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LM T An adaptive filter Is essentially aidl_gna_l filter with self-a justing i-ﬂff‘ﬂf‘—* 15, l.
pi adapts, automatically, to changes in its input signals Adaptive filters are the central
Exul topic in the sub-area of DSP known as adaptive signal processing, This chapte:
ope T describes key aspects of this important topic based on the LMS (least mean square)
HHT{L&:‘E;}* and RLS (recursive least squares) algorithms which are two ol the most widely used
s

algorithms in adaptive signal processing. The treatment is practical with only the
essential theory included in the main text. C language implementations of a vanety of
— LMS and RLS based adaptive filters can be found on the (D inciuded with the

companion manual - A Practical Guide for MATLAB and C Language Implemen-
tations of DSP Algorithms (see the Preface for details). A number of real-world

applications are presented.
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The contamination of a signal of interest by other unwanted, often larger, signals or

noise is a problem often encountered in many applications. Where the signal and nojse

occupy fixed and separate frequency bands, conventional linear filters with fixed
coetficients are normally used to extract the signal. However. there are many instances

when it is necessary for the filter characteristics to be variable, adapted to changing |
signal characteristics, or to be altered intelligently. In such cases, the coefficients of :
the filter must vary and cannot be specified in advance. Such is the case where there i

a spectral overlap between the signal and noise (see Figure 10.1) or if the band
occupied by the noise is unknown or varies with time. Typical applications where

fixed coefficient filters are inappropriate are the following:

(1) Electroencephalography (EEG). where artefacts or signal contamination
produced by eye movements or blinks is much larger than the genuine
electrical activity of the brain and shares the same frequency band with signals
of clinical interest. It is not possible to use conventional linear filters to remove
the artefacts while preserving the signals of clinical interest.

(<) Digital communication using a spread spectrum, where a large jamming signal,
possibly intended to disrupt communication, could interfere with the desired
signal. The interference often occupies a narrow but unknown band within the
wideband spectrum, and can only be effectiy ely dealt with adaptively.

(3) In digital data communication over the lelephone channel at a high rate. Signal
distortions caused by the poor amplitude and phase response characteristics of f
the channel lead to pulses representing different digital codes to interfere with |
each other (intersymbol interference). making it difficult to detect the codes
reliably at the receiving end. To compensate for the channel distortions which
may be varying with time or of unknown characteristics at the receiving end,
adaptive equalization is used.

An adaptive filter has the property that its frequency response is adjustable or modifi-
able automatically to improve its performance in accordance with some criterion,

Interference spectrum

Desired signal spectrum

=
=
Figure 10.1  An illustration of spectral overlap between a signal and a strong interference. I
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10.2

10.2.1

allowing the filter to adapt to changes in the input signal charactenstics. Because
of their self-adjusting performance and in-built flexibility, adaptive filters have found
use in many diverse applications such as telephone echo cancelling, radar signal
processing, navigational systems, equalization of communication channels, and
biomedical signal enhancement,

In summary we use adaptive filters

m when it is necessary for the filter characteristics to be variable, adapted to
changing conditions:

when there is spectral overlap between the signal and noise (see Figure 10.1); or

m 1 the band occupied by the noise i1s unknown or varies with time.

The use ol conventional filters in the above cases would lead 10 unacceptable
distortion of the desired signal. There are many other situations, apart from noise
reduction, when the use ol adaptive hilters i1s appropriate (see later)

Concepts of adaptive filtering

Adaptive filters as a noise canceller

An adaptive filter consists of two distinct parts: a digital filter with adjustable coefficr-
ents, and an adaptive algorithm which 1s used to adjust or modily the coeiiicients ol
the filter (Figure 10.2). Two input signals, v, and x,. are apphed simultancously 1o the

adaptive filter. The signal v,1s the contaminated signal contaimng both the desired

b -

signal. s,, and the noise, n,, assumed uncorrelated with each other. The signal, x,, 15 a

measure of the contaminating signal which 18 correlated 1 some way with g, ¥
processed by the digital filter 10 produce an estimale, A, of n,. An ¢stimate of the

desired signal is then obtained by subtracting the digital tlter output, 4, from the

contaminated signal, v

Vi =4 + Ny

(signul + noise) 4
Ngital -
#_ _- DI-!:' |- @
X flter A, ek
(notse) ' (natse estimate ) (s1gnal estitpute
|
Adaptive
- e
algonthm

Figure 10.2  Block diagram of an adaphive filtor as & nose cancelier
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=y “'ﬁl=5t+"t-ﬁt (10.1)
The main objective in noise cancelling is 1o produce an optimum estimate of the noise P
n the contaminated signals and hence an optimum estimate of the desired signal. | 8
This is achieved by using §, in a feedback arrangement to adjust the digital filger e

coefficients. via a suitable adaptive algorithm, to minimize the noise in §i- The output

signal, §,, serves two purposes: (1) as an estimate of the desired signal and (ii) as an

error signal which is used to adjust the filter coefficients. E
"

10.2.2 Other configurations of the adaptive filter

The discussions above are based on the adaptive noise cancelling principles. It is
important to keep in mind that adaptive filters can be and have been used for other
purposes, such as for linear prediction, adaptive signal enhancement and adaptive
control. In general, the meaning of the signals x,. Vi, and e, or the way they are derived

are application dependent, a fact which should be borne in mind. Figure 10.3 shows u
different configurations of the adaptive filter. I‘Hﬂ
e

10.2.3  Main components of the adaptive filter

In most adaptive systems. the di gital filter in Figure 10.2 is realized using a transversal
or finite impulse response (FIR) structure (Figure 10.4). Other forms are sometimes
used, for example the infinite impulse response (IIR) or the lattice structures, but the
FIR structure is the most widely used because of its simplicity and guaranteed
stability. For the N-point filter depicted in Figure 10.4, the output is given by

. —

fi, = znitf}x;_‘ (10.2) Sy

where w(i).i=0, 1..... are the adjustable filter coefficients (or weights), and x, (i)
and 7, are the input and output of the filter. Figure 10.4 illustrates the single-input,
single-output system. In a multiple-input single-output system, the x, may be
simultaneous inputs from N different signal sources.

10.2.4 Adaptive algorithms

Adaptive algorithms are used to adjust the coefficients of the digital filter (in Figure

10.2) such that the error signal, e,. is minimized according to some criterion, for

example in the least squares sense. Common algorithms that have found widespread -
application are the least mean square (LMS), the recursive least squares (RLS), and .
the Kalman filter algorithms. In terms of computation and storage requirements, hlhf

LMS algorithm is the most efficient. Further, it does not suffer from the numerical

mstability problem inherent in the other two algorithms. For these reasons, the LMS

T ——
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Example 10.1

Solution

___——___‘ ‘

Figure 104  Finite impulse response filter structure.

algorithm has become the algorithm of first choice in many applications. However,
the RLS algorithm has superior convergence properties.

T'he estimate of the desired signal at the output of an adaptive noise canceller is given
by ( Widrow et al., 1975a)
Ss=Vi = =8,+n— i,

Show that minimizing the total power at the output of the canceller maximizes the
output signal-to-noise ratio.

The contaminated signal is given by

VZWw=8+n (10.3)
and the estimate of the desired signal is given by

S == =5 +n,— iy (10.4)
Squaring Equation 10.4 we have

Si=s8i+ (ng— A+ 2s50(ny — A (10.5)
Taking the expectations of both sides of Equation 10.5,

E[5{]= Els{] + E[(n, — #,)*] + 2E[si(n, = /)] (10.6)

Since the desired signal, s, is uncorrelated with n, or with #, the last term in Equation
10.6 is zero and we have

E[§3] = E[s?] + El(n, — ) (10.)
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10.3

where E[s;] represents the total signal power, E[5;] represents the estimate of the
signal power (it also represents the total output power) and E[(n, — A,)°] represents
the remnant noise power which may still be in s,. It is evident in Equation 10.7 that
if the estimate #, is the exact replica of n,, the output power will contain only the
signal power. By adjusting the adaptive filter towards the optimum position, the
remnant noise power and hence the total output power are minimized. The desired
signal power is unaffected by this adjustment since s, is uncorrelated with »,. Thus

min E[§;] = Els;] + min E[(n, = /,)°] (10.8)

It 1s clear in Equanon 10,8 that the net etfect of munmmzing the total output power s
t0 maxinuze the output signal-to-noise ratio. When the hlter setung is such that
i, = ny, then §; = 5. In this case, the output of the adaptive noise canceller 1s noise
free. When the signal v, contains no noise, that 1s when n, = 0, the adaptive filter tumms
itself off (in theory at least) by setting all the weights to zero.

Basic Wiener filter theory

Many adaptive algorithms can be viewed as approximations ol the discreie Wienes
filter (Figure 10.5). Two signals, x;, and y,, are apphed simuitaneously to the hiter
Typically, y, consists of a component that is correlated with x, and another that 15 not
The Wiener filter produces an optimal estimate of the part of y, that 1s cor clated with
v, which is then subtracted from y, to yield ..

| Assuming an FIR filter structure with N coelficients (or weights — the popular term
in the literature), the error, e,, between the Wiener filter output and the prumary signa

vy, 1S given by
A}
n § 1 = " L
"1]:"-';_'”.:"-;_1“' !\,2 ¥ — E"'"“H. (1LY

where X, and W, the input signal vector and weight veclor, respectively, are given by

O ——— — -
v, Lsienal + noise) ¢ Lot

Wicner |
J S nitet )
&1 | f
A (noise )
' lL-.TnI.l'I._

Figure 10,5 The basic Wiener hilter.
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X, = E“ W= “’“ (10.10)
A wiN =1
The square of the error is given as
G=y-2%XW+ WIXX'W (10.11)

The mean square error (MSE). J. is obtained by taking the expectations of both
stdes of Equation 10.11. assuming that the input vector X, and the si gnal y, are jointly
stahonary:

J = Ele;] = E[yi{] - 2E[ % X]W] + E[W™X, XTW]

=0 +2P'W + WIRW (10.12)
where E[-] symbolizes expectation, 6 = E [vi] is the variance of v, P=E [v.X,]is the I
N length cross-correlation vector and R = E [X,X|] is the N x N autocorrelation i

matnx. A plot of the MSE against the filter coefficients. W. is bowl shaped with a |
unique bottom (see Figure 10.6). This figure is known as the performance surface and
's non-negative. The gradient of the performance surface is given by

d
V= —j— =—2P + 2RW (10.13)
dW
Each set of coefficients, w(i) (i=0, 1,. ... V — 1), corresponds to a point on the

surface. At the minimum point of the surface. the gradient is zero and the filter weight
vector has its optimum value, W, (see Example 10.2):

W_=R'P (10.14)

W)

Figure 10.6 Error—performance surface.
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Example 10.2

Solution

Equation 10.14 is known as the Wiener-Hopf equation or solution. The task in
adaptive filtering is to adjust the filter weights, w(0). w(l)..... using a suitable
algorithm, to find the optimum point on the performance surface.

The Wiener filter has a limited practical usefulness because

m it requires the autocorrelation matrix, R, and the cross-correlation vector, P, both

of which are not known a priori;
It involves matrix inversion, which is time consuming; and
m if the signals are nonstationary, then both R and P will change with time and so

W, will have to be computed repeatedly.

For real-ime application, a way ol obtaining W_, on a sample-by-sample basis is

required. Adapuive algonithms are used to achieve this without having o compute R
and P explicitly or performing & matrix inversion.

Starting with the equation for the mean square error (Equation 10.12), denve the
Wiener—Hopt equation.

The MSE 1s given by
MSE=J=0 +2P'W+ W'RW 10 15)

The gradient, V, of the MSE is obtained by differentiating the MSE with respect to the
weight vector W, and setting the result to zero (HayKin, 1956):

dJ do?  d(PTW)  d(W'RW)

= 1 + : (10, 16)
d “:" dW dVW d W
Now,
do- _ 0
dWw
d2P'W) _ _op
JdW
I "
d(W'RW) — ORW
dW

Using these results, and setting V = 0, Equation 10.16 becomes
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dJ
V= aw - ~2P +2RW =0 (10.17)

The optimum coefficient vector is then given by

We=R"P (10.18)

The basic LMS adaptive algorithm

One of the most successful adaptive algorithms is the LMS algorithm developed by
Widrow and his coworkers ( Widrow et al., 19753). Instead of computing W__ in one
£0 as suggested by Equation 10.18. in the LMS the coefficients are adjusted from
sample to sample in such a way as to minimize the MSE. This amounts to descending
along the surface of Figure 10.6 towards its bottom.

The LMS is based on the steepest descent algorithm where the weight vector is
updated from sample to sample as follows:

W, =W, =uy, (10.19)

where W, and V, are the weight and the true gradient vectors, respectively, at the kth
sampling instant. 1 controls the stability and rate of convergence.

The steepest descent algorithm in Equation 10.19 still requires knowledge of R
and P, since V, is obtained by evaluating Equation 10.17. The LMS algorithm 1s a
practical method of obtaining estimates of the filter weights W, in real time without
the matrix inversion in Equation 10.18 or the direct computation of the autocorrelation
and cross-correlation. The Widrow-Hopf LMS algorithm for updating the weights
irom sample to sample is given by

Wi =W,.+ 2ue X, (10.20a)
where
e.=v,— W;X, (10.20b)

Clearly, the LMS algorithm above does not require prior knowledge of the signal
statistics (that 1s the correlations R and P). but instead uses their instantaneous
estimates (see Example 10.3). The weights obtained by the LMS algorithm are only
estimates, but these estimates improve gradually with time as the weights are adjusted
and the filter learns the characteristics of the signals. Eventually, the weights
converge. The condition for convergence is

O<u>1/A... (10.21)
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10.4.1

Wy A

W,

Figure 10.7 An illustration of the vanations in the filter weights

where A, 1S the maximum eigenvalue of the input data covariance matnx. In
practice. W, never reaches the theoretical optimum (the Wiener solution), but
fluctuates about 1t (see Figure 10.7).

Implementation of the basic LMS algorithm

The computational procedure for the LMS algonthm 1s summanzed below

(1) Initially, set each weight w(f). i=0, 1...., N =1, to an arbitrary fixed value,

such as 0.
For each subsequent sampling instant, k = 1, 2, .. ., carry out steps (2) to (3) below:

(2) compute filter output

N =1

", = z Wl X,

(=={)

(3) compute the error estimate

a

‘f.j*_ ::F‘_ L !'!;'

(4) update the next filter weights

Wi (1) = wo (i) + e X,

The simplicity of the LMS algorithm and ease of implementation, evident from above,
muke it the algorithm of first choice in many real-time Systems. The LMS algonthm
requires approximately 2N + 1 multiplications and 2\ + | addinons for each new sef
of input and output samples. Most signal processors are sutted to the mamly muluply-
accumulate arithmetic operations involved, making a direct implementation of the

LMS algorithm attractive.




656 Chapter 10 8 Adaptive digital filters |

Imtialize
wiln) and x

Read x;, and v,
from ADC

:

Filter x,
n = E“‘Ltf}""l- i

!

Compute error
e =V —n

l

Compute factor
2Ue,

:

Update coefficient
“ri.| f— h'. + :“1 '-"11'1-.

‘igure 10.8  Flowchart for the LMS adaptive filter.

inputs. xk(1)  vector of the latest input samples
vk current contaminated signal sample
wki1) vector of filter coeftficients

Outputs: ak current desired output (or error) sample
wkii) vector of updated filter coefficients

» COmpute the curren! error estimate ./

ek = vk
for i=1 to N do

ek = ek - xk(i) = wk(i)
end

'« update filter coefficients 5
gk = 2u « ek
fori=1to N do
wk(i) = wk(i) + xk(i) « gk
end

return

Figure 10.9 Coding of the LMS adaptive filter.




e S USRS SRR e A LY TR N

_— 10.4 The basic LMS adaptive algorithm 657

Data
Memaory

vir)
—» Filler —> ADC }— —= DAC —» Filier —
Digital e,
Processor
such as
i) TMS320

> Filter }—= ADC }|—» —> DAC F—= Flter }|—»

Coefticient
IMEMOry

Figure 10.10 Hardware implementation for real-time I MS adaptive filtering

The Howchart for the LMS algorithm is given in Figure 10.8. Figures 10.9 and
10.10, respectively, show a pseudo-code for the software and hardware implementa-
tions. A C language implementation of the LMS algorithm is given in the appendix.

Example 10.3  Starting with the steepest descent algorithm
W,.=W,-uVv,
where W, is the hlter weight vector at the Ath sampling instant, g controls stability and
rate of convergence and V; is the true gradient of the error—performance surface,

derive the Widrow-Hopt LMS algonthm for adaptive noise cancelling, stating any
reasonable assumptions made.

Solution The steepest descent algorithm 1s given by
Wi =W, — uy, (10.22)

The gradient vector. V, the cross-correlation between the primary and secondary
inputs, P. and the autocorrelation of the primary mput, R, are related as

V=-2P+ 2RW (10.23)
In the LMS algorithm, instantaneous estimates are used for V. Thus

Vﬁ. = -:P.‘ '*' :R&‘vi = hle}ll + zxtxf\'\l#
= =-2X;( ¥, = Xi W,) = -2¢X, (10.24)

where
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GEN- XIWI

Substituting Equation 10.24 in the equation for the steepest descent algorithm we haye
the basic Widrow—Hopf LMS algorithm:

W, = W, + 2ue, X, (10.25a)
where
&=y, — W, X, (10.25h)

1042 Practical limitations of the basic LMS algorithm

In practice, several practical problems are encountered when using the basic LMS
algorithm, leading to a lowering of performance. Some of the more Important
problems are discussed here.

10.4.2.1 Effects of non-stationarity

In a stationary environment, the etror performance surface of the filter has a constant
shape and orientation. and the adaptive filter merely converges to and operates at or
near the optimum point. If the signal statistics change after the weights have con-
verged, the filter responds to the change by re-adjusting its weights to a new set of
optimal values, provided that the change in si gnal statistics is sufficiently slow for the
filter to converge between changes. In a non-stationary environment, however, the
bottom or minimum point continually moves, and its orientation and curvature may
also be changing (see Figure 10.11). Thus the algorithm in this case has the task not
only of seeking the minimum point of the surface but also of tracking the changing
position, leading to a significant lowering of performance. Note that a variable is said
lo be stationary if its statistics (such as mean, variance. autocorrelation) change with
tme. Such changes can result from, for example, sudden changes due to sporadic
interference of short duration (Figure 10.12) or bad data. and often upset the filter
welghts,

A number of schemes have been developed to overcome this problem but these in
general tend to increase the complexity of the basic LMS algorithm. One such scheme
s the time-sequenced adaptive filter (Ferrara and Widrow. 1981).

10.4.2.2  Effects of signal component on the interference input channel

The performance of the algorithm relies on the measured interference signal, xil:l'}.
being highly correlated with the actual interference, but weakly correlated (theoretic-
ally zero) with the desired signal. In most cases, this condition is not met. In some
applications, the contaminating input may contain both the undesired interference as
well as low level signal components. This leads to a cancellation of some of the

———_4
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Figure 10.11  Time-varving error—performance surface

Changes due to sporadic interterence

WAL

(b}

Xt

Figure 10,12 An illustration of non-statonary processes: (a) modulated wavetonm.
( b) sporadic interference.

desired signal components, Such a situation 1s tustrated m Figure 10,13, It 15 shown
in Widrow er al. (1975a) that the adaptive noise cancelling process sill leads o a
significant improvement in the desired signal-to-noise ratuo in these cases but only W
the expense of a small signal distortion. However, if x, contans only signals and no
noise component whatsoever, the destred signal in y, may be completely oblierared.
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Figure 10.13  Adaptive noise cancelling with some signal components in both the desired
signal and interference input channels.

Our work in biomedical signal processing confirms their results (Ifeachor er al.
1986).

Computer wordlength requirements

The LMS-based FIR adaptive filter is characterized by the following equations:

V=1
f{”' the [_h-y!-“;f ﬁ“{’f‘ .Ji': — Z “1{'{ ,.1]_ ; {10-16‘3]

i =)

Jor the adaptive algorithm Wi =W, +2ue X, (10.26b)
where
e, =y, — WX,

When adaptive filters are implemented in the real world. the filter weights, w;. and the
input variables, x, and v,, are of necessity represented by a finite number of bits.
Similarly, the numerical operations involved are carried out using a finite precision
arithmetic. The recursive nature of the LMS algorithm means that the wordlength will
grow without limit and so some of the bits must be discarded before each updated
weight is stored, Thus the y,, ¢, and wy(/) may differ significantly from their true
values. The use of filter weights and results of arithmetic operations with limited
accuracy may introduce errors into the adaptive filter whose effects may include (i)
possible non-convergence of the adaptive filter to the optimal solution, leading to an
mferior performance (for example, if the filter is used as an interference canceller
some residual interference may remain), (ii) the filter outputs may contain noise which
will cause 1t 1o fluctuate randomly, and (iii) a premature termination of the algorithm
may occur. Thus a sufficient number of bits should be used to keep these errors &
tolerable levels. Most adaptive systems described in the open literature mptﬁﬂ:‘fﬂl the
digital signals, x, , and y,, as fixed point numbers of between 8 and 16 bits, with the
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10.4.2.4

10.4.3

10.4.3.1

coefficients quantized to between 16 and 24 bits. The multpliers used range from
5 X 8 bit to 24 x 16 bit, and accumulators of between 16 and 40 hits are used. It
appears that for low order filters (up to about 100 coefficients) it is sufficient to
store the coefficient to no more than 16-bit accuracy and to use a 16 x 16 bit muitiplier
with an accumulator of length 32 bits.

Coefficient drift

In the presence of certain types of inputs (for example narrowband signals), the filter
coefficients may drift from the optimum values and grow slowly, eventually excee-
ding the permissible wordlength. This is an inherent problem in the LMS uigumhm
and leads to a long-term degradation in performance. In practice, coefficient drift is
counteracted by introducing a leakage factor which gently nudges the coefficients
towards zero. Two such schemes are given in Equations 10.27:

Wis (1) = 0w (i) + 2e,x, 0<d< | (10,27

- h:'

-

Wil = wld) + 2Uex, , £ 0 0<d< 1 (10.27h)

Small o, the leakage factor, ensures that drift is contained, but introduces bias in the
CITor term, ¢,.

The usefulness of the basic LMS algorithm has been extended by more sophisti-
cated LMS-based algonthms as menuoned before. These include

(1) the complex LLMS algorithm which allows the handling of complex data;

(2) the block LMS algorithm which ofters substantial computational advantages
and in some cases faster convergence: and

(3) tme-sequenced LMS algorithms to deal with particular types of
non-stationarity.

Other LMS-based algorithms

Complex LMS algorithm

The complex LMS algorithm for updatng the filter weights s given by (Widrow
el al., 1975b)

W, =W, +2ué X, (10.28)
where the symbol ~ denotes a complex variable. The Mitel PDSPIOXXXN processors

are ideally suited to the complex LMS algorithm as they can perform anthmenc
operations directly on complex data, which is a distinct advantage over conventional

Processors.




I_I__: YAD) P0)
=
S = = F
u | 28 |5 = 3 ¥,(1) .
-4 —{ & § |20
5% yav-p|2E H(2N - 1) g8
o » ¥ s
— - ¥N-1)—
E (0) E(1) E,(2N - 1)
2N-point FFT
processor
'
s
t‘_ﬂil'_'l
Zero first N values
of e,()
e.lf)
-

Figure 10.14  Simplified block diagram of a frequency domain LMS filter.

10.4.3.2 Fast LMS algorithms

A number of block LMS algorithms have been proposed which offer substantial
computational savings especially when the number of filter coefficients is large. The '
computational savings result from processing the data in blocks instead of one sample
at a ime. Frequency domain implementations of the block LMS exploit the com-
putational advantages of the fast Fourier transform (FFT) in performing convolutions
(Mansour and Gray, 1982).

An efficient frequency domain filter is depicted in Figure 10.14.

10.5 Recursive least squares algorithm

The RLS algorithm is based on the well-known least squares method (Figure 10.135).
An output signal, y,, is measured at the discrete time, &, in response to a set of input l
signals, x,(0). i =1, 2,..., n. The input and output signals are related by the simple

regression model

-1
V=Y wli)x(i) + e, (10.29) |

i ={)

where ¢, represents measurement errors or other effects that cannot be accounted for,
and w(i) represents the proportion of the ith input that is contained in the primary

T,
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Figure 10.15  An illustration of the basic idea of the least-squares method.
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| . 5 - & - .
signal, y;. The problem in the LS method is, given the x,(i) and v, above, to obtain
| estimates of w(0) to win — 1).
| Optimum estimates (in the least squares sense) of the filter weights, wi{i), are given
by
W, = X, X,.I"'X.Y, (10.30)
where Y, W, and X, are given by
Yo | x'(0) 1 Cwi(()
Y x'(1) wil)
Y =|» A= | x(2) W_=|w(2)
or substints | - | |
1S l:ugtlh B SN X (m—1) L win —1)
one samps
:1’['1 e e X' (k) =[x(0) x (1) ... xin=D] k=0.1,...,m-1
0l
convolufie

The suffix m indicates that each matnx above 1s obtained using all m data points and
T indicates transposition. Equation 10.30 gives the OLS estimate of W_ which can
be obtained using any suitable matrix inversion techmque. The hQlter output is then
obtained as

-1
k= z Wiy, &=1,2,..:, m (10.31)

i=()

10.5.1 Recursive least squares algorithm

The computation of W,, in Equation 10.30 requires the time-consuming computation
of the inverse matrix. Clearly, the LS method above is not suttable for real-tme or
on-line filtering. In practice, when continuous data 1s being acquired and we wish

(0 to improve our estimate of W, using the new data, recursive methods are preferred.

With the recursive least squares algorithm the estimates of W can be updated for

Wﬁ each new set of data acquired without repeatedly solving the ime-consuming matnx
a

e W inversion directly,
3 _
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A suitable RLS algorithm can be obtained by exponentially weighting the datg 1o
remove gradually the effects of old data on W, and to allow the tracking of slowly
varying signal characteristics. Thus

W, =W, +Ge, (10.324)
P, = -;7111,(_; — GX"(M)P,] (10.32)
where
G. — P, x(k)
a,

& =0 - X (W,

a; = Y+ X" (NP, x(k)

P, 1s essentially a recursive way of computing the inverse matrix [X[X,]". |
The argument & emphasizes the fact that the quantities are obtained at each sample |

point. yis referred to as the forgetting factor. This weighting scheme reduces to that

of the LS when y= 1. Typically, yis between 0.98 and 1. Smaller values assign too

much weight to the more recent data, which leads 1o wildly fluctuating estimates.

The number of previous samples that significantly contribute to the value of W, at

each sample point is called the asymptotic sample length (ASL) given by

i?" . (10.33)

This effectively defines the memory of the RLS filter. When y = 1, that is when it
corresponds to the LS, the filter has an infinite memory.

10.5.2 Limitations of the recursive least squares algorithm

The RLS method is very efficient and involves exactly the same number of arithmetic
operations between samples as W, and P, in Equation 10.32 have fixed dimensions.
This is an important requirement for efficient real-time filtering. There are, however,
two main problems that may be encountered when the RLS algorithm is implemented
directly. The first, referred to as ‘blow-up’, results if the signal x,(i) is zero for a long
time, when the matrix P, will grow exponentially as a result of division by ¥ (which is
less than unity) at each sample point:

IimP, = lim[gﬂ) (10.34)
oy g o iy (12
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10.5.3

10.5.3.1

10.5.3.2

The second problem with the RLS is its sensitivity to computer roundoff errors. which
results in a negative definite P matrix and eventually to instability. For successful
estimation of W, it is necessary that the matrix P be positive semi-definite which
Is equivalent to requiring in the LS method that the matrix X'X be invertible. but.
because of differencing of terms in Equation 10.32b, positive definiteness of P cannol
be guaranteed. This problem can be worse in multiparameter models. especially if the
variables are linearly dependent and when the algorithm is implemented on a small
system with a finite wordlength, When the algorithm has iterated for a long time the
tWo terms 1n the parentheses in Equation 10.32b are very nearly equal and ai:btr.m::un
of such terms in a finite wordlength system may lead to errors and a negative definite
P, matnix.

The problem of numerical instability may be solved by suitably factonzing the
matrix P such that the differencing of terms in Equation 10.32b is avoided. Such
factonization algorithms are numerically better conditioned and have accuracies
that are comparable with the RLS algorithm that uses double precision. Two such
algorithms are the square root and the UD factorization algorithms. In terms of storage
and computation the UD algorithm is more efficient, and is thus preferred. In fact, the
UD algonthny is a square-root-free formulation of the square root algorithm and thus
shares the same properties as the latter.

Factorization algorithms

Square root algorithm

n the square root method. the matnx P, 1s factored as (Peterka, 1975
In the sq t method, tl trix P, is factored as (Peterka, 1975)

where §,, an upper tnangular matnx, and S;, 1ts ranspose, are square roots of P, Thus

if S, instead of P, is updated the positive definiteness of P, is guaranteed, since the

product of two square roots 15 always positive, S, 1s updated as

5] 1 - "

S, = —— SiH,., (10.36)
Y

where H, is an upper triangular matrix.

UD factorization algorithm

In the UD method P, is factored as (Bierman, 19706)

P,=UDU!

where U, is a unit upper triangular matrix, U] is its ranspose and D, s a diagonal
matrix. Thus instead of updating P, as in the RLS, s factors U and D wre updated
A C language code for the UD algorithm is given on CD in the companion handbook
(see the Preface for detuls).
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- - - 1061 The physiological problem

The human electroencephalogram (EEG) is the electrical activity of the brain and
contains useful diagnostic information on a variety of neurological disorders. Normal
EEG signals are measured from electrodes placed on the scalp, and are often very
small in amplitude, of the order of 20 uV. The EEG, like all biomedical signals, is
very susceptible to a variety of large signal contaminations or artefacts which reduce
its chinical usefulness. For example, blinking or moving the eyes produces large
electrical potentials around the eyes called the electrooculogram (EOG). The EOG
spreads across the scalp to contaminate the EEG, when it is referred to as an ocular
artefact (OA). Examples of measured EOG and the corresponding contaminated EEG
are given in Figure 10.16.

Ocular artefacts are a major source of difficulty in distinguishing normal brain
activities from abnormal ones. In some cases, for example brain-damaged babies and
patients with frontal tumours, it is difficult to distinguish between the associated
pathological slow waves in the EEG and OAs. The similarity between the OAs and

| \ ’\

Lw \ k \\_Mm/ @

(b)

(<)

Eﬂﬂp‘\r’l'
|

| second

Figure 10.16 The problem of ocular artefacts in electroencephalography: (a) measured EOG, (b) corresponding
contaminated EEG signal and (¢) EEG signal corrected for artefact.
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10.6.2

signals of clinical interest also makes it difficult to automate the analvsis of the EEG
by computer. In general, neurological disorders often manifest themselves in the EEG
as slow waves which unfortunately not only appear similar to OAs but share the same

frequency bands as OAs. The problem then is to remove the OAs while preserving the
signals of clinical interest.

Artefact processing algorithm

several methods have been proposed for processing OAs, However. factors such as
the requirements of the clinical laboratory, constraints of real-time applications. costs,
the random nature of OAs and the spectral overlap between OAs and some sienals of
cerebral origin dictate that OA processing should be adaptive and in real nmu;

An adaptive ocular artefact filtering scheme is depicted in Figure 10.17. In this
method estimates of OAs are obtained by suitably scaling the EOGs. The OA estim-
ates are then subtracted from the contaminated EEGs to yield ‘artefact-free’ EEG
signals. To illustrate this, consider the simple problem of correcting a single EEG
channel for ocular artefact using four EOG signals ( Figure 10.17(b)). The information
contained in the contaminated EEG, v,, and the EOGs. 1(0) to x.(3). is used to obtain

f.'l- — 1
- 4 |
EOG measurement
(a)
vy (contaminated EEG)
1 . ,(;) S
A w0 ¢, (Ccormected EBG)
hﬂn G -
— ‘
x W,(1)
-~ . LM 1} @
hi._}{_l 1 e ;‘ 1‘i ‘.I |
y [k Q) |
signals w(2) ;::} A f.;_ |
= _ |
Cwazy 7 OAestumates |
u.l.."'ﬂ G .

(b)

Figure 10.17 Adaptive ocular artefact removal method: (a) possible clectrode posinons fog
EOG (ocular movement) and EEG measurements: (b) adapiive ocular anelact

fler.
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an estimate of the ocular artefact, Yo wi(Nn (). The OA estimate is then subtracted
from the contaminated EEG to yield an ‘artefact-free’ EEG, &,
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E_

Ll
= z Wl (1) (10.37)
=0
where wy(i). i =0, 1, ..., n— 1, are the coefficients of the adaptive filter and represen
the fractions of the EOGs that reach the EEG as artefacts. e, 1s also used to adjust
the coefficients (weights) of the adaptive filter, using a numerically stable recursive
least squares algorithm, so that optimal estimates of OAs are obtained. Continuoys
adjustment of wy(i) is necessary to account for changes in OAs due, for example, to
changes in ocular movements,

The adaptive filtering algorithm used to remove the OAs is the UD algorithm
described previously, This numerically stable formulation of the RLS algorithm
was preferred to the LMS because of its superior convergence time, enabling it to
cope better with different OAs each of which requires a different optimum set of
coefficients for effective removal. An example of an EEG signal adaptively corrected
tor artefacts is shown in Figure 10.16(c).

10.6.3 Real-time implementation

An on-line microprocessor-based ocular artefact removal system that uses the UD
algorithm described above has been developed (Ifeachor et al.. 1986). The system
implements a variety of user-selectable models. The system has been tested on several
normal and patient subjects. Good results were obtained for various categories of
piatient subjects.

However, it was found that when pathological waves, such as slow waves. epileptic
spike and wave complexes. were picked up at both the EEG and EOG electrodes. the
waves in the corrected EEG were reduced in amplitude. This is because the fraction of
the EOG subtracted depends on the degree of correlation between the EOG and its
component in the EEG, and the presence of slow waves of similar shape to the OA
can lead to the subtraction of a fraction which depends on slow waves as well as the
EOG. Thus, 1t 1s necessary to distinguish between the OA and slow waves. using
a knowledge-based system, for example (Ifeachor er al., 1990).

10.7 Application example 2 — adaptive telephone
echo cancellation

Echoes arise primarily in communication systems when signals encounter mis'mﬂtﬂh
in impedance. Figure 10.18(a) shows a simplified long-distance telephone circuit. TI}E
hybnd circuit at the exchange converts the two-wire circuit from the cusl{fmf:rﬁ
premises to a four-wire circuit, and provides separate paths for each dimcumf of
transmission. This 1s largely for economic reasons, for example to allow multiplexing.
that 1s simultaneous transmission of many calls.
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Echo of B's

speech
<o - Channel - O
r \ ] ‘
| .
. _ —
Hybrid | | Hybnd }—
Customer ! | . Customer
A i ; ' B
| =
|
g \
O - Channel p——e—3—o-
Echoof A's
l-'.l.ll :-“'ITL' connecion '1' Wire conneciian "-r"-‘l'«-'h
! L) 4
= Channel pb———e .
"I . l
Y
t Z
. ——1  Hybnd Al Al Hvbrid F
Customer Cestomes
_J‘.l F | H

»
ﬁ L b
e # — CUhannel pe @4 " ————)
tl

i 1)

Figure 10,18 (a) Simplified long-distance telephone circuit; (b) echo cancellation i lone-
distance voice telephony.

ldeally, the speech signal ongmating from customer A travels along the upper
transmission path to the hybrid on the right and from there to customer B, while that
from B travels along the lower transmission path to A. The hybrid network a1 each end
should ensure that the speech signal from the distant customer 1s coupled o its two-
wire port and none to its output port. However, because of impedance mismatches the
hybrid network allows some of the incoming signals to leak into the ourput path and 10
return to the talker as an echo. When the telephone call 1s made over a long distance
(for example using geostationary satellites) the echo may be delayed by as much as
540 ms and represents an impairment that can be annoying to the customers. The
impairment increases with distance. To overcome this problem. echo cancellers are
installed in the network in pairs. as illustrated in Figure [0.1S(b).

At each end of the communication system (Figure [0, 18 b)), the mcoming sigpal,
X, is applied to both the hybnd and the adaptive ftlter (Duttwetller, 1978). The
cancellation is achieved by making an estunate of the echo and subtracting it from
the return signal, v,. The underlying assumption here is that the echo retumn path
(through the hybrid) is linear and time invanant, Thus the retum signal at tme & may
be expressed as

N=|
Y3 = z WD + 5 {10.38)

=l
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where x, are samples of the incoming signal (from the far-end speaker), s, is the near.
end speaker plus any additive noise and w, is the impulse response of the echo path.
The echo canceller makes an estimate of this impulse response and produces a
corresponding estimate, ¥, = Xw,(Nx,,. of the echo which is then subtracted from
the normal return signal, v,. Economic considerations place a limit on the sampling
rate and the wordlengths of filter coefficients and input data which in tum limits
the canceller’s performance. Fundamental limits come from misadjustment in the
adaptive filter and from nonlinearities in the echo path.

10.8 Other applications

10.8.1 Loudspeaking telephones

® The hybrid network is used to separate the transmit and receive paths (that is, the
loudspeaker from the microphone), but there is a significant acoustic coupling
between the loudspeaker and the microphone because of their proximity as well
as a leakage across the imperfectly matched hybrid network (South et al.. 1979).

® The difficulty then is how to provide adequate gain for the receive and transmit
directions without causing instability.

® The conventional solution to the problems is to use a voice-activated switch to
select the transmit and receive paths, but this is not satisfactory because it does
not allow full duplex communication.

m A better solution is to use adaptive filtering techniques to estimate and control the
acoustic and hybrid echoes (Figure 10.19(b)). The number of filter coefficients here
can be quite large, for example 512, making the use of a fast algorithm attractive.

® In teleconferencing networks (or public address systems) acoustic feedback leads
to problems similar to those described above. Adaptive filters used for these may
require large numbers of coefficients (250 to 1000), especially in rooms with long
reverberation times, and must converge rapidly.

10.8.2 Multipath compensation

® Ina type of spread spectrum system each data bit is transmitted as one of two
orthogonal M-length pseudorandom sequences of bits. The sequence transmitted
depends on whether the data bit is a logic 0 or 1. At the receiver two sequences
identical to those used at the transmitter are cross-correlated with the received
sequence to determine whether a 1 or 0 is received.

m In the presence of a multipath, the signal travels through separate paths to the
receiver. Such effects could occur in mountainous or urban regions through
reflection. The received signal is the sum of a number of components whose
amplitudes and phases may differ (Figure 10.20). This reduces the performance
of the receiver.
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10.8.3

Loudspeaker
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Figure 10.19 (a) Loudspeaking telephone; (b) acoustic and hvbnd echo cancellation in

loudspeaking telephone.

m The adaptive filter i1s used to estimate the overall multipath response and to

compensate for its effects.

Adaptive jJammer suppression

m In direct sequence spread spectrum a need often arises o suppress the effects of
a jamming signal at the receiver to improve the performance of the receiver
Adaptive filtering may be used for this purpose (Figure 10.21). In such a system,
use is mide of the fact that the jammer is highly comrelated whereas the
pseudorandom code 1s weakly correlated. Thus the output of the flwer, v, 15 an
estimate of the jammer. This is subtracted from the received signal. 1. to vield an

estimate of the spread spectrum signal.

m To enhance the performance of the system a (Wo-SIRge Runmer suppressor is
used. The adaptive line enhancer, which 1s essentially another adaptive nilter,
counteracts the effects of finte correlatton which leads to parual cancellation
of the desired signal. The number of coethicients required for either hlter s
moderate (about 16), but the sampling frequency may be well aver 00 KHz
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Figure 10.20  An adaptive spread spectrum communication system with multipath-effect
compensation.
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Figure 10.21 Jammer suppression in direct sequence spread spectrum receiver.

10.8.4 Radar signal processing

Adapuve signal processing techniques are widely used to solve a number of problems
associated with radar. For example, adaptive filters are used in monostatic radar
systems to remove or cancel clutter components from the desired target signals. In HF
groundwave radar, adaptive filters are used to reduce co-channel interference which 1s
a major problem in the HF band.

10.8.5 Separation of speech signals from background noise

Acoustic background noise is a serious problem in speech processing. An adaptive |
filter may be used to enhance the performance of speech systems in noisy environ- |
ments (for example in fighter aircraft, tanks, or cars) to improve both intelligibility

and recognition of speech.
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10.8.6 Fetal monitoring — cancelling of maternal ECG

during labour

® Information derived from the fetal electrocardiogram (ECG), such as the fetal
heart rate pattern, is valuable in assessing the condition of the baby before or
during childbirth.

m The ECG derived from electrodes placed on the mother's abdomen is susceptible

to contamination from much larger background noise (for example muscle
acuvity and fetal motion) and the mother’s own ECG.

m Adaptive lilters have been used to derive a “noise-free” fetal ECG. Figure 10.22

tlustrates the concept,

®m Four chest leads are used to detect the baby’s ECG, and one or more leads to

detect the combined mother and baby's ECG. A four-channel adaptive filter, with
32 coefficients per channel, is used to cancel the mother's heartbeat as shown
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Figure 10.22 Adaptive cancelling of maternmal ECG in fetal ECG (atter Widrow ¢ al,
1075a): {a) cardiac electric field vectors of mother and fetus: (bl placement of
leads; (¢) adaptive; (d) idealized mother's ECG (chest leads); (¢) idealized
contaminated fetal ECG (abdominal kead); (F) output of noise canceller
showing reduced mother’s BCG.
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T0.1 Justify the use of adaptive filters instead of conven- performance of the algorithm. Suggest how these i
tional filters in applications such as limitations may be overcome. g
(1) the removal of ocular artefacts from human  : 10-2 The output signal from an adaptive noise canceller f
EEGs, 1S given by
(2} echo cancellation in long distance telephony, : &=y~ X W,
and .

where W, is the adaptive filter weight vector and
the other variables have the usual meaning. Start-
ing with this equation, derive

Starting with the steepest descent algorithm: (1) the discrete Wiener-Hopf equation and
W,..=W.— uV. (2)  the basic LMS adaptive algorithm.

State any assumptions made.

(3} suppression of jammer signal in spread
Spectrum communication.

where W, is the filter weight vector at the discrete : _ ,
time k. 1 controls stability and rate of convergence, 10.3 Show that the adaptive filter turns itself off when

and V, is the true gradient vector of the error— ll:IEI'E s no correlation trehvcen'the Interference
performance surface at the discrete time k. derive signal, x;, and the contaminated signal y,.
the Widrow-Hopf LMS algorithm for adaptive 10.4 Explain briefly, with the aid of a block diagram,
noisc cancelling, stating any reasonable assump- the basic concepts of adaptive noise cancelling.
aons made. Comment on the practical significance Discuss critically the benefits and limitations of
of the LMS algonthm. adaptive noise cancelling in a real-time application
Comment on two major practical limitations : of your choice and suggest ways of overcoming the
of the LMS algorithm and how they lower the limitations.

' -
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C language programs for adaptive filtering

Several adaptive algorithms have been implemented in the C language which may be used to
explore further the topics covered in this chapter. These are

(1) Imsfite, the LMS algorithm,

(2) udufit.c, the UD algorithm,

(3} sqritc, the square root algorithm and

(4) rsfit.c, the recursive least squares algorithm.

Only the first program is listed here to limit the size of the book (see Program 10A.1). However.
all the programs are available on the CD in the companion handbook A Practical Guide for
MATILAEB and C Language Implementations of DSP Algorithms (see the Preface for details).

Program 10A.1 C language implementation of the LMS algorithm (Imsfit.c).

= . = m W ms o ' s of
[ implementation of the LMS algorithm ;
= #

/s manny 6.11.92 o
/s of
Fe inputs: of
/e x[] input data vector of
/e dk latest input data value of
/e w(] coefficient vector -;'
,f‘ - .

/e outputs of
/e ek error value o
/e vk digital filter output o
i wi] updated coefficient vector '}'
/e -
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10A.1

double Imsfit()

{
int I}
double uek,yk;
vk = 0;
for(i=0; i<N; ++i){ /« digital filtering ./
yk=yk-+wli]=x[il;
}
ek=dk-yk; /« COmpute output amor
Uek=2+mu-ek; . Update the weights ,
for(i=0; 1<<N; iH++){
wlil=wlil+uek-x|il;
}
return(yk);
)

To illustrate how to implement adaptive filters, we will use the program listed in Program
10AL] 1o detect a tone in broadband noise.

Adaptive enhancement of narrowband signals buried in noise

Adaptive filters are often used to detect or enhance narrowband signals bunied in wideband
noise. The structure that is commonly used for this purpose is depicted in Fizgure 10A L It
consists of a delay element, symbolized by 7™, and an adaptive predictor. The delav element
removes any correlation that may exist between the samples of the noise component. The
adaptive predictor 1s essentially an FIR filter with adjustable coefficients and its output, y,. gives
the enhanced narrowband signal. In some applications, the sécond output of the adaptive flwer
¢, and not y 18 the desired output. The predicuon coetficients, wi(rl. are optimized by a suitable
adaptive algorithm, which in our case is an LMS algonthm (see Section 104 for details)

In the case of the LMS algorithm, the adaptive hlter 1s charactenzed by the following
equanons:

N
V= D Wil (10A.1)
=i
I'J-,:If;_}'; (ALY
wia i+ D =w(+2uex i), i=01,... . N-1 (10A 3
*
Delay l
dq N Y] Adapuve .
Inpu[ ! ]!'.'I'Ii‘i..ill. o | ¥y
signul | « Enhanced
OutpuL
% sgnal
-

Figure 10A.1 Adaptive signal enhancement
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Figure 10A.2  Adaptive enhancement of a narrowband signal: (a) noisy signal; (b) enhanced s1gnal.

where d, is the noisy narrowband signal sample, x,(7) is the input data vector, derived from
delayved values of d,. w;(1) is the prediction coefficient vector at the kth sampling instant, s the
stability factor, and y, is the enhanced, narrowband signal.

The function, Imsfite, in Program 10A.1 is a C language implementation of the above
equations, The program listed in Program 10A.2 illustrates how to use the function Imsfit.c for
signal enhancement. To simulate the problem a broadband noise was added to a 500 Hz sine
wave signal, and the composite data stored in ASCII format in a file din.dat. The noisy sine
wave was then applied to the adaptive filter. To simulate real-time adaptive filtening, the input
data 18 read from the file and applied o the adaptve filter one sample at a time. For very long
EL‘ﬂg!hh ol data the user Iy need to read the data in blocks fOr c['ﬁuicnr;:.', Figum 10A.2 shows
the results for the LMS based filters.

AS may be evident from Figure 10A.2, to use the adaptive algorithms, the user needs to
specily the parameters of the adaptive filters, for example the length of the FIR filter, N, the
delay factor, M, and the stability factor, . Attention must also be paid to the format of the mput
data. For example, in some applications the imput data may come from a multichannel source,
with each element of x,(7) representing the data value from a channel. In this case. the input data
array to the adaptive algorithm will need to be suitably modified.

Program 10A.2 Program for adaptive signal enhancement.

R~ A ey s B g - === I.' l
. * '. I
/= program to illustrate adaptive filtering using o
) the LMS algorithms
. program name: adfilter.c .
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[ manny, 7.11.92

J s s = - — s = o -l
#include <sidio.h>

#include <math.h>

#include <dos.h>

/ « constant definitions ,/

#define N 30 /+ filter length .,
#define M 1 /« delay .
#deline w 0 /« initial value for adaptive filter coefficients .
#define npt N-+M
#detine SF 2048 . factor for reducing the data samples — 11 bit ADC assumed .
#delineg mu 0.04
double Imstit();
vold initimsy();
void update__data__ buffers();
voId initfiles();
float xinpt], dinptl, dk, ek;
double wlnptl;
FILE N, out, . fopen();
char din[30];
mainy )
{

double vk, yk1;

initfiles();

. IMms-basad agaotive hiter .
initlims();
while(fscanf(in, "% &dk)}!'=EOF}
dk=dk/SF;

update__data__buffers(),
vk=Imsfit{);
vk1 =SF.yk;
fprintf(out,*Self \n" yK1);

!

fcloseall();

‘ e e S ] . . s . R R T R EFRE S s s REE Re -, T ——— e e e e e -

void initfiles()

clrscr(),

printf("enter name of file holding data to be filterad \n'),
scanf("9es",din),

printf(*\n");

printf(“the filtered data will be stored in dout.dat \n");

if{(in=ftopen(din."r")}= =NULL)Y
printf(*cannot open input data file \n’),
axit(1).
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it {{out = topen ("dout.dat”, “w")= =NULL){
printf("cannot open output data file \n");
: exit(1);

retum;

1',‘ - - - R R o - [r—— g - -

void update__data__buffers()

long | ki

for(j=1; j<N; + +j){ /«update x-data buffer, /
k=N-j;
x[KJ=x[k-1];

}

X[0)=dk;

if(M>0)
x[0]=d[M-1];

for(ji=1; J<M: + H){ /.update d-data buffer./
kK=M-j;
d[K]=d[k-1];

}

d[0}=dk;

void intims()

long I

for(i=0; i<npt; + +i){
X[i]=0;
d[i}=0;
wli] = wo;

i £l - - T e - - EE =T - owwmom PO T e ‘.f

#include “Imsfit.c™

m MATLAB programs for adaptive filtering

MATLAB does not explicitly support adaptive signal processing. However, we have developed
MATLAB programs for the two basic adaptive algorithms, namely, the LMS and the RLS
algorithms:

Imsadf.m — function for performing LMS based adaptive filtering
risadf.m — function for performing RLS based adaptive filtering

The programs are available on the web. Illustrative examples of the use of the programs can be
found in the companion manual, A Practical Guide for MATLAB and C Language ffnpfmﬂ‘
tions of DSP Algorithms, published by Pearson Education (see the Preface for details).
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