrect  measurement, belonging to another  aircraft. 

0 The  radar  detects false echoes that  are referred to as clutter. These  are 
a  problem for the association  algorithm. 
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See Bar-Shalom and  Fortmann (1988) and Blackman (1986) for more infor- 
mation. The application of the IMM algorithm  from  Chapter 10 to ATC is 
reported in Yeddanapudi et al. (1997). 

Choice of state  vector and model 

The most common model for target  tracking by fa r  is a motion  model of 
the kinds listed below. The  alternative is to use the aircraft flight dynamics, 
where the pilot input included in ut considered as being too  computationally 
intensive. Their  are a few investigations of this  approach; see, for instance, 
Koifman and Bar-Itzhack (1999). 

Proposed  dynamical models for the  target  that will be examined  here in- 
clude: 

1. A four state linear model with X = (X('), d 2 ) ,  dl), ~ ( ~ 1 ) ~ .  

2. A four state linear model with z = (z( ' ) ,~(~) ,  v('), ~ ( ~ 1 ) ~  and a time- 
varying and  state  dependent covariance matrix Q(zt) which is matched 
to  the assumption that longitudinal  acceleration is only, say, 1% of the 
lateral  acceleration (Bauschlicher et al., 1989; Efe and  Atherton, 1998). 

3. A six state linear model with X = (X('), d 2 ) ,  dl), d 2 ) ,  U ( ' ) ,  ~ ( ~ 1 ) ~ .  

4. A six state linear model with z = (&I, d 2 ) ,  v('), d 2 ) ,  U ( ' ) ,  ~ ( ~ 1 ) ~  and a 
time-varying and  state  dependent covariance matrix Q(zt). 

5. A five state non-linear model  with X = (X('), d 2 ) ,  dl), d 2 ) ,  u ) ~ ,  together 
with an extended  Kalman filter from Section 8.9. 

In  detail,  the  coordinated  turn  assumption in  2 and 4 implies that Q should 
be  computed by using qv = O.O1qw below: 

6 = arctan(d4)/J3))  

+ qw sin2(6) (qv - qw) sin(6)  cos(6) 
(qv - qw) sin(6) cos(8) qv sin2 (6) + qw cos2 (6) 

T 

The expressions for B, hold for the  assumption of piecewise constant noise 
between the sampling  instants.  Compare to equations (8.132)-(8.136). 
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Figure 8.19. Target trajectory and radar measurements. 

Example 8.20 Target tracking: choice of state  vector 

We will compare  the five different motion models above on the simulated 
target  in  Figure 8.19. The difference in  performance is not dramatic by only 
studying  the Mean Square Error  (MSE),  as seen in  Figure  8.20(a). In  fact, it 
is hard  to visually see any  systematic difference. A very careful study of the 
plots and general  experience  in  tuning this kind of filters gives the following 
well-known rules of thumb: 

0 During  a  straight  course, a four state linear  model works fine. 

0 During  manoeuvres  (as  coordinated  turns),  the  six  state  linear  model 
works better  than using four states. 

0 The five state non-linear  model  has the  potential of tracking  coordinated 
turns particularly well. 

The  total RMSE and  the corresponding adaptation gain q used to scale Q is 
given  below: 

Method 
243 330 241 301 260 RMSE 

1 2 3 4 5 

10 100 0.1 1 0.0001 4 

The  adaptation gains are not optimized. Several authors have proposed 
the use of two parallel  filters,  one  with four and  one with  six states,  and 
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Figure 8.20. Performance of different state  models for tracking the object in Figure 8.19. 
In (a)  the  mean  square  error for the different methods  are  plotted  (separated by an offset), 
and in (b) the velocity estimate is compared to  the  true value. 

a  manoeuvre  detection  algorithm to switch between them.  The  turn  rate 
model  with five states is often used  for ATC. Note however, that according to 
the examples  in Section 8.9, there  are at least  four different alternatives for 
choosing state coordinates and sampling for the  turn  rate model. 

An intuitive  explanation to  the rules of thumb above can  be derived from 
general  adaptive  filtering  properties: 

Use as  parsimonious a model  as possible! That is,  four states  during  a 
straight  course  and  more  states  otherwise. Using too  many  states  results 
in an increased variance  error. 

With sufficiently many states, all  manoeuvres  can  be seen as piecewise 
constant states,  and we are facing a  segmentation  problem rather  than 
a  tracking  problem. The five state model models coordinated turns  as  a 
piecewise constant turn  rate W .  

Highway traffic surveillance 

The traffic surveillance  system  described  here  aims at  estimating  the position 
of all  cars using data from a video camera. A snapshot from the  camera is 
shown  in  Figure 8.21. As an application  in  itself,  camera  stabilization  can  be 
done  with the use of Kalman  filters  (Kasprzak et al., 1994). 

Figure  8.22(a) shows the  measured position  from  one  track,  together  with 
Kalman  filtered  estimate using a four state linear model. Figure  8.22(b) shows 
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Figure 8.21. A helicopter hovering over a highway measures the position of all cars for 
surveillance purposes. Data  and  picture provided by Centre for Traffic Simulation  Research, 
Royal Institute of Technology, Stockholm. 

the  time difference of consecutive samples  in the east-west  direction before 
and after  filtering. Clearly, the filtered  estimates have much less  noise. It 
is interesting to note that  the uncertainty  caused by the bridge  can  also  be 
attenuated by the filter. 

The histogram of the  estimation  errors in  Figure 8.23, where the  transient 
before sample  number 20 is excluded, shows a  quite  typical  distribution for 
applications. Basically, the  estimation  errors  are Gaussian, but  the  tails  are 
heavier. This can  be  explained by data outliers.  Another  more  reasonable 
explanation is that  the estimation  error is the  sum of the  measurement  error 
and manoeuvres, and  the  latter gives rise to outliers. The conclusion from 
this  example, and many  others, is that  the measurement  errors  can  in  many 
applications  be considered as  Gaussian. This is important for the  optimality 
property of the  Kalman filter. It is also an  important conclusion for the change 
detection  algorithms to follow, since Gaussianity is a  cornerstone of many of 
these  algorithms. 

Bearings  only  target  tracking 

The use of passive bearings only sensors is so important  that it  has  become 
its own research area  (Farina, 1998). The basic  problem is identifiability. At 
each measurement  time,  the  target can  be  anywhere  along  a line. That is, 
knowledge of maximal velocity and acceleration is necessary information for 
tracking to be able to exclude  impossible  or  unrealistic  trajectories. It  turns 
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Figure 8.22. (a)  Position  from  computer vision system  and  Kalman filter estimate  (with 
an offset 10 added to  north-south  direction);  (b)  differentiated  data  in  east-west  direction 
shows that  the noise  level is significantly  decreased after filtering. 

Residual 

Figure 8.23. Distribution of the  estimation  errors  in  Figure 8.22 after  sample  number 20. 

out  that even then identifiability is not  guaranteed. It is helpful if the own 
platform is moving. There  are  papers discussing how the platform  should  be 
moving to optimize  tracking  properties. 

It is well known that for a single sensor, the use of spherical state coor- 
dinates  has an  important advantage: the observable subspace is decoupled 
from the non-observable. The disadvantage is that  the motion model must be 
non-linear. We point here at a special  application where two or  more  bearing 
only sensors are exchanging information. Since there is no problem  with ob- 
servability here, we keep the  Cartesian coordinates. If they  are synchronized, 
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Figure 8.24. Bearing measurements  and  target  trajectory  (a)  and  tracking performance (b). 

then  the best  approach is probably to  transform  the angle  measurements to 
one Cartesian  measurement. If they  are not  synchronized, then  one has to use 
an extended  Kalman  filter. The measurement  equation is then linearized  as 
follows: 

Here R is the  estimated range to  the target  and C the estimated  derivative of 
the  arctangent function. The sensor location at sampling time t is denoted Zt. 

Example 8.21 Bearings  only  tracking 

Figure  8.24(a) shows a  trajectory (going from left to right)  and how  five 
sensors  measure the bearing  (angle) to  the  object.  The sensors  are  not  syn- 
chronized at all in this  simulation.  Figure  8.24(b) shows the Kalman  filter 
estimated  position. 
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Figure 8.25. GPS satellites  in  their  orbits  around the  earth. 

8.1 2.3. GPS 

Satellite based navigation  systems have a long history. It all started  with  the 
TRANSIT project 1959-1964 which included seven satellites. The  GPS system 
used today was already  initiated 1973 and completed 1994. The American 
GPS  and Russian  alternative GLONASS both consist of  24 satellites. The 
GPS satellites cover six planes, each separated 55' at a distance of  22200 km 
from the  earth,  as  illustrated in  Figure 8.25. The orbit  time is 12 hours. 

The key to  the accuracy is a very accurate  atom clock in each satellite, 
which has a drift of less than 10-13. The clocks are,  furthermore,  calibrated 
every 12 hours when they  pass the USA. The satellites transmit a message 
(10.23 MHz) at regular and known time  instants. The message includes an 
identity  number  and  the  position of the satellite. 

Figure 8.26 illustrates the principles in two dimensions. The result  in (a) 
would be  obtained if  we knew the  time exactly, and  there is one unique  point 
where all circles intersect. If the clock is behind  true  time, we will compute 
too  short a distance to  the satellites, and we get the plot  in (b). Conversely, 
plot (c) is obtained if the clock is ahead of true time. It is obvious that by 
trial  and  error, we can find the correct time  and  the 2D position when three 
satellites are available. 

If there  are measurement  errors and  other uncertainties, we get more re- 
alistically thicker circles as in  Figure  8.26(d),  and  the  intersection becomes 
diffuse. That is, the position estimate is inaccurate. 

The  GPS receiver has a clock, but  it is not of the  same accuracy as  the 
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Figure 8.26. Computation of position  in 2D from distance  computations  in case of a perfect 
clock (a)  and where the clock bias gives rise to a common distance  error to all satellites as 
in (b) and  (c),  and finally, in the case of measurement uncertainty  (d). 

satellites. We therefore have to include its  error, the clock bias, into  the  state 
vector, whose elements of primary  interest  are: 

d l )  East-west  position [m] 
d 2 )  North-south position [m] 
z ( ~ )  Up-down position [m] 
z ( ~ )  Clock bias times velocity of light [m] 

Note the scaling of the clock bias to improve the numerical  properties  (all 
states in the same  order of magnitude). 
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Non-linear  least  squares approach 

The  time delay At of the  transmitted signal to each satellite j is computed, 
which can  be expressed as 

where R(j) is the  distance  to  and X ( j )  the position of satellite j ,  respectively, 
and c is the velocity of light. We have four unknowns, so we need at least  four 
equations. Four visible satellites give a non-linear equation  system  and  more 
than four gives an over-determined  equation  system.  These  can be solved  by 
iterative  methods,  but that is not how GPS systems  are  implemented usually. 

Linearized  least  squares approach 

Instead, we use a previous position estimate  and linearize the equations. We 
have 

The linearized measurement  equation is thus 

The first part of the regression vector C!), which will be used in a Kalman 
filter, is  given  by 
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Collecting all satellite  measurements (5  4) in one vector jjt and  the regression 
vectors in a matrix C ( x )  gives the least  squares  solution 

Zt  = (C(Ll)TC(&l)) C(&l)TYt, 

where 2t-1 is the  estimate from the previous measurements.  Note that a very 
accurate clock compensation is obtained  as a by-product  in gt (4) . 

This principle is used in some GPS algorithms. The  advantage of this 
snapshot  method is that no dynamical model of the  GPS movement is needed, 
so that no prior  information about  the application where it is used is needed. 
The drawback is that no information is obtained when less than four satellites 
are visible. 

Linearized  Kalman  filter  approach 

The  other  alternative is to use an extended  Kalman filter. The following state 
space model can be used: 

xt+l =Axt + 

A =  

‘ l O O O T ,  0 0 0 
O l O O O T ,  0 0 
0 0 1 0 0  O T , O  
0 0 0 1  0 0 O T ,  
0 0 0 0 1  0 0 0 
0 0 0 0 0  1 0  0 
0 0 0 0 0  0 1 0  

\ o o o o o  0 0 1 

The introduced extra  states  are 
d 5 )  East-west velocity [m/s] 
z ( ~ )  North-south velocity [m/s] 
z ( ~ )  Up-down velocity [m/s] 
d 8 )  Clock drift  times velocity of light  [m/s] 

Here the movement of the  GPS platform is modeled as velocity random 
walk, and  the clock drift is explicitely modeled as random walk. 

The use of a whiteness-based change detector  in  conjunction  with the  EKF 
is reported  in  Bakhache  and Nikiforov (1999). An  orbit  tracking filter similar 
to  this problem is found in  Chaer  et al. (1998). Positioning  in GSM cellular 
phone  systems using range  information of the same kind as in the  GPS is 
reported in Pent  et  al. (1997). 
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Performance 

The errors  included in the noise et and  their  magnitude in  range  error  are 
listed below: 

0 Satellite trajectory  error (1 m). 

0 Satellite clock drift (3 m). 

0 Selected availability (SA) (60 m). Up to  the year of 2000, the US military 
added  a  disturbance  term to  the clock of each satellite. This  term was 
transmitted separately and coded so it was not available to civil users. 
The  disturbance was generated  as  filtered  white noise, where the  time 
variations were designed so it  takes  hours of measurements before the 
variance of average becomes significantly smaller.  One  solution to  that 
has been developed to circumvent  this  problem is to use Digerential 
GPS  (DGPS).  Here  fixed transmitters in  base stations  on  the  ground 
send  out  their  estimate of the clock bias term, which can  be  estimated 
very accurately due  to  the position of the base station being known 
exactly. Such base stations will probably  be used  even in the  future  to 
improve positioning accuracy. 

0 Refraction  in the  troposphere (2 m)  and ionosphere (2 m),  and reflections 
(1 m). 

0 Measurement noise in the receiver (2 m). 

All  in all,  these  error sources add  up  to a horizontal  error of 10 m (100 m with 
the SA code). Using differential GPS,  the accuracy is a couple of meters. ATC 
systems  usually have at least  one  base station  at each airport. It is probably 
a good  guess that  the next  generation mobile phones will  have built-in GPS, 
where the  operators’ base stations  act  as  GPS  base  stations  as well. 

Long term averaging can  bring down the accuracy to decimeters, and by 
using phase  information of the carrier between two measurement  points we 
come down to accuracy  in terms of millimeters. 
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9.1. Basics 

This  chapter is devoted to  the  problem of detecting  additive  abrupt changes 
in  linear state space models . Sensor and  actuator  faults  as  a  sudden offset 
or drift  can all be modeled  as  additive changes . In  addition.  disturbances  are 
traditionally  modeled  as  additive state changes . The likelihood ratio formula- 
tion provides a  general framework for detecting such changes. and  to isolate 
the  fault/disturbance . 
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The  state space model studied  in  this  chapter is 

xt+1 = A m  + B,,tut + &,tVt + ut-kBe,tv (9.1) 
Yt  =Gxt + et + Dupt  + ut-rcDe,tv. (9.2) 

The  additive change (fault) v enters at  time L as a step (ut denotes the  step 
function). Here ut,  et and 20 are assumed to  be  independent Gaussian vari- 
ables: 

ut Q t )  

et N O ,  Rt) 
zo &)- 

Furthermore,  they  are  assumed to be  mutually  independent.  The  state  change 
v occurs at  the unknown time  instant L, and S(j) is the pulse function that is 
one if j = 0 and zero otherwise. The set of measurements y1, y2, . . . , YN, each 
of dimension p ,  will be  denoted yN and y F  denotes the set yt, yt+l,. . . , Y N .  

This formulation of the change  detection  problem  can  be  interpreted as 
an input observer or input  estimator approach. A similar  model is used in 
Chapter 11. 

To motivate the ideas of this  chapter, let us consider the augmented  state 
space  model,  assuming a change at  time t = k (compare  with  Examples 6.6 
and 8.2.4): 

That is, at time t = k the  parameter value is changed as a step from Bt = 0 
for t < k to Qt = v for t 2 k .  It should be noted that v and Q both  denote  the 
magnitude of the  additive change, but  the former is seen as  an  input  and  the 
latter  as a state,  or  parameter. 

The  advantage of the re-parameterization is that we can  apply  the  Kalman 
filter directly, with or without  change  detection,  and we have an explicit fault 
state  that can be used  for fault isolation. The  Kalman filter applied to  the 
augmented state space model gives a parameter  estimator 

&+l,, = et,,-, + m y t  - Ct%lt--l - D6&1 - Du,tUt), 
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Figure 9.1. Two parallel  filters.  One is based on  the hypothesis no change ( H o )  and  the 
other  on a change at  time k (H1 ( k ) ) .  By including  more  hypothesis for k ,  a filter bank is 
obtained. 

Here we have split the  Kalman filter  quantities  as 

so the covariance matrix of the change  (fault  component) is P/'. Note that 
K! = 0 before the change. The following alternatives  directly  appear: 

0 Kalman  filter-based  adaptive  filtering, where the  state noise covariance 

is  used to track 19. 

0 Whiteness-based  residual test, where the Kalman  filter  innovations  are 
used and  the  state covariance block Q," is momentarily increased when 
a change is detected. 

0 A parallel  filter structure  as in  Figure 9.1. The hypothesis  test  can  be 
accomplished by one of the distance  measures  in Chapter 6. 

This  chapter is devoted to customized  approaches for detecting and ex- 
plicitely estimating  the change v. The approach is based on Likelihood Ratio 
(LR)  tests using Generalized  Likelihood Ratio ( G L R )  or Marginalized Likeli- 
hood Ratio (MLR).  The derivation of LR is straightforward  from (9.3), but  the 
special structure of the  state space  model  can  be used to derive lower order 
filters. The basic idea is that  the residuals  from  a  Kalman  filter,  assuming no 
change,  can be expressed as  a  linear regression. 



346 Chanae detection based on likelihood  ratios 

Linear  regression  formulation 
The  nominal  Kalman filter,  assuming no abrupt change, is applied, 
and  the additive change is expressed  as  a  linear regression with the 
innovations  as  measurements  with the following notation: 

Kalman  filter + Q - l ,  E t  

Auxiliary  recursion + pt, pt 
Residual regression E t  = 'p?. + et 
Compensation xt X t l t - l  + P P .  

The  third equation  indicates that we can use RLS to estimate the change 
v, and  the  fourth equation shows how to solve the compensation problem  after 
detection of change and  estimation (isolation) of v. 

Chapter 10 gives an  alternative  approach  to  this problem, where the change 
is not explicitely  parameterized. 

9.2. The  likelihood approach 

Some modifications of the  Kalman filter  equations are given, and  the likelihood 
ratio is defined for the  problem  at  hand. 

9.2.1. Notation 

The  Kalman filter  equations for a change v E N(0, Pv) at a given time k follows 
directly from (8.34)-(8.37) - by considering v as  an  extra  state noise component 
V t  = 6t-,p, with Qt = 6t-kPv. 

The addressed  problem is to modify these  equations to  the case where k and 
v are  unknown.  The change instant k is of primary  interest,  but  good state 
estimates may also be desired. 
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In  GLR, v is an unknown  constant, while it is considered as  a  stochastic 
variable in the MLR test. To start  with,  the change will be  assumed to have 
a  Gaussian  prior.  Later  on,  a  non-informative  prior will be used  which  is 
sometimes called a  prior of ignorance; see Lehmann (1991). This prior is 
characterized by a  constant  density  function, p(v) = C. 

Example 9.1 Modeling a change in the mean 

We can use Eq. (9.1) to detect abrupt changes in the  mean of a sequence of 
stochastic variables by letting At = 1, C, = 1, Qt = 0, Bu,t = 0. Furthermore, 
if the mean before the change is supposed to be 0, a case often considered 
in the  literature (see Basseville and Nikiforov (1993)), we have zo = 0 and 
no = 0. 

It is worth  mentioning, that parametric models from Part I11 can fit this 
framework as well. 

Example 9.2 Modeling a change in an ARX model 

By letting At = I and Ct = (yt-1, yt-2, . . . , ut-1, ut-2, . . . ), a  special case 
of equation  (9.1) is obtained. We then have a  linear regression description of 
an ARX model, where xt is the (time-varying) parameter vector and C, the 
regressors. In  this way,  we can  detect abrupt changes in the  transfer function 
of ARX models. Note that  the change  occurs  in the dynamics of the system 
in  this case, and not in the system’s state. 

9.2.2. likelihood 

The likelihood for the  measurements  up  to  time N given the change v at  time 
k is denoted p ( y N I k ,  v). The  same  notation is  used  for the conditional  density 
function for yN, given k ,  v. For simplicity, k = N is agreed to mean no change. 
There  are two principally different possibilities to estimate the change time L: 

0 Joint ML estimate of k and v, 

Here arg m a ~ k ~ [ ~ , ~ l , ~ p ( y ~ I k ,  v) means the maximizing arguments of the 
likelihood p ( y N I k ,  v) where k is restricted to [l, NI. 
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0 The ML estimate of just k using marginalization of the conditional  den- 
sity  function p ( y N I k ,  v): 

The likelihood for data given just k in (9.6) is the  starting point  in this  ap- 
proach. 

A tool  in  the derivations is the so-called flat prior, of the form p(v) = C, 
which is not a proper  density  function. See Section 7.3.3 for a discussion and 
two examples for the  parametric case, whose conclusions are applicable  here 
as well. 

9.2.3. likelihood ratio 

In  the context of hypothesis  testing, the likelihood ratios  rather  than  the likeli- 
hoods are used. The LR test is a multiple  hypotheses test, where the different 
change hypotheses are compared to  the no  change  hypothesis pairwise. In 
the  LR  test,  the change magnitude is assumed to be known. The hypotheses 
under  consideration are 

H0 : no  change 
H l ( k ,  v) : a change of magnitude v at time k .  

The  test is as follows. Introduce the log likelihood ratio for the hypotheses as 
the  test  statistic: 

The factor 2 is just for notational convenience. We use the convention that 
H1(N, v) = Ho, so again, k = N means  no change. Then  the  LR  estimate  can 
be expressed as 

when v is known. Exactly  as in (9.5) and (9.7), we have two possibilities of 
how to eliminate the unknown nuisance parameter v. Double maximization 
gives the GLR test, proposed for change detection  in Willsky and  Jones (1976), 
and marginalization the MLR test, proposed in  Gustafsson (1996). 
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9.3. The GLR test 

Why not just use the  augmented  state space  model  (9.3) and  the  Kalman filter 
equations in (9.4)? It would be  straightforward to evaluate the likelihood ratios 
in (9.8) for each possible k .  The answer is as follows: 

The GLR algorithm is mainly  a computational  tool  that  splits 
the  Kalman filter for the full  order  model  (9.3)  into  a low order 
Kalman  filter (which is perhaps already designed and  running) 
and  a cascade coupled filter  bank  with  least  squares  filters. I 

The GLR  test  proposed  in Willsky and Jones (1976) utilizes  this  approach. 
GLR’s  general  applicability  has  contributed to  it now being  a standard tool 
in change detection. As summarized  in  Kerr  (1987),  GLR  has  an  appealing 
analytic  framework, is  widely understood by many  researchers and is readily 
applicable to systems  already  utilizing  a  Kalman  filter.  Another  advantage 
with GLR is that it  partially solves the isolation problem  in  fault  detection, 
i.e. to locate the physical cause of the change. In Kerr  (1987),  a  number of 
drawbacks  with  GLR is pointed  out  as well. Among these, we mention  prob- 
lems with choosing decision thresholds, and for some  applications an untenable 
computational  burden. 

The use of likelihood ratios  in  hypothesis  testing is motivated by the 
Neyrnan-Pearson  Lemma; see, for instance,  Theorem 3.1 in  Lehmann  (1991). 
In  the application considered here,  it says that  the likelihood ratio is the op- 
timal  test  statistic when the change  magnitude is known and  just one change 
time is considered. This is not the case here, but a sub-optimal  extension is 
immediate: the  test is computed for each possible change time,  or  a  restriction 
to a  sliding window, and if several tests indicate  a  change the most significant 
is taken  as the  estimated change time. In  GLR,  the  actual change  in the  state 
of a  linear  system is estimated from data  and  then used in the likelihood ratio. 

Starting with the likelihood ratio  in  (9.8), the GLR 
mization over k and v, 

test is a double maxi- 

where D(k)  is the  maximum likelihood estimate of v, given a change at  time 
k .  The change candidate i in the  GLR  test is accepted if 

Z~(i,fi(i)) > h. (9.10) 
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The threshold h characterizes a hypothesis test  and distinguishes the GLR 
test  from the ML method  (9.5).  Note that (9.5) is a special case of (9.10), 
where h = 0. If the zero-change hypothesis is rejected, the  state  estimate  can 
easily be  compensated for the  detected change. 

The idea in the implementation of GLR  in Willsky and Jones (1976) is to 
make the dependence  on v explicit. This  task is solved in  Appendix 9.A. The 
key point is that  the innovations  from the Kalman filter (9.4) with k = N can 
be expressed as a linear regression in v, 

where Et(k) are  the innovations  from the Kalman filter if v and k were known. 
Here and in the sequel, non-indexed quantities  as E t  are  the  output from 
the nominal  Kalman  filter,  assuming  no change. The GLR  algorithm  can  be 
implemented as follows. 

Algorithm 9.7 GLR 

Given the signal model (9.1): 

0 Calculate  the innovations from the Kalman filter (9.4) assuming no change. 

0 Compute  the regressors cpt(k) using 

initialized by zeros at time t = k ;  see Lemma 9.7. Here pt is n, X 1 and 
is n, X n,. 

0 Compute  the linear regression quantities 

for each k ,  1 5 k 5 t. 
At time t = N ,  the  test  statistic is given by 
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0 A change candidate is given by k = arg  max 1 ~ ( k ,  C(k) ) .  It is accepted 
if Z~(i,fi(i)) is greater  than some threshold h (otherwise k = N )  and 
the corresponding estimate of the change  magnitude is given by C N ( ~ )  = 

n,l(i)fN(i). 

We  now make some comments  on the algorithm: 

0 It can  be shown that  the  test  statistic ZN(L, .(L)) under the null hypoth- 
esis is x2  distributed.  Thus, given the confidence level on  the  test,  the 
threshold h can be found  from standard  statistical tables.  Note that  this 
is a multiple  hypothesis test performed for each k = 1,2, .  . . , N - 1, so 
nothing  can  be said about  the  total confidence level. 

0 The regressor pt(k) is called a failure  signature  matrix in Willsky and 
Jones  (1976). 

0 The regressors are pre-computable.  Furthermore, if the  system  and  the 
Kalman filter are time-invariant, the regressor is only a function of t - k ,  
which simplifies the calculations. 

0 The formulation  in  Algorithm 9.1 is off-line. Since the  test  statistic 
involves a matrix inversion of RN,  a more efficient on-line method is as 
follows. From (9.34) and (9.37) we get 

W ) )  = f?(k)Ct(k) ,  

where t is used as  time index  instead of N .  The Recursive Least  Squares 
(RLS) scheme (see Algorithm  5.3),  can now be used to  update Ct(k)  
recursively, eliminating the  matrix inversion of Rt(k). Thus,  the best 
implementation requires t parallel RLS schemes and one Kalman filter. 

The choice of threshold is difficult. It depends not only upon  the system's 
signal-to-noise ratio,  but also on  the  actual noise  levels, as will be pointed out 
in Section 9.4.3. 

Example 9.3 DC motor:  the GLR test 

Consider the DC motor  in  Example 8.4. Assume impulsive additive  state 
changes at times 60, 80, 100 and 120. First  the angle is increased by  five 
units,  and  then decreased again. Then  the  same  fault is simulated on  angular 
velocity. That is, 

= ( 3  ,v2 = (;5) ,v3 = (3  ,v4 = (_os). 
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Figure 9.2. Test  statistic  max-L<k<t l t ( k )  for change  detection  on  a  simulated DC motor 
(first)  and  state  estimates  from  GLR  test  and  the  Kalman filter  (second  and  third).  Note, 
in particular,  the  improved angle tracking of GLR. 

Figure  9.2(a) shows how the maximum value maxt-L<k<tZt(k) of the  test 
statistics evolves in  time,  and how it exceeds the threshold level h = 10 four 
times. The delay for detection is three samples for angular change and five 
samples for velocity change. 

The GLR state  estimate  adapts to  the  true  state  as shown in  Figure  9.2(b). 
The  Kalman filter also comes back to  the  true  state,  but much more slowly. 
The change identification is not very reliable: 

Compared to  the simulated changes, these look  like random  numbers. The 
explanation is that detection is so fast that  there  are  too few data for fault 
estimation. To get good isolations, we have to wait and get considerably more 
data.  The incorrect  compensation  explains the  short  transients we can see in 
the  angular velocity estimate. 

Navigation examples and references to such are presented  in  Kerr (1987). 
As a non-standard  application, GLR is applied to noise suppression  in image 
processing in Hong and Brzakovic (1980). 
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9.4. The MLR test 

Another  alternative is to consider the change magnitude  as a stochastic nui- 
sance  parameter.  This is then eliminated not by estimation,  but by marginal- 
ixation. Marginalization is  wellknown in  estimation  theory,  and is also used in 
other  detection  problems; see, for instance, Wald (1950). The resulting  test 
will be called the Marginalixed Likelihood Ratio ( M L R )  test.  The MLR test 
applies to all cases where GLR  does, but we point  out  three  advantages  with 
using the former: 

0 Tuning. Unlike GLR,  there is no sensitive  threshold to choose in MLR. 
One  interpretation is that a reasonable  threshold  in  GLR is  chosen au- 
tomatically. 

0 Robustness  to modeling  errors. The performance of GLR  deteriorates  in 
the case of incorrectly chosen  noise variances. The noise  level in MLR  is 
allowed to be considered as  another  unknown  nuisance  parameter.  This 
approach increases the robustness of MLR. 

0 Complexity. GLR  requires  a  linearly  increasing  number of parallel  filters. 
An approximation involving a sliding window technique is proposed  in 
Willsky and Jones (1976) to  obtain a constant  number of filters,  typically 
equivalent to 10-20 parallel  filters. For  off-line processing, the MLR test 
can  be  computed  exactly  from only two filters. This implementation is 
of particularly  great  impact  in the design step. Here the false alarm  rate, 
robustness  properties and detectability of different changes can  be eval- 
uated quickly using Monte-Carlo  simulations. In  fact,  the  computation 
of one single exact  GLR  test for a  realistic data size (> 1000) is already 
far from inter-active. 

9.4.1. Relation between GLR and MLR 

In  Appendix 9.B the MLR test is derived using the quantities  from the GLR 
test  in  Algorithm 9.1. This derivation gives a nice relationship between GLR 
and MLR. In  fact,  they coincide for a  certain choice of threshold. 

Lemma 9.1 
I f  (9.1) is time invaxiant and v is unknown, then  the GLR test in Algorithm 
9.1 gives the same estimated change time as the MLR test in Theorem 9.8 as 
N - k + 00 and k + 00 if  the threshold is chosen as 

h = p log(27~) + log det RN ( k )  - py(i . )  
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when  the prior of   the   jump  is  v E N(vo, P,), and 

h = log det &(k)  

for  a  flat  prior. Here R N ( ~ )  = liml\r-k+oo,k+ooRN(k), and &(k)  is  defined 
in Algorithm 9.1. 

Proof: In  the MLR test a change k is detected if Z N ( ~ )  > ZN(N) = 0 and in 
the GLR if 1 ~ ( k ,  v(k)) > h. From  Theorem 9.8 we have Z N ( ~ )  = Z ~ ( l c ,  v(k)) + 
2 logp,(i/) -log det R N ( ~ )  -plog(27r). Lemma 9.9 shows that & ( k )  converges 
as N + 00, and so does log det R N ( ~ ) .  Since (9.1) is restricted to be  time 
invariant the  terms of &(k)  that depend  on the system  matrices and  the 
Kalman  gain  are  the  same  independently of k as k + 00 according to (9.28). 
0 

Note that (3.48) follows with p = 1 and R ( k )  = Cf,,, lTRP11 = (t - 
k )  /R* 

The threshold is thus  automatically included in the MLR test. If we want 
MLR to mimic a GLR test, we can of course include an external  threshold 
h M L R  = h G L R  + 2logp,(i.) - plog(27r) - logdet &(k) .  In  that case, we 
accept the change hypothesis only if Z N ( ~ )  > h M L R .  The external  threshold 
can also be included in an ad hoc manner to  tune  the false alarm  rate versus 
probability of correct detection. 

We  now make a new derivation of the MLR test in a direct way using a 
linearly increasing number of Kalman filters. This derivation  enables first the 
efficient implementation  in the Section 9.4.2, and secondly, the elimination of 
noise scalings in Section 9.4.3. Since the magnitudes of the likelihoods turn 
out  to  be of completely different orders,  the log likelihood will be used in  order 
to avoid possible numerical problems. 

Theorem 9.2 
Consider  the  signal  model (9.1)’ where the covariance matrix of the Gaussian 
distributed jump  magnitude  is P,. For each k = 1,2, .  . . , t ,  update  the  k’th 
Kalman  filter  in (9.4). The  log  likelihood,  conditioned  on  a jump  at   t ime k ,  
can  be  recursively  computed by 

logp(yt1k) = logp(yt-lIk) - - log 27r P 
2 

(9.11) 

1  1 
2  2 

- - logdet St(k)  - - ~ ~ ( k ) S ~ ~ ( k ) ~ t ( k ) .  

Proof: By Bayes’ rule we have 
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It is a well-known property of the  Kalman filter; see, for instance,  Anderson 
and Moore (1979), that 

Ytlk E N(CtQ-l(k) ,  ctptIt-l(~)c,T + W ,  
and  the result follows from the definition of the Gaussian  density  function. 0 

This  approach  requires a linearly growing number  with N Kalman filters. 

9.4.2. A two-filter  implementation 

To compute  the likelihood ratios efficiently, two statistical tricks are needed: 

0 Use a flat prior  on the  jump  magnitude v. 

0 Use some of the last  observations for calculating  proper  distributions. 

The point  with the former is that  the measurements  after the  jump  are in- 
dependent of the measurements before the  jump,  and  the likelihood can  be 
computed  as a product of the likelihoods before and  after  the  jump. However, 
this leads to a problem. The likelihood is not uniquely defined immediately 
after a jump of infinite variance. Therefore, a small  part of the  data is used 
for initialization. We also have to assume that At in (9.1) is invertible. 

The key point  in the derivation is the backward model presented  in Chapter 
8 when discussing smoothing  algorithms. The problem  here, which is not 
apparent in smoothing, is that  the 'prior' II, = E [ z ~ x s ]  in the backward 
recursion generally depends  upon k ,  so we must be careful in using a common 
Kalman filter for all hypotheses. For this reason, the  assumption on  infinite 
variance of the  jump  magnitude is needed, so II, is infinite for all k as well. 
By infinite we mean that II;' = 0. The recursion = FIItFT + Q gives 

= 0. The backward model for non-singular At becomes 

X t  =AF1zt+l - AF'w~ = AF'zt+l + ~t B 

yt =Ctzt + et. (9.12) 

Here Q," = E[w?(v?)~] = AFIQtAFT  and II;' = 0, where II, = E[z~zg].  
We  now have the backward model and  can simply  apply the  Kalman filter for 
the  estimate X$+' and  its covariance matrix P$+'. 

The likelihoods rather  than likelihood ratios will be derived. The last L 
measurements are used  for normalization, which means that  jumps  after  time 
N - L are not considered. This is not a serious restriction, since it suffices to 
choose L = dim X, and  jumps  supported by so little data cannot  be  detected 
with  any significance in any case. 

We are now ready for the main  result of this section. 



356 Chanae detection based on likelihood  ratios 

Theorem 9.3 
Consider  the  signal  model (9.1) for  the case o f  an  invertible At. The  likeli- 
hood  for  the  measurements  conditioned  on  a jump  at   t ime lc and the  last L 
measurements,  can  be  computed  by  two  Kalman  filters as follows.  First,  the 
likelihoods axe separated, 

The likelihoods  involved  are  computed by 

Here ?(X - p, P )  is  the  Gaussian  probability  density  function.  The  quantities ?ctpl and PGpl axe given  by  the  Kalman  filter applied to  the  forward  model 
and P$+, and P$+l axe given  by  the  Kalman  filter  applied  on  the  backward 
model (9.12). The  quantities and PN used for  normalization  are 
given  by  the  Kalman  filter applied  on the ?-l orwaxd model  initiated  at  time 
t = N - L + 1 with PN-L+~IN-L = I I N - L + ~ .  

Proof: Bayes' law  gives 

(9.17) 

(9.18) 
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The fact that  the  jump  at  time k does not affect the measurements before 
time k (by  causality) is used in the last  equality, so p(y'1k) = p(&>. Here, the 
infinite variance jump makes the measurements  after the  jump independent of 
those before. 

The likelihood for a set yk can  be  expanded  either  forwards  or  backwards 
using Bayes' chain rule: 

t=m 

Now p ( y N I k  = N )  and p(yk) are  computed using the forward recursion (9.21), 
and since xt is Gaussian,  it follows immediately that ytlyt-' is Gaussian  with 
mean Ct2&l and covariance C&-lCF + Rt, and (9.14) follows. 

Also, p(y$-,+,lk = N )  is computed  in the same way; the difference is that 
the  Kalman filter is initiated at  time N - L + 1. Finally, p(yr<Lly$-L+l, k )  
is computed using (9.22) where ytlygl is Gaussian  with  mean Cti?:t+l and 
covariance CtP$+lCr + Rt and (9.16) follows. 0 

As can  be seen, all that is needed to compute  the likelihoods are one 
Kalman filter running backwards in  time, one running  forwards  in  time, and 
one processing the normalizing data at the end. The resulting  algorithm is 
as follows, where the log likelihoods are used because of possible numerical 
problems caused by very large differences in the  magnitude of the likelihoods. 
The  notation introduced  here will be used in the sequel. 
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Algorithm 9.2 Two-filter detection 

The likelihood given in  Theorem 9.3 of a jump  at  time L, L = 1,2, .  . . , N ,  is 
computed  with two filters as follows. 

Forward  filter for t = 1,1, . . . , N 

Normalization  filter for t = N - L + 1, N - L + 2,. . . , N :  

N - L  
- N  

t=l  
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Backward  information  filter for t = N ,  N - 1,. . . , N - L + 1: 

Backward  Kalman  filter for t = N - L,  N - L - 1,. . . , l:  

PN-LIN-L+lfrom B backward information filter 

ZN-LIN-LSl  =P-LIN-L+laN-LIN-L+l 
- B  - B  

V B ( N  - L + 1) =o 
D B ( N  - L + 1) =o 

E t  =yt - ctqt,, - Du,tUt 
B 

S,B =CtP$+lCT + Rt 

%lit = t q t + 1  
- B  A-1-B + A ,  Ptlt+1Ct(St ) E t  - Bu,t-lUt-l 1 B  B -1 B 

=At' (.,p,+, - P$+l cT(s,B)lctP$+l) A tT  

+ 
V B ( t )  =VB@ + 1) + (E;)T(S:)-l&F 
DB(t)  =DB(t  + 1) + logdet SF 

Compute  the  likelihood  ratios 

ZN(k) =VF(N)  - V N ( N )  - V F ( k )  - VB(k  + 1) + 
D F ( N )  - D N ( N )  - D F ( k )  - DB(k  + 1) 
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We make some remarks  on the algorithm: 

0 The normalization filter and  the backward information filter play a mi- 
nor role for the likelihood, and might be  omitted in an approximate 
algorithm. 

0 The  jump  magnitude, conditioned  on the  jump time,  can  be  estimated 
from the available information using the signal model (9.1) and  the filter 
state  estimates: 

This is an over-determined  system of equations. 

0 The a posteriori probability of k is easily computed by using Bayes' law. 
Assuming p ( k )  = C, 

This means that  the a posteriori probability of a wrong decision can  be 
computed  as 1 - p ( k l y N ) .  

0 The relation to fixed-interval smoothing is as follows. The  smoothed 
estimates  under  the no jump hypothesis  can be  computed by 

Here 2$ and P$ are  the filtered estimates  from  the forward filter (these 
are not given explicitly above). 

0 If the  data  are collected in batches, the two-filter algorithm  can  be  ap- 
plied after each batch saving computation  time. 

It should be stressed for the  theorem  that  it is necessary for this two-filter im- 
plementation that  the  jump is considered as  stochastic  with  infinite variance, 
which implies the  important separability possibility (9.13). If not,  the  theorem 
will provide a sub-optimal  algorithm  with good properties  in  practice. 

A  related two-filter idea is found  in Niedzwiecki (1991), where a sub- 
optimal two-filter detection  algorithm is proposed for detecting changes in 
the  parameters of a finite  impulse  response model. 
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9.4.3. Marginalization of the  noise level 

Introduction 

Knowledge of the covariance matrices is crucial for the performance of model- 
based detectors. The  amount of prior  information  can be  substantially  relaxed, 
by eliminating unknown scalings from the covariance matrices  in the  state 
space model (9.1): 

Here the matrices  without a bar  are chosen by the user, and  those  with  bar 
are  the  ‘true’ ones or at least give good performance. This means that one 
chooses the tracking  ability of the filter, which is known to  be insensitive 
to scalings; see Anderson and Moore (1979). The  estimator  then  estimates 
the  actual level, which is decisive for the likelihoods. The assumption (9.23) 
implies Pt = XPt and 3, = AS,, and from (9.36) it follows that 

For the GLR test,  this implies that if all covariance matrices are scaled a 
factor X, then  the  optimal threshold  should be scaled a factor X as well. Thus, 
it is the  ratio between the noise variance and  the threshold that determines 
the  detection ability  in  GLR. In  this sense, the problem  formulation is over- 
parameterized, since both X and  the threshold have to  be chosen by the user. 

Equation  (9.23) is an interesting  assumption  from the practical  point of 
view. Scaling does not influence the filtered state  estimates. It is relatively 
easy for the user to  tune  the  tracking ability, but  the sizes of the covariances are 
harder to judge. The  robustness to unknown scalings is one of the advantages 
with the MLR test,  as will be shown. 

Another  point is that a changing measurement noise variance is known to 
cause  problems to many proposed detection  algorithms. This is treated here 
by allowing the noise covariance scaling to  be  abruptly changing. 

A summary of the MLRs is given in Section 9.4.5. 

State jump 

In  this section, the two filter detector  in  Theorem 9.3  will be derived for the 
unknown scaling assumption  in (9.23). If At is not invertible as assumed  in 
Theorem 9.3, the direct  implementation of MLR in  Theorem 9.2 can also be 
modified in the  same way. The following theorem is the counterpart to  the 
two filter detection  method  in  Algorithm 9.2, for the case of an unknown X. 
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Theorem 9.4 
Consider the signal  model (9.1) in  the case of an unknown  noise  variance, 
and suppose that (9.23)  holds. With notation as in  the two filter detector in 
Algorithm 9.2, the log  likelihood ratios are  given by 

ZN(k) =(Np  - 2 )  (log(VF(N) - V N ( N ) )  

- log(VF(k) + VB(k + 1))) 

+ D F ( N )  - D N ( N )  - D F ( k )  - DB(k  + 1) 

with a flat prior on X. 

Proof: The flat prior  on X here  means p(Xly;-,+,) = C,  corresponding to 
being completely unknown. By marginalization, if k < N - L we get 

N - L  N 
P(Y IYN-L+17 k ,  

= Jum P(Y I Y N - L + ~ ,   X ) P ( X I Y ; - L + ~ ) ~ X  
N - L  N 

(v) (VF(k) + v " ( k ) ) - W .  

The  gamma function is defined by r ( a )  = &O0 ePtta- 'dt .  The last  equality 
follows  by recognizing the  integrand  as a density  function, namely the inverse 
Wishart  distribution 

(9.24) 
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which integrates to one. In  the same way,  we have for k = N 

and  the result follows. 0 

Here we note  that  the a posteriori distribution for X, given the  jump in- 
stant k ,  is W- ' (Np ,  V F ( k )  + VB(k)), where W-' denotes  the inverse Wishart 
distribution (9.24). 

9.4.4. State and  variance jump 

In  this section, the likelihood is given for the case when the noise variance is 
different before and  after the  jump.  This result is of great  practical relevance, 
since variance changes are very common  in  real signals. 

Theorem 9.5 
Consider the  same detection  problem as in  Theorem 9.4, but with a noise 
variance changing at  the  jump  instant, 

" = {  X1 , i f t I k  
X2 , i f k  < t 5 N. 

With  notation as in Algorithm 9.2, the log likelihood ratios  for 211, < k < 
N - 2/p are given by 

Z N ( ~ )  = ( N p  - 2) log(VF(N) - VN(N)) 

- ( k p  - 2)  log VF(k) - (Np - kp - 2) log VB(k + 1)) 

+ D F ( N )  - DN(N) - D F ( k )  - DB(k  + 1) 

if the  prior on X is Aat. 

Proof: The proof resembles that of Theorem 9.4. The difference is that  the 
integral over X is split  into two integrals, 

P(Y I Y N - L + ~ ,  k )  =P(Yk)p(YF+lI+lIYNN-L+l, k )  N - L  N 

= 1 P(YkI~1)P(X1IYNN-~+')dX1 

. S p ( y F + l l Y L + l ,  L, X2)P(X2IYL+l)dX2. (9.25) 

Each  integral is evaluated  exactly as in  Theorem 9.4. 0 
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Remark 9.6 
For this  particulax  prior  on X, the  integrals in (9.25), and thus also the like- 
lihood, are not  defined  for k p  < 2 and N p  - k p  < 2. This  is logical,  because 
too  little  data  are  available to  evaluate the noise  variance. 

In  this case the a posteriori distribution for XI, given the  jump  instant L, 
is W - ' ( k p ,  V F ( k ) )  and for X2 it is W - l ( ( N  - k ) p ,  VB(k)). 

9.4.5. Summary 

We can conveniently summarize the results  in  the  three different cases as 
follows: The MLR's in Theorems 9.4,  9.5 and Algorithm 9.2 are given by 

in the cases known lambda  (i), unknown constant  lambda  (ii)  and unknown 
changing lambda  (iii), respectively. 

0 The model and  data  dependent  quantities  V(k)  and D ( k )  are all given 
by the two filter Algorithm 9.2. The decision for which likelihood is to 
be used can  be deferred until  after  these  quantities  are  computed. In 
particular,  all  three possibilities can  be  examined  without much extra 
computations. 

0 The  dominating  terms  are  VF(k)  and  VB(k).  When  the noise is un- 
known, ( V F ( k )  + VB(k))/X is essentially replaced by Nlog(VF(k) + 
V B ( k ) )  and k log V F ( k )  + ( N  - k )  log VB(k), respectively. This leads to 
a more cautious  estimator that diminishes the influence of the innova- 
tions. 

0 The  term D F ( N )  - D N ( N )  - D F ( k )  - D B ( k + l )  appears in  all likelihood 
ratios.  It is positive and does  not  vary much for different jump  instants 
k = 1 , 2 , .  . . , N - 1. This  term corresponds to  the threshold  in the GLR 
test. 

These  methods  are  compared  in the following section. 
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9.5. Simulation  study 

The simulation study investigates performance,  robustness and sensitivity for 
GLR and  the  three different MLR variants for a first order  motion model. 

The applicability of GLR is wellknown, as mentioned  in the  introduction. 
The MLR  uses the same model and,  thus,  can  be applied to  the same  problems 
as GLR.  Therefore, the  purpose of the current  section is to show what  can  be 
gained in  robustness  and  computational  burden by using MLR instead of GLR 
illustrated by a quite  simple  example. A quite  short data length will be used, 
which allows us to compute  the exact  GLR test. 

A  sampled  double  integrator will be examined  in this  comparative  study 
of the different methods. For instance, it  can  be  thought of as a model for the 
position of an  object influenced by a random force. The  state space model for 
sample  interval 1 is 

where 

The  jump change corresponds to a sudden force disturbance, caused by a ma- 
noeuvre, for example. All filters are initialized assuming illo E N(0,lOOOXI) 
and  the number of measurements is N .  Default values are given  by 

v =(5, 1 0 y  
k =25 

N =50 
X =l 
R =l. 

The default values on X and R are used to compute the change  detectors. The 
detectors  are kept the  same in  all cases, and  the  data generation is varied in 
order to examine the  robustness properties. 

9.5.1. A Monte  Carlo  simulation 

The following detection  methods are compared: 
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0 GLR  in  Algorithm 9.1 and using a sliding window of size 10 (referred to 
as  GLR(  10)). 

0 MLR in  Algorithm 9.2 for an assumed known scaling X = 1 (MLR l), 
Theorem 9.4 for unknown scaling (MLR 2) and  Theorem 9.5 for unknown 
and changing scaling (MLR 3), respectively. 

For the two-filter methods MLR 1-3,  five extra  data  points were simulated 
and used  for initialization.  Table 9.1 shows the  alarm  rates for no jump  and 
jump, respectively, while Table 9.2 shows the estimated  jump  time in the cases 
of a jump.  The left column  indicates  what  has been changed from the perfect 
modeling case. 

We note that  the sliding window approximation of GLR is indistinguish- 
able  from the exact  implementation. The  alarm  rates of GLR for the perfect 
modeling case are slightly larger than for MLR with  the chosen threshold. 
Taking this fact into  account, there is no significant difference between GLR 
and MLR 1. MLR 2 and 3 give somewhat larger false alarm  rates  and smaller 
detection  probabilities in the perfect modeling case. This is no surprise as less 
prior  information is used, which becomes apparent in  these  short data sets. 
The cases where X < 1 or R < 1, both implying that  the measurement noise 
variance is smaller than  expected, cause  no  problems for GLR and MLR 1. 
Note, however,  how MLR 2 and 3  take  advantage of this  situation,  and here 
can  detect  smaller changes than can  GLR  and MLR. In  the case X = 0.01 and 
v = [2; 41 the probability of detection is 50%, while MLR 1 only detects 2% of 
these changes. 

The real  problem  is, of course, the cases where the measurement noise 
variance is larger than modeled. Here the false alarm  rate for GLR and MLR 
1 is close to one. On  the  other  hand, MLR 2  has a very small and MLR 3 a 
fairly small false alarm  rate. Of course, it becomes harder to detect  the fixed 
size change that is hidden  in  large noise. 

The cases of a suddenly  increasing noise scaling is excellently handled by 
MLR 2 and 3. The former gives no alarm, because this kind of change is not 
included in the model, and  the  latter  quite correctly  estimates a change at 
time 25. 

We can also illustrate  the difference in  performance by plotting  the average 
log likelihood ratios  210gp(yNIk, i’) /p(yNIk = N )  and  210gp(yNIk)/p(yNIk = 
N ) ,  respectively, as a function of change time k = 1,2, .  . . , N .  This is done  in 
Figure 9.3 for GLR and MLR 1,2,3. A change is detected if the peak value of 
the log likelihood ratio is larger than zero for MLR and larger than h = 6 for 
GLR.  Remember that  the GLR log likelihood ratio is always positive. 

The first plot shows the perfect modeling case, and  the peak values are 
well above the respective thresholds.  Note that MLR 1 and GLR are very 
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Table 9.1. Alarm  rate for 1000 Monte  Carlo  simulations for different cases of modeling 
errors. In each case, a state change [5;10] and  no change are compared.  Sensitivity to 
incorrect assumptions  on  the noise variances is investigated,  where X denotes  the scaling of 
Q and R. 

Case 

l 0.01 l 1  1 X = 100 
l 0.15 l 1  1 100 times increase  in X, change 
l 0.14 l 1  1 100 times increase  in X 
l 0.14  0.99 1  1 10 times increase  in X, change 

0.99  0.10  0.97 1  1 10 times increase  in X 
0.97 0.91 0.96 1  1 Perfect  modeling,  change at t = 10 
0.91 0.88 0.94 1  1 Perfect  modeling,  change at t = 40 
0.04 0.01 0.02  0.10  0.10 Perfect  modeling,  change [l;2] 
0.95  0.92  0.97 0.99  0.99 Perfect  modeling,  change 
0.04 0.01  0.01 0.08  0.08 Perfect  modeling 

MLR  3 MLR  2  MLR l GLR(10) GLR 

X = 100, change 1 1 1  1 l I 0.01 I l 
X = 10 1 l I 0.01 I 0.43 

similar in their  shape except for a constant offset as  stated already  in  Lemma 
9.1. 

The second plot illustrates  what  happens  after  an  abrupt change in noise 
scaling. GLR and MLR 1 become  large for all t > 25 and  the  estimated 
change times  are  distributed over the interval  [25,50]. MLR 2, which assumes 
an unknown and constant  scaling,  handles this case excellently without  any 
peak, while  MLR 3 quite  correctly  has a peak at t = 25 where a change in 
scaling is accurately  estimated. 
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Table 9.2. Estimated change time for 1000 Monte  Carlo  simulations for different cases of 
modeling  errors. 

1 

-lo; 5 1'0 1'5 20 25 30 35 40 45 d0 
Jumplime 

( 4  (b) 

Figure 9.3. Log likelihood ratios for GLR  (solid) and MLR 1,2,3 (dashed,  dashed-dotted 
and  dotted,  respectively)  averaged over 100 realizations. Plot for perfect  modeling and  a 
change (a),  and  plot for the case of no  change  but  the noise variance  changes  abruptly  from 
1 to 100 at  time 25 (b). 
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9.5.2. Complexity 

Figure 9.4 shows the  the complexity as a function of the number of observations 
N ,  counted in the number of used flops, for the following methods:  GLR (Ml) 
and GLR  with sliding window (M7), MLR using GLR  quantities  as  in  Theorem 
9.8 (M2), the direct  implementation of MLR in  Theorem 9.2 (M3), MLR 1 
(M4), MLR 2  (M5) and MLR 3 (M6). It should be noted that  the algorithms 
are intended to  be implemented as efficiently as possible, and identical  Kalman 
filter implementations  are used. 

The implementation  in Willsky and Jones (1976) with  matched filters is 
not very efficient, since the direct  implementation  with  Kalman filters instead 
of RLS schemes is actually  faster.  This is due to  the computation of the 
regressors. However, both algorithms have a quadratic increase in the number 
of measurements. The big difference is for the two filter implementation. As 
expected,  it shows only a linear increase in the computational complexity. 

The  time consumption for GLR  with a sliding window of size 10 increases 
linearly with  time,  and  it is about five times slower than  the two filter ap- 
proach. 

10 d0 i0 40 i 0  60 7'0 80 90 
N 

0 

Figure 9.4. Complexity  in flops for different implementations of GLR (M1 and M7) and 
MLR (M2-M6) as a function of the  number of measurements. 



370 Chanae detection based on likelihood  ratios 

9.A. Derivation of the GLR test 

9.A.1. Regression model for the jump 

First, process the measurements through a Kalman filter acting  under  the 
hypothesis of no jump.  With  notation as in  (9.4),  denote its  state  estimate, 
gain,  prediction  error and prediction  error covariance by 

Next,  suppose that  there was a jump v at time k.  Due to  the linear model, 
the dependence of v on the  state  estimates  and innovations will be linear as 
well. That is, we can  postulate  the following model: 

(9.26) 

(9.27) 

Here ?tlt(k) and ~ t ( k )  are  the  quantities one would have obtained  from a 
Kalman filter applied  under the  assumption  that we have a jump at time k.  
These  Kalman filters will,  however, not be used explicitly, and  that is the key 
point. Again, we  follow the convention that k is equal to  the final time,  here 
t ,  means no jump. We have the following update formulas for the n, X n, 
matrix ,ut(k) and  the n, X ny matrix cpt(k), first given in Willsky and  Jones 
(1976). 

Lemma 9.7 
Consider  the  residuals  from  the  Kalman  filter  applied  to  the  model (9.11, 
assuming  no  jump.  The  relation  between  the  residuals  from  a  Kalman  filter 
conditioned  on  a jump  of   magnitude v at  time k ,  and from  a  Kalman  filter 
conditioned  on  no jump  i s  given  by  the  linear  regression 

E t @ )  = Et + cpF(k)Be,tv, 

where ~ t ( k )  is  a  white  noise  sequence  with  variance St. Here cpt(k) is  computed 
recursively  by 

(9.28) 

Pt+lW =AtPt(W + Kt+lcpF+,(k), (9.29) 

with  the initial  conditions p k ( k )  = 0 and cpk (k )  = 0. Here Kt is  the  Kalman 
gain  at  time t .  
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Proof: The result is proved by induction. The  initial condition is a direct 
consequence of the signal model (9.1). The  induction  step follows from the 
Kalman  equations, (9.26) and (9.27). First we have the relation z t ( k )  = 
xt + nkik AiB0,tv. This  and  equations (9.26) and (9.27) give 

vt+1Be,tv =,%+l ( k )  - &t+l 
T 

=G+1  (Zt+l(k) - Q+l) - Ct+lAt (?tlt(k) - %It) 

and 

Pt+l(k)Be,tv =&+llt+lW - it+llt+l 

=At ( Q t ( k )  - Q t )  + Kt+l (E t+l  + cpt+1Be,tv - E t + l )  

=Atpt(k)Be,tv + Kt+lcpF+lBe,tv. 

T 

Since this holds for all Be,tv, the result follows  by induction. 0 

The detection  problem is thus moved from a state space to a linear regres- 
sion framework. 

9.A.2. The GLR test 

We begin by deriving the classical GLR  test, first given in Willsky and  Jones 
(1976), where the  jump  magnitude is considered as deterministic.  Lemma 5.2 
gives 

= 

That is, the measurements and  the residuals have the same  probability  density 
function. Given a jump v at  time k ,  the residuals get a bias, 

Thus,  the  test  statistic (9.8) can  be  written as 

Introduce  the well known compact  quantities of the LS estimator 

(9.31) 

(9.32) 

(9.33) 
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(9.35) 

N 

t=k+1 

- ( E t  - c p 3 + w )  st (E t  - c p m w ) )  T -1 (9.36) 

=f;F(k)(R~)-l(k)~iv(k), (9.37) 
where the second equality follows from (9.30) and  the Gaussian  probability 
density  function. The  third equality follows from  straightforward  calculations 
using (9.34),  (9.32) and (9.33). This simple  expression for the test  statistic is 
an appealing  property of the GLR test. 

9.B. LS-based  derivation of the MLR  test 

The idea  here is to consider the  jump  magnitude  as a stochastic  variable. In 
this way, the maximization over v in Z ~ ( k , v )  (9.8) can  be avoided. Instead, 
the  jump  magnitude is eliminated by integration, 

P(&?> = S P ( E ? I V ) Y ( W .  
In  the context of likelihood ratio  tests,  the possibility of integrating  out  the 
nuisance parameter v is also discussed in Wald (1950). Here, there  are two 
choices. Either v is assumed to have a Gaussian  prior,  or  it is considered to 
have infinite  variance, so the  (improper) prior is constant. The log likelihood 
ratio is  given in the following theorem. 

Theorem 9.8 
Consider  the  GLR  test in Algorithm 9.1 as an  estimator o f  a  change of  mag- 
nitude v at  time k ,  k = 1 , 2 , .  . . , N - 1, for  the signal  model (9.1), given  the 
measurements yN. The  LR,  corresponding to  the  estimator  of k alone, is  given 
bY 

P(YNIk 4 = arg  max 2 log - log det R; ( k )  + Cprior ( k )  
v P(YNIk = N )  
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where Z N ( ~ ,  D(k))  = f ; ( R g ) - ’ j ~  is given in  Algorithm 9.1. Here Cp,io,(k) is 
a prior  dependent  constant  that  equals 

if the  prior is chosen to be non-informative, and 

C,,i,,(k)Y = 2 logp,(fi) - p log 27r (9.39) 

if the  prior is chosen to be Gaussian, v E N(vo,P,). Here R g ( k )  and f i ~ ( k )  
axe given by (9.33) and (9.341, respectively. 

Proof: We begin with  the Gaussian case, 

In  the second equality the off-line expressions (5.96) and (5.97) are used. 

(5.96) and (5.97) are used: 
The case of non-informative prior (P;’ = 0) is proved as above. Again, 

N 

= c &TS,-l&t - (&t - (PT(k)fiN(k))TS,-l(Et - &(k)f iN(k))  
t=k+l  

+ log det PN ( k )  
= Z N ( ~ ,  ;(/c)) - logdet RG(k) .  

Here the fact P N ( ~ )  = (Rg)-’(k)  is used. 0 

The conclusion is that  the ML estimates ( k ,  v) and  are closely related. In 
fact,  the likelihood ratios  are  asymptotically equivalent except for a constant. 
This  constant  can  be  interpreted  as different thresholds,  as  done  in  Lemma 
9.1. 
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In  this  constant,  the  term ( 5 ~  - VO)~P;’(~N - vo) is negligible if the prior 
uncertainty P, is large or, since 5 ~ ( k )  converges to vo, if N - k is large. Here 
5~ ( k )  + v0 as N - k + 00, because the  Kalman filter eventually  tracks 
the  abrupt change in the  state vector. As demonstrated  in  in the simulation 
section, the  term  logdet R G ( k )  does not alter  the likelihood significantly. In 
fact, log det R g ( k )  is asymptotically constant,  and  this is formally proved in 
the following lemma. 

Lemma 9.9 
Let cpt(k) be as given  in Result 9.7. Then,  if the signal  model (9.1) is stable 
and time-invariant, 

N 

t=k+l 

converges as N - k tends  to infinity. 

Proof: Rewriting (9.29) using (9.28) gives 

where K is the  stationary  Kalman gain  in the measurement update. Now 
by assumption X1 = maxXi(A) < 1 so the Kalman filter theory gives that 
X2 = max & ( A  - AKC) < 1 as well; see Anderson and Moore (1979) p. 77 
(they define as F T  here).  Thus, KCAtPk is bounded  and 

This implies that 
Ilcpt(k)ll < C2Xt-k, 

where X = max(X1, XZ). Now  if Z > m 

1 

t=m+l 

2 2(m+l-k) 1 - x2l 
l - X  

=c2 X + 0 as m,Z + 00. 

Thus, we have proved that R & ( k )  is a Cauchy sequence and since it belongs 
to a complete  space  it converges. 0 
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We have  now proved that  the log likelihoods for the two variants of pa- 
rameter vectors ( k ,  v) and k are approximately  equal for k = l, 2,. . . , N - l, 
except for an unknown constant.  Thus, 

Z N ( k ,  C N ( k ) )  Z N ( k )  + c. 
Therefore,  they are likely to give the  same ML estimate.  Note, however, that 
this result does not hold for k = N (that is no jump), since ZN(N,CN(N)) = 
ZN(N) = 0. To get equivalence for this case as well, the threshold  in the GLR 
test  has to be chosen to  this unknown constant C. 
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10.1. Basics 

This  chapter  addresses  the  most  general  problem  formulation of detection  in 
linear  systems. Basically, all  problem  formulations that have been discussed 
so far  are  included in the framework considered. The  main purpose is to 
survey  multiple  model  algorithms, and  a secondary  purpose is to overview 
and  compare  the  state of the art in different application  areas for reducing 
complexity, where similar  algorithms have been developed independently. 

The goal  is to detect abrupt changes in the  state space  model 

ZtS1 =At(&)zt + Bu,t(&)ut + Bu,t(&)vt (10.1) 
Yt = C t ( & h  + + et 
ut E N ( m u , t ( & ) ,  Q t (&) )  

et E N ( m e , t ( & ) ,  &(Q). 

Adaptive Filtering and Change Detection
Fredrik Gustafsson

Copyright © 2000 John Wiley & Sons, Ltd
ISBNs: 0-471-49287-6 (Hardback); 0-470-84161-3 (Electronic)



378 Chanae detection based on multide models 

Here St is a discrete  parameter  representing  the mode of the  system (linearized 
mode,  faulty  mode etc.),  and  it takes on one of S different values (mostly 
we have the case S = 2). This model incorporates  all previously discussed 
problems  in this book, and is therefore the most  general  formulation of the es- 
timation  and detection problem. Section 10.2  gives a number of applications, 
including change detection  and  segmentation,  but also model structure selec- 
tion,  blind and  standard equalization, missing data  and outliers. The common 
theme in these  examples is that  there is an unknown discrete parameter, mode, 
in a linear  system. 

One natural  strategy for choosing a S is the following: 

0 For each possible 6, filter the  data  through a Kalman filter for the (con- 
ditional) known state space  model (10.1). 

0 Choose the  particular value of 6, whose Kalman filter gives the smallest 
prediction  errors. 

In  fact,  this is basically how the MAP  estimator 

gMAP = arg rn?P(6lYN)  (10.2) 

works, as will be proven in Theorem 10.1. The  structure is illustrated  in  Figure 
10.1. 

The key tool  in  this  chapter is a repeated  application of Bayes’ law to 
compute a posteriori probabilities: 

(10.3) 

W Y t  - c t ( s t ) s t , t - l ( 6 t ) , R t ( 6 t )  + Ct(S,)P,,t-,(6,)C,T(s,)). 
A proof is  given in Section 10.A. The  latter  equation is recursive and  suitable 
for implementation.  This recursion immediately  leads to a multiple model 
algorithm  summarized  in  Table 10.1. This  table also serves as a summary of 
the  chapter. 

10.2. Examples of applications 

A classical signal processing problem is to find a sinusoid in noise, where the 
phase,  amplitude  and frequency may change in  time.  Multiple model ap- 
proaches are found  in  Caciotta and  Carbone (1996) and  Spanjaard  and  White 
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Table 10.1. A generic  multiple  model  algorithm. 

1. Kalman  filtering: conditioned on a particular sequence bt,  the  state 
estimation  problem  in (10.1) is  solved  by a Kalman  filter. This will be 
called the conditional  Kalman  filter, and  its  outputs  are 

2. Mode  evaluation: for each sequence, we can  compute, up  to  an un- 
known scaling factor, the posterior  probability given the measurements, 

using (10.3). 

3. Distribution: at  time t ,  there  are St different sequences S t ,  which  will 
be labeled @(i), i = 1 , 2 , .  . . ,S t .  It follows from the theorem of total 
probability that  the exact  posterior  density of the  state vector is 

This  distribution is a Gaussian  mixture with St modes. 

4. Pruning  and  merging (on-line): for on-line applications, there  are 
two approaches to  approximate  the Gaussian  mixture, both aiming at 
removing modes so only a fixed number of modes  in the Gaussian mixture 
are  kept. The exponential  growth  can  be  interpreted  as  a  tree, and  the 
approximation  strategies  are merging and pruning. Pruning is simply to 
cut off modes in the  mixture with low probability. In merging, two or 
more  modes  are  replaced by one new Gaussian  distribution. 

5. Numerical  search (off-line): for  off-line analysis, there  are numerical 
approaches based on the EM algorithm  or MCMC methods. We will 
detail some suggestions for how to generate sequences of bt which  will 
theoretically belong to  the  true posterior  distribution. 
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Figure 10.1. The  multiple  model  approach. 

(1995). In  Daumera  and Falka (1998),  multiple models are used to find the 
change points in biomedical time series. In  Caputi (1995), the multiple model 
is used to model the  input  to a linear system  as a switching  Gaussian process. 
Actuator  and sensor faults  are modeled by multiple models in Maybeck and 
Hanlon (1995).  Wheaton and Maybeck (1995) used the multiple model ap- 
proach for acceleration modeling in target tracking, and Yeddanapudi et al. 
(1997) applied the framework to  target  tracking in ATC. These  are  just a few 
examples, more references can  be  found  in Section 10.3.4.  Below, important 
special cases of the general model are listed as examples. It should be stressed 
that  the general algorithm  and  its  approximations  can  be  applied to all of 
them. 

Example 70.1 Detection in changing mean model 

Consider the case of an unknown constant  in  white noise. Suppose that 
we want to  test  the hypothesis that  the 'constant'  has  been changed at some 
unknown time  instant. We can  then model the signal by 

yt = 81 + a(t - S + l)& + et, 

where a( t )  is the  step function. If all possible change instants  are to be consid- 
ered,  the variable S takes its value from the set {l, 2,. . . , t - 1, t} ,  where S = t 
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should  be  interpreted  as no change (yet).  This  example can  be  interpreted  as 
a  special case of ( l O . l ) ,  where 

1 S = {1,2,. . . , t } ,  xt = (81,82)~, At(S) = ( 0 a(t - S +  1) 
Ct(S) = (1, l), Q t ( S )  = 0. &(S) = X. 

The detection problem is to estimate S. 

Example 70.2 Segmentation in changing mean model 

Suppose in Example 10.1 that there  can  be  arbitrarily  many changes in 
the  mean.  The model used can  be  extended by including  more step functions, 
but such a  description would be  rather inconvenient. A better  alternative to 
model the signal is 

&+l =& + Stvt 

Yt =& + et 

6, E{O, 11. 

Here the changes are modeled as the noise ut, and  the discrete parameter S, 
is 1 if a change occurs at  time t and 0 otherwise. Obviously, this is a  special 
case of (10.1) where the discrete  variable is SN = ( S l , b ~ , .  . . , S,) and 

S N  = (0, xt = Bt ,  At(S) = 1, Ct = 1, Q t ( S )  = StQt, Rt = X. 

Here (0, denotes  all possible sequences of zeros and ones of length N .  The 
problem of estimating  the sequence S N  is called segmentation. 

Example 70.3 Model structure  selection 
Suppose that there  are two possible model structures for describing  a mea- 

sured  signal,  namely two auto-regressions  with one or two parameters, 

6 = 1 : yt = -alyt-l+ et 
6 = 2 : yt = -alyt-l - a2yt-2 + e t .  

Here, et is white  Gaussian noise with  variance X. We want to  determine  from 
a given data set which model is the most suitable.  One  solution is to refer to 
the general  problem  with  discrete parameters in (10.1). Here we can  take 

At(6) = I ,  Q t ( S )  = 0, &(S) = X 
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and 

The problem of estimating S is called model  structure  selection. 

Example 10.4 Equalization 

A typical  digital  communication  problem is to  estimate a binary  signal, ut, 
transmitted  through a channel  with a known characteristic  and  measured at 
the  output. A simple example is 

We refer to  the problem of estimating the  input sequence with a known channel 
as equalization. 

Example 10.5 Blind equalization 

Consider again the communication  problem  in  Example 10.4, but  assume 
now that  both  the channel model and  the  binary signal are unknown a priori. 
We can try  to estimate  the channel  parameters as well  by using the model 

The problem of estimating  the  input sequence with an unknown channel is 
called blind equalization. 
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Example 10.6 Outliers 

In practice  it is not uncommon that some of the measurements are much 
worse then  the  others.  These  are usually called outliers. See Huber (1981) for 
a thorough  treatment of this problem.  Consider, for instance, a state space 
model 

Zt+l + ut 

Y t  + et, (10.4) 

where some of the measurements are known to be  bad.  One possible approach 
to  this problem is to model the measurement noise as a Gaussian  mixture, 

M 

i=l 

where C cq = 1. With  this  notation we mean that  the density  function for et 
is 

M 

i=l 

In  this way, any  density  function  can be  approximated  arbitrarily well, in- 
cluding heavy-tailed distributions describing the outliers.  To put a Gaussian 
mixture in our framework, express it as 

( N ( p 1 ,   Q 1 )  with  probability a 1  1 N ( p 2 ,   Q 2 )  with  probability a 2  
et E . 

[ ; ( P M ,  Q M )  with  probability Q M .  

Hence, the noise distribution  can  be  written 

where St E { 1 , 2 ,  . . . , M }  and  the prior is chosen as p(& = i )  = ai. 

The simplest way to describe possible outliers is to take p1 = p 2  = 0, Q 1  

equal to  the nominal noise variance, Q 2  as much larger than Q 1  and a 2  = 1 - a 1  

equal to a small  number. This models the fraction a 2  of all  measurements as 
outliers  with a very large variance. The  Kalman filter will then ignore these 
measurements, and  the a posteriori probabilities are almost  unchanged. 
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Example 10.7 Missing data 

In some  applications  it  frequently  happens that measurements  are missing, 
typically due  to sensor failure. A suitable model for this  situation is 

Zt+l = A t a  + ut 
yt =( 1 - &)Ctxt + et. (10.5) 

This model is  used in Lainiotis (1971). The model (10.5) corresponds to  the 
choices 

in the general formulation (10.1). For a  thorough  treatment of missing data, 
see Tanaka  and  Katayama (1990) and  Parzen (1984). 

Example 10.8 Markov  models 

Consider again the case of missing data, modeled by (10.5). In  applications, 
one  can expect that a very low fraction, say p l l ,  of the  data is missing. On  the 
other  hand, if one  measurement is missing, there is a fairly high probability, 
say p22, that  the next one is missing as well. This is nothing  but a prior 
assumption  on 6, corresponding to a Markov chain. Such  a state space model 
is commonly referred to  as a jump linear model. A Markov chain is completely 
specified by its  transition  probabilities 

and  the initial probabilities p ( &  = i )  = pi .  Here we must have p12 = 1 - p22 

and p21 = 1 -p11. In  our framework, this is only a recursive description of the 
prior probability of each sequence, 

For outliers, and especially missing data,  the  assumption of an underlying 
Markov chain is particularly logical. It is used, for instance,  in  MacGarty 
(1975). 
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10.3. On-line  algorithms 

10.3.1. General  ideas 

Interpret  the exponentially  increasing  number of discrete sequences St as  a 
growing tree,  as  illustrated  in  Figure 10.2. It is inevitable that we either 
prune or merge this  tree. 

In  this  section, we examine how one can  discard  elements  in S by cutting 
off branches in the  tree,  and  lump sequences into  subsets of S by merging 
branches. 

Thus,  the basic possibilities for pruning the tree  are to cut 08 branches 
and  to merge two or  more  branches  into one. That is, two state sequences are 
merged and in the following treated  as  just one. There is also a timing  question: 
at  what  instant in the time  recursion  should the  pruning  be performed? To 
understand  this,  the  main  steps in updating  the a posteriori probabilities  can 
be  divided  into  a time update and  a measurement update as follows: 

i =l 

i =2 

i =3 

i =4 

i =5 

i =6 

i =7 

i =8 

Figure 10.2. A growing tree of discrete state sequences. In GPB(2) the sequences (1,5), 
(2,6), (3,7) and (4,8), respectively, are merged. In GPB(1) the sequences  (1,3,5,7) and 
(2,4,6,8), respectively, are merged. 
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0 Time  update: 

(10.6) 

(10.7) 

0 Measurement  update: 

Here, the  splitting of each branch  into S branches is performed  in (10.7). We 
define the most probable branch as the sequence bt, with the largest a posteriori 
probability p(Stlyt) in (10.8). 

A survey on proposed search strategies  in the different applications  in 
Section 10.2 is presented  in Section 10.3.4. 

10.3.2. Pruning  algorithms 

First, a quite  general  pruning  algorithm is given. 

Algorithm 70.7 Multiple  model  pruning 

1. Compute recursively the conditional  Kalman filter for a bank of M se- 
quences @(i) = ( S l ( i ) , & ( i ) ,  . . . , 6 t ( i ) )T ,  i = 1,2, .  . . , M .  

2. After the measurement update  at  time t ,  prune  all  but  the M / S  most 
probable  branches St(i). 

3.  At time t + 1: let the M / S  considered branches  split into S .  M / S  = M 
branches, S t s l ( j )  = (st(i),&+l) for all @(i) and &+l. Update  their a 
posteriori probabilities  according to Theorem 10.1. 

For change detection  purposes, where 6, = 0 is the normal  outcome and 
St # 0 corresponds to different fault modes, we can save a lot of filters in the 
filter bank by using a local search scheme similar to  that in  Algorithm 7.1. 

Algorithm 70.2 Local  pruning  for  multiple  models 

1. Compute recursively the conditional  Kalman filter for a bank of M hy- 
potheses of @(i) = ( S l ( i ) ,  6 2 ( i ) ,  . . . , 6 t ( i ) )T ,  i = 1,2, .  . . , M .  

2. After the measurement update  at  time t ,  prune  the S - 1 least  probable 
branches St .  
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3. At time t + 1: let only the most  probable  branch  split into S branches, 
S t + l ( j )  = (Jt(i), S,+l). 

4. Update  their posterior  probabilities  according to Theorem 10.1. 

Some restrictions  on the rules above can  sometimes be useful: 

0 Assume a minimum segment length: let the most  probable sequence split 
only if it  is  not too young. 

0 Assure that sequences are not cut off immediately  after  they are  born: 
cut off the least probable sequences among  those  that are older than  a 
certain  minimum  life-length, until only M ones are left. 

10.3.3. Merging  strategies 

A general  merging  formula 

The exact  posterior  density of the  state vector is a mixture of St Gaussian dis- 
tributions.  The key point  in merging is to replace, or  approximate, a number 
of Gaussian  distributions by one single Gaussian  distribution  in  such a way 
that  the first and second moments are  matched. That is, a sum of L Gaussian 
distributions 

L 

i=l 

is approximated by 
P6-4 = aN(27 P) ,  

where 

L 

Q = c a(i) 
i=l 

4 L  
Ic =- c Q(i>?(i) 

Q .  
2=1 

1 L 

P =- C Q(i)  (P( i )  + (2 ( i )  - 2) (2 ( i )  - 2)') . 
Q .  

2=1 

The second term in P is the spread ofthe  mean (see (10.21)). It is easy to verify 
that  the  expectation  and covariance are unchanged under  the  distribution 
approximation.  When merging, all  discrete  information of the history is lost. 
That is, merging is  less useful for fault  detection  and isolation than pruning. 
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The GP6 algorithm 

The idea of the Generalized Pseudo-Bayesian (GPB)  approach is to merge the 
mixture after the  measurement  update. 

Algorithm 70.3 GPB 

The mode parameter 6 is an independent sequence with S outcomes used to 
switch  modes in a  linear state space model. Decide on the sliding window 
memory L. Represent the posterior  distribution of the  state at time t with  a 
Gaussian mixture of M = SL-' distributions, 

i=l 

Repeat  the following recursion: 

1. Let these  split  into SL sequences by considering  all S new branches at 
time t + 1. 

2. For each i, apply the conditional  Kalman  filter  measurement and  time up- 
date giving ?t+llt(4,  it+llt+l(i), Pt+llt(i), Pt+llt+l(i), Et+&) and St+lW 

3. Time  update  the weight factors a(i) according to 

4. Measurement  update  the weight factors a(i) according to 

5. Merge S sequences corresponding to  the same  history up  to  time t - L. 
This requires SL-l separate merging steps using the formula 

S 

Q =c Q(i)  
i = l  

1 S 

2 =- c a(i)2(i) 
Q .  

2=1 

P =- C a(i) (P( i )  + (2 ( i )  - 2) (2 ( i )  - 2)') . l 

Q .  
2=1 
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The hypotheses that  are merged are identical up  to  time t - L. That is, 
we do a complete search in a sliding window of size L. In  the extreme case of 
L = 0, all hypotheses are merged at the end of the measurement update.  This 
leaves us with S time  and measurement  updates.  Figure 10.2 illustrates how 
the memory L influences the search  strategy. 

Note that we prefer to call ai weight factors rather  than posterior  probabil- 
ities, as in Theorem 10.1. First, we do not  bother to compute  the  appropriate 
scaling factors (which are never needed),  and secondly, these are probabilities 
of merged sequences that  are not easy to interprete  afterwards. 

The IMM algorithm 

The IMM algorithm is very similar to  GPB.  The only difference is that merging 
is applied  after the  time  update of the weights rather  than  after  the measure- 
ment update.  In  this way, a lot of time  updates  are  omitted, which usually do 
not contribute to performance.  Computationally, IMM should be seen as an 
improvement over GPB. 

Algorithm 10.4 IMM 
As the  GPB Algorithm 10.3, but change the order of steps 4 and 5. 

For target  tracking, IMM has become a standard  method (Bar-Shalom and 
Fortmann, 1988; Bar-Shalom and Li, 1993). Here there is an ambiguity  in how 
the mode  parameter  should  be utilized in the model. A survey of alternatives 
is given in Efe and  Atherton (1998). 

10.3.4. A literature  survey 

Detection 

In detection, the number of branches increases linearly  in  time: one branch 
for each possible time  instant for the change. An approximation suggested in 
Willsky and Jones (1976) is to restrict  the  jump  to a window, so that only 
jumps in the, say, L last time  instants  are considered. This is an example of 
global search, and  it would have been the  optimal  thing  to  do if there really was 
a finite memory in the process, so new measurements  contain  no  information 
about possible jumps L time  instants ago. This leaves L branches  in the  tree. 

Segmentation 

A common approach to segmentation is to apply a recursive detection  method, 
which is restarted each time a jump is decided. This is clearly also a sort of 
global search. 
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A  pruning  strategy is proposed in  Andersson (1985). The method is called 
Adaptive Forgetting  through Multiple Models (AFMM),  and basically is a vari- 
ant of Algorithm 10.2. 

Equalization 

For equalization there is an  optimal search algorithm for a finite  impulse re- 
sponse  channel, namely the Viterbi  algorithm 5.5. The Viterbi  algorithm is 
in its simplicity indeed the most powerful result for search strategies. The 
assumption of finite memory is, however, not very often satisfied. Equaliza- 
tion of FIR channels is one exception. In  our terminology, one  can say that 
the  Viterbi algorithm uses a sliding window, where all possible sequences are 
examined. 

Despite the  optimality  and finite  dimensionality of the Viterbi  algorithm, 
the memory, and accordingly also the number of branches, is sometimes too 
high. Therefore, a number of approximate  search  algorithms have been sug- 
gested. The simplest example is Decision-directed Feedback (DF), where only 
the most probable  branch is saved at each time  instant. 

An example of a global search is Reduced State Space Estimation (RSSE), 
proposed in  Eyuboglu and Qureshi (1988). Similar  algorithms are indepen- 
dently developed in Duel-Hallen and Heegard (1989) and Chevillat and Eleft- 
heriou (1989). Here, the possible state sequences are merged to classes of 
sequences. One  example is when the size of the optimal  Viterbi window is 
decreased to less than L. A different and more complicated merging scheme, 
called State Space Partitioning (SSP), appears in  Larsson (1991). 

A  pruning  approach is used in Aulin (1991), and  it is there called Search 
Algorithm (SA).  Apparently, the same  algorithm is used in  Anderson and 
Mohan (1984), where it is called the M-algorithm. In  both  algorithms,  the M 
locally best sequences survive. 

In Aulin (1991) and Seshadri and  Sundberg (1989), a search algorithm 
is proposed, called the  HA(B, L )  and generalized Viterbi  algorithm (GVA), 
respectively. Here, the B most  probable sequences preceding all  combinations 
of sequences in a sliding window of size L are saved, making a total of BSL 
branches. The  HA(B, L )  thus contains DF, RSSE, SA and even the  Viterbi 
algorithm  as  special cases. 

Blind  equalization 

In blind equalization, the  approach of examining each input sequence in a tree 
structure is quite new.  However, the  DF algorithm, see Sat0 (1975),  can be 
considered as a local search where only the most probable  branch is saved. 
In  Sat0 (1975), an approximation is proposed, where the possible inputs  are 
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merged into two classes: one for positive and one for negative values of the 
input.  The most probable  branch defined in  these two classes is saved. This 
algorithm  is, however, not an approximation of the  optimal  algorithm;  rather 
of a suboptimal one where the LMS (Least Mean Squares, see Ljung and 
Soderstrom  (1983))  algorithm is used for updating  the  parameter  estimate. 

Markov models 

The search strategy problem is perhaps  best developed in the context of 
Markov  models; see the excellent survey  Tugnait (1982) and also Blom and 
Bar-Shalom  (1988). 

The earliest reference on  this  subject is Ackerson and F'u (1970). In  their 
global algorithm the Gaussian  mixture at  time t ~ remember that  the a  posteri- 
ori distribution  from a Gaussian  prior is a Gaussian mixture - is approximated 
by one Gaussian  distribution. That is, all  branches are merged into one. This 
approach is also used in Wernersson (1975), Kazakov (1979) and Segal (1979). 

An extension  on this  algorithm is given in Jaffer and  Gupta (1971). Here, 
all possible sequences over a sliding window are considered, and  the preceding 
sequences are merged by using one  Gaussian  distribution just as above. Two 
special cases of this algorithm are given in  Bruckner et al. (1973) and  Chang 
and  Athans (1978), where the window  size is one. The difference is just  the 
model complexity. The most general  algorithm  in Jaffer and  Gupta (1971) is 
the Generalized Pseudo  Bayes (GPB), which got this  name  in Blom and Bar- 
Shalom  (1988), see Algorithm 10.3. The Interacting  Multiple Model (1") 
algorithm was proposed in Blom and Bar-Shalom (1988). As stated before, 
the difference of GPB  and IMM is the  timing when the merging is performed. 
Merging in (10.7) gives the IMM and  after (10.9) the  GPB algorithm. 

An unconventional approach to global search is presented  in Akashi and 
Kumamoto (1977). Here the small  number of considered sequences are chosen 
at random. This was before genetic  algorithms and MCMC methods become 
popular. 

A  pruning scheme, given in  Tugnait  (1979), is the Detection-Estimation 
Algorithm (DEA). Here, the M most likely sequences are saved. 

10.4. Off-line algorithms 

10.4.1. The EM algorithm 

The Expectation  Maximization (EM) algorithm (see Baum  et al.  (1970)), al- 
ternates between estimating  the  state vector by a conditional  mean, given a 
sequence J N ,  and maximizing the posterior  probability p ( S N I z N ) .  Applica- 
tion to  state space models and some recursive implementations  are surveyed 



392 Chanae  detection  based on multide models 

in  Krishnamurthy  and Moore (1993). The MCMC Algorithm 10.6 can  be 
interpreted  as a stochastic version of EM. 

10.4.2. MCMC algorithms 

MCMC algorithms are off-line, though  related  simulation-based  methods have 
been proposed to find recursive implementations  (Bergman, 1999; de  Freitas 
et al., 2000; Doucet, 1998). 

Algorithm 7.2 proposed in  Fitzgerald et al. (1994) for segmentation,  can 
be generalized to  the general detection  problem. It is here  formulated for the 
case of binary S,, which can  be  represented by n change times k1, kz, . . . , kn. 

Algorithm 70.5 Gibbs-Metropolis MCMC detection 
Decide the number of changes n: 

1. 
2. 

3. 

4. 

Iterate Monte Carlo run i 
Iterate Gibbs sampler for component j in kn, where a random  number 
from 

i j  - P(kjlk1, k2, .  . ., kj- l ,   k j+l ,  kn) 
is taken.  Denote the new candidate sequence p. The  distribution may 
be  taken  as  flat, or Gaussian  centered around 5.  If independent jump 
instants  are  assumed,  this  task simplifies to taking  random  numbers i j  - 
Run  the conditional  Kalman filter using the sequence p, and save the 
innovations E t  and  its covariances St. 
The  candidate j is accepted  with  probability 

P ( W .  

That is, if the likelihood increases we always keep the new candidate. 
Otherwise we keep it  with a certain  probability which depends  on  its 
likeliness. This  random rejection step is the Metropolis  step. 

After the burn-in (convergence) time,  the  distribution of change times  can  be 
computed by Monte Carlo techniques. 

Example 70.9 Gibbs-Metropolis change detection 
Consider the tracking  example  described  in Section 8.12.2. Figure  10.3(a) 

shows the  trajectory  and  the result  from the  Kalman filter. The  jump hy- 
pothesis is that  the  state covariance is ten  times larger Q(1) = 10 Q(0).  The 
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Figure 10.3. Trajectory  and filtered  position estimate from Kalman filter (a)  and Gibbs- 
Metropolis  algorithm with n = 5 (b). 

Figure 10.4. Convergence of Gibbs  sequence of change  times. To the left for n = 2 and 
to  the right for n = 5 .  For each iteration,  there  are n sub-iterations,  in which each  change 
time in the  current sequence k" is replaced by a random one. The accepted  sequences k" 
are  marked  with 'X'. 

distribution  in  step 5 is Gaussian N(O,5). The  jump sequences as a function 
of iterations  and  sub-iterations of the  Gibbs sampler are shown in  Figure 10.4. 
The  iteration scheme converges to two change  points at 20 and 36. For the 
case of overestimating the change points,  these  are placed at one border of the 
data sequence (here at  the  end).  The improvement  in  tracking  performance is 
shown in Figure 10.3(b).  The  distribution we would  like to have in  practice 
is the one from Monte Carlo  simulations.  Figure 10.5 shows the result  from 
Kalman filter whiteness  test and a Kalman filter bank. See Bergman and 
Gustafsson (1999) for more information. 
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Figure 10.5. Histograms of estimated change times from 100 Monte Carlo simulations using 
Kalman filter  whiteness test  and a Kalman filter bank. 

We can also generalize the MCMC approach given in Chapter 4. 

Algorithm 70.6 MCMC change detection 

Assume Gaussian noise in the  state space  model (10.1). Denote the sequence 
of mode  parameters S N ( i )  = ( S I , .  . . , b ~ ) ~ ,  and  the stacked vector of states 
for X = (xl T , .. . , X%)'. The  Gibbs sequence of change  times is generated by 
alternating  taking  random samples  from 

( x N ) ( i + l )   - p ( z N l y N ,   ( S N ) ( i ) )  

( b N ) ( i + l )  -p(6 N Iy N , (x N ) (i+l) ). 

The first distribution is given  by the conditional  Kalman  smoother, since 

The second distribution is 

Here At denotes the Moore-Penrose pseudo-inverse. 

The  interpretation of the last step is the following: If the  smoothed se- 
quence xt is changing rapidly  (large  derivative),  then a change is associated 
with that time  instant  with high probability. 
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A  computational  advantage of assuming  independence is that  the random 
St variables can  be  generated  independently. An alternative is to assume a 
hidden Markov model for the sequence S N .  

10.5. Local  pruning  in  blind  equalization 

As an  application, we will study blind  equalization. The algorithm is a 
straightforward  application of Algorithm 10.1. It was proposed in  Gustafsson 
and Wahlberg  (1995), and a similar  algorithm is called MAPSD (Maximum A 
Posteriori Sequence Detection) (Giridhar  et al., 1996). 

10.5.1. Algorithm 

A  time-varying ARX model is used for the channel: 

where 

The unknown input S, belongs to a finite alphabet of size S. With mainly  nota- 
tional changes, this model can  encompass  multi-variable and complex channels 
as well. The  pruning Algorithm 10.1 now becomes Algorithm 10.7. 

Algorithm 10.7 Blind equalization 

Assume there  are M sequences St - ' ( i )  given at  time t - 1, and  that their 
relative a posteriori probabilities p(StP1 ( i )  I&') have been computed. At time 
t ,  compute  the following: 

1. Evaluation:  Update p(St(i)lyt) by 
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Here pt(i) = p t ( @ ( i ) )  and &(i)  are conditional of the  input sequence 
S t ( i ) .  This gives S M  sequences, by considering all S expansions of each 
sequence at time t .  

4. Repeat  from  step 1. 

We conclude with a numerical  evaluation. 

Example 10.10 Blind equalization using  multiple  models 

In  this example we will examine how Algorithm 10.7 performs  in the case 
of a Rayleigh fading  communication  channel. Rayleigh fading is an  important 
problem  in mobile communication. The motion of the receiver causes a time- 
varying channel  characteristics. The Rayleigh fading  channel is simulated 
using the following premises: The frequency of the carrier wave is 900  MHz, 
and  the baseband  sampling frequency is 25 kHz. The receiver is moving with 
the velocity 83 km/h so the maximum Doppler frequency can  be shown to be 
approximately 70 Hz. A channel  with two time-varying taps, corresponding 
to  this maximum Doppler frequency, will be used.' An example of a tap is 
shown in  Figure 10.6. For more details  and a thorough  treatment of fading  in 
mobile communication, see Lee (1982). 

In  Figure  10.6(a), a typical  parameter convergence is shown. The  true 
FIR  parameter values are here  compared to  the least  squares  estimates con- 
ditioned  on the  estimated  input sequence at time t .  The convergence to  the 
true  parameter  settings is quite fast (only a few samples are needed), and  the 
tracking  ability very good. 

To test  the sensitivity to noise, the measurement noise variance is varied 
over a wide range.  Figure  10.6(b) shows Bit Error Rate (BER)  as a function of 

'The  taps  are  simulated by filtering white Gaussian noise with  unit variance by a second 
order resonance  filter, with  the resonance  frequency equal to 70/25000 Hz, followed by a 
seventh  order  Butterworth low-pass filter with cut-off frequency 7r/2 .70/25000. 
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Figure 10.6. Example of estimated  and  true  parameters  in  a  Rayleigh  fading  channel  (a). 
Bit-error  as  a  function of SNR with 64 parallel  filters,  using  Monte  Carlo  average over 10 
simulations (b). 

Signal-to-Noise  Ratio (SNR). Rather surprisingly, the  mean performance is not 
much  worse compared to  the Viterbi  algorithm  in  Example 5.19. Compared 
to  the result  in  Figure 5.29, the  parameters  are here  rapidly  changing  in  time, 
and  there is  no training sequence available. 

1 O.A. Posterior  distribution 

Theorem 10.1 (MAP estimate of dN) 
Consider the signal  model (10.1). The MAP estimate of J N  is given  by mini- 
mizing its negative a posteriori  probability 

-2 logp(6 N N  Iy ) = - 2 logp(6N) + 2 logp(yN) + N p  log 27r 
N 

+ c {logdet St(JN) + E~(6N)S;1(6N)Et(6N)}. (10.18) 
t=l 
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It is a wellknown property of the  Kalman filter that 

(Yt lYt - l ,  Jt) E N ( C t ( m t l t - 1 ( 6 t ) ,  ct(s,)p,,,-l(st)c~(s,) + W t ) )  . 

P(Yt lY t - l ,  S t )  = Y (Yt - Ct(&)%lt-1(6t), ct(S,,P,lt-l(St)c~(6t) + Rt(6t)) 

Thus, we get 

which gives the desired result by taking the logarithm. Here ?("-p, P )  denotes 
the Gaussian  probability  density  function,  with  mean p and covariance matrix 
P ,  evaluated at X. 0 

Note from the proof that (10.18) actually holds if bt is continuous as well. 
The problem is how to minimize the a posteriori probability. From (10.18) 
it follows that  the MAP estimator essentially minimizes the  sum of squared 
prediction  errors, weighted by their inverse covariance matrices. The first term 
in the  sum is a counterweight to  the second. It prevents the covariance matrix 
from  being too large, because that would make the weighted sum of prediction 
errors very small. 

10.A.l. Posterior  distribution of the  continuous  state 

Sometimes the  distribution of the continuous state is interesting. It follows 
easily from  Theorem 10.1. 
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Corollary 10.2 
Under  the  same  assumptions  and  notation as in Theorem 10.1, the a  posteriori 
distribution of   the  continuous  state  vector  is  a  Gaussian  mixture 

Here SN is  the  finite  number  of  different 6's, arbitrarily  enumerated by the 
index i, and $ 0 ,  .) is  the Gaussian  density  function. I f  t < N ,  Q N  and PtlN 
denote  the  smoothed  state  estimate  and  its  covariance  matrix,  respectively. 
For t = N and t = N + 1, we take  the  Kalman  filter and  predictor  quantities, 
respectively. 

Proof: The law of total probability gives, since the different 6's are  mutually 
exclusive, 

6 

For Gaussian noise, p ( z t l y N ,  S) is Gaussian  with  mean and covariance as given 
by the  Kalman filter. 0 

The MAP estimator of xt is arg max,, p(xtlyN). Another possible estimate 
is the conditional  expectation, which coincides with  the minimum variance 
estimate (see Section 13.2),  and  it is given by 

It is often  interesting to compute  or plot confidence regions for the  state.  This 
is quite  complicated for Gaussian  mixtures. What one  can do is compute  the 
conditional covariance matrix PtlN for xt, given the measurements yN. This 
can  then  be used for giving approximate confidence regions for the conditional 
mean. Using the spread of the  mean formula 

where index k means  with  respect to  the probability 
conditional covariance matrix follows, as 

distribution for k ,  the 

-2.t""(it M V  ) . 



400 Chanae detection based  on multide models 

Thus,  the a posteriori covariance matrix for xt,  given measurements yN is 
given  by three  terms.  The first is a weighted mean of the covariance matrices 
for each S. The last two take  the variation  in the  estimates themselves into 
consideration. If the  estimate of xt is approximately the same for all S the 
first term is dominating,  otherwise  the  variations  in  estimate might make the 
covariance matrices negligible. 

10.A.2. Unknown  noise  level 

It is wellknown that  the properties of the Kalman filter is scale invariant  with 
respect to  the noise covariance matrices Q and R. Suppose that all  prior 
covariance matrices are scaled a factor X. Marking the new quantities  with 
bars we have, 

It is easily checked from the  Kalman filter equations that  the estimates 
are still the same. The only difference is that all covariance matrices are scaled 
a factor X, 

Thus, for pure filtering the  actual level of the covariance matrices  does  not 
need to be known. 

However, from  equation (10.18) in  Theorem 10.1 it  can easily be checked 
that  the scaling changes the a posteriori probability of S as 

-2 logp(S1yN) = - 2 logp(SlyN, X = 1) 

1 
X 

N 

+ NplogX - (1 - -) C€;(S)s;yS)€t(6), 
t=l 

and  this can have quite serious effects. Consider, for instance, the case when 
(10.1) describes a single output linear regression. Then, X scales the measure- 
ment noise variance. Over-estimating  it gives non-informative results, since 
the influence of the prediction  errors  on (10.18) is almost negligible in this 
case. The  MAP  estimator  then chooses the S which gives the smallest predic- 
tion  error covariance matrices, which is independent of the prediction  errors. 

Thus,  there is a need for robustifying the  MAP  estimate  with respect to 
such unknown levels. This can be done by considering X as a stochastic  variable 
and using marginalization. 
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Theorem 10.3 
Consider  the  model  (10.1)  under  the  same  assumptions as in  Theorem 10.1, 
but  with  an  unknown level X in  (10.22).  Then if X is  considered  as  a  stochastic 
variable  with  no  prior  information,  the  a  posteriori  probability  for S N  is  given 
bY 

N 

-2 logp(SN IyN) =C - 2 logp(SN) + c log det &(S t )  
t=l 

N 

+ ( N p  - 2) l 0 g C  €T(st)s,-l(St)€t(St), (10.23) 
t=l 

where 

Here r(n) is  the  gamma-function. 

Proof: The proof is a minor modification of Theorem 10.1, which is quite 
similar to Theorem 7.4. 0 

At this  stage,  it might be interesting to compare the expressions (10.23) 
and (10.18) for known and  stochastic noise level, respectively. Let 

N N 

DN = c log det & ( S t )  and VN = c E F ( S t ) S F I E t ( S t ) .  
t=l  t=l 

Clearly, the  estimator here minimizes DN + N log VN rather  than DN + VN, 

S,, = arg min DN + VN,  ^t 

8hL = arg min DN + ( N p  - 2) log VN, if X is stochastic. 

if X is known 

Exactly  the same  statistics  are involved; the difference being only how the 
normalized sum of residuals  appears. 
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11 . l .  Basics 

Consider  a  batch of data over a sliding window, collected in a measurement 
vector Y and  input vector U .  As in Chapter 6, the idea of a consistency 
test is to apply  a  linear  transformation to a batch of data, AiY + BiU + ci. 
The matrices Ai, Bi and vector G are chosen so that  the norm of the linear 
transformation is small when there is no change/fault  according to hypothesis 
Hi, and large when fault Hi has  appeared. The approach  in  this  chapter 
measures the size of 

llAiY + BiU + till 
as  a distance  function in a  algebraic  meaning  (in  contrast to  the  statistical 
meaning  in  Chapter 6 ). The distance  measure  becomes  exactly ‘zero’ in the 
non-faulty case, and  any  deviation from zero is explained by modeling errors 
and  unmodeled disturbances rather  than noise. 
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That is, we will study a noise free state space model 

xt+l -k Bu,tut -k Bd,tdt -k Bf,tft (11.1) 
Y t  =Ctxt -k Du,tUt -k Dd,tdt -k Df , t f t -  (11.2) 

The differences to, for example, the  state space model (9.1) are  the following: 

0 The measurement noise is removed. 

0 The  state noise  is replaced by a deterministic disturbance d t ,  which may 
have a direct term  to yt. 

0 The  state change may have a dynamic profile f t .  This is more  general 
than  the  step change in  (9.1), which is a special case with 

f t  = Ot-kV. 

0 There is an ambiguity over  how to split the influence from one fault 
between B f ,  D f  and f t .  The convention here is that  the fault  direction 
is included in B f ,  D f  (which are typically  time-invariant). That is, B; f: 
is the influence of fault i ,  and  the scalar fuult profile f: is the time-varying 
size of the  fault. 

The algebraic approach uses the batch model 

& = OZt-L+1 -k Huut -k HdDt -k H f F t ,  (11.3) 

where 

For simplicity, time-invariant  matrices are assumed here. The Hankel  matrix 
H is defined identically for all three  input signals U ,  d and f (the  subscript 
defines which one is meant). 

The idea now is to compute a linear  combination of data, which is usually 
referred to  as a residual 

rt A wT(& - &ut) = wT(Oxt-L+l + H& + H f F t ) .  (11.5) 
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This equation  assumes  a  stable  system  (Kinnaert et al.,  1995). The  equation 
rt = 0 is called a parity  equation. For the residual to be useful, we have to 
impose  the following constraints  on the choice of the vector or matrix W :  

1. 

2. 

3. 

Insensitive to  the value of the  state xt and disturbances: 

WT (0, Hd) = 0. (11.6) 

That is, rt = w T ( K  - H,Ut) = wT(Oxt-L+l + H&) = 0 when  there is 
no fault.  The columns of wT are  therefore  vectors  in the null space of the 
matrix (0, Hd). This can  be  referred to as decoupling of the residuals 
from the  state vector and disturbances. 

Sensitive to faults: 

w T H f  # 0. (11.7) 

Together  with  condition 1, this implies rt = wT(Y,-H,Ut) = w T H f F t  # 
0 whenever Ft # 0. 

For isolation, we would  like the residual to react differently to  the differ- 
ent  faults.  That is, the residual  vectors  from different faults f', f2,. . . , 
f " f  should form a  certain  pattern, called a residual structure R. There 
are two possible approaches: 

a) Transformation of the residuals; 

Tr t  = T w T H f  = Ri. (11.8) 

This design assumes  stationarity  in  the  fault. That is, its  magnitude 
is constant  within the sliding window. This implies that there will 
be a  transient  in  the residual of length L. See Table 11.1 for  two 
common  examples on structures R. 

b) For fault decoupling, a slight modification of the null space above 
is needed. Let H i  be  the fault matrix  from fault fz. There  are 
now n f  such matrices.  Replace (11.6) and (11.7) with the  iterative 
scheme 

wT (0, Hd H i  ... Hi-l f . . . H T f )  =O 

W H f  #O. T i  

In  this way, the  transients  in, for instance,  Figure 11.4  will dis- 
appear. A risk with the previous design is that  the  time profile fi 
might excite  other  residuals  causing  incorrect  isolation, a risk which 
is eliminated here. On  the  other  hand,  it should  be  remarked that 
detection  should  be  done  faster than isolation, which should  be 
done  after  transient effects  have passed away. 
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Table 11.1. The residual vector rt = wT(K - H,Ut) is one of the columns of the residual 
structure  matrix R, of which two common  examples are given. F 

rt ( 3 )  1  1 0 

The derivation based on the  three first conditions is given in Section 11.2. 
The main  disadvantage of this  approach is sensitivity and robustness. That 

is, the residuals become quite noisy even for small levels of the measurement 
noise, or when the model used in the design deviates  from the  true system. 
This problem is not well treated in the  literature,  and  there  are no design rules 
to be  found. However, it  should be clear from the previously described design 
approaches that  it is the window  size L which is the main design parameter 
to  trade off sensitivity (and  robustness) to decreased detection  performance. 

Equation (11.5) can  be expressed in filter form as 

rt = A(q)Yt - B(&, 

where A(q) and B(q) are polynomials of order L. There  are approaches de- 
scribed  in Section 11.4, that design the FIR filters  in the frequency domain. 
There is also a close link to observer design presented  in Section 11.3. Ba- 
sically, (11.5) is a dead-beat observer of the  faults.  Other observer designs 
correspond to pole placements different from  origin, which can  be achieved by 
filtering the residuals  in (11.5) by an observer polynomial C(q). 

Another  approach is also based on observers. The idea is to  run a bank of 
filters, each one using only one output.  This is called an dedicated observer in 
Clark (1979). The observer outputs  are  then compared and by a simple voting 
strategy faulty sensors are  detected. The residual structure is the left one  in 
Table 11.1. A  variant of this is to include  all but one of the measurements  in 
the observer. This is an efficient solution  for, for example,  navigation  systems, 
since the recovery after a detected change is simple; use the  output from the 
observer not using the  faulty sensor. A fault  in one sensor will then affect all 
but one observer, and voting  can be applied  according to  the right-hand  struc- 
ture in Table 11.1. An extension of this idea is to design observers that use 
all but a subset of inputs, corresponding to  the hypothesized faulty  actuators. 
This is called unknown input  observer (Wiinnenberg, 1990). A further  alter- 
native is the generalized observer, see Patton (1994) and Wiinnenberg (1990), 
which is outlined in Section 11.3. Finally, it will be argued that all observer 
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and frequency domain  approaches are equivalent to,  or special cases of, the 
parity  space  approach  detailed here. 

Literature 

For ten years, the collection by Patton  et al. (1989) was the  main reference in 
this  area. Now, there  are  three single-authored  monographs  in  Gertler (1998), 
Chen  and  Patton (1999) and Mangoubi (1998). There  are also several survey 
papers, of which we mention  Isermann  and Balle (1997), Isermann (1997) and 
Gertler (1997). 

The approaches to design suitable  residuals  are:  parity  space design (Chow 
and Willsky, 1984; Ding et al., 1999; Gertler,  1997), unknown input observer 
(Hong et al., 1997; Hou and  Patton, 1998; Wang and Daley, 1996; Wunnenberg, 
1990;  Yang and Saif, 1998) and in the frequency domain  (Frank  and Ding, 
199413; Sauter  and  Hamelin, 1999). A completely different approach is based on 
reasoning and  computer science, and examples  here are A r z h  (1996), Blanke 
et al.  (1997),  Larsson (1994) and Larsson (1999). In  the  latter  approach, 
Boolean logics and object-orientation are keywords. 

A logical approach to merge the  deterministic modeling of this  chapter 
with the  stochastic models used by the  Kalman filter appears in Keller (1999). 

11.2. Parity space change detection 

11.2.1. Algorithm  derivation 

The  three conditions (11.6)-(11.8) are used to derive Algorithm 11.1 below. 
Condition (11.6) implies that W belongs to  the null space of (0 Hd). This 
can  be  computed by a Singular  Value  Decomposition (SVD):  

(0 Hd) = UDVT. 

These  matrices are  written  in  standard  notation  and should  not be confused 
with U, and D,, etc. in the model (11.3). Here D is a diagonal matrix  with 
elements  equal to  the singular values of (0 Hd),  and  its left eigenvectors are 
the rows of U .  The null space N of (0 Hd) is spanned by the last  columns 
of U ,  corresponding to eigenvalues zero. In  the following, we will use the  same 
notation for the null space N ,  as for a basis represented by the rows of a matrix 
N .  In MAT LAB^^ notation, we can  take 

[UyD,V1=svd( CO Hdl) ; 
n=rank(D) ; 
N=U(:,n+l:end)'; 
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The MATLABTM function null computes the null space  directly and gives a 
slightly different basis. Condition (11.6) is satisfied for any  linear  combination 
of N ,  

wT = TN,  

where T is an  arbitrary  (square  or  thick)  matrix. To  satisfy  condition (11.7), 
we just have to check that no rows of N are orthogonal to H f  . If this is the 
case, these are  then deleted and we save N. In MATLABTM notation, we take 

ind= [l ; 
for i=l:size(N,l); 

a=N(i,:)*Hf; 
if a l l  (a==O) ; 

ind= [ind il ; 
end 

end 
N(ind, :)=[l ; 

That is, the number of rows in N ,  say n s ,  determines how many  residuals 
that  can  be  computed, which is an upper  bound  on  the number of faults that 
can  be  detected.  This  step  can  be  skipped if the isolation design described 
next is included. 

The last thing  to do is to choose T to facilitate isolation. Assume there 
are n f  5 nN faults,  in  directions f ' ,  f 2 , .  . . , f " f  . Isolation design is done by 
first choosing a residual structure R. The two popular choices in  Table 11.1 
are 

R=eye (nf ; 
R=ones(nf)-eye(nf1; 

The  transformation  matrix is then chosen as the solution to  the equation 
system 

T N H f  ( 1 ~  8 (f' f 2  f " f ) )  =R 
wT =TN. 

Here 1~ is a vector of L ones and @ denotes  the Kronecker product. That 
is, 1~ @ f i  is another way  of writing F: when the fault  magnitude is constant 
during  the sliding window. In MATLABTM notation for nf  = 3, this is done 
by 
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To summarize, we have the following algorithm: 

Algorithm 7 7 .7  Parity space change detection 

Given: a state space model (11.1). 
Design parameters: sliding window size L and residual structure R. 
Compute recursively: 

1. The  data vectors yt and Ut in (11.3) and  the model matrices 0, Hd, H f  

2. The null space N of (0 Hd) is spanned by the last  columns of U ,  cor- 
responding to eigenvalues zero. In MATLABTM formalism, the transfor- 
mation  matrix giving residual structure R is computed by: 

[UyD,V1=svd( CO Hdl) ; 
n=rank(D) ; 
N=U(:,n+l:end); 
T = R / (N*Hf*kron(ones(L,l),[fl f2 f31)); 
W = (T*N) ’; 

in (11.4). 

3. Compute  the residual r = wT(& - &Ut), 

r=w’*(Y-Hu*U); 

4. Change  detection if rTr > 0, or rTr > h considering model  uncertainties. 
5. Change isolation. Fault i in  direction f 2 where i = arg maxi rTRi. Ri 

denotes  column i of R. 

[dum , il =max (r ’ *R) ; 

It should be noted that  the residual structure R is no real design parameter, 
but  rather a tool for interpreting  and  illustrating  the  result. 

11.2.2.  Some  rank  results 

Rank of null  space 

When does a parity  equation  exist? That is, when is the size of the null space 
N different from O? We can  do some quick calculations to find the  rank of N. 
We have 

rank(N) =n,L - rank(0) - rank(&) (11.9) 
rank( 0)  =n, (11.10) 

rank(Hd) =ndL (11.11) 
+ rank(N) =L(ny - n d )  - n,. (11.12) 
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It is assumed that  the ranks are determined by the column  spaces, which  is 
the case if the  number of outputs is larger than  the number of disturbances 
(otherwise  condition (11.6) can never be  satisfied). In (11.9) it is assumed 
that  the column  space of 0 and H d  do not  overlap,  otherwise the  rank of 
N will be larger. That is, a lower bound  on  the  rank of the null space is 
rank(N) 2 L(nU - n d )  - n,. 

The calculations above give a  condition for detectability. For isolability, 
compute Ni for each fault fi. Isolability is implied by the two conditions 
Ni # 0 for all i and  that Ni is not parallel to Nj for all i # j. 

Requirement  for  isolation 

Let 

Now  we can  write the residuals  as 

rt = TNH f Ft. 

The  faults can  be  isolated using the residuals if and only if the  matrix NHf 
is of rank n f ,  

rank(Nkf)  = n f .  

In  the case of the  same  number of residuals  as  faults, we simply  take ft = 
(TNHf)-'rt. The design of the  transformation  matrix  to get the required 
fault structure  then also has  a  unique  solution, 

T = (NHf)-lR. 

It should  be  remarked, however, that  the residual structure is cosmetics which 
may be useful  for monitoring  purposes only. The information is available in 
the residuals  with  or  without  transformation. 

Minimal  order  residual  filters 

We discuss why window sizes larger than L = n, do not need to be  considered. 
The simplest  explanation is that a  state observer does not need to be of a higher 
dimension (the  state comprises all of the information about  the  system,  thus 
also detection and isolation  information). Now so-called Luenberger  observers 
can be used to  further decrease the order of the observer. The idea  here is that 
the known part in the  state from each measurement  can  be  updated exactly. 
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A similar  result  exists  here as well, of course. A simple  derivation goes as 
follows. 

Take a QR factorization of the basis for the null space, 

N = &R. 

It is clear that by using T = QT we get residuals 

rt = Tni(yt - &Ut) = QTQR(& - &Ut) = R(& - &Ut). 

The  matrix R looks like the following: 

nd) - nx 

The  matrix has zeros below the diagonal, and  the numbers  indicate  dimen- 
sions. We just need to use nf residuals for isolation, which can  be  taken as 
the last nf rows of rt above. When  forming  these nf  residuals, a number of 
elements in the last rows in R are zero. Using geometry  in the figure above, 
the filter order is given  by 

Ln, - L(n, - n d )  + n, + nf - Lnd + n, + nf 
- (11.13) 

nY nY 
This number  must be rounded  upwards to get an integer  number of measure- 
ment vectors. See Section 11.5.3 for an example. 

11.2.3. Sensitivity and robustness 

The design methods  presented  here are based on  purely  algebraic  relations. 
It  turns  out, from  examples, that  the residual  filters are extremely  sensitive 
to measurement noise and lack robustness to modeling errors.  Consider, for 
example, the case of measurement noise only, and  the case of no  fault: 

rt = wT(% +Et - H,Ut) = wTEt. 

Here Et is the stacked vector of measurement noises, which has covariance 
matrix 
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Here @ denotes Kronecker product. The covariance matrix of the residuals is 
given  by 

Cov(rt) = WT Cov(Et)w = WT(IL  8 R)w. (11.14) 

The reason this might blow up is that  the components of W might become sev- 
eral  order of magnitudes larger than one, and  thus magnifying the noise.  See 
Section 11.5.3 for an example. In  this section,  examples of both measurement 
noise and modeling error  are given, which show that small  measurement noise 
or a small  system change can give very ‘noisy’ residuals, due  to large elements 
in W. 

11.2.4. Uncontrollable  fault  states 

A generalization of this  approach  in  the case the  state space model has  states 
(‘fault states’)  that  are not controllable  from the  input ut and  disturbance dt 
is presented  in  Nyberg and Nielsen (1997). Suppose the  state space model can 
be  written 

Here x2 is not controllable from the  input  and  disturbance. Now  we can  split 

0 = (01 0 2 )  

in an obvious manner.  The  steps (11.6) and (11.7) can now be replaced by 

WT (01 Hd) = 0 

WT ( 0 2  Hf) # 0. 

The reason is that we do not need to decouple the  part of the  state vector 
which is not excited by U ,  d. In  this way, the number of candidate residuals - 
that is, the number of rows in wT ~ is much larger than for the original design 
method.  First,  the null space of (0’ Hd) is larger than for (0’ O2 Hd),  
and secondly, it is less  likely that  the null space is orthogonal to (02 H f )  than 
to H f  in the original design. Intuitively, the ‘fault states’ x2 are unaffected by 
input  and  disturbance decoupling and  are observable from the  output, which 
facilitates  detection and isolation. 
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11.2.5. Open problems 

The freedoms in the design are  the sliding window size L and  the  transforma- 
tion matrix T in wT = TN. The trade-off in L in  statistical  methods  does  not 
appear in  this noiseless setting. However, as soon as  small  measurement noise 
is introduced, longer window sizes seem to be  preferred  from a noise rejection 
point of view. 

0 In  some  applications,  it might be  interesting to force certain  columns  in 
wT to zero, and in that way remove influence from specific sensors  or 
actuators.  This is the idea of unknown input observers and dedicated 
observers. 

0 From  a  measurement noise sensitivity  viewpoint, a good design gives 
elements  in W of the  same order. The examples  in  the next  section show 
that  the elements of W might differ several  order of magnitudes  from  a 
straightforward design. When L is further increased, the average size of 
the elements will decrease, and  the  central limit  theorem  indicates that 
the noise attenuation will improve. 

11.3. An observer approach 

Another  approach to residual  generation is based on observers. The following 
facts  are important here: 

0 We  know that  the  state of a system  per  definition  contains  all  information 
about  the  system,  and  thus also faults. 

0 There is  no better  (linear)  filter than  the observer to  compute  the  states. 

0 The observer does  not have to be of higher order than  the system  order 
nz. The so called dead-beat observer can  be  written  as 

i t  = Cy(4)Yt + C U ( d U t ,  

where Cg(q) and CU(q) are polynomials of order n,. An arbitrary ob- 
server polynomial  can  be  introduced to  attenuate disturbances. 

This line of arguments  indicates that any  required  residual  can  be  computed 
by linear  combinations of the  states  estimated by a  dead-beat  observer, 

rt = Lit  = A(q)yt - B(q)ut. A 

That is, the residual  can  be  generated by an  FIR filter of order n,. This 
also indicates that  the largest  sliding window which needs to be considered 
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is L = n,. This fact is formally proved in  Nyberg  and Nielsen (1997). The 
dead-beat observer is sensitive to disturbances. The linear  combination L can 
be designed to decouple the disturbances,  and we end  up  at essentially the 
same  residual  as from a design using parity  spaces  in Section 11.2. 

More specifically, let 

be  our  candidate  residual. Clearly, this is zero when  there is  no disturbance 
or fault and when the  initial  transient has passed away. If the observer states 
were replaced by the  true  states,  then we would  have 

In that case, we could choose L such that  the disturbance is decoupled by 
requiring L(BT, = 0. However, the observer dynamics  must  be  included 
and  the design becomes a bit involved. The  bottom line is that  the residuals 
can  be expressed as  a  function of the observer state estimates, which are given 
by a  filter of order n,. 

11.4. An  input-output approach 

An input-output approach (see Frisk and  Nyberg (1999)) to residual  genera- 
tion, is as follows.  Let the  undisturbed fault-free  system  be 

A residual  generator may be  taken  as 

which should be zero when no fault  or  disturbance is present. M ( q )  must 
belong to  the left null space of WT(q). The dimension of this null space and 
thus  the dimension of rt is ng if there is no disturbances ( n d  = 0) and less 
otherwise. 

The order of the residual  filter is L, so this design should give exactly the 
same degrees of freedom as using the  parity space. 
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11.5. Applications 

One of most important applications for fault diagnosis is in  automotive engines 
(Dinca  et  al., 1999; Nyberg, 1999; Soliman et  al., 1999). An application to  an 
unmanned  underwater vehicle  is presented  in  Alessandri et al. (1999). Here 
we will consider systems well approximated  with a linear  model,  in  contrast to 
an engine, for instance. This enables a straightforward design and facilitates 
evaluation. 

11.5.1. Simulated DC motor 

Consider  a  sampled state space  model of a DC motor  with  continuous  time 
transfer  function 

1 
G ( s )  = 

s(s + 1) 

sampled  with  a  sample  interval T, = 0.4s. This is the  same  example used 
throughout  Chapter 8, and  the fault  detection setup is the same  as  in  Example 
9.3. 

The  state space  matrices  with d being the angle and x2 the angular ve- 
locity  are 

A = (0 0.6703) ’ = (0.3297) ’ Bd = ( 3  ’ Bf = (k !) ’ 

c= (k !) 7 Du = (3  7 Dd = ( 3  7 D f  = (0  0) 

1 0.3297  0.0703 

0 0  

It is assumed that  both XI and x2 are  measured. Here we have assumed that a 
fault  enters  as  either an angular or velocity change in the model. The matrices 
in the sliding window model (11.3) become for L = 2: 

0 0 0 0  

o= 1 0.3297 0.0703 0 
0 0.6703 0.3297 0 0 1 0 0  

-0.6930  -0.1901  0.6930  -0.0572 
= ( 0.0405  -0.5466  -0.0405  0.8354 

State faults 

A simulation study is performed, where the first  angle  fault is simulated fol- 
lowed  by the second kind of fault  in  angular velocity. The residuals using 
wT = N are shown  in the  upper plot  in  Figure 11.1. The null space is trans- 
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21 
Unstructured  residuals  for L = 2 
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Figure 11 . l .  Residuals for sliding window L = 2. Upper plot shows unstructured residuals 
and lower plot structured residuals  according to  the left table in  Table 11.1. 

formed to get structured residuals  according to  the  pattern in  Table 11.1. 
That is,  a  fault in angle will  show up  as a non-zero residual r t ,  but  the second 
residual r: remains zero. The  data projection matrix becomes 

tuT= ( -1 -0.3297 1 0 
0 -0.6703 0 1 

One  question is what  happens if the sliding window size  is increased.  Figure 
11.2 shows the  structured  and  unstructured residuals.  One conclusion is that 
the null space increases linearly  as Lny, but  the  rank of H f  also  increases  as 
Lng, so the  number of residual  candidates  does not change. That is,  a  larger 
window  size than L = n, does not  help us in the diagnosis. 

Actuator  and  sensor  faults 

A more  realistic  fault  model is to assume  actuator  and (for instance  angular) 
sensor offsets. This  means that we should use 

In  this way, ft = (at, O ) T  means  actuator offset of size at, and f t  = (0, at)T 
means  angular sensor offset.  However, these two faults  are not possible to 
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Unstructured  residuals  for L = 3 Unstructured  residuals  for L = 4 : p j j = g J  0 - '3 

-1 b 10 20 30 40 50 60 70 ,b -'b I0 20 30 40 SO 60 70 JO 

Structured  residuals  for L = 3 Structured  residuals  for L = 4 

, 

-1 b 10 20 30 40 50 60 70 ,b -'b I0 20 30 40 SO 60 70 JO 

( 4  (b) 

Figure 11.2. Residuals for sliding window L = 3 and L = 4, respectively. Upper plots 
show unstructured residuals and lower plots structured residuals  according to  the left table 
in Table 11.1 

isolate, though  they  are possible to detect.  The only matrix  that is influenced 
by the changed fault  assumptions is 

1 0 0  

Hf=( 0.0703 ' 0 0 O) 1 . 

0.3297 0 0 0 

Here we get a  problem,  because the second fault  (columns 2 and 4 in H f )  are 
parallel  with the first  column  in 0. That is, an angular  disturbance  cannot 
be  distinguished from the influence of the  initial filter states  on  the angle. 

Increasing the window to L = 3  does  not help: 

H f  = 

11.5.2. DC motor 

0 1 0 0 0 0  
0 0 0 0 0 0  

0.0703 0 0 1 0 0 
0.3297 0 0 0 0 0 
0.1790 0 0.0703 0 0 1 
0.2210 0 0.3297 0 0 0 

Consider the DC motor  lab  experiment  described  in  Sections 2.5.1 and 2.7.1. 
It was examined  with  respect to system changes in Section 5.10.2, and a  statis- 
tical  approach to disturbance  detection was presented  in  Section 8.12.1. Here 
we apply the  parity space  residual  generator to detect the  torque  disturbances 
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while being insensitive to system changes. The  test cases in  Table 2.1 are 
considered. The  state space model is given in (2.2). 

From Figure 11.3, we conclude the following: 

0 The residual  gets a significant injection at  the  time of system changes 
and  disturbances. 

0 These  times coincide with  the  alarms from the Kalman filter residual 
whiteness test.  The  latter  method seems to be easier to use and more 
robust,  due  to  the clear peaks of the  test  statistics. 

0 It does not seem possible to solve the fault isolation problem reliably with 
this  method. See Gustafsson and  Graebe (1998) for a change  detection 
method  that works for this example. 

Model  residuals,  data set 1 

1 21 
Model  residuals,  data  set 2 

l 
Test statistics  from  whiteness  chanae detedion 

l 
Test statistics  from  whiteness  chanae detedion 

Model  residuals.  data set 3 

l:: 

Test statistics  from  whiteness  change  det&ion 

0 
Residusls fmrn fault  detedion 

2 -  

0 

-2 ~ 

0 500 1000 1500  2000  2500 

Figure 11.3. Simulation  error using the  state space  model  in (2.2), test  statistics from 
the CUSUM whiteness test of the  Kalman filter for comparison and  parity space  residuals. 
Nominal system  (a),  with  torque  disturbances  (b),  with change  in  dynamics  (c) and  both 
disturbance  and change (d). 
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11 5 .3 .  Vertical  aircraft  dynamics 

We investigate here fault  detection  in the vertical-plane  dynamics of an F-16 
aircraft.  The F-16 aircraft is, due  to  accurate public  models, used in  many 
simulation  studies. For instance,  Eide  and Maybeck (1995, 1996) use a full 
scale non-linear  model for fault  detection.  Related  studies  are  Mehra et al. 
(1995), where fault  detection is compared to a  Kalman  filter,  and Maybeck 
and Hanlon  (1995). 

The  dynamics can be described by a transfer  function yt = G(q)ut or by a 
state space model. These models are useful for different purposes, just  as  the 
DC motor  in  Sections 2.5.1 and 2.7.1. One difference here is that  the dynamics 
generally depend  upon  the  operating point. 

The  state,  inputs  and  outputs for this application  are: 

Inputs  outputs 

23: pitch  angle [deg] y3: pitch  angle [deg] U S :  elevator  angle [deg] 
2 2 :  forward  speed [m/s]  yz: forward  speed [m/s ]  U Z :  forward  acceleration [m/s2]  
21: altitude [m] yl: relative altitude [m] u1: spoiler  angle [O.ldeg] 
States 

2 4 :  pitch  rate [deg l s ]  
25: vertical  speed [deg l s ]  

The numerical values below are  taken  from Maciejowski (1989) (given in 
continuous time)  sampled  with 10 Hz: 

1 0.0014 0.1133 0.0004 -0.0997 
0 0.9945 -0.0171 -0.0005 0.0070 
0 0.0003 1.0000 0.0957 -0.0049 
0 0.0061 -0.0000 0.9130 -0.0966 
0 -0.0286 0.0002 0.1004 0.9879 

-0.0078 0.0000 0.0003 
-0.0115 0.0997 0.0000 

0.4150 0.0003 -0.1589 
0.1794 -0.0014 -0.0158 

B d = [ ) ,  [ -0.0078 0.0000 0.0003 0 0 0 
-0.0115 0.0997 0.0000 0 0 0 

Bf  = 0.0212 0.0000 -0.0081 0 0 0 
0.4150 0.0003 -0.1589 0 0 0 
0.1794 -0.0014 -0.0158 0 0 0 

(l 0 0 0 "), (o 0 0 1 0 ") 
c = 0 1 0 0 0   D f = 0 0 0 0 1 0 .  

0 0 1 0 0   0 0 0 0 0 1  

The  disturbance is assumed to act  as  an additive term  to  the forward  speed. 
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Fault detection 

The  fault model is one component f i  for each possible actuator  and sensor 
fault.  In  other words, in the  input-output  domain we have 

Yt = G(4) (%+ ($)) + (3) 
Using L = 5 gives a null space N being a 6 X 15  matrix. A &R-factorization 
of Af = QR gives an upper-diagonal matrix R, whose last row has  nine zeros 
and six non-zero elements, 

R'''' = (O'", -0.0497,  -0.7035,  0.0032,  0.0497,  0.7072, 0.033). 

Since the orthogonal matrix Q cannot make any non-zero vector zero, we can 
use wT = R. More specifically, we can  take the last row of R to compute a 
residual useful for change detection. This residual will only use the current 
and past  measurements of y, U ,  so the minimal order  residual filter is thus of 
order two. 

Isolation 

Suppose we want to detect  and isolate  faults  in f' and f6. We use the struc- 
tural matrices 

The projection matrix becomes 

-32 0.05 0.76  30  0.10  -7.6  24  0.07 
W~ = ( . .. 13 -11 0.02  -5.6  -12 0 -0.18 

132  -0.20 21 -135  -0.39 15 -79  -0.26 . . . 
... -69 41 -0.067 6.73 40 0 28 

The largest element is 132 (compare  with  (11.14)).  One  can also note that 
the  ratio of the largest and smallest  elements is 

I w I  = 8023. 
min 1wI 
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Thus,  the filter coefficients in W has a large dynamic  range, which might 
indicate  numerical difficulties. 

A simulation gives the residuals  in  Figure 11.4. The first plot shows un- 
structured residuals and  the second the  structured ones. The transient caused 
by the filter looks nastier  here, largely due to  the higher order filters. 

Isolation  using  minimum  order  filters 

The  transient problem  can be improved on by using minimum  order  residual 
filters. Using the QR factorization of N above, and only using the last two 
rows of R, we get 

0 0  0 0 -0.0032 16 -76 0.11 
. . . -55 153 0.12  62  -76 0 123) . 

0 0  0 0 0.0064 -32 301 -0.46 . . . 
. . . 202 -593  -0.46  -315  292 0 145 

w T =  ( 
Here the largest element is 593 and  the  ratio of the largest and smallest 

element is 183666. That is, the price paid for the minimal filter is much larger 
elements  in W,  and  thus according to (11.14) a much larger  residual variance. 
This explains the sensitivity to noise that will be pointed out. 

The order of the filter is 3, since the last 7 components of Yt corresponds 
to  three measurements  (here only the  third component of yt-2 is used).  The 
result is consistent with the formula (11.13), 

Lnd+n,+nf 0 + 5 + 2  

nY 
- - 

3 

The  third plot in  Figure 11.4 shows how the transients now only last for 
two samples, which will  allow quicker diagnosis. 

Sensitivity  to  noisy  measurements 

Suppose we add very small  Gaussian noise to  the measurements, 

yF = yt + et ,  Cov( e t )  = R. 

The residuals  in  Figure 11.4 are now shown in  Figure 11.5 for R = 1OP61.  
This level on the noise  gives an SNR of 5 . 106. We see that  the residual filter 
is very sensitive to noise, especially the minimal  order filter. 

Exactly  as for other change detection  approaches based on sliding windows, 
the noise attenuation improves when the sliding window increases at  the cost 
of longer delay for detection  and isolation. Figure 11.5 also shows the residuals 
in the case when the window length is increased to L = 10. 
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Unstructured  residuals  for L = 5 
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Structured  residuals  for L = 5 

Structured  residuals  for L = 5 and  minimum  order  filter 
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Figure 11.4. Residuals for sliding window L = 5 for the aircraft  model. The  upper  plot 
shows unstructured residuals, and  the  middle  plot  structured  residuals  according  to  the left 
table in Table 11.1. The lower plot shows minimal  order  residuals. 

Unstructured  residuals  for L = 5 Unstructured  residuals  for L = 10 
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Structured  residuals  for L = 10 
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Figure 11.5. Illustration of the sensitivity to measurement noise. Residuals for sliding 
window L = 5 and L = 10,  respectively, for the aircraft  model. The  upper  plot shows 
unstructured residuals, and  the  middle  plot  structured  residuals  according  to  the left table 
in Table 11.1. The lower plot shows minimal  order  residuals. 
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Design  based  on  correct  model for L = 5 

ModelerrorA(1,3)=1.15(1.1332)forL=10 
2 I I ,  I I t ’  

I . 1. I 1  

Figure 11.6. Illustration of the  robustness  to model  errors. A design based on  the correct 
model used in the simulation gives structured residuals as in  the first subplot.  The  other two 
shows the  structured residuals when the A(1,2) element is increased l%, for sliding window 
sizes L = 5 and L = 10, respectively. 

Robustness to incorrect  model 

The noise sensitivity  indicates that there might be  robustness  problems  as 
well. This is illustrated by changing  one of the  parameters in the  example by 
1%.  This is done by letting  A(1,2) = 1.15 in the design instead of A(1,2) = 
1.1332 as used when simulating the  data.  The result  in  Figure 11.6  shows 
that small  model  errors  can lead to ‘noisy’ residuals, and decision making 
becomes  hazardous. Again, improved performance is obtained by increasing 
the window size at  the cost of increased delay for detection. 



Part V: Theory 

Adaptive Filtering and Change Detection
Fredrik Gustafsson

Copyright © 2000 John Wiley & Sons, Ltd
ISBNs: 0-471-49287-6 (Hardback); 0-470-84161-3 (Electronic)



12 
Evaluation  theory 

12.1.  Filter  evaluation . . . . . . . . . . . . . . . . . . . . . . . 427 
12.1.1. Filter  definitions . . . . . . . . . . . . . . . . . . . . . . . 427 
12.1.2. Performance  measures . . . . . . . . . . . . . . . . . . . . 428 
12.1.3. Monte  Carlo  simulations . . . . . . . . . . . . . . . . . . . 429 
12.1.4.  Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . 432 
12.1.5. MCMC and  Gibbs  sampler . . . . . . . . . . . . . . . . . 437 

12.2.  Evaluation  of  change  detectors . . . . . . . . . . . . . . 439 
12.2.1.  Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439 
12.2.2.  The ARL  function . . . . . . . . . . . . . . . . . . . . . . 441 

12.3.  Performance  optimization . . . . . . . . . . . . . . . . . 444 
12.3.1.  The MDL criterion . . . . . . . . . . . . . . . . . . . . . . 445 
12.3.2.  Auto-tuning  and  optimization . . . . . . . . . . . . . . . . 450 

12.1. Filter  evaluation 

12.1 . l .  Filter  definitions 

Consider  a  general  linear  filter  (or  estimator) 

(12.1) 

as  illustrated in Figure 12.1. Typically, the  estimated  quantity X is either  the 
parameter vector 19 in  a  parametric  model,  or  the  state X in  a state space model. 
It might also be  the signal  component st of the measurement yt = st +ut. The 
measurements zt consist of the  measured  outputs yt and, when appropriate, 
the  inputs ut. 

The basic definitions that will be used  for a linear $filter are: 

e A time-invariant  filter has at,i = cui for all t and i. 

e A non-causal  filter has tl < 0. This is  used in smoothing. If tl 2 0, the 
filter is causal. 
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Figure 12.1. An estimator  takes  the  observed  signal zt and transforms  it to  estimates &. 

0 A causal filter is IIR  (Infinite  Impulse  Response) if t 2  = c m ,  otherwise  it 
is FIR  (Finite  Impulse  Response). 

0 2t is a k-step ahead prediction if tl = k > 0. 

Most filters use all past  data, so t 2  = c m ,  and  the  notation is sometimes 
useful for highlighting that  the  estimator is a predictor (tl > 0), a smoother 
(tl < 0) or a filter (tl = 0). 

12.1.2. Performance  measures 

The  estimator gives a so called point estimate of X. For evaluation, we are 
interested  in the variability between different realizations: 

0 One such measure is the covariance matrix 

(12.2) 

Here and in the sequel, the super-index O means the  true value. Such a 
covariance matrix is provided by the  Kalman filter, for instance,  but  it 
reflects the  true variability only if the underlying  signal model is correct, 
including its  stochastic  assumptions. 

0 A scalar  measure of performance is often to prefer when evaluating dif- 
ferent filters, such as  the square  root of the mean value of the  norm of 
the  estimation  error 

Jtro) = (E(& - - X:)) ' l2 = d-, (12.3) 

where the  subindex 2 stands for the 2-norm and  tr for trace, which is the 
sum of diagonal  elements of the  matrix  argument.  This is a measure of 
the length of the  estimation  error.  One  can  think of it  as  the  standard 
deviation of the  estimation  error. 

0 Sometimes the second order  properties  are  not  enough,  and the complete 
Probability Density  Function (PDF) needs to be  estimated. 
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Confidence intervals for the  parameters  and hypothesis tests  are  other 
related  applications of variability measures. 

Monte Carlo simulations offer a means for estimating  these measures. Before 
proceeding, let us consider the causes for variability  in  more  detail: 

Variance  error is caused by the variability of different noise realizations, 
which gives a variability  in 2t - E(&). 

Bias and tracking  error are caused by an error  in  the signal model (bias) 
and inability of the filter to track  fast  variations  in X: (tracking  error), 
respectively. The combined effect is a deviation  in z: - E(&). Determi- 
nation of bias  error is in  general a difficult task  and will not be discussed 
further in this section. We  will assume that  there is no bias, only tracking 
error. 

Hence, the covariance matrix  can  be seen as a sum of two terms, 

W )  = E(II2.t - 4 1 1 ; )  = E(II2.t - E(&)ll;) + E(IIE(2.t) - .;II;) . (12.4) 
v- 

variance  error  bias and  tracking  error 

12.1.3. Monte  Carlo simulations 

Suppose we can  generate A4 realizations of the  data zt, by means of simulation 
or data acquisition  under the same  conditions.  Denote them by zt , J = ( A  . 

1,2, .  . . , M .  Apply the same estimator (12.1) to all of them, 

From these M sets of estimates, we can  estimate all  kind of statistics. For 
instance, if the dimension of z is only one, we can make a histogram over &, 
which graphically  approximates  the  PDF. 

The scalar  measure (12.3) is estimated by the Root  Mean  Square  Error 
(RMSE)  

(12.6) 

This  equation comprises both tracking and variance errors. If the  true value 
X; is not known for some reason,  or if one  wants to measure only the variance 
error, X: can be replaced by its Monte  Carlo  mean, while at  the same  time 
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changing M to M - 1 in the normalization (to get an unbiased  estimate of the 
standard  deviation),  and we get 

Equation (12.6) is an  estimate of the  standard deviation of the  estimation  error 
norm  at each time  instant. A scalar  measure for the whole data sequence is 

(12.8) 

Note that  the  time average is placed inside the  square  root, in  order to get 
an unbiased estimate of standard deviation. Some authors propose to  time 
average the  RMSE(t),  but  this is not an  estimate of standard deviation of the 
error anymore.’ 

Example 72.1 Signal  estimation 

The first  subplot  in  Figure 12.2 shows a  signal, which includes a ramp 
change, and  a noisy measurement yt = st + et of it. To recover the signal  from 
the measurements,  a low-pass filter of Butterworth-type is applied. Using 
many different realization of the measurements, the Monte  Carlo  mean is 
illustrated in the last two subplots, where an  estimated confidence bound is 
also marked. This  bound is the ‘fd level, where o is replaced by RMSE(t). 

In some applications,  including  safety  critical  ones, it is the peak  error that 
is crucial, 

(12.9) 

From this,  a scalar  peak  measure  can  be defined as the  total  peak  (max over 
time)  or  a  time  RMSE  (time average peak  value). Note that this  measure is 
non-decreasing  with the  number of Monte  Carlo runs, so the absolute value 
should be interpreted  with a little  care. 

According to Jensen’s inequality, E(,/$ < m, so this  incorrect  procedure would 
produce  an  under-biased  estimate of standard  deviation.  In  general,  standard  deviations 
should  not  be  averaged.  Compare  the  outcomes  from mean(std(randn(l0,IOOOO))) with 
sqrt(mean(std(randn(lO,10000)).~2)) ! 
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Figure 12.2. First plot shows the signal (dashed line) and  the  measurements (solid line) 
from one realization. The second and  third plot show the Monte Carlo  mean  estimate  and 
the one sigma confidence interval  using the Monte Carlo  standard  deviation for 50 and 1000 
Monte  Carlo runs, respectively. 

The scalar  performance  measures  can  be used  for auto-tuning. Suppose  the 
filter is parameterized  in  a  scalar design parameter. As argued  in Chapter 1, all 
linear  filters have such a  scalar to trade-off variance and tracking  errors. Then 
we can  optimize the filter design with  respect to this  measure, for instance 
by using a line search. The procedure  can  be generalized to non-scalar design 
parameters,  at  the cost of using more  sophisticated and  computer intensive 
optimization  routines. 

Example 72.2 Target tracking 

Consider the  target tracking  example  in  Example 1.1. For a particular  filter 
(better  tuned  than  the one in  Example 1.1), the filter  estimates lie on  top of 
the measurements, so Figure  12.3(a) is not very practical for filter  evaluation, 
because  it is hard  to see any  error  at all. 

The RMSE  position  error  in  12.3(b) is a much better  tool for evalua- 
tion. Here we can clearly see the three  important phases  in  adaptive  filtering: 
transient (for sample  numbers 1-7), the variance  error (8-15 and 27-32) and 
trucking  error (16-26 and 35-45). 

All  in all,  as long as  it is possible to generate  several data sets  under  the 
same  premises,  Monte  Carlo  techniques offer a  solution to filter  evaluation 
and design. However, this might not be  possible, for instance  when collecting 
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Figure 12.3. Radar  trajectory (circles) and filter estimated positions (crosses) in  (a).  The 
RMSE position  error  in (b). 

data during one single test  trial, where it is either  impossible to repeat  the 
same  experiment  or  too expensive. One  can then  try resampling  techniques, 
as  described  in the next  subsections. 

0 Bootstrap offers a way to reorder the filter  residuals and make  artificial 
simulations that are  similar to Monte  Carlo  simulations. The procedure 
includes iterative  filtering and simulation. 

0 Gibbs  resampling is  useful when  certain  marginal  distributions  can  be 
formulated  mathematically. The solution  consists  in  iterative  filtering 
and  random  number  generation. 

12.1.4. Bootstrap 

Static case 

As a  non-dynamic  example of the  bootstrap technique, consider the case of 
estimating  distribution  parameters  in  a sequence of independent  identically 
distributed  (i.i.d.)  stochastic  variables, 

where Q are  parameters in the  distribution. For instance, consider the location 
Q and scale oY parameters in a scalar  Gaussian  distribution. We know from 
Section 3.5.2 how to estimate  them,  and  there  are also quite  simple  theoretical 
expressions for uncertainty  in the estimates.  In  more  general  cases, it might 
be difficult, if not impossible, to  compute  the  sample variance of the point 
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estimate, since most known results are  asymptotic. As detailed  in  Section 
12.1.1, the  standard approach  in a simulation  environment is to perform  Monte 
Carlo  simulations. However, real data sets  are  often  impossible  or  too  costly to 
reproduce  under  indentical  conditions, and  there could be  too few data points 
for the  asymptotic expressions to hold. 

The key idea in bootstrap is to produce new artificial data sets by  picking 
samples at  random from the set yN with  replacement. That is, from the 
measured values 4,2,3,5,1 we might generate 2,2,5,1,5. Denote  the new 
data set by ( Y ~ ) ( ~ ) .  Each new data set is  used to compute a point  estimate 
8(2). Finally,  these  estimates are  treated  as independent  outcomes  from 
Monte  Carlo  simulations, and we can obtain different variability  measures  as 
standard deviation and confidence intervals. 

Example 12.3 Boorsrrap 
Following the  example in Zoubir and  Boushash (1998), we generate 10 

samples from N(10,25). We want to estimate  the  mean I9 and  its variance P 
in the unknown  distribution for the  measurements yt. The point  estimate of 
8 is 

4 10 I9=-Cy - 1  

10 t 
t= l  

and  a point  estimate of its variance P = Var(8) is 

1 10 

i =G C ( y t  - 8)? 
t= l  

We can  repeat  this  experiment  a  number of times  (here 20) in  a  Monte  Carlo 
simulation, and  compute  the variability of 8 in the different experiments  as 
the Monte  Carlo  estimate of the variance,  or  can use the 10 data we have and 
use bootstrap  to generate  Monte  Carlo like data. Note that  its theoretical 
value is known in  this  simulation to be 25/10 = 2.5. The result is as follows: 

Statistics Point  estimate Monte  Carlo bootstrap Theoretical 
A 

9.2527  10  9.3104  10.0082 
I Var(4) I 2.338 I 2.1314 I 2.3253 I 2.5 I 
The result is encouraging,  in that a good  estimate of variability is obtained 

(pretend that  the theoretical value was not available). A new realization of 
random  numbers gives a much worse measure of variability: 
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Statistics 

10 8.8114  9.9806  8.7932 E(8) 

Theoretical bootstrap Monte  Carlo  Point  estimate 
A 

Finally, one might ask what  the performance is as  an average. Twenty re- 
alizations of the tables above are generated, and  the  mean values of variability 
are: 

Statistics 

2.5  2.40  2.53  2.65 EVar(8) 

Theoretical bootstrap Monte  Carlo Point  estimate 
A 

In  conclusion, bootstrap offers a  good  alternative to Monte  Carlo  simula- 
tions  or  analytical  point  estimate. 

From the example, we can  conclude the following: 

0 The  bootstrap result is as  good  as the  natural point  estimate of vari- 
ablity. 

0 The result very much depends  upon  the realization. 

That is: 

Bootstrap 
Bootstrap cannot  create  more  information than is contained  in the 
measurements, but it  can  compute  variability  measures  numeri- 
cally,  which are  as good as  analytically derived point  estimates. I 

There  are  certain applications where there is no analytical expression for 
the point  estimate of variablity. As a simple  example, the variance of the 
sample  median is  very hard  to  compute analytically, and  thus a point  estimator 
of median  variance is also hard  to find. 

Dynamic  time-invariant  case 

For more  realistic  signal processing applications, we first start by outlining 
the  time invariant case. Suppose that  the measured data  are generated by a 
dynamical  model  parametrized by a  parameter 19, 

The  bootstrap idea is now as follows: 
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1. Compute a point  estimate 8 from the original data set {yi, ui}El. 

2. Apply the inverse model (filter) and get the noise (or, more precisely, 
residual) sequence e N .  

3. Generate  bootstrap noise sequences ( G N ) ( 2 )  by picking random  samples 
from eN with  replacement. 

4. Simulate the  estimated  system  with these  artificial noise sequences: 

Yt = f(Yt-17 Yt-2,  7 ut-17 * * * 7 et e)* 44. 

5. Compute point  estimates 8 ( i ) ,  and  treat  them  as  independent outcomes 
from Monte Carlo  simulations. 

Example 72.4 Boorsrrap 

Consider the auto-regressive (AR( 1)) model 

N = 10 samples are simulated.  From  these, the ML estimate of the parameter 
6' in the AR model gt + 6'yt-l = et is computed.  (In MATLABTM this is done 
by -y (l  : N - l )  \y(2 : N)  ; .) Then,  compute  the residual sequence 

Generate  bootstrap sequences ( d N ) ( i )  and  simulate new data by 

Finally, estimate 6' for each sequence ( T J ~ ) ( ~ ) .  
A  histogram over 1000 bootstrap  estimates is shown in  Figure 12.4.  For 

comparison, the Monte  Carlo  estimates are used to approximate the  true  PDF 
of the  estimate. Note that  the  PDF of the  estimate is well predicted by using 
only 10 samples and  bootstrap techniques. 

The  table below summarizes the accuracy of the point  estimates for the 
different methods: 

Statistics Theoretical bootstrap Monte  Carlo Point estimate 
A 

E(6') 0.7  0.57 0.60 0.57 
Std(8) 0.23  0.30  0.27 0.32 
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Figure 12.4. Histograms for point  estimates of an AR parameter using (a) Monte  Carlo 
simulations  and  (b)  bootstrap. 

As in the previous  example, we can average over, say, 20 tables to average 
out  the effect of the  short  data realization of only 10 samples on which the 
bootstrap  estimate is based. The  table below  shows that  bootstrap gives 
almost  as  reliable  estimate  as a Monte  Carlo  simulation: 

Statistics 

0.22583  0.31  0.28  0.25 Std(0) 

Theoretical bootstrap Monte  Carlo Point  estimate 

The  example shows a case where the theoretical  variance and  standard 
deviation  can  be  computed  with  a  little effort. However,  for higher order AR 
models,  finite data covariance expressions  are hard  to  compute analytically, 
and one has to rely on asymptotic expressions  or  resampling  techniques  as 
bootstrap. 

Dynamical  time-varying  case 

A quite challenging problem for adaptive  filtering is to  compute  the RMSE  as 
a  function of time. As a  general  problem  formulation, consider a state space 
model 

where P! = Cov(2.t) is sought. Other measures  as  RMSE  can  be  expressed 
in terms of P!. For many  applications,  it is quite obvious that  the covariance 
matrix Pt delivered by the  Kalman filter is not reliable.  Consider the  target 
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tracking  example. The  Kalman filter  innovations are certainly not white  after 
the manoeuvres. A natural generalization of the  bootstrap principle is as 
follows: 

1. Inverse filter the  state space  model to get an  estimate of the two  noise 
sequences {6t} and {&}. This includes running  the  Kalman filter to get 
the filtered  estimate &, and  then  compute 

The  estimate of ut might be  in the least  squares  sense if B, is not  full 
rank. 

2. If an  estimate of the variance  contribution to  the  RMSE(t) is to be 
found,  resample only the  measurement noise sequence {&}(i). Other- 
wise, resample both sequences. However, here  one  has to be  careful. If 
the sequence {6t} is not  independent and identically  distributed (2.2. d ) ,  
which  is probably the case when using real data,  and  the  bootstrap idea 
does not apply. 

3. Simulate the  system for each set of bootstrap sequences. 

4. Apply the  Kalman filter and  treat  the  state  estimates  as Monte  Carlo 
outcomes. 

Literature 

An introduction to  the  mathematical  aspects of bootstrap can  be  found  in 
Politis (1998) and  a survey of signal processing applications  in Zoubir and 
Boushash  (1998). An  overview  for system  identification and  an application to 
uncertainty  estimation is presented  in Tjarnstrom (2000). 

12.1.5. MCMC and Gibbs sampler 

As a  quite  general change detection and  Kalman filter  example, consider the 
state space  model 

~ t + 1  = A x ~  + + &ut + C S t - k j B f . f j .  
j 

gt =Cxt + Dut + et, 

where fj is a  fault,  assumed  to have known (Gaussian)  distribution,  occuring 
at times k j .  Let K be  the  random vector with  change  times, X the  random 
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matrix  with  state vectors, and Y the vector of measurements. The change 
detection  problem  can  be  formulated as computing  the marginal  distribution 

(12.10) 

The problem is that  the integral  in (12.10) is usually quite  hard to evaluate. 
The idea in Markov  Chain  Monte Carlo (MCMC) and Gibbs sampling is to 
generate sequences X(Z),  K(i)  that asymptotically will have the marginal dis- 
tribution (12.10). The Gibbs sequence is generated by alternating between 
taking  random  samples  from the following two distributions: 

Comments  on  these  steps: 

0 The  distribution (12.11) is Gaussian  with  mean and covariance computed 
by the  Kalman  smoother.  That is, here we run  the  Kalman  smoother  and 
then  simulate  random  numbers from a multi-variate  normal  distribution 
N(Q-l7 Q-1). 

0 From the Markovian property of the  state,  the  distribution (12.12) fol- 
lows  by noting that  the probability for a change at each time is given 
by comparing the difference xt+l- Axt - B,ut with a Gaussian  mixture 
(linear  combination of several Gaussian  distributions). 

The recursion has two phases. First,  it converges from the  initial  uncertainty 
in X(')  and K('). This is called the burn-in  time. Then, we continue to 
iterate  until enough samples  from the marginal  distribution (12.10) have been 
obtained. 

In some cases, we can  draw  samples  from the multi-variate  distribution of 
the unknowns X and K directly. Then we have MCMC. Otherwise,  one  can 
draw  samples  from  scalar  distributions using one  direction  after each other 
and using Bayes'  law. Then we have Gibbs  sampling. 

That is, the basic idea  in  Gibbs  sampling is to generate  random  numbers 
from all kind of marginal  distributions  in an iterative  manner,  and wait until 
the samples have converged to  the  true distribution.  The drawback is that 
analytical expression for all  marginal  distributions  must be known, and  that 
these change from  application to application. 

The theoretical  question is why and how the samples converge to  the 
marginal  distribution. Consider the case of Kalman  filtering, where we want 
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-I P Change  detector 

Figure 12.5. A change detector  takes  the  observed  signal zt and delivers an  alarm  signal at, 
which is one at  time t ,  and zero otherwise,  and possibly makes a decision about  the  change 
time k.  

to compute  certain  statistics of the  states X .  The  transition from one iteration 
to  the next one can be  written 

Expressed in the  initial  state  estimate,  the recursion can  be  written 

This is a Markov model, where the integral kernel h(d2+’ ) ,d i ) )  acts like the 
transition  matrix for state space models. One  stationary point of this recursion 
is the marginal  distribution of X ,  and  it  can  be shown that  the recursion will 
always converge to  this  point, if the marginal  distribution  exists. 

Literature 

The book by Gilks et al. (1996) covers MCMC. An  introduction to Gibbs 
sampling  can be found in Casella and George (1992) and  Smith  and  Roberts 
(1993), and applications to Kalman  filtering  problems  in  Shephard and  Pitt 
(1997) and  Carter  and Kohn (1994). 

12.2. Evaluation of change detectors 

12.2.1. Basics 

A change detector  can  be seen as a device that takes an observed signal zt and 
delivers an  alarm signal at, as  illustrated  in  Figure 12.5. It can also be seen as 
a device that takes a sequence of data  and delivers a sequence of alarm  times 
t ,  and  estimated change times kn. 

h 

On-line performance  measures  are: 
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e Mean Time between  False Alarms  (MTFA) 

MTFA = E(t, - t o  [no  change), (12.13) 

where t o  is the  starting  time for the algorithm. How often do we get 
alarms when the  system  has not changed?  Related to MTFA is the false 
alarm rate (FAR)  defined as  l/MTFA. 

e Mean Time to  Detection ( M T D )  

MTD = E( t ,  - kla given change at  time k ) .  (12.14) 

How long do we have to wait after a change  until we get the alarm? 
Another  name for MTD is Delay  For  Detection (DFD). 

e Missed Detection  Rate (MDR) .  What is the probability of not receiving 
an  alarm, when there  has been a change. Note that in  practice, a large 
t ,  - k can  be confused with a missed detection  in  combination  with a 
false alarm. 

e The Average Run Length function, ARL(0)  

ARL = E(ta - kla  change of magnitude 8 at  time k ) .  (12.15) 

A  function that generalizes MTFA and MTD. How long does  it  take 
before we get an  alarm  after a change of size O? A very large value of 
the ARL function could be  interpreted as a missed detection  being  quite 
likely. 

In practical  situations,  either MTFA or  MTD is fixed, and we optimize the 
choice of method  and design parameters to minimize the  other one. 

In 08-line applications (signal segmentation), logical performance mea- 
sures  are: 

Estimation accuracy. How accurate  can we locate the change times? 
This relates to minimizing the  absolute value of MTD.  Note that  the 
time  to detection  can be negative, if a non-causal change detector is 
used. 

The Minimum  Description  Length (MDL); see Section 12.3.1. How much 
information is needed to  store a given signal? 

The  latter measure is relevant in data compression and communication  areas, 
where disk space or bandwidth is limited. MDL measures the number of 
binary  digits that  are needed to represent the signal and segmentation is one 
approach for making this small. 



12.2 Evaluation of chanae detectors 441 

5 -  

4 -  

3 -  

2 -  

1 -  

0- 

-1 - 

I 
10 20 30 40 50 60 

EO 

70 

60 ~ 

50 - 

40 

30 - n 

(a) (b) 

Figure 12.6. One realization of the change in  the  mean signal (a),  and  histogram over alarm 
times from the CUSUM algorithm for 250 Monte  Carlo  simulations (b). 

Example 72.5 Signal  estimation 

Consider the changing mean  in noise signal  in  Figure 12.6. The two-sided 
version of the CUSUM Algorithm 3.2 with  threshold h = 3 and  drift v = 0.5 
is applied to 250 realizations of the signal. The  alarm  times  are shown in the 
histogram in Figure 12.6. 

From the empirical  alarm  times, we can  compute the following statistics, 
under the  assumption  that  alarms come within 10 samples  after the  true 
change,  otherwise an  alarm is interpreted as a false alarm: 

MTDl 
0.01 0 0.27 3.0 4.7 
FAR MDR2 MDRl MTD2 

As can be  expected,  the  MTD  and MDR are larger for the smaller first 
change. 

Here we have compensated the missed detection  rate by the  estimated 
false alarm  rate.  (Otherwise,  the missed detection  rate would become negative 
after  the second jump, since more than 250 alarms  are  obtained  in  the  interval 
[40,50].) The delay for detection is however not compensated. 

12.2.2. The ARL function 

The ARL function  can  be  evaluated  from  Monte  Carlo  simulations,  or other 
resampling  techniques. In some simple cases, it  can also be  computed  numer- 
ically without  the need for simulations. 
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The ARL function for a stopping rule (or rather  alarm  rule) for detecting 
a change Q in the mean of a signal is defined as 

ARL = E(t,la change of magnitude I3 at time t = 0), (12.16) 

where t, is the  alarm  time (or  stopping  time). 
In  this section, we demonstrate how to analyze and design CUSUM detec- 

tors. Assume we observe a signal xt which is N ( 0 ,  02) before the change and 
N(0 ,  a2)  after  the change. We apply the CUSUM algorithm  with  threshold h 
and drift v: 

gt  =%-l + xt - v (12.17) 
gt =0, if gt < 0 (12.18) 

gt =O, and t ,  = t and  alarm if gt > h > 0. (12.19) 

A successful design requires Q > v. 
There  are two design parameters  in the CUSUM test:  the threshold h, and 

the drift  parameter v. If o is the  standard deviation of the noise, then  it  can 
be shown that  the functional  form of the ARL function is 

ARL(I3; h, v) = f (;, F). (12.20) 

That is, it is a function of two arguments. 
The exact value of the ARL function is given by a so-called F'redholm 

integral  equation of the second kind, which must be solved by a numerical 
algorithm. See de  Bruyn (1968) or Section 5.2.2 in Basseville and Nikiforov 
(1993). Let p = Q - v. A  direct  approximation suggested by Wald is 

(12.21) 

and  another  approximation suggested by Siegmund is 

e-2(hlu+1.166)fi/u - 1 + 2(h/o + 1.166)p/o 
ARL = 

2/3/02 
(12.22) 

The quality of these  approximations is investigeted in the following example. 

Example 72.6 ARL 

Assume that a = 1 and h = 3. The mean time between false alarms is 
f ( h ,  -v) and  the mean time for detection is f ( h , Q  - v), see (12.20). Sample 
values of .f are: 
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Figure 12.7. Distribution of false alarm  times  (a)  and  delay for detections (b), respectively, 
from  Monte  Carlo  simulations  with h = 3 and v = 0.5. 

15' - v MC Siegmund Wald Theoretical 
-0.50  119.9640  118.6000  32.2000  127.7000 

1 0  I 19.4000 I 9.0000 I 17.4000 I 16.7620 I 
0.5000 

3.7600  3.7000  2.5000  3.9000  1.0000 
6.4620  6.4000  4.1000  6.7000 

1.5000 
2.1740  2.0000  1.4000  2.1000  2.0000 
2.6560  2.6000  1.8000  2.7000 

l I I I I I 

This is a  subset of Table 5.1 in Basseville and Nikiforov (1993). See also 
Figures  12.7 and 12.8. 

The  mean times do not say anything  about  the  distribution of the  run 
length, which can be quite  unsymmetric.  Monte  Carlo  simulations  can  be 
used  for further analysis of the  run length  function. 

It can seen that  the distribution of false alarms is basically binominal, and 

What is really needed in  applications is to determine h from  a specified 
that a  rough  estimate of the delay for detection is h/(B - v). 

FAR or  MTD. That is, to solve the equation 

1 
FAR 

ARL(0; h, V) = - 

or 

ARL(B;h,v) = MTD(I5') 



444 Evaluation theorv 

Average run length  [samples]: from sirnulations and theory 

- - Wald's  approx. 
. . . . . .  

Figure 12.8. ARL function as a function of ,U = 0 - v for threshold h = 3. 

with  respect to h. Since the ARL function is a monotonously increasing func- 
tion of h, this should not pose any problems. Next, the drift v can  be  optimized 
to minimize the  MTD if the FAR is to  be held constant. That is, a very sys- 
tematic design is possible if the ARL function is computable,  and if there is 
prior knowledge of the change magnitude 8. To formalize this procedure of 
minimizing MTD for a given FAR, consider the ARL function  in  Figure 12.9. 
First we take 8 = 0 (no  change), and find the level curve where ARL=FAR. 
This gives the threshold  as a function of drift, h = h(v). Then we evaluate  the 
ARL function for the change 8 for which the  MTD is to be minimized. The 
minimum of the function  ARL(8; h(v), v) defines the  optimal  drift  and  then 
also threshold h (v). 

The ARL function  can only be  computed  analytically for very simple cases, 
but  the  approach based on Monte Carlo  simulations is always applicable. 

12.3. Performance  optimization 

For each problem at  hand,  there  are a number of choices to make: 

1. Adaptive  filtering  with  or  without change detection. 

2. The specific algorithm for filtering and possibly change  detector 

3. The design parameters  in  the  algorithm chosen. 
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h 1 -1 e-v 

Figure 12.9. ARL function for different  approximations as a  function of p = 6’ - v and 
threshold h. Siegmund’s  approximation  is  used to compute log,,(ARL). 

We describe  here in general terms  methods for facilitating the design process. 
One  particular goal  is a  more  objective design than  just using trial  and  error 
combined  with  visual  inspection. 

12.3.1. The MD1 criterion 

In  this  section, we consider the  problem of transmitting or  storing a signal  as 
efficiently as possible. By efficiently, we mean using as few binary  digits  as 
possible. As a  tool for this, we can use a  mathematical model of the signal, 
which  is known to  the receiver or the device that reads the stored  information. 
In  the following, we will refer only to  the transmission  problem. The point 
with the  mathematical model is that we do not transmit  the signal  itself, 
but  rather  the residuals from the model whose  size  is of considerably  smaller 
magnitude if the model is good, and  thus fewer bits  are  required for attaining 
the specified accuracy at  the receiver. The prize we have to pay for this is 
that  the  parameters in the  model need to be  transmitted  as well. That is, we 
have a  compromise between sending  as  small  residuals  as possible and using 
as few parameters  as possible. An implicit trade-off is the choice of  how many 
decimals that are needed when transmitting  the  parameters.  This last  trade- 
off is, however, signal  independent,  and  can  be  optimized for each problem 
class leading to  an optimal code length. The presentation  here is based on 
Gustafsson  (1997a), which  is an  attempt  to a generalization of Rissanen’s 
work on this  subject for model  order selection.. 

More specifically, the  problem can  be stated  as choosing a regression vector 
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(model structure) vt and  parameter vectors Bt (constant, piecewise constant 
or time-varying) in the signal  model 

Yt = (P34 + et,  

where et is the residual. 
The problem classes we will examine are listed below: 

0 Time-invariant models where different model structures  can  be com- 
pared. 

0 Time-varying models where different model structures, recursive identi- 
fication methods  and  their design parameters  can  be  compared. 

0 Piecewise constant models, where different model structures, change de- 
tection  algorithms to find the change  points and  their design parameters 
can be compared. 

Besides the residuals that always have to  be  transmitted,  the first model re- 
quires a parameter vector to  be  transmitted.  The second model transmits  the 
time  update of the  parameter vector, whose size should increase as the  time 
variations in the model increase. The  third model  requires the change points 
to be transmitted together  with a parameter vector for each segment. Clearly, 
the use of too many change points  should be penalized. 

The first approach  has  been  thoroughly  examined by Rissanen; see, for in- 
stance,  Rissanen (1978, 1982). He developed the Minimum  Description  Length 
(MDL) criterion, which is a direct  measure of the number of bits  that  are 
needed to represent a given signal as a function of the number of parameters, 
the number of data  and  the size of the residuals. We will extend the MDL 
criterion for the  latter two cases. The point  here is that we get an answer 
to not only what  the most appropriate model structure is, but also when it 
pays off to use recursive identification and change  detection.  Another  point 
is that  the design variables can  be  optimized  automatically as well, which is 
important since this is often a difficult tuning issue. 

We would  like to point out  the following: 

0 There is no assumption that  there is a true  system which has  constant, 
time-varying  or piecewise constant  parameter;  rather we are looking for 
an  algorithm  that is able to describe data as well as possible. 

0 The generalized MDL can  be used for standard  system identification 
problems, just like  MDL is often used for choosing the model structure. 
For instance, by taking a typical  realization of a time-varying  system we 
get a suggestion on which recursive identification  algorithm to apply  and 
how the design parameters  should  be chosen. 
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0 As  will be shown, the result of minimizing the description  length yields 
a stochastic  optimality  in  the  maximum likelihood meaning as well. 

Time-invariant  parameters 

The  summary of MDL  below essentially follows the introduction  section of 
Rissanen  (1982). Assume the measured  signal yt  is modeled in a parametric 
family with  measurement noise 02. Let 8) denote the code  length for 
the signal yN = (91, y2, ..., Y N )  using a model  with a &dimensional  parameter 
vector 8. Here = ( ~ 1 ,  ..., E N )  denotes the set of prediction  errors  from the 
model. In a linear regression framework, we have 

E t  =Yt - 

but  other model structures  are of course possible. 
Generally, we have 

L(EN, 8) = - logp(EN, e),  
where 8) is the joint  distribution of data  and  the parameters.  This 
expression is optimized over the precision of the value of 8, so that each element 
in the  parameter vector can  be  represented by an integer, say n.  The code 
length of this integer can  be expressed as - log(p(n)) for a suitable choice of 
density  function.  Rissanen now proposes a non-informative prior for integers 
as 

p(n) - 2logC("), 

where 
log* (n) = log n + log  log n + log  log  log n + . . . 

where the  sum is terminated  at  the first negative term. It can  be shown that 
this is a proper  distribution, since its  sum is finite. 

With  this prior, the  optimal code  length  can  be  written 

(12.23) 

where only the fastest growing penalty  term is included. Here C ( k )  is the 
volume of the unit  sphere  in Rk,  and ll13llp = B T F 1 1 3 .  For linear regressions 
with  Gaussian noise we have 

1 
0 2  

N 

L(EN, 8) = - c &; + log 11811$ + dlog N .  (12.24) 
t=l 
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The most common reference to MDL only includes the first two terms, which 
are also scaled by 1/N. However, to  be able to compare different assumptions 
on  parameter  variations we keep the  third  term for later use. 

Piecewise  constant  parameters 

As a motivation for this  approach, consider the following example. 

Example 72.7 GSM speech  coding 

The GSM standard for mobile telephony  says that  the signal is segmented 
in  batches of 160 samples,  in each segment an eighth  order  AR model is esti- 
mated,  and  the  parameter values (in  fact non-linear transformation of reflec- 
tion coefficients) and prediction  errors  (or rather a model of the prediction 
errors)  are  transmitted to  the receiver. 

This is an  adequate  coding, since typical speech signals are  short-time 
stationary.  Note  that  the segmentation is fixed before-hand and known to  the 
receiver in GSM. 

We consider segmentation  in a somewhat wider context, where also the 
time  points defining the segmentation are kept as parameters. That is, the 
information needed to  transmit comprises the residuals, the  parameter vector 
in each segment and  the change  points.  Related  segmentation  approaches 
are given in  Kitagawa and Akaike (1978) and Djuric (1992), where the BIC 
criterion Akaike (1977) and Schwartz (1978) is used. Since BIC is the same 
as MDL if only the fastest growing penalty  term is included, the  criteria  they 
present will  give almost  identical  result as the MDL. 

If we consider the change points  as fixed, the MDL theory  immediately 
gives 

because  with a given segmentation we are facing n independent coding prob- 
lems. Note that  the number of parameters  are n d ,  so d in the MDL criterion 
is essentially replaced by nd.  The last term is still negligible if N >> n. 

The remaining  question is what  the cost for coding the integers  kn is. One 
can  argue  that these  integers are also parameters leading to  the use of n ( d +  1) 
in MDL, as done in Kitagawa and Akaike (1978). Or one can  argue that 
code length of integers is negligible compared to  the real-valued parameters, 
leading to MDL with  kn  parameters as used in  Djuric (1992). However, the 
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description  length of these  integers is straightforward to compute. Bayes'  law 
gives that 

p ( & N ,  Q, k") = p ( & N ,  Qlk")p(k"). 

The code length  should thus  be increased by - log(p(k")). The most reason- 
able  prior now is a flat one for each k .  That is, 

where we have assumed that  the number of data is much larger than  the 
number of segments. This prior  corresponds to  the code length 

L(k")  = nlog N .  

That is, the MDL penalty  term should  in  fact be n ( k  + 1) log(N)/N, 

1 
0 2  

N 

L(EN, P ,  k") M- c E 2 ( t )  + (d  + 1)n log N .  (12.25) 
t=l 

Time-varying  parameters 

Here we consider adaptive  algorithms that can  be  written as 

For linear regression, the  update  can  be  written 

which comprises RLS, LMS and  the  Kalman filter as special cases. 
As a first try, one can  argue that  the  parameter  update AQt is a sequence 

of real  numbers just like the residuals and  that  the MDL criterion  should be 

(12.26) 

where Pa is the covariance matrix of the  update A&. This criterion  exhibits 
the basic requirements of a penalty  term linear  in the number of parameters. 
Clearly, there is a trade-off between making the residuals  small  (requiring  large 
updates if the underlying  dynamics are  rapidly time-varying) and making the 
updates small. 
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12.3.2. Auto-tuning and  optimization 

Once we have decided upon the evaluation  measure, auto-tuning of the design 
parameters is a straightforward  optimization  problem. For a simple  algorithm 
with only one design parameter, a line-search is enough. More interestingly, 
we can  compare completely different algorithms like linear  adaptive filters with 
change detection schemes. See Section 5.7 for an example of these ideas. 
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1 3.1. Projections 

The  purpose of this section is to get a geometric  understanding of linear es- 
timation . First. we outline how projections are  computed  in  linear  algebra 
for finite  dimensional vectors . Functional  analysis generalizes this procedure 
to some infinite-dimensional spaces (so-called Hilbert  spaces).  and finally. we 
point out  that linear estimation is a special case of an infinite-dimensional 
space . As an example. we derive the Kalman filter . 

13.1 . 1. linear algebra 

The  theory presented here can  be  found  in  any  textbook  in  linear  algebra . 
Suppose that X, y are two vectors in Rm . We need the following definitions: 

Adaptive Filtering and Change Detection
Fredrik Gustafsson

Copyright © 2000 John Wiley & Sons, Ltd
ISBNs: 0-471-49287-6 (Hardback); 0-470-84161-3 (Electronic)



452 Linear  estimation 

0 The scalar  product is defined by (X, y) = Czl xiyi. The scalar  product 
is a linear operation  in data y. 

0 Length is defined by the Euclidean  norm llxll = d m .  
0 Orthogonality of z and y is defined by (X,  y) = 0: 

Ly 
0 The projection zp  of z on y is defined by 

Note that zp  -X is orthogonal to y,  (xp -X, y) = 0. This is the projection 
theorem, graphically  illustrated below: 

X 

The  fundamental idea in linear  estimation is to project the  quantity  to  be 
estimated  onto a plane,  spanned by the measurements IIg. The projection 
zp  E IIy, or  estimate 2 ,  of z on a plane Itg is defined by (xP - X, yi) = 0 for 
all yi spanning  the plane II,: 

X 

I Xp I 

We distinguish two different cases for how to compute xp: 

1. Suppose ( ~ 1 ,  ~ 2 ,  ..., E N )  is an orthogonal basis for IIg. That is, ( ~ i ,  ~ j )  = 0 
for all i # j and  span(e1, ~ 2 ,  ..., E N )  = IIg. Later  on, E t  will be  interpreted 
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as  the innovations,  or  prediciton  errors. The projection is computed by 

Note that  the coefficients f i  can  be  interpreted as a filter. The projection 
theorem (zP - X, ~ j )  = 0 for all j now  follows, since (xP, E ~ )  = (X, E ~ ) .  

2. Suppose that  the vectors (yl, y2, ..., Y N )  are linearly  independent,  but  not 
necessarily orthogonal, and  span  the plane IIy. Then, Gram-Schmidt 
orthogonlization gives an orthogonal basis by the following recursion, 
initiated  with €1 = y1, 

and we are back in case 1 above: 

Y1 = E1 

13.1.2. Functional  analysis 

A nice fact  in  functional  analysis is that  the geometric  relations  in the previous 
section  can be generalized from vectors in Em to infinite  dimensional  spaces, 
which (although a bit sloppily) can  be  denoted Em. This holds for so-called 
Halbert spaces, which are defined by the existence of a scalar  product  with 

1. (z,z) > 0 for all IC # 0. That is, there is a length  measure,  or  norm, 
that can  be defined as l lzll A ( x , x ) ~ / ~ .  

From these  properties, one can prove the  triangle inequality ( x+Y ,  X +y)lj2 I 
( I C , I C ) ' / ~  + (y,y)II2 and Schwartz inequality I(x,y)l 5 l l z l l  . Ilyll. See, for 
instance, Kreyszig (1978) for more details. 



454 Linear  estimation 

13.1.3. linear estimation 

In linear  estimation,  the  elements z and y are  stochastic variables,  or  vectors 
of stochastic variables. It can easily be checked that  the covariance defines a 
scalar  product  (here  assuming zero mean), 

which satisfies the  three  postulates for a Hilbert space. 
A linear filter that is optimal  in the sense of minimizing the 2-norm implied 

by the scalar product, can be recursively implemented as a recursive Gram- 
Schmidt  orthogonalization and a projection. For scalar y and vector valued z, 
the recursion becomes 

Remarks: 

0 This is not a recursive algorithm  in the sense that  the number of com- 
putations  and memory is limited  in each time  step.  Further  application- 
specific simplifications are needed to achieve this. 

0 To get expressions for the  expectations, a signal model is needed. Basi- 
cally, this model is the only difference between different algorithms. 

13.1.4.  Example:  derivation of the  Kalman  filter 

As an illustration of  how to use projections, an inductive  derivation of the 
Kalman filter will be given for the  state space  model,  with scalar yt, 

1. Let the filter be initialized by iolo with an auxiliary matrix Polo. 

2. Suppose that  the projection at  time t on  the observations of ys up  to 
time t is Ztlt,  and assume that  the  matrix Ptlt is the covariance matrix 
of the  estimation  error, Ptlt = E(ZtltZ&). 
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3. Time update. Define the linear  projection  operator by 

Then 

=AProj(stIyt) + Proj(B,vtIyt) = A2+. - 
=O 

Define the  estimation  error  as 

which  gives 

Measurement update. Recall the  projection figure 

X 

I Xp I 

and  the  projection formula for an orthogonal  basis 
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The correlation between xt and E t  is examined  separately, using (accord- 
ing to  the projection  theorem) E(2tlt-lZtlt-l) = 0 and ~t = yt-C2tlt-l = 

CQ-1 + et: 

Here we assume that xt is un-correlated  with et. We also need 

The measurement update of the covariance matrix is similar. All to- 
gether,  this gives 

The induction is completed. 

13.2. Conditional  expectations 

In  this section, we use arguments  and  results from  mathematical  statistics. 
Stochastic variables (scalar  or vector valued) are  denoted by capital  letters, to 
distinguish them from the observations. This overview is basically taken  from 
Anderson and Moore (1979). 

13.2.1. Basics 

Suppose the vectors X and Y are simultaneously  Gaussian  distributed 

Then,  the conditional  distribution for X ,  given the observed Y = y, is Gaus- 
sian  distributed: 
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This follows directly  from Bayes’ rule 

by rather tedious  computations.  The  complete  derivation is given in Section 
13.2.3. 

The Conditional  Mean (CM) estimator seen as a stochastic variable can 
be  denoted 

while the conditional  mean  estimate, given the observed y, is 

= E(XIY = y) = px + PxyP;;(y - p y ) .  

Note that  the  estimate is a linear function of y (or rather, affine). 

13.2.2. Alternative  optimality  interpretations 

The Maximum A Posteriori ( M A P )  estimator, which maximizes the Probabil- 
ity  Density  Function (PDF) with  respect to X, coincides with  the CM estimator 
for Gaussian  distributions. 

Another possible estimate is given by the Conditional  Minimum  Variance 
principle ( CMV) , 

2cMV(y) = argminE(1IX - ~(y)11~IY = y). 
4Y) 

It is fairly easy to see that  the CMV estimate also coincides with  the CM 
estimate: 

minimum  variance 

This expression is minimized for x(y) = 2(y), and  the minimum variance is 
the remaining two terms. 
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The closely related  (unconditional) Minimum Variance principle ( M V )  de- 
fines an estimator (note  the difference between estimator  and  estimate here): 

X M V ( Y )  = arg min EyEx(llX - Z(Y)l121Y). 
- W )  

Here we explicitely marked which variable the expectation  operates  on. Now, 
the CM estimate minimizes the second expectation for all values on Y .  Thus, 
the weighted version, defined by the expectation  with  respect to Y must be 
minimized by the CM estimator for each Y = y. That is, as  an  estimator,  the 
unconditional MV and CM also coincide. 

13.2.3. Derivation of marginal distribution 

Start  with  the easily checked formula 

P 
(13.3) 

and Bayes' rule 

From (13.3) we get 

and  the  ratio of determinants can be simplified. We note that  the new Gaus- 
sian  distribution  must have P,, - PxgP&'Pyx as covariance matrix. 
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where 

2 = P x  + Pzy P;; (Y - Py). 
From this, we can conclude that 

1 
P X l Y  (X, Y) = det(Pzz - PzyP&j1Pyz)1/2 

which is a Gaussian  distribution  with  mean  and covariance as given in (13.2). 

13.2.4. Example:  derivation of the  Kalman  filter 

As an illustration of conditional  expectation, an inductive  derivation of the 
Kalman filter will be given, for the  state space  model 

~ t + 1  =Axt + &ut, ut E N(O, Q )  
yt =Cxt + et, et E N(O,R) 
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Induction implies that Q, given yt, is normally  distributed. 

13.3. Wiener  filters 

The derivation and  interpretations of the Wiener filter follows  Hayes (1996). 

13.3.1. Basics 

Consider the signal model 

yt = st + et. (13.4) 

The  fundamental signal processing problem is to separate  the signal st from 
the noise et using the measurements yt. The signal model used in Wiener's ap- 
proach is to assume that  the second order  properties of all signals are known. 
When st and et are  independent, sufficient knowledge is contained  in the cor- 
relations coefficients 

r s s ( W  = E h - k )  

r e e ( k )  =E(ete;-k), 

and similarly for a possible correlation rse(k) .  Here we have assumed that 
the signals might be complex valued and vector valued, so * denotes complex 
conjugate  transpose.  The  correlation coefficients (or covariance matrices) may 
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in turn be defined by parametric  signal models. For example, for a state space 
model, the Wiener filter provides a solution to  the  stationary  Kalman filter, 
as will be shown in Section 13.3.7. 

The non-causal Wiener  filter is defined by 

(13.5) 
i=-w 

In  the next subsection, we study causal and predictive  Wiener  filters, but 
the principle is the same. The underlying  idea is to minimize a least  squares 
criterion, 

h =argminV(h) = argminE(Et)2 = argminE(st - &(h))2 (13.6) 
h h h 

CO 

= argminE(st - (y * h)t)2 = argminE(st - c hiyt-i)2, (13.7) 
h h 

iz -00 

where the residual = st - dt and  the least  squares cost V ( h )  are defined in a 
standard  manner. Straightforward  differentiation and  equating to zero gives 

(13.8) 

This is the projection  theorem, see Section 13.1. Using the definition of cor- 
relation coefficients  gives 

CO c hiryg(k - i) = rSg(k ) ,  -m < IC < m. (13.9) 
i=-a 

These  are  the Wiener-Hopf  equations, which are  fundamental for Wiener fil- 
tering. There  are several special cases of the Wiener-Hopf equations, basically 
corresponding to different summation indices and intervals for k .  

0 The  FIR Wiener filter H ( q )  = h0 +hlq-l+ ... +h,-lq-(n-l) corresponds 
to 

n-l c hirgg(k - i) = rsy(k) ,  k = 0,1 ,  ..., n - 1  (13.10) 
i=O 

0 The causal (IIR) Wiener filter H ( q )  = h0 + h1q-l + ... corresponds to 
CO 
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0 The one-step  ahead  predictive (IIR) Wiener filter H ( q )  = h1q-l + 
h2qP2 + ... corresponds to 

CO 

C h i r y y ( k  - i) = rsy(L), 1 5 L < Co. (13.12) 
i=l 

The FIR Wiener filter is a special case of the linear regression framework 
studied in Part 111, and  the non-causal,  causal and predictive  Wiener  filters are 
derived in the next two subsections. The example  in Section 13.3.8 summarizes 
the performance for a particular  example. 

An expression for the  estimation  error variance is easy to derive from the 
projection  theorem (second equality): 

Var(st - i t )  = E(st - &)2 

= E(st - & ) S t  

(13.13) 

This expression holds for all cases, the only difference being the  summation 
interval. 

13.3.2. The non-causal  Wiener  filter 

To get an easily computable expression for the non-causal Wiener  filter,  write 
(13.9) as a convolution (ryy * h)(L) = rsy(L).  The Fourier transform of a 
convolution is a multiplication, and  the correlation coefficients become spectral 
densities, H(eiw)Qyy(eiw) = Qsy(eiw). Thus,  the Wiener filter is 

H ( e Z W )  = 
. Qsy(eiw) 

Q yy (eiw ) ' 

or in the z domain 

(13.14) 

(13.15) 

Here the x-transform is defined as F ( x )  = C f k x P k ,  so that stability of causal 
filters corresponds to IzI < 1. This is a filter where the poles occur  in  pairs 
reflected in the unit circle. Its implementation  requries  either a factorization 
or partial fraction  decomposition, and backward filtering of the  unstable  part. 
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Figure 13.1. The causal  Wiener filter H ( z )  = G+(z )F(z )  can  be seen as cascade of a 
whitening filter F ( z )  and  a non-causal  Wiener filter G+(.) with  white noise input E t .  

13.3.3. The causal Wiener  filter 

The causal Wzenerfilteris defined as  in (13.6), with the restriction that h k  = 0 
for k < 0 so that  future  measurements  are not used when  forming dt. The 
immediate  idea of truncating  the non-causal  Wiener  filter for k < 0 does  not 
work. The reason is that  the information  in future  measurements  can  be  par- 
tially recovered from past  measurements  due to signal  correlation. However, 
the  optimal solution comes  close to this  argumentation, when interpreting  a 
part of the causal  Wiener  filter  as  a  whitening  filter. The basic idea is that 
the causal  Wiener  filter is the causal part of the non-causal  Wiener  filter if the 
measurements  are  white noise! 

Therefore, consider the filter structure depicted  in  Figure 13.1. If yt has  a 
rational  spectral  density, spectral factorization provides the sought  whitening 
filter, 

where Q(z) is a monic (q(0)  = l), 
For real valued signals,  it holds on 
written Q g g ( z )  = a i Q ( z ) Q ( l / ~ ) .  A 
given as 

(13.16) 

stable,  minimum  phase  and  causal  filter. 
the unit circle that  the  spectrum can  be 
stable  and causal  whitening  filter is then 

(13.17) 

Now the correlation  function of white noise  is r E E ( k )  = Bk,  so the Wiener-Hopf 
equation (13.9) becomes 

(13.18) 

where {g:} denotes the impulse  response of the white noise Wiener  filter  in 
Figure 13.1.  Let  us define the causal part of a sequence { x ~ } ~ ~  in the z 
domain  as [ X ( x ) ] + .  Then, in the X domain (13.18) can  be  written  as 
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It remains to express the  spectral density for the correlation stet* in terms of 
the signals in (13.4). Since E; = $F*(l /x*) ,  the cross spectrum becomes 

To summarize, the causal  Wiener  filter is 

It is  well worth  noting that  the non-causal  Wiener 
similar way: 

(13.20) 

(13.21) 
t 

filter  can  be  written  in  a 

(13.22) 

That is, both  the causal and non-causal  Wiener  filters  can  be  interpreted  as  a 
cascade of a  whitening  filter and  a second filter giving the  Wiener solution for 
the whitened  signal. The second filter's  impulse  response is simply truncated 
when the causal  filter is sought. 

Finally, to actually  compute the causal part of a  filter which has poles both 
inside and outside the unit circle, a  partial fraction  decomposition is needed, 
where the fraction  corresponding to  the causal part has  all poles inside the 
unit circle and contains the direct term, while the fraction  with poles outside 
the unit circle  is discarded. 

13.3.4.  Wiener  signal  predictor 

The  Wiener  m-step signal  predictor is easily derived from the causal  Wiener 
filter above. The simplest  derivation is to  truncate  the impulse  response of 
the causal  Wiener  filter for a whitened input  at  another  time  instant. Figure 
13.2(c) gives an elegant presentation and relation to  the causal  Wiener  filter. 

The  same line of arguments hold  for the Wiener fixed-lag smoother  as well; 
just use a negative value of the prediction horizon m. 

13.3.5.  An  algorithm 

The general  algorithm below computes  the  Wiener filter for both cases of 
smoothing  and  prediction. 

Algorithm 73.7 Causal,  predictive  and  smoothing  Wiener  filter 

Given signal and noise spectrum.  The prediction horizon is m,  that is, mea- 
surements  up to  time t - m  are used. For fixed-lag smoothing, m is negative. 



13.3 Wiener  filters 465 

(a)  Non-causal  Wiener filter 

(b) Causal  Wiener  filter 

(c)  Wiener  signal  predictor 

Figure 13.2. The  non-causal,  causal  and  predictive  Wiener filters interpreted as a  cascade 
of a  whitening  filter  and  a  Wiener  filter  with  white noise input.  The filter Q(z)  is given by 
spectral  factorization eYY(z)  = a;&(z)&*(i/z*). 

1. Compute  the  spectral factorization Qyy(x) = oiQ(z)Q*(l/z*). 
2. Compute  the  partial fraction  expansion 

Gq(z) G - 7 2 )  

3. The causal part is  given by 

and  the Wiener filter is 

The  partial fraction  expansion is conveniently done  in MATLABTM by using 
the residue function. To get the correct  result, a small  trick is needed. Factor 
out z from the left hand  side and write z g*(1,2*) 

there is no z to factor out, include one in the  denominator. Here B+, k ,  B- are 

zm--l@J 
sv (2 )  = B + ( Z )  + k + B-(2). If 
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the  outputs from residue and B+(z )  contains  all  fractions  with poles inside 
the  unit circle, and  the  other way around for B - ( x ) .  By this trick, the  direct 
term is ensured to  be contained in G+(z)  = z (B+(z )  + k ) .  

13.3.6. Wiener  measurement  predictor 

The problem of predicting the measurement  rather  than  the signal turns  out 
to  be somewhat simpler. The  assumption is that we have a sequence of mea- 
surements yt that we would  like to predict.  Note that we temporarily leave 
the  standard signal estimation model, in that  there is no signal st here. 

The  k-step  ahead Wiener  predictor of the measurement is most easily de- 
rived by reconsidering the signal model yt = st + et and  interpreting  the signal 
as st = yt+k. Then  the measurement  predictor  pops out  as  a special case of 
the  causal Wiener filter. 

The cross spectrum of the measurement and signal is QsY(z) = zkQYY(z). 
The Wiener  predictor is then  a special case of the  causal Wiener  filter, and 
the solution is 

Gt+k =Hk(q )Y t  
1 Xk@YY ( 4  [ Q*(l/z*)] + .  (13.23) 

As before, &(X) is  given by spectral  factorization Qyy(x) = ~iQ(z)Q*( l /z*) .  
Note that, in this  formulation  there is  no signal st, just  the measured signal 
yt. If, however, we would  like to predict the signal component of (13.4), then 
the filter becomes 

&+k =Hk(x)y t  

(13.24) 

which  is a completely different filter. The one-step  ahead  Wiener  predictor for 
yt becomes  particularly simple, when substituting  the  spectral  factorization 
for QYy(x) in (13.23): 

&+l =Hl(x)Yt 

Since &(X) is monic, we get the  causal  part  as 

(13.25) 
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That is, the Wiener  predictor is 

H&) = X 1 - - ( Q t , )  
(13.26) 

Example 13.1 AR predictor 

Consider an AR process 

with signal spectrum 

@YY(4 = 
0: 

A(x)A*(l/x*) '  

The one step  ahead  predictor is (of course) 

H'(x) = ~ ( 1  - A ( x ) )  = -a1 - a2q-l - ... - a,q -,+l. 

13.3.7. The  stationary Kalman  smoother  as  a  Wiener  filter 

The  stationary Kalman smoother in Chapter 8 must be identical to  the non- 
causal Wiener filter, since both minimize 2-norm errors. The  latter is, however, 
much simpler to derive, and sometimes also to compute. Consider the  state 
space  model, 

yt = Cxt +et. v 
S t  

Assume that ut and et are  independent  scalar  white noises. The  spectral 
density for the signal st is computed by 

The required two spectral  densities are 
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The non-causal  Wiener  filter is thus 

IC(z1-  A)-1B,12 a: 
IC(z1- A)-lB,I2 a,2 + a:' 

H ( z )  = 

The  main  computational work  is a spectral  factorization of the  denominator 
of H ( z ) .  This should  be  compared to solving an algebraic Riccati  equation to 
get the  stationary  Kalman filter. 

Of course, the  stationary  Kalman filter and predictor  can  also  be  computed 
as  Wiener  filters. 

13.3.8. A numerical  example 

Compute  the non-causal  Wiener  filter and one-step  ahead  predictor for the 
AR( 1) process 

st - 0 . 8 ~ ~ ~ 1  =0.6vt 

Y t  = S t  + et, 

with  unit  variance of et and ut, respectively. On  the unit circle, the signal 
spectrum is 

0.6 2 0.36  -0.452 
@'S'S(') = 11 - 0.82-1 I = - - 

(1 - 0 . 8 ~ - ~ ) ( 1  - 0.82) (2 - O.~)(X - 1.25)' 

and  the  other  spectra  are QSy(z) = QSs(z) and Qgg(z)  = Qss(z) + Q e e ( z ) ,  since 
st and et are  assumed  independent: 

-0.452 z2 - 2.52 + 1 
Q Y Y ( 4  = + l =  

( 2  - 0.8)(2 - 1.25) (2 - 0.8)(z - 1.25). 

The non-causal  Wiener  filter is 

Q'SY ( 4  -0.45  -0.45 H ( 2 )  =- = z  
QYy(2) x2 - 2.52 + 1 (2 - 2)(2 - 0.5) 

= 2  

-0.3  -0.32  0.32 +- 
2 - 2   2 - 0 . 5 '  +- 
GP(.) G+(.) 

which can be implemented  as  a  double  recursion 
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As an alternative, we can  split the  partial fractions as follows: 

% Y ( 4  - - -0.452 - -0.452 -0.6 -0.15 H ( 2 )  = ~ 

- - - 

QYy(2) .z2 - 2.52 + 1 (2 - 2)(2 - 0.5) z - 2 z - 0.5' +- 
v -  

H -   H +  

which can  be  implemented  as a double recursion 

Bt =B$ + 2; 
Ŝ $ =0.58:-, - 0.15yt-l 
2; =0.58;+1 + 0.3yt. 

Both  alternatives lead to  the same  result for i t ,  but  the most relevant one here 
is to include the direct term in the forward filter, which is the first alterna- 
tive. Now  we turn  to  the one-step  ahead (m = 1) prediction of S t .  Spectral 
factorization and  partial fraction  decomposition give 

Q Y Y M  = 
2-2   2 -0 .5  

v- 
z - 1.25 z - 0.8 

.- 

Q* P / z *  1 Q(.) 

2 
1 Q ' s Y ( 4  -0.452 - 0.32  -0.752 

Q*(l/x*) ='(X - 0.8)(x - 2) X - 0.8 X - 2 -- 
G+(.)  GP(.) 

- +-. 

Here the causal part of the Wiener filter G ( z )  in  Figure 13.1 is denoted G+(z) ,  
and  the anti-causal part G- (2). The Wiener predictor is 

Note that  the poles are  the  same (0.5) for all filters. 

summarizes the least  squares  theoretical loss function for different filters: 

Filter  operation Loss function 
1 02 No filter. B t  = ut 
Numerical loss 

An interesting  question is how much is gained by filtering. The  table below 

I One-step  ahead  prediction I 0.375 . 0A2 + 0.62 I 0.6 I 
Non-causal Wiener filter 

0.4048 b(0) - c,'=, W - & )  First order FIR filter 
0.3750 b(0) - c,"=, W - & )  Causal Wiener filter 
0.3 a:1h(0)1 

The  table gives an idea of  how fast the information decays in the measure- 
ments. As seen, a first order FIR filter is considerably better  than  just  taking 
Bt = yt, and only a minor improvement is obtained by increasing the number 
of parameters. 



Signal models and notation 

General 

The signals and  notation below are common for the whole book. 

Name 
N 
L 
t 
n, 
Yt 
Ut  

et 
et 

ka 
n 
kn 
St 

xt 

St 

Variable 
Number of data (off-line) 
Number of data in  sliding window 
Time  index  (in units of sample  intervals) 
Dimension of the vector * 
Measurement 
Input (known) 
Measurement noise 
Parameter vector 
State 
Change  time 
Number of change times 
Vector of change times 
Distance  measure  in  stopping  rule 
Test statistic in  stopping  rule 

Signal  estimation  models 

The change in the mean model is 

yt = Bt + et,  Var(et) = o , 2 

Dimension 
Scalar 
Scalar 
Scalar 
Scalar 
ny, P 
12, 
nY 
no, d 
nX 
Scalar 
Scalar 
n 
Scalar 
Scalar 
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and  the change in the  variance  model is 

In change detection, one or  both of Qt and  are assumed piecewise constant, 
with change times k l ,  IQ,. . . , kn = kn. Sometimes  it is convenient to introduce 
the  start  and  end of a data set as ko = 0 and kn = N ,  leaving n - 1 degrees 
of freedom for the change times. 

Parametric  models 

Name Covariance matrix Dimension Variable 
et 

st ny Residual yt - (pTet-1 E t  

pt = Ptlt ne, d Parameter  estimate et 

Rt or o2 ne Measurement noise 

The generic signal model has the form of a linear regression: 

Y t  ='Pt Qt + et. T 

In  adaptive filtering, Qt is varying for all time indexes, while in change detection 
it is assumed piecewise constant,  or at least slowly varying  in between the 
change times. 

Important special cases are  the FIR model 

AR model 
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and ARX model 

A  general  parametric,  dynamic  and  deterministic model for curve  fitting  can 
be  written  as 

State  space  models 

Variable 
State 
State noise (unknown  stoch. input) 
State  disturbance (unknown det.  input) 
State fault  (unknown input) 
Measurement noise 
State space  matrices 
Filtered state  estimate 
Predicted  state  estimate 
Filtered output  estimate 
Predicted  output  estimate 
Innovation  or  residual yt - 

(A.17) 
(A.18) 

The  standard form of the state  space model for linear  estimation is 

Additive state  and sensor changes are caught  in the model 
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where U is the  additive  fault  magnitude. A completely deterministic  state 
space model is 

where f t  is the  additive time-varying  fault profile. All in  all, the most  general 
linear model is 

Multi-model  approaches  can  in  their  most  general  form be  written as 

where 6 is a discrete and finite mode parameter. 



Fault detection  terminology 

The following list of terminology is adopted from  Isermann  and Balle (1997)’ 
and reflects the  notation used in the field of fault  detection and diagnosis. It 
has been promoted at IFAC workshop ‘SAFEPROCESS’ to  act like a unifying 
terminology in this field. (Reproduced by permission of Prof. Rolf Isermann, 
IFAC SAFEPROCESS Technical Committee  Chair 1991-1994.) 

States  and  Signals 

Fault 

Failure 

Malfunction 

Error 

Disturbance 
Perturbation 

Residual 

Symptom 

Unpermitted  deviation of at least one characteristic 
property or parameter of the system  from  acceptable / 
usual / standard condition. 
Permanent  interruption of a systems  ability to perform a 
required  function  under specified operating  conditions. 
Intermittant irregularity  in fulfilment of a systems desired 
function. 
Deviation between a measured  or  computed value (of an 
output variable) and  the  true, specified or  theoretically 
correct value. 
An unknown (and uncontrolled) input  acting  on a system. 
An input  acting  on a system which results  in a temporary 
departure from  current  state. 
Fault  indicator, based on deviation between measurments 
and model-equation-based  computations. 
Change of an observable quantity from  normal  behaviour. 

Adaptive Filtering and Change Detection
Fredrik Gustafsson

Copyright © 2000 John Wiley & Sons, Ltd
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Functions 

Fault detection 

Fault isolation 

Fault identijication 

Fault  diagnosis 

Monitoring 

Supervision 

Protection 

Models 

Determination of faults  present  in a system  and  time 
of detection. 
Determination of kind,  location and  time of 
detection of a fault. Follows fault  detection. 
Determination of the size and time-variant  behaviour 
of a  fault. Follows fault  isolation. 
Determination of kind, size, location and  time of a 
fault. Follows fault  detection.  Includes  fault 
isolation and identification. 
A continuous  real time  task of determining the 
conditions of a physical system, by recording 
information recognising and indicating  anomalies of 
the behaviour. 
Monitoring a physical system  and  taking  appropriate 
actions to maintain the  operation in the case of 
faults. 
Means by  which a  potentially  dangerous  behaviour 
of the  system is suppressed if possible,  or  means by 
which the consequences of a dangerous  behaviour  are 
avoided. 

Quantitative model 

Qualitative  model 

Diagnositic model 

Analytical  redundancy 

Use  of static  and  dynamic relations  among 
system  variables and  parameters in  order to 
describe  systems  behaviour  in  quantitative 
mathematical  terms. 
Use  of static  and  dynamic relations  among 
system  variables and  parameters in  order to 
describe  systems  behaviour  in  qualitative terms 
such as  causalities  or  if-then  rules. 
A set of static or  dynamic  relations which link 
specific input variables - the  symptoms - to 
specific output variables ~ the faults. 
Use  of two or  more, but not necessarily identical 
ways to determine a variable where one way uses 
a  mathematical process model  in  analytical  form. 
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