
ALU
ADD / ADD with CARRY

Syntax: [IF cond] AR = xop + yop ;
AF + C

+ yop + C
+ constant
+ constant + C

Permissible xops Permissible yops Permissible conds (see Table 15.9)
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MR0 AF GT POS MV

SR1 GE AV NOT MV
SR0 LT NOT AV NOT CE

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32767
–2, –3, –5, –9, –17, –33, –65, –129, –257, –513, –1025, –2049, –4097, –8193, –16385, –
32768

Example: IF EQ AR = AX0 + AY0 + C;
AR = AR + 512;

Description: Test the optional condition and, if true, perform the specified
addition. If false then perform a no-operation. Omitting the condition
performs the addition unconditionally. The addition operation adds the first
source operand to the second source operand along with the ALU carry bit,
AC, (if designated by the “+C” notation), using binary addition. The result is
stored in the destination register. The operands are contained in the data
registers or constant specified in the instruction.

The xop + constant operation is only available on the ADSP-217x, ADSP-218x,
and ADSP-21msp58/59 processors and may not be used in multifunction
instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – * * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

15 – 21

15

(instruction continues on next page)

15

15 – 22

Instruction Format:
Conditional ALU/MAC operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation, in this case:

AMF = 10010 for xop + yop + C
AMF = 10011 for xop + yop

(Note that xop + C is a special case of xop + yop + C with yop=0.)

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

(xop + constant) Conditional ALU/MAC operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF YY Xop CC BO COND

AMF specifies the ALU or MAC operation, in this case:

AMF = 10010 for xop + constant + C
AMF = 10011 for xop + constant

Z: Destination register COND: condition
Xop: X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

ALU
ADD / ADD with CARRY

15

15 – 23

Syntax: [IF cond] AR = xop – yop ;
AF – yop + C–1

+ C–1
– constant
– constant + C–1

Permissible xops Permissible yops Permissible conds (see Table 15.9)
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MR0 AF GT POS MV

SR1 GE AV NOT MV
SR0 LT NOT AV NOT CE

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32767
–2, –3, –5, –9, –17, –33, –65, –129, –257, –513, –1025, –2049, –4097, –8193, –16385, –
32768

Example: IF GE AR = AX0 – AY0;

Description: Test the optional condition and, if true, then perform the
specified subtraction. If the condition is not true then perform a no-operation.
Omitting the condition performs the subtraction unconditionally. The
subtraction operation subtracts the second source operand from the first
source operand, and optionally adds the ALU Carry bit (AC) minus 1
(H#0001), and stores the result in the destination register. The (C–1) quantity
effectively implements a borrow capability for multiprecision subtractions.
The operands are contained in the data registers or constant specified in the
instruction.

The xop – constant operation is only available on the ADSP-217x, ADSP-218x,
and ADSP-21msp58/59 processors and may not be used in multifunction
instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
- - - - * * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Set if an arithmetic overflow occurs. Cleared otherwise.

(instruction continues on next page)

ALU
SUBTRACT X-Y / SUBTRACT X-Y with BORROW

15

15 – 24

ALU
SUBTRACT X-Y / SUBTRACT X-Y with BORROW

AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC operation, Instruction type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,

AMF = 10110 for xop – yop + C – 1 operation.
AMF = 10111 for xop – yop operation.

Note that xop + C – 1 is a special case of xop – yop + C – 1 with yop=0.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

(xop – constant) Conditional ALU/MAC operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF YY Xop CC BO COND

AMF specifies the ALU or MAC operation, in this case:

AMF = 10110 for xop – constant + C – 1
AMF = 10111 for xop – constant

Z: Destination register COND: condition
Xop: X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

15

15 – 25

ALU
SUBTRACT Y-X / SUBTRACT Y-X with BORROW

Syntax: [IF cond] AR = yop – xop ;
AF xop + C – 1
 –xop + C – 1
 –xop + constant
 –xop + constant + C – 1

Permissible xops Permissible yops Permissible conds (see Table 15.9)
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MR0 AF GT POS MV

SR1 GE AV NOT MV
SR0 LT NOT AV NOT CE

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32767
–2, –3, –5, –9, –17, –33, –65, –129, –257, –513, –1025, –2049, –4097, –8193, –16385, –
32768

Example: IF GT AR = AY0 – AX0 + C – 1;

Description: Test the optional condition and, if true, then perform the
specified subtraction. If the condition is not true then perform a no-operation.
Omitting the condition performs the subtraction unconditionally. The
subtraction operation subtracts the second source operand from the first
source operand, optionally adds the ALU Carry bit (AC) minus 1 (H#0001),
and stores the result in the destination register. The (C–1) quantity effectively
implements a borrow capability for multiprecision subtractions. The
operands are contained in the data registers or constant specified in the
instruction.

The –xop + constant operation is only available on the ADSP-217x, ADSP-218x,
and ADSP-21msp58/59 processors and may not be used in multifunction
instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – * * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.

(instruction continues on next page)

15

15 – 26

ALU
SUBTRACT Y-X / SUBTRACT Y-X with BORROW
AV Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,

AMF = 11010 for yop – xop + C – 1
AMF = 11001 for yop – xop

(Note that –xop + C – 1 is a special case of yop – xop + C – 1 with yop=0.)

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

(–xop + constant) Conditional ALU/MAC operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF YY Xop CC BO COND

AMF specifies the ALU or MAC operation, in this case:

AMF = 11010 for constant – xop + C – 1
AMF = 11001 for constant – xop

Z: Destination register COND: condition
Xop: X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

15

15 – 27

Syntax: [IF cond] AR = xop AND yop ;
AF OR constant

XOR

Permissible xops Permissible yops Permissible conds (see Table 15.9)
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MR0 AF GT POS MV

SR1 GE AV NOT MV
SR0 LT NOT AV NOT CE

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
0, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32767
–2, –3, –5, –9, –17, –33, –65, –129, –257, –513, –1025, –2049, –4097, –8193, –16385, –
32768

Example: AR = AX0 XOR AY0;
IF FLAG_IN AR = MR0 AND 8192;

Description: Test the optional condition and if true, then perform the
specified bitwise logical operation (logical AND, inclusive OR, or exclusive
OR). If the condition is not true then perform a no-operation. Omitting the
condition performs the logical operation unconditionally. The operands are
contained in the data registers or constant specified in the instruction.

The xop AND/OR/XOR constant operation is only available on the ADSP-217x,
ADSP-218x, and ADSP-21msp58/59 processors and may not be used in
multifunction instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – 0 0 * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Always cleared.
AC Always cleared.

ALU
AND, OR, XOR

(instruction continues on next page)

15

15 – 28

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,

AMF = 11100 for AND operation.
AMF = 11101 for OR operation.
AMF = 11110 for XOR operation.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

(xop AND/OR/XOR constant)
Conditional ALU/MAC operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF YY Xop CC BO COND

AMF specifies the ALU or MAC operation, in this case:

AMF = 11100 for AND operation.
AMF = 11101 for OR operation.
AMF = 11110 for XOR operation.

Z: Destination register COND: condition
Xop: X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

ALU
AND, OR, XOR

15

15 – 29

ALU
TEST BIT, SET BIT, CLEAR BIT, TOGGLE BIT

(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

Syntax: [IF cond] AR = TSTBIT n OF xop ;
AF SETBIT n OF xop

CLRBIT n OF xop
TGLBIT n OF xop

Permissible xops Permissible conds (see Table 15.9)
AX0 MR2 EQ LE AC
AX1 MR1 NE NEG NOT AC
AR MR0 GT POS MV

SR1 GE AV NOT MV
SR0 LT NOT AV NOT CE

Permissible n values (0=LSB)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

Examples: AF=TSTBIT 5 OF AR;
AR=TGLBIT 13 OF AX0;

Description: Test the optional condition and if true, then perform the
specified bit operation. If the condition is not true then perform a no-
operation. Omitting the condition performs the operation unconditionally.
These operations cannot be used in multifunction instructions.

These operations are defined as follows:

TSTBIT is an AND operation with a 1 in the selected bit
SETBIT is an OR operation with a 1 in the selected bit
CLRBIT is an AND operation with a 0 in the selected bit
TGLBIT is an XOR operation with a 1 in the selected bit

The ASTAT status bits are affected by these instructions. The following
instructions could be used, for example, to test a bit and branch accordingly:

AF=TSTBIT 5 OF AR;
IF NE JUMP set; /*Jump to "set" if bit 5 of AR is
set*/

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – 0 0 * *

(instruction continues on next page)

15

15 – 30

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Always cleared.
AC Always cleared.

Instruction Format:
(xop AND/OR/XOR constant)
Conditional ALU/MAC operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF YY Xop CC BO COND

AMF specifies the ALU or MAC operation, in this case:

AMF = 11100 for AND operation.
AMF = 11101 for OR operation.
AMF = 11110 for XOR operation.

Z: Destination register COND: condition
Xop: X operand

ALU
TEST BIT, SET BIT, CLEAR BIT, TOGGLE BIT
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

15

15 – 31

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

Syntax: [IF cond] AR = PASS xop ;
AF yop

constant

Permissible xops Permissible yops Permissible conds (see Table 15.9)
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MR0 AF GT POS MV

SR1 GE AV NOT MV
SR0 LT NOT AV NOT CE

Permissible constants (all ADSP-21xx processors)
–1, 0, 1

Permissible constants (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)
2, 3, 4, 5, 7, 8, 9, 15, 16, 17, 31, 32, 33, 63, 64, 65, 127, 128, 129, 255, 256, 257,
511, 512, 513, 1023, 1024, 1025, 2047, 2048, 2049, 4095, 4096, 4097, 8191, 8192, 8193,
16383, 16384, 16385, 32766, 32767
–2, –3, –4, –5, –6, –8, –9, –10, –16, –17, –18, –32, –33, –34, –64, –65, –66,
–128, –129, –130, –256, –257, –258, –512, –513, –514, –1024, –1025, –1026,
–2048, –2049, –2050, –4096, –4097, –4098, –8192, –8193, –8194,
–16384, –16385, –16386, –32767, –32768

Examples: IF GE AR = PASS AY0;
AR = PASS 0;
AR = PASS 8191; (ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

Description: Test the optional condition and if true, pass the source operand
unmodified through the ALU block and store in the destination register. If the
condition is not true perform a no-operation. Omitting the condition performs the
PASS unconditionally. The source operand is contained in the data register or
constant specified in the instruction.

PASS 0 is one method of clearing AR. PASS 0 can also be combined with memory
reads and writes in a multifunction instruction to clear AR.

The PASS instruction performs the transfer to the AR or AF register and affects the
ASTAT status flags (for xop, yop, –1, 0, 1 only). This instruction is different from a
register move operation which does not affect any status flags. The PASS constant

ALU
PASS / CLEAR

(instruction continues on next page)

15

15 – 32

operation (using any constant other than –1, 0, or 1) causes the ASTAT status
flags to be undefined.

The PASS constant operation (using any constant other than –1, 0, or 1) is only
available on the ADSP-217x, ADSP-218x, and ADSP-21msp58/59 processors and
may not be used in multifunction instructions.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – 0 0 * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV, AC Always cleared.

Note: The PASS constant operation (using any constant other than –1, 0, or 1)
causes the ASTAT status flags to be undefined.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,
AMF = 10000 for PASS yop
AMF = 10011 for PASS xop
AMF = 10001 for PASS 1
AMF = 11000 for PASS –1

Note that PASS xop is a special case of xop + yop, with yop=0.
Note that PASS 1 is a special case of yop + 1, with yop=0.
Note that PASS –1 is a special case of yop – 1, with yop=0.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

Conditional ALU/MAC operation, Instruction Type 9:
(PASS constant; constant ≠ 0,1,–1)
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF YY Xop CC BO COND

AMF specifies the ALU or MAC operation. In this case,
AMF = 10000 for PASS yop (special case of yop, with yop=constant)
AMF = 10001 for PASS yop + 1 (special case of yop + 1, with yop=constant)
AMF = 11000 for PASS yop – 1 (special case of yop – 1, with yop=constant)

ALU
PASS / CLEAR

15

15 – 33

Z: Destination register COND: condition
Xop: X operand

BO, CC, and YY specify the constant (see Appendix A, Instruction Coding).

Syntax: [IF cond] AR = – xop ;
AF yop

Permissible xops Permissible yops Permissible conds (see Table 15.9)
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MR0 AF GT POS MV

SR1 GE AV NOT MV
SR0 LT NOT AV NOT CE

Example: IF LT AR = – AY0;

Description: Test the optional condition and if true, then NEGATE the
source operand and store in the destination location. If the condition is not
true then perform a no-operation. Omitting the condition performs the
NEGATE operation unconditionally. The source operand is contained in
the data register specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – * * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Set if operand = H#8000. Cleared otherwise.
AC Set if operand equals zero. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,
AMF = 10101 for –yop operation.
AMF = 11001 for –xop operation

ALU
NEGATE

15

15 – 34

Note that –xop is a special case of yop – xop, with yop specified to be 0.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

Syntax: [IF cond] AR = NOT xop ;
AF yop

Permissible xops Permissible yops Permissible conds (see Table 15.9)
AX0 MR2 AY0 EQ LE AC
AX1 MR1 AY1 NE NEG NOT AC
AR MR0 AF GT POS MV

SR1 0 GE AV NOT MV
SR0 LT NOT AV NOT CE

Example: IF NE AF = NOT AX0;

Description: Test the optional condition and if true, then perform the
logical complement (ones complement) of the source operand and store in
the destination location. If the condition is not true then perform a no-
operation. Omitting the condition performs the complement operation
unconditionally. The source operand is contained in the data register
specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – 0 0 * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Always cleared.
AC Always cleared.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,
AMF = 10100 for NOT yop operation.

ALU
NOT

15

15 – 35

AMF = 11011 for NOT xop operation.

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

Syntax: [IF cond] AR = ABS xop ;
AF

Permissible xops Permissible conds (see Table 15.9)
AX0 MR2 EQ LE AC
AX1 MR1 NE NEG NOT AC
AR MR0 GT POS MV

SR1 GE AV NOT MV
SR0 LT NOT AV NOT CE

Example: IF NEG AF = ABS AX0 ;

Description: Test the optional condition and, if true, then take the
absolute value of the source operand and store in the destination location.
If the condition is not true then perform a no-operation. Omitting the
condition performs the absolute value operation unconditionally. The
source operand is contained in the data register specified in the
instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
- - - * 0 * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if xop is H#8000. Cleared otherwise.
AV Set if xop is H#8000. Cleared otherwise.
AC Always cleared.
AS Set if the source operand is negative. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF 0 0 Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,
AMF = 11111 for ABS xop operation.

ALU
ABSOLUTE VALUE

15

15 – 36

Z: Destination register
Xop: X operand COND: condition

Syntax: [IF cond] AR = yop + 1 ;
AF

Permissible yops Permissible conds (see Table 15.9)
AY0 EQ LE AC
AY1 NE NEG NOT AC
AF GT POS MV

GE AV NOT MV
LT NOT AV NOT CE

Example: IF GT AF = AF + 1;

Description: Test the optional condition and if true, then increment the
source operand by H#0001 and store in the destination location. If the
condition is not true then perform a no-operation. Omitting the condition
performs the increment operation unconditionally. The source operand is
contained in the data register specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – * * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,

AMF = 10001 for yop + 1 operation.

Note that the xop field is ignored for the increment operation.

ALU
INCREMENT

15

15 – 37

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

Syntax: [IF cond] AR = yop – 1 ;
AF

Permissible yops Permissible conds (see Table 15.9)
AY0 EQ LE AC
AY1 NE NEG NOT AC
AF GT POS MV

GE AV NOT MV
LT NOT AV NOT CE

Example: IF EQ AR = AY1 – 1 ;

Description: Test the optional condition and if true, then decrement the
source operand by H#0001 and store in the destination location. If the
condition is not true then perform a no-operation. Omitting the condition
performs the decrement operation unconditionally. The source operand is
contained in the data register specified in the instruction.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – * * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF specifies the ALU or MAC operation. In this case,

AMF = 11000 for yop – 1 operation.

Note that the xop field is ignored for the decrement operation.

ALU
DECREMENT

15

15 – 38

Z: Destination register Yop: Y operand
Xop: X operand COND: condition

Syntax: DIVS yop , xop ;
DIVQ xop ;

Permissible xops Permissible yops
AX0 MR2 AY1
AX1 MR1 AF
AR MR0

SR1
SR0

Description: These instructions implement yop ÷ xop. There are two
divide primitives, DIVS and DIVQ. A single precision divide, with a 32-bit
numerator and a 16-bit denominator, yielding a 16-bit quotient, executes
in 16 cycles. Higher precision divides are also possible.

The division can be either signed or unsigned, but both the numerator and
denominator must be the same; both signed or unsigned. The programmer
sets up the divide by sorting the upper half of the numerator in any
permissible yop (AY1 or AF), the lower half of the numerator in AY0, and
the denominator in any permissible xop. The divide operation is then
executed with the divide primitives, DIVS and DIVQ. Repeated execution
of DIVQ implements a non-restoring conditional add-subtract division
algorithm. At the conclusion of the divide operation the quotient will be in
AY0.

To implement a signed divide, first execute the DIVS instruction once,
which computes the sign of the quotient. Then execute the DIVQ
instruction for as many times as there are bits remaining in the quotient
(e.g., for a signed, single-precision divide, execute DIVS once and DIVQ 15
times).

To implement an unsigned divide, first place the upper half of the
numerator in AF, then set the AQ bit to zero by manually clearing it in the
Arithmetic Status Register, ASTAT. This indicates that the sign of the
quotient is positive. Then execute the DIVQ instruction for as many times
as there are bits in the quotient (e.g., for an unsigned single-precision
divide, execute DIVQ 16 times).

ALU
DIVIDE

15

15 – 39

The quotient bit generated on each execution of DIVS and DIVQ is the AQ
bit which is written to the ASTAT register at the end of each cycle. The
final remainder produced by this algorithm (and left over in the AF
register) is not valid and must be corrected if it is needed. For more
information, consult the Division Exceptions appendix of this manual.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – * – – – – –

AQ Loaded with the bit value equal to the AQ bit computed on each
cycle from execution of the DIVS or DIVQ instruction.

Instruction Format:
DIVQ, Instruction Type 23:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 1 1 1 0 0 0 1 0 Xop 0 0 0 0 0 0 0 0

DIVS, Instruction Type 24:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 1 1 0 0 0 0 Yop Xop 0 0 0 0 0 0 0 0

ALU
DIVIDE

15

15 – 40

Xop: X operand Yop: Y operand

Syntax: NONE = <ALU> ;

 <ALU> may be any unconditional ALU operation except DIVS or DIVQ.*

Examples: NONE = AX0 – AY0;
NONE = PASS SR0;

Description: Perform the designated ALU operation, generate the ASTAT
status flags, then discard the result value. This instruction allows the testing
of register values without disturbing the contents of the AR or AF registers.

* Note that the additional-constant ALU operations of the ADSP-217x,
ADSP-218x, ADSP-21msp58/59 processors are also not allowed:

ADD (xop + constant)
SUBTRACT X–Y (xop – constant)
SUBTRACT Y–X (–xop + constant)
AND, OR, XOR (xop ● constant)
PASS (PASS constant, using any constant other than –1, 0, or 1)
TSTBIT, SETBIT, CLRBIT, TGLBIT.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– – – – * * * *

AZ Set if the result equals zero. Cleared otherwise.
AN Set if the result is negative. Cleared otherwise.
AV Set if an arithmetic overflow occurs. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.

Instruction Format:
ALU/MAC operation with Data Register Move, Instruction Type 8:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 1 0 AMF Yop Xop 1 0 1 0 1 0 1 0

 ALU codes only

AMF specifies the ALU or MAC operation (only ALU operations are allowed).

ALU
GENERATE ALU STATUS
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

15

15 – 41

Xop: X operand Yop: Y operand

Syntax: [IF cond] MR = xop * yop (SS) ;
MF xop (SU)

(US)
(UU)
(RND)

Permissible xops Permissible yops Permissible conds (see Table 15.9)
MX0 AR MY0 EQ LE AC
MX1 SR1 MY1 NE NEG NOT AC
MR2 SR0 MF GT POS MV
MR1 GE AV NOT MV
MR0 LT NOT AV NOT CE

Examples: IF EQ MR = MX0 * MF (UU); xop * yop
MF = SR0 * SR0 (SS); xop * xop

Description: Test the optional condition and, if true, then multiply the
two source operands and store in the destination location. If the condition
is not true perform a no-operation. Omitting the condition performs the
multiplication unconditionally. The operands are contained in the data
registers specified in the instruction. When MF is the destination operand,
only bits 31-16 of the product are stored in MF.

The xop * xop squaring operation is only available on the ADSP-217x,
ADSP-218x, and ADSP-21msp58/59 processors. Both xops must be the
same register. This option allows single-cycle X2 and ∑X2 instructions.

The data format selection field following the two operands specifies
whether each respective operand is in Signed (S) or Unsigned (U) format.
The xop is specified first and yop is second. If the xop * xop operation is
used, the data format selection field must be (UU), (SS), or (RND) only.
There is no default; one of the data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
rounds the result to the most significant 24 bits (or rounds bits 31-16 to 16
bits if there is no overflow from the multiply), and stores the result in the
destination register. The two multiplication operands xop and yop (or xop
and xop) are considered to be in twos complement format. All rounding is
unbiased, except on the ADSP-217x, ADSP-218x, and ADSP-21msp58/59
processors, which offer a biased rounding mode. For a discussion of

(instruction continues on next page)

MAC
MULTIPLY

15

15 – 42

biased vs. unbiased rounding, see “Rounding Mode” in the “Multiplier/
Accumulator” section of Chapter 2, Computation Units.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– * – – – – – –

MV Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

Instruction Format:
(xop * yop) Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF: Specifies the ALU or MAC Operation. In this case,

AMF FUNCTION Data Format X-Operand Y-Operand
0 0 1 0 0 xop * yop (SS) Signed Signed
0 0 1 0 1 xop * yop (SU) Signed Unsigned
0 0 1 1 0 xop * yop (US) Unsigned Signed
0 0 1 1 1 xop * yop (UU) Unsigned Unsigned
0 0 0 0 1 xop * yop (RND) Signed Signed

Z: Destination register Yop: Y operand register
Xop: X operand register COND: condition

(xop * xop) Conditional ALU/MAC Operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF 0 0 Xop 0 0 0 1 COND

AMF: Specifies the ALU or MAC Operation. In this case,

AMF FUNCTION Data Format X-Operand
0 0 1 0 0 xop * xop (SS) Signed
0 0 1 1 1 xop * xop (UU) Unsigned
0 0 0 0 1 xop * xop (RND) Signed

MAC
MULTIPLY

15

15 – 43

Z: Destination register COND: condition
Xop: X operand register

Syntax: [IF cond] MR = MR + xop * yop (SS) ;
MF xop (SU)

(US)
(UU)
(RND)

Permissible xops Permissible yops Permissible conds (see Table 15.9)
MX0 AR MY0 EQ LE AC
MX1 SR1 MY1 NE NEG NOT AC
MR2 SR0 MF GT POS MV
MR1 GE AV NOT MV
MR0 LT NOT AV NOT CE

Examples: IF GE MR = MR + MX0 * MY1 (SS) ; xop * yop
MR = MR + MX0 * MX0 (SS); xop * xop

Description: Test the optional condition and, if true, then multiply the
two source operands, add the product to the present contents of the MR
register, and store the result in the destination location. If the condition is
not true then perform a no-operation. Omitting the condition performs the
multiply/accumulate unconditionally. The operands are contained in the
data registers specified in the instruction. When MF is the destination
operand, only bits 31-16 of the 40-bit result are stored in MF.

The xop * xop squaring operation is only available on the ADSP-217x,
ADSP-218x, and ADSP-21msp58/59 processors. Both xops must be the
same register. This option allows single-cycle X2 and ∑X2 instructions.

The data format selection field to the right of the two operands specifies
whether each respective operand is in signed (S) or unsigned (U) format.
The xop is specified first and yop is second. If the xop * xop operation is
used, the data format selection field must be (UU), (SS), or (RND) only.
There is no default; one of the data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
adds the product to the current contents of the MR register, rounds the
result to the most significant 24 bits (or rounds bits 31-16 to the nearest 16
bits if there is no overflow from the multiply/accumulate), and stores the
result in the destination register. The two multiplication operands xop and
yop (or xop and xop) are considered to be in twos complement format. All

(instruction continues on next page)

MAC
MULTIPLY / ACCUMULATE

15

15 – 44

rounding is unbiased, except on the ADSP-217x, ADSP-218x, and ADSP-
21msp58/59 processors, which offer a biased rounding mode. For a
discussion of biased vs. unbiased rounding, see “Rounding Mode” in the
“Multiplier/Accumulator” section of Chapter 2, Computation Units.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– * – – – – – –

MV Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

Instruction Format:
(xop * yop) Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF: Specifies the ALU or MAC Operation. In this case,

AMF FUNCTION Data Format X-Operand Y-Operand
0 1 0 0 0 MR+xop * yop (SS) Signed Signed
0 1 0 0 1 MR+xop * yop (SU) Signed Unsigned
0 1 0 1 0 MR+xop * yop (US) Unsigned Signed
0 1 0 1 1 MR+xop * yop (UU) Unsigned Unsigned
0 0 0 1 0 MR+xop * yop (RND) Signed Signed

Z: Destination register Yop: Y operand register
Xop: X operand register COND: condition

(xop * xop) Conditional ALU/MAC Operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF 0 0 Xop 0 0 0 1 COND

AMF: Specifies the ALU or MAC Operation. In this case,

AMF FUNCTION Data Format X-Operand
0 1 0 0 0 MR+xop * xop (SS) Signed
0 1 0 1 1 MR+xop * xop (UU) Unsigned
0 0 0 1 0 MR+xop * xop (RND) Signed

MAC
MULTIPLY / ACCUMULATE

15

15 – 45

MAC
MULTIPLY / SUBTRACT

Z: Destination register COND: condition
Xop: X operand register

Syntax: [IF cond] MR = MR – xop * yop (SS) ;
MF xop (SU)

(US)
(UU)
(RND)

Permissible xops Permissible yops Permissible conds (see Table 15.9)
MX0 AR MY0 EQ LE AC
MX1 SR1 MY1 NE NEG NOT AC
MR2 SR0 MF GT POS MV
MR1 GE AV NOT MV
MR0 LT NOT AV NOT CE

Examples: IF LT MR = MR – MX1 * MY0 (SU) ; xop * yop
MR = MR – MX0 * MX0 (SS); xop * xop

Description: Test the optional condition and, if true, then multiply the
two source operands, subtract the product from the present contents of
the MR register, and store the result in the destination location. If the
condition is not true perform a no-operation. Omitting the condition
performs the multiply/subtract unconditionally. The operands are
contained in the data registers specified in the instruction. When MF is the
destination operand, only bits 16-31 of the 40-bit result are stored in MF.

The xop * xop squaring operation is only available on the ADSP-217x,
ADSP-218x, and ADSP-21msp58/59 processors. Both xops must be the
same register.

The data format selection field to the right of the two operands specifies
whether each respective operand is in signed (S) or unsigned (U) format.
The xop is specified first and yop is second. If the xop * xop operation is
used, the data format selection field must be (UU), (SS), or (RND) only.
There is no default; one of the data formats must be specified.

If RND (Round) is specified, the MAC multiplies the two source operands,
subtracts the product from the current contents of the MR register, rounds
the result to the most significant 24 bits (or rounds bits 31-16 to 16 bits if
there is no overflow from the multiply/accumulate), and stores the result
in the destination register. The two multiplication operands xop and yop
(or xop and xop) are considered to be in twos complement format. All

(instruction continues on next page)

15

15 – 46

rounding is unbiased, except on the ADSP-217x, ADSP-218x, and ADSP-
21msp58/59 processors, which offer a biased rounding mode. For a
discussion of biased vs. unbiased rounding, see “Rounding Mode” in the
“Multiplier/Accumulator” section of Chapter 2, Computation Units.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– * – – – – – –

MV Set on MAC overflow (if any of the upper 9 bits of MR are
not all one or zero). Cleared otherwise.

Instruction Format:
(xop * yop) Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF Yop Xop 0 0 0 0 COND

AMF: Specifies the ALU or MAC Operation. In this case,

AMF FUNCTION Data Format X-Operand Y-Operand
0 1 1 0 0 MR–xop * yop (SS) Signed Signed
0 1 1 0 1 MR–xop * yop (SU) Signed Unsigned
0 1 1 1 0 MR–xop * yop (US) Unsigned Signed
0 1 1 1 1 MR–xop * yop (UU) Unsigned Unsigned
0 0 0 1 1 MR–xop * yop (RND) Signed Signed

Z: Destination register Yop: Y operand register
Xop: X operand register COND: condition

(xop * xop) Conditional ALU/MAC Operation, Instruction Type 9:
(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF 0 0 Xop 0 0 0 1 COND

AMF: Specifies the ALU or MAC Operation. In this case,

AMF FUNCTION Data Format X-Operand
0 1 1 0 0 MR–xop * xop (SS) Signed
0 1 1 1 1 MR–xop * xop (UU) Unsigned
0 0 0 1 1 MR–xop * xop (RND) Signed

MAC
MULTIPLY / SUBTRACT

15

15 – 47

Z: Destination register COND: condition
Xop: X operand register

Syntax: [IF cond] MR = 0 ;
MF

Permissible conds (see Table 15.9)
EQ NE GT GE LT
LE NEG POS AV NOT AV
AC NOT AC MV NOT MV NOT CE

Example: IF GT MR = 0;

Description: Test the optional condition and, if true, then set the
specified register to zero. If the condition is not true perform a no-
operation. Omitting the condition performs the clear unconditionally. The
entire 40-bit MR or 16-bit MF register is cleared to zero.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– 0 – – – – – –

MV Always cleared.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF 1 1 0 0 0 0 0 0 0 COND

AMF: Specifies the ALU or MAC Operation. In this case,
AMF = 00100 for clear operation.

MAC
CLEAR

15

15 – 48

MAC
TRANSFER MR

Note that this instruction is a special case of xop * yop, with yop set to zero.

Z: Destination register COND: condition
Syntax: [IF cond] MR = MR [(RND)] ;

MF

Permissible conds (see Table 15.9)
EQ NE GT GE LT
LE NEG POS AV NOT AV
AC NOT AC MV NOT MV NOT CE

Example: IF EQ MF = MR (RND);

Description: Test the optional condition and, if true, then perform the
MR transfer according to the description below. If the condition is not true
then perform a no-operation. Omitting the condition performs the transfer
unconditionally.

This instruction actually performs a multiply/accumulate, specifying yop =
0 as a multiplicand and adding the zero product to the contents of MR. The
MR register may be optionally rounded at the boundary between bits 15
and 16 of the result by specifying the RND option. If MF is specified as the
destination, bits 31-16 of the result are stored in MF. If MR is the
destination, the entire 40-bit result is stored in MR.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
– * – – – – – –

MV Set on MAC overflow (if any of upper 9 bits of MR are not
all one or zero). Cleared otherwise.

Instruction Format:
Conditional ALU/MAC Operation, Instruction Type 9:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 0 Z AMF 1 1 0 0 0 0 0 0 0 COND

AMF: Specifies the ALU or MAC Operation. In this case,

 AMF = 01000 for Transfer MR operation

15

15 – 49

MAC
CONDITIONAL MR SATURATION

Note that this instruction is a special case of MR + xop * yop, with yop set
to zero.

Z: Destination register COND: condition
Syntax: IF MV SAT MR ;

Description: Test the MV (MAC Overflow) bit in the Arithmetic Status
Register (ASTAT), and if set, then saturate the lower-order 32 bits of the
40-bit MR register; if the MV is not set then perform a no-operation.

Saturation of MR is executed with this instruction for one cycle only; MAC
saturation is not a continuous mode that is enabled or disabled. The
saturation instruction is intended to be used at the completion of a series
of multiply/accumulate operations so that temporary overflows do not
cause the accumulator to saturate.

The saturation result depends on the state of MV and on the sign of MR
(the MSB of MR2). The possible results after execution of the saturation
instruction are shown in the table below.

MV MSB of MR2 MR contents after saturation

0 0 No change
0 1 No change
1 0 00000000 0111111111111111 1111111111111111
1 1 11111111 1000000000000000 0000000000000000

Status Generated: No status bits affected.

Instruction Format:
Saturate MR operation, Instruction Type 25:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15

15 – 50

Syntax: [IF cond] SR = [SR OR] ASHIFT xop (HI) ;
(LO)

Permissible xops Permissible conds (see Table 15.9)
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SR0 MR1 GT POS MV

MR0 GE AV NOT MV
LT NOT AV NOT CE

Example: IF LT SR = SR OR ASHIFT SI (LO);

Description: Test the optional condition and, if true, then perform the
designated arithmetic shift. If the condition is not true then perform a no-
operation. Omitting the condition performs the shift unconditionally. The
operation arithmetically shifts the bits of the operand by the amount and
direction specified in the Shift Code from the SE register. Positive Shift
Codes cause a left shift (upshift) and negative codes cause a right shift
(downshift).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For ASHIFT with a positive Shift Code (i.e. positive value in SE), the
operand is shifted left; with a negative Shift Code (i.e. negative value in
SE), the operand is shifted right. The number of positions shifted is the
count in the Shift Code. The 32-bit output field is sign-extended to the left
(the MSB of the input is replicated to the left), and the output is zero-filled
from the right. Bits shifted out of the high order bit in the 32-bit
destination field (SR31) are dropped. Bits shifted out of the low order bit in
the destination field (SR0) are dropped.

To shift a double precision number, the same Shift Code is used for both
halves of the number. On the first cycle, the upper half of the number is
shifted using an ASHIFT with the HI option; on the following cycle, the
lower half of the number is shifted using an LSHIFT with the LO and OR
options. This prevents sign bit extension of the lower word’s MSB.

Status Generated: None affected.

SHIFTER
ARITHMETIC SHIFT

15

15 – 51

SHIFTER
ARITHMETIC SHIFT

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 1 0 0 SF Xop 0 0 0 0 COND

SF Shifter Function
0 1 0 0 ASHIFT (HI)
0 1 0 1 ASHIFT (HI, OR)
0 1 1 0 ASHIFT (LO)
0 1 1 1 ASHIFT (LO, OR)

Xop: shifter operand COND: condition

15

15 – 52

SHIFTER
LOGICAL SHIFT

Syntax: [IF cond] SR = [SR OR] LSHIFT xop (HI) ;
(LO)

Permissible xops Permissible conds (see Table 15.9)
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SR0 MR1 GT POS MV

MR0 GE AV NOT MV
LT NOT AV NOT CE

Example: IF GE SR = LSHIFT SI (HI) ;

Description: Test the optional condition and, if true, then perform the
designated logical shift. If the condition is not true then perform a no-
operation. Omitting the condition performs the shift unconditionally. The
operation logically shifts the bits of the operand by the amount and
direction specified in the Shift Code from the SE register. Positive Shift
Codes cause a left shift (upshift) and negative Codes cause a right shift
(downshift).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For LSHIFT with a positive Shift Code, the operand is shifted left; the
numbers of positions shifted is the count in the Shift Code. The 32-bit
output field is zero-filled from the right. Bits shifted out of the high order
bit in the 32-bit destination field (SR31) are dropped.

For LSHIFT with a negative Shift Code, the operand is shifted right; the
number of positions shifted is the count in the Shift Code. The 32-bit
output field is zero-filled from the left. Bits shifted out of the low order bit
in the destination field (SR0) are dropped.

To shift a double precision number, the same Shift Code is used for both
halves of the number. On the first cycle, the upper half of the number is
shifted using the HI option; on the following cycle, the lower half of the
number is shifted using the LO and OR options.

Status Generated: None affected.

15

15 – 53

SHIFTER
LOGICAL SHIFT

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 1 0 0 SF Xop 0 0 0 0 COND

SF Shifter Function
0 0 0 0 LSHIFT (HI)
0 0 0 1 LSHIFT (HI, OR)
0 0 1 0 LSHIFT (LO)
0 0 1 1 LSHIFT (LO, OR)

Xop: shifter operand COND: condition

15

15 – 54

SHIFTER
NORMALIZE

Syntax: [IF cond] SR = [SR OR] NORM xop (HI) ;
(LO)

Permissible xops Permissible conds (see Table 15.9)
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SR0 MR1 GT POS MV

MR0 GE AV NOT MV
LT NOT AV NOT CE

Example: SR = NORM SI (HI) ;

Description: Test the optional condition and, if true, then perform the
designated normalization. If the condition is not true then perform a no-
operation. Omitting the condition performs the normalize
unconditionally. The operation arithmetically shifts the input operand to
eliminate all but one of the sign bits. The amount of the shift comes from
the SE register. The SE register may be loaded with the proper Shift Code
to eliminate the redundant sign bits by using the Derive Exponent
instruction; the Shift Code loaded will be the negative of the quantity: (the
number of sign bits minus one).

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option. When the LO reference is selected, the 32-bit output field is zero-
filled to the left. Bits shifted out of the high order bit in the 32-bit
destination field (SR31) are dropped.

The 32-bit output field is zero-filled from the right. If the exponent of an
overflowed ALU result was derived with the HIX modifier, the 32-bit
output field is filled from left with the ALU Carry (AC) bit in the
Arithmetic Status Register (ASTAT) during a NORM (HI) operation. In
this case (SE=1 from the exponent detection on the overflowed ALU
value) a downshift occurs.

To normalize a double precision number, the same Shift Code is used for
both halves of the number. On the first cycle, the upper half of the number
is shifted using the HI option; on the following cycle, the lower half of the
number is shifted using the LO and OR options.

Status Generated: None affected.

15

15 – 55

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 1 0 0 SF Xop 0 0 0 0 COND

SF Shifter Function
1 0 0 0 NORM (HI)
1 0 0 1 NORM (HI, OR)
1 0 1 0 NORM (LO)
1 0 1 1 NORM (LO, OR)

Xop: shifter operand COND: condition

SHIFTER
NORMALIZE

15

15 – 56

Syntax: [IF cond] SE = EXP xop (HI) ;
(LO)
(HIX)

Permissible xops Permissible conds (see Table 15.9)
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SR0 MR1 GT POS MV

MR0 GE AV NOT MV
LT NOT AV NOT CE

Example: IF GT SE = EXP MR1 (HI) ;

Description: Test the optional condition and, if true, perform the
designated exponent operation. If the condition is not true then perform a
no-operation. Omitting the condition performs the exponent operation
unconditionally.

The EXP operation derives the effective exponent of the input operand to
prepare for the normalization operation (NORM). EXP supplies the source
operand to the exponent detector, which generates a Shift Code from the
number of leading sign bits in the input operand. The Shift Code, stored in
SE at the completion of the EXP instruction, is the effective exponent of the
input value. The Shift Code depends on which exponent detector mode is
used (HI, HIX, LO).

In the HI mode, the input is interpreted as a single precision signed
number, or as the upper half of a double precision signed number. The
exponent detector counts the number of leading sign bits in the source
operand and stores the resulting Shift Code in SE. The Shift Code will
equal the negative of the number of redundant sign bits in the input.

In the HIX mode, the input is interpreted as the result of an add or
subtract which may have overflowed. HIX is intended to handle shifting
and normalization of results from ALU operations. The HIX mode
examines the ALU Overflow bit (AV) in the Arithmetic Status Register: if
AV is set, then the effective exponent of the input is +1 (indicating that an
ALU overflow occurred before the EXP operation), and +1 is stored in SE.
If AV is not set, then HIX performs exactly the same operations as the HI
mode.

SHIFTER
DERIVE EXPONENT

15

15 – 57

In the LO mode, the input is interpreted as the lower half of a double
precision number. In performing the EXP operation on a double precision
number, the higher half of the number must first be processed with EXP in
the HI or HIX mode, and then the lower half can be processed with EXP in
the LO mode. If the upper half contained a non-sign bit, then the correct
Shift Code was generated in the HI or HIX operation and that is the code
that is stored in SE. If, however, the upper half was all sign bits, then EXP
in the LO mode totals the number of leading sign bits in the double
precision word and stores the resulting Shift Code in SE.

Status Generated:
ASTAT: 7 6 5 4 3 2 1 0

SS MV AQ AS AC AV AN AZ
* – – – – – – –

SS Set by the MSB of the input for an EXP operation in the HI
or HIX mode with AV = 0. Set by the MSB inverted in the
HIX mode with AV = 1. Not affected by operations in the
LO mode.

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 1 0 0 SF Xop 0 0 0 0 COND

SF Shifter Function
1 1 0 0 EXP (HI)
1 1 0 1 EXP (HIX)
1 1 1 0 EXP (LO)

Xop: shifter operand COND: condition

SHIFTER
DERIVE EXPONENT

15

15 – 58

Syntax: [IF cond] SB = EXPADJ xop ;

Permissible xops Permissible conds (see Table 15.9)
SI AR EQ LE AC
SR1 MR2 NE NEG NOT AC
SR0 MR1 GT POS MV

MR0 GE AV NOT MV
LT NOT AV NOT CE

Example: IF GT SB = EXPADJ SI ;

Description: Test the optional condition and, if true, perform the
designated exponent operation. If the condition is not true then perform a
no-operation. Omitting the condition performs the exponent operation
unconditionally. The Block Exponent Adjust operation, when performed
on a series of numbers, derives the effective exponent of the number
largest in magnitude. This exponent can then be associated with all of the
numbers in a block floating point representation.

The Block Exponent Adjust circuitry applies the input operand to the
exponent detector to derive its effective exponent. The input must be a
signed twos complement number. The exponent detector operates in HI
mode (see the EXP instruction, above).

At the start of a block, the SB register should be initialized to –16 to set SB
to its minimum value. On each execution of the EXPADJ instruction, the
effective exponent of each operand is compared to the current contents of
the SB register. If the new exponent is greater than the current SB value, it
is written to the SB register, updating it. Therefore, at the end of the block,
the SB register will contain the largest exponent found. EXPADJ is only an
inspection operation; no actual shifting takes place since the true exponent
is not known until all the numbers in the block have been checked.
However, the numbers can be shifted at a later time after the true
exponent has been derived.

Extended (overflowed) numbers and the lower halves of double precision
numbers can not be processed with the Block Exponent Adjust instruction.

Status Generated: Not affected.

SHIFTER
BLOCK EXPONENT ADJUST

15

15 – 59

SHIFTER
BLOCK EXPONENT ADJUST

Instruction Format:
Conditional Shift Operation, Instruction Type 16:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 1 0 0 SF Xop 0 0 0 0 COND

SF = 1111.

Xop: shifter operand COND: condition

15

15 – 60

Syntax: SR = [SR OR] ASHIFT xop BY <exp> (HI) ;
(LO)

Permissible xops <exp>
SI MR0 Any constant between –128 and 127*
SR1 MR1
SR0 MR2
AR

Example: SR = SR OR ASHIFT SR0 BY 3 (LO); {do not use “+3”}

Description: Arithmetically shift the bits of the operand by the amount
and direction specified by the constant in the exponent field. Positive
constants cause a left shift (upshift) and negative constants cause a right
shift (downshift). A positive constant must be entered without a “+” sign.

The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the present contents of the SR register by selecting the SR OR
option.

For ASHIFT with a positive shift constant the operand is shifted left; with
a negative shift constant the operand is shifted right. The 32-bit output
field is sign-extended to the left (the MSB of the input is replicated to the
left), and the output is zero-filled from the right. Bits shifted out of the
high order bit in the 32-bit destination field (SR31) are dropped. Bits shifted
out of the low order bit in the destination field (SR0) are dropped.

To shift a double precision number, the same shift constant is used for
both halves of the number. On the first cycle, the upper half of the number
is shifted using an ASHIFT with the HI option; on the following cycle, the
lower half is shifted using an LSHIFT with the LO and OR options. This
prevents sign bit extension of the lower word’s MSB.

* See Table 2.4 in Chapter 2.

Status Generated: None affected.

SHIFTER
ARITHMETIC SHIFT IMMEDIATE

15

15 – 61

Instruction Format:
Shift Immediate Operation, Instruction Type 15:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 1 1 0 SF Xop <exp>

SF Shifter Function
0 1 0 0 ASHIFT (HI)
0 1 0 1 ASHIFT (HI, OR)
0 1 1 0 ASHIFT (LO)
0 1 1 1 ASHIFT (LO, OR)

Xop: Shifter Operand <exp>: 8-bit signed shift value

SHIFTER
ARITHMETIC SHIFT IMMEDIATE

15

15 – 62

Syntax: SR = [SR OR] LSHIFT xop BY <exp> (HI) ;
(LO)

Permissible xops <exp>
SI MR0 Any constant between –128 and 127*
SR1 MR1
SR0 MR2
AR

Example: SR = LSHIFT SR1 BY –6 (HI) ;

Description: Logically shifts the bits of the operand by the amount and
direction specified by the constant in the exponent field. Positive constants
cause a left shift (upshift); negative constants cause a right shift
(downshift). A positive constant must be entered without a “+” sign.

 The shift may be referenced to the upper half of the output field (HI
option) or to the lower half (LO option). The shift output may be logically
ORed with the contents of the SR register by selecting the SR OR option.

For LSHIFT with a positive shift constant, the operand is shifted left. The
32-bit output field is zero-filled to the left and from the right. Bits shifted
out of the high order bit in the 32-bit destination field (SR31) are dropped.
For LSHIFT with a negative shift constant, the operand is shifted right.
The 32-bit output field is zero-filled from the left and to the right. Bits
shifted out of the low order bit are dropped.

To shift a double precision number, the same shift constant is used for
both parts of the number. On the first cycle, the upper half of the number
is shifted using the HI option; on the following cycle, the lower half is
shifted using the LO and OR options.

* See Table 2.4 in Chapter 2.

Status Generated: None affected.

Instruction Format:
Shift Immediate Operation, Instruction Type 15:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 1 1 0 SF Xop <exp>

SF Shifter Function
0 0 0 0 LSHIFT (HI) Xop: Shifter Operand
0 0 0 1 LSHIFT (HI, OR)
0 0 1 0 LSHIFT (LO) <exp>: 8-bit signed shift value
0 0 1 1 LSHIFT (LO, OR)

SHIFTER
LOGICAL SHIFT IMMEDIATE

15

15 – 63

Syntax: reg = reg ;

Permissible registers
AX0 MX0 SI SB CNTR
AX1 MX1 SE PX OWRCNTR(write only)
AY0 MY0 SR1 ASTAT RX0
AY1 MY1 SR0 MSTAT RX1
AR MR2 I0-I7 SSTAT(read only) TX0

MR1 M0-M7 IMASK TX1
MR0 L0-L7 ICNTL IFC(write only)

Example: I7 = AR;

Description: Move the contents of the source to the destination
location. The contents of the source are always right-justified in the
destination location after the move.

When transferring a smaller register to a larger register (e.g., an 8-bit
register to a 16-bit register), the value stored in the destination is either
sign-extended to the left if the source is a signed value, or zero-filled to the
left if the source is an unsigned value. The unsigned registers which
(when used as the source) cause the value stored in the destination to be
zero-filled to the left are: I0 through I7, L0 through L7, CNTR, PX, ASTAT,
MSTAT, SSTAT, IMASK, and ICNTL. All other registers cause sign-
extension to the left.

When transferring a larger register to a smaller register (e.g., a 16-bit
register to a 14-bit register), the value stored in the destination is right-
justified (bit 0 maps to bit 0) and the higher-order bits are dropped.

Note that whenever MR1 is loaded with data, it is sign-extended into
MR2.

Status Generated: None affected.

MOVE
REGISTER MOVE

(instruction continues on next page)

15

15 – 64

Instruction Format:
Internal Data Move, Instruction Type 17:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 0 1 0 0 0 0 DST SRC DEST SOURCE
 RGP RGP REG REG

SRC RGP (Source Register Group) and SOURCE REG (Source Register)
select the source register according to the Register Selection Table (see
Appendix A).

DST RGP (Destination Register Group) and DEST REG (Destination
Register) select the destination register according to the Register Selection
Table (see Appendix A).

MOVE
REGISTER MOVE

15

15 – 65

Syntax: reg = <data> ;
dreg = <data> ;

data: <constant>
‘%’ <symbol>
‘^’ <symbol>

Permissible registers

dregs (Instruction Type 6) regs (Instruction Type 7)
(16-bit load) (maximum 14-bit load)
AX0 MX0 SI SB CNTR
AX1 MX1 SE PX OWRCNTR (write only)
AY0 MY0 SR1 ASTAT RX0
AY1 MY1 SR0 MSTAT RX1
AR MR2 IMASK TX0

MR1 ICNTL TX1
MR0 I0-I7 IFC(write only)

M0-M7
L0-L7

Example: I0 = ^data_buffer;
L0=%data_buffer;

Description: Move the data value specified to the destination location.
The data may be a constant, or any symbol referenced with the “length of”
(%) or “pointer to” (^) operators. The data value is contained in the
instruction word, with 16 bits for data register loads and up to 14 bits for
other register loads. The value is always right-justified in the destination
location after the load (bit 0 maps to bit 0). When a value of length less than
the length of the destination is moved, it is sign-extended to the left to fill
the destination width.

Note that whenever MR1 is loaded with data, it is sign-extended into MR2.

For this instruction only, the RX and TX registers may be loaded with a
maximum of 14 bits of data (although the registers themselves are 16 bits
wide). To load these registers with 16-bit data, use the register-to-register
move instruction or the data memory-to-register move instruction with
direct addressing.

Status Generated: None affected.

MOVE
LOAD REGISTER IMMEDIATE

(instruction continues on next page)

15

15 – 66

Instruction Format :
Load Data Register Immediate, Instruction Type 6:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 0 0 DATA DREG

DATA contains the immediate value to be loaded into the Data Register
destination location. The data is right-justified in the field, so the value
loaded into an N-bit destination register is contained in the lower-order N
bits of the DATA field.

DREG selects the destination Data Register for the immediate data value.
One of the 16 Data Registers is selected according to the DREG Selection
Table (see Appendix A).

Load Non-Data Register Immediate Instruction Type 7:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 1 RGP DATA REG

DATA contains the immediate value to be loaded into the Non-Data
Register destination location. The data is right-justified in the field, so the
value loaded into an N-bit destination register is contained in the lower-
order N bits of the DATA field.

RGP (Register Group) and REG (Register) select the destination register
according to the Register Selection Table (see Appendix A).

MOVE
LOAD REGISTER IMMEDIATE

15

15 – 67

Syntax: reg = DM (<addr>) ;

Permissible registers
AX0 MX0 SI SB CNTR
AX1 MX1 SE PX OWRCNTR (write only)
AY0 MY0 SR1 ASTAT RX0
AY1 MY1 SR0 MSTAT RX1
AR MR2 I0-I7 TX0

MR1 M0-M7 IMASK TX1
MR0 L0-L7 ICNTL IFC(write only)

Example: SI = DM(ad_port0);

Description: The Read instruction moves the contents of the data
memory location to the destination register. The addressing mode is direct
addressing (designated by an immediate address value or by a label). The
data memory address is stored directly in the instruction word as a full 14-
bit field. The contents of the source are always right-justified in the
destination register after the read (bit 0 maps to bit 0).

Note that whenever MR1 is loaded with data, it is sign-extended into
MR2.

Status Generated: None affected.

Instruction Format:
Data Memory Read (Direct Address), Instruction Type 3:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 1 0 0 0 RGP ADDR REG

ADDR contains the direct address to the source location in Data Memory.

RGP (Register Group) and REG (Register) select the destination register
according to the Register Selection Table (see Appendix A).

MOVE
DATA MEMORY READ (Direct Address)

15

15 – 68

Syntax: dreg = DM (I0 , M0) ;
I1 M1
I2 M2
I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

Permissible dregs
AX0 MX0 SI
AX1 MX1 SE
AY0 MY0 SR1
AY1 MY1 SR0
AR MR2

MR1
MR0

Example: AY0 = DM (I3, M1);

Description: The Data Memory Read Indirect instruction moves the
contents of the data memory location to the destination register. The
addressing mode is register indirect with post-modify. For linear (i.e.
non-circular) indirect addressing, the L register corresponding to the I
register used must be set to zero. The contents of the source are always
right-justified in the destination register after the read (bit 0 maps to bit 0).

Status Generated: None affected.

Instruction Format:
ALU / MAC Operation with Data Memory Read, Instruction Type 4:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 1 G 0 0 AMF 0 0 0 0 0 DREG I M

AMF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Read. In this case, AMF = 00000, indicating a no-
operation for the ALU/MAC function.

DREG selects the destination Data Register . One of the 16 Data Registers
is selected according to the DREG Selection Table (see Appendix A).

G specifies which Data Address Generator the I and M registers are
selected from. These registers must be from the same DAG as separated
by the gray bar above. I specifies the indirect address pointer (I register).
M specifies the modify register (M register).

MOVE
DATA MEMORY READ (Indirect Address)

15

15 – 69

MOVE
PROGRAM MEMORY READ (Indirect Address)

Syntax: dreg = PM (I4 , M4) ;
I5 M5
I6 M6
I7 M7

Permissible dregs
AX0 MX0 SI
AX1 MX1 SE
AY0 MY0 SR1
AY1 MY1 SR0
AR MR2

MR1
MR0

Example: MX1 = PM (I6, M5);

Description: The Program Memory Read Indirect instruction moves the
contents of the program memory location to the destination register. The
addressing mode is register indirect with post-modify. For linear (i.e.
non-circular) indirect addressing, the L register corresponding to the I
register used must be set to zero. The 16 most significant bits of the
Program Memory Data bus (PMD23-8) are loaded into the destination
register, with bit PMD8 lining up with bit 0 of the destination register
(right-justification). If the destination register is less than 16 bits wide, the
most significant bits are dropped. Bits PMD7-0 are always loaded into the
PX register. You may ignore these bits or read them out on a subsequent
cycle.

Status Generated: None affected

Instruction Format:
ALU / MAC Operation with Program Memory Read, Instruction Type 5:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 0 1 0 0 AMF 0 0 0 0 0 DREG I M

AMF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Read. In this case, AMF = 00000, indicating a no-
operation for the ALU/MAC function.

DREG selects the destination Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

I specifies the indirect address pointer (I register). M specifies the modify
register (M register).

15

15 – 70

Syntax: DM (<addr>) = reg ;

Permissible registers
AX0 MX0 SI SB CNTR
AX1 MX1 SE PX RX0
AY0 MY0 SR1 ASTAT RX1
AY1 MY1 SR0 MSTAT TX0
AR MR2 I0-I7 SSTAT(read only) TX1

MR1 M0-M7 IMASK
MR0 L0-L7 ICNTL

Example: DM (cntl_port0) = AR;

Description: Moves the contents of the source register to the data
memory location specified in the instruction word. The addressing mode
is direct addressing (designated by an immediate address value or by a
label). The data memory address is stored directly in the instruction word
as a full 14-bit field. Whenever a register less than 16 bits in length is
written to memory, the value written is either sign-extended to the left if
the source is a signed value, or zero-filled to the left if the source is an
unsigned value. The unsigned registers which are zero-filled to the left
are: I0 through I7, L0 through L7, CNTR, PX, ASTAT, MSTAT, SSTAT,
IMASK, and ICNTL. All other registers are sign-extended to the left.

The contents of the source are always right-justified in the destination
location after the write (bit 0 maps to bit 0).

Note that whenever MR1 is loaded with data, it is sign-extended into
MR2.

Status Generated: None affected.

Instruction Format:
Data Memory Read (Direct Address), Instruction Type 3:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 1 0 0 1 RGP ADDR REG

ADDR contains the direct address of the destination location in Data
Memory.

RGP (Register Group) and REG (Register) select the source register
according to the Register Selection Table (see Appendix A).

MOVE
DATA MEMORY WRITE (Direct Address)

15

15 – 71

Syntax: DM (I0 , M0) = dreg ;
I1 M1 <data>
I2 M2
I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

data: <constant>
‘%’ <symbol>
‘^’ <symbol>

Permissible dregs
AX0 MX0 SI
AX1 MX1 SE
AY0 MY0 SR1
AY1 MY1 SR0
AR MR2

MR1
MR0

Example: DM (I2, M0) = MR1;

Description: The Data Memory Write Indirect instruction moves the
contents of the source to the data memory location specified in the
instruction word. The immediate data may be a constant or any symbol
referenced with the “length of” (%) or “pointer to” (^) operators.

The addressing mode is register indirect with post-modify. For linear (i.e.
non-circular) indirect addressing, the L register corresponding to the I
register used must be set to zero. When a register of less than 16 bits is
written to memory, the value written is sign-extended to form a 16-bit
value. The contents of the source are always right-justified in the
destination location after the write (bit 0 maps to bit 0).

Status Generated: None affected.

MOVE
DATA MEMORY WRITE (Indirect Address)

(instruction continues on next page)

15

15 – 72

MOVE
DATA MEMORY WRITE (Indirect Address)

Instruction Format:
ALU / MAC Operation with Data Memory Write, Instruction Type 4:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 1 G 1 0 AMF 0 0 0 0 0 DREG I M

Data Memory Write, Immediate Data, Instruction Type 2:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 1 0 1 G Data I M

AMF specifies the ALU or MAC operation to be performed in parallel
with the Data Memory Write. In this case, AMF = 00000, indicating a no-
operation for the ALU / MAC function.

Data represents the actual 16-bit value.

DREG selects the source Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

G specifies which Data Address Generator the I and M registers are
selected from. These registers must be from the same DAG as separated
by the gray bar in the Syntax description above. I specifies the indirect
address pointer (I register). M specifies the modify register (M register).

15

15 – 73

Syntax: PM (I4 , M4) = dreg ;
I5 M5
I6 M6
I7 M7

Permissible dregs
AX0 MX0 SI
AX1 MX1 SE
AY0 MY0 SR1
AY1 MY1 SR0
AR MR2

MR1
MR0

Example: PM (I6, M5) = AR;

Description: The Program Memory Write Indirect instruction moves
the contents of the source to the program memory location specified in the
instruction word. The addressing mode is register indirect with post-
modify. For linear (i.e. non-circular) indirect addressing, the L register
corresponding to the I register used must be set to zero. The 16 most
significant bits of the Program Memory Data bus (PMD23-8) are loaded
from the source register, with bit PMD8 aligned with bit 0 of the source
register (right justification). The 8 least significant bits of the Program
Memory Data bus (PMD7-0) are loaded from the PX register. Whenever a
source register of length less than 16 bits is written to memory, the value
written is sign-extended to form a 16-bit value.

Status Generated: None affected.

Instruction Format:
ALU / MAC Operation with Program Memory Write, Instruction Type 5
(see Appendix A), as shown below:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 0 1 1 0 AMF 0 0 0 0 0 DREG I M

AMF specifies the ALU or MAC operation to be performed in parallel
with the Program Memory Write. In this case, AMF = 00000, indicating a
no-operation for the ALU / MAC function.

DREG selects the source Data Register. One of the 16 Data Registers is
selected according to the Register Selection Table (see Appendix A).

I specifies the indirect address pointer (I register). M specifies the modify
register (M register).

MOVE
PROGRAM MEMORY WRITE (Indirect Address)

15

15 – 74

MOVE
I/O SPACE READ/WRITE
(ADSP-218x only)

Syntax: IO (<addr>) = dreg ; I/O write
dreg = IO (<addr>) ; I/O read

<addr> is an 11-bit direct address value between 0 and 2047

Permissible dregs
AX0 MX0 SI
AX1 MX1 SE
AY0 MY0 SR1
AY1 MY1 SR0
AR MR2

MR1
MR0

Examples: IO(23) = AX0;
MY1 = IO(2047);

Description: The I/O space read and write instructions are used to
access the ADSP-218x’s I/O memory space. These instructions move data
between the processor data registers and the I/O memory space.

Status Generated: None affected.

Instruction Format:
I/O Memory Space Read/Write, Instruction Type 29:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 0 0 1 D ADDR DREG

ADDR contains the 11-bit direct address of the source or destination
location in I/O Memory Space.

DREG selects the Data Register. One of the 16 Data Registers is selected
according to the Register Selection Table (see Appendix A).

D specifies the direction of the transfer (0=read, 1=write).

15

15 – 75

Syntax: [IF cond] JUMP (I4) ;
(I5)
(I6)
(I7)
<addr>

Permissible conds (see Table 15.9)
EQ NE GT GE LT
LE NEG POS AV NOT AV
AC NOT AC MV NOT MV NOT CE

Example: IF NOT CE JUMP top_loop; {CNTR is decremented}

Description: Test the optional condition and, if true, perform the
specified jump. If the condition is not true then perform a no-operation.
Omitting the condition performs the jump unconditionally. The JUMP
instruction causes program execution to continue at the effective address
specified by the instruction. The addressing mode may be direct or
register indirect.

For direct addressing (using an immediate address value or a label), the
program address is stored directly in the instruction word as a full 14-bit
field. For register indirect jumps, the selected I register provides the
address; it is not post-modified in this case.

If JUMP is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled. If NOT CE is used as the
condition, execution of the JUMP instruction decrements the processor’s
counter (CNTR register).

Status Generated: None affected.

Instruction Field:
Conditional JUMP Direct Instruction Type 10:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 1 1 0 ADDR COND

Conditional JUMP Indirect Instruction Type 19:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 I 0 0 COND

I specifies the I register (Indirect Address Pointer).

ADDR: immediate jump address COND: condition

PROGRAM FLOW
JUMP

15

15 – 76

Syntax: [IF cond] CALL (I4) ;
(I5)
(I6)
(I7)
<addr>

Permissible conds (see Table 15.9)
EQ NE GT GE LT
LE NEG POS AV NOT AV
AC NOT AC MV NOT MV NOT CE

Example: IF AV CALL scale_down;

Description: Test the optional condition and, if true, then perform the
specified call. If the condition is not true then perform a no-operation.
Omitting the condition performs the call unconditionally. The CALL
instruction is intended for calling subroutines. CALL pushes the PC stack
with the return address and causes program execution to continue at the
effective address specified by the instruction. The addressing modes
available for the CALL instruction are direct or register indirect.

For direct addressing (using an immediate address value or a label), the
program address is stored directly in the instruction word as a full 14-bit
field. For register indirect jumps, the selected I register provides the
address; it is not post-modified in this case.

If CALL is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled.

Status Generated: None affected.

Instruction Field:
Conditional JUMP Direct Instruction Type 10:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 1 1 1 ADDR COND

Conditional JUMP Indirect Instruction Type 19:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 I 0 1 COND

I specifies the I register (Indirect Address Pointer).

ADDR: immediate jump address COND: condition

PROGRAM FLOW
CALL

15

15 – 77

Syntax: IF FLAG_IN JUMP <addr> ;
NOT FLAG_IN CALL

Example: IF FLAG_IN JUMP service_proc_three;

Description: Test the condition of the FI pin of the processor and, if set
to one, perform the specified jump or call. If FI is zero then perform a no-
operation. Omitting the flag in condition reduces the instruction to a
standard JUMP or CALL.

The JUMP instruction causes program execution to continue at the
address specified by the instruction. The addressing mode for the JUMP
on FI must be direct.

The CALL instruction is intended for calling subroutines. CALL pushes
the PC stack with the return address and causes program execution to
continue at the address specified by the instruction. The addressing mode
for the CALL on FI must be direct.

If JUMP or CALL is the last instruction inside a DO UNTIL loop, you
must ensure that the loop stacks are properly handled.

For direct addressing (using an immediate address value or a label), the
program address is stored directly in the instruction word as a full 14-bit
field.

Status Generated: None affected.

Instruction Field:
Conditional JUMP or CALL on Flag In Direct Instruction Type 27:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 0 1 1 Address Addr FIC S

S: specifies JUMP (0) or CALL (1) FIC: latched state of FI pin

2 MSBs12 LSBs

PROGRAM FLOW
JUMP or CALL ON FLAG IN PIN

15

15 – 78

Syntax: [IF cond] SET FLAG_OUT [, …] ;
RESET FL0
TOGGLE FL1

FL2

Example: IF MV SET FLAG_OUT, RESET FL1;

Description: Evaluate the optional condition and if true, set to one,
reset to zero, or toggle the state of the specified flag output pin(s).
Otherwise perform a no-operation and continue with the next instruction.
Omitting the condition performs the operation unconditionally. Multiple
flags may be modified by including multiple clauses, separated by
commas, in a single instruction. This instruction does not directly alter the
flow of your program—it is provided to signal external devices.

(Note that the FO pin is specified by “FLAG_OUT” in the instruction
syntax.)

The following table shows which flag outputs are present on each
ADSP-21xx processor:

processor flag pin(s)
ADSP-2101 FO
ADSP-2105 FO
ADSP-2115 FO
ADSP-2111 FO, FL0, FL1, FL2
ADSP-217x FO, FL0, FL1, FL2
ADSP-218x FO, FL0, FL1, FL2
ADSP-21msp5x FO, FL0, FL1, FL2

Status Generated: None affected.

Instruction Field:
Flag Out Mode Control Instruction Type 28:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 0 1 0 0 0 0 0 FO FO FO FO COND

 FL2 FL1 FL0 FLAG_OUT

FO: Operation to perform COND: Condition code
 on flag output pin

PROGRAM FLOW
MODIFY FLAG OUT PIN

15

15 – 79

Syntax: [IF cond] RTS ;

Permissible conds (see Table 15.9)
EQ NE GT GE LT
LE NEG POS AV NOT AV
AC NOT AC MV NOT MV NOT CE

Example: IF LE RTS ;

Description: Test the optional condition and, if true, then perform the
specified return. If the condition is not true then perform a no-operation.
Omitting the condition performs the return unconditionally. RTS executes
a program return from a subroutine. The address on top of the PC stack is
popped and is used as the return address. The PC stack is the only stack
popped.

If RTS is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled.

Status Generated: None affected.

Instruction Field:
Conditional Return, Instruction Type 20:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 COND

PROGRAM FLOW
RTS

15

15 – 80

COND: condition
Syntax: [IF cond] RTI ;

Permissible conds (see Table 15.9)
EQ NE GT GE LT
LE NEG POS AV NOT AV
AC NOT AC MV NOT MV NOT CE

Example: IF MV RTI ;

Description: Test the optional condition and, if true, then perform the
specified return. If the condition is not true then perform a no-operation.
Omitting the condition performs the return unconditionally. RTI executes
a program return from an interrupt service routine. The address on top of
the PC stack is popped and is used as the return address. The value on top
of the status stack is also popped, and is loaded into the arithmetic status
(ASTAT), mode status (MSTAT) and the interrupt mask (IMASK)
registers.

If RTI is the last instruction inside a DO UNTIL loop, you must ensure
that the loop stacks are properly handled.

Status Generated: None affected.

Instruction Field:
Conditional Return, Instruction Type 20:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 COND

PROGRAM FLOW
RTI

15

15 – 81

PROGRAM FLOW
DO UNTIL

COND: condition
Syntax: DO <addr> [UNTIL term] ;

Permissible terms
EQ NE GT GE LT FOREVER
LE NEG POS AV NOT AV
AC NOT AC MV NOT MV CE

Example: DO loop_label UNTIL CE ; {CNTR is decremented
 each pass through loop}

Description: DO UNTIL sets up looping circuitry for zero-overhead
looping. The program loop begins at the program instruction immediately
following the DO instruction, ends at the address designated in the
instruction and repeats execution until the specified termination condition is
met (if one is specified) or repeats in an infinite loop (if none is specified). The
termination condition is tested during execution of the last instruction in the
loop, the status having been generated upon completion of the previous
instruction. The address (<addr>) of the last instruction in the loop is stored
directly in the instruction word.

If CE is used for the termination condition, the processor’s counter (CNTR
register) is decremented once for each pass through the loop.

When the DO instruction is executed, the address of the last instruction is
pushed onto the loop stack along with the termination condition and the
current program counter value plus 1 is pushed onto the PC stack.

Any nesting of DO loops continues the process of pushing the loop and PC
stacks, up to the limit of the loop stack size (4 levels of loop nesting) or of the
PC stack size (16 levels for subroutines plus interrupts plus loops). With
either or both the loop or PC stacks full, a further attempt to perform the DO
instruction will set the appropriate stack overflow bit and will perform a no-
operation.

Status Generated:
ASTAT: Not affected.

SSTAT: 7 6 5 4 3 2 1 0
LSO LSE SSO SSE CSO CSE PSO PSE
* 0 – – – – * 0

LSO Loop Stack Overflow: set if the loop stack overflows; otherwise not affected.
LSE Loop Stack Empty: always cleared (indicating loop stack not empty)
PSO PC Stack Overflow: set if the PC stack overflows; otherwise not affected.
PSE PC Stack Empty: always cleared (indicating PC stack not empty)

(instruction continues on next page)

15

15 – 82

Instruction Format:
Do Until, Instruction Type 11:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 1 0 1 Addr TERM

ADDR specifies the address of the last instruction in the loop. In the
Instruction Syntax, this field may be a program label or an immediate address
value.

TERM specifies the termination condition, as shown below:

TERM Syntax Condition Tested
0 0 0 0 NE Not Equal to Zero
0 0 0 1 EQ Equal Zero
0 0 1 0 LE Less Than or Equal to Zero
0 0 1 1 GT Greater Than Zero
0 1 0 0 GE Greater Than or Equal to Zero
0 1 0 1 LT Less Than Zero
0 1 1 0 NOT AV Not ALU Overflow
0 1 1 1 AV ALU Overflow
1 0 0 0 NOT AC Not ALU Carry
1 0 0 1 AC ALU Carry
1 0 1 0 POS X Input Sign Positive
1 0 1 1 NEG X Input Sign Negative
1 1 0 0 NOT MV Not MAC Overflow
1 1 0 1 MV MAC Overflow
1 1 1 0 CE Counter Expired
1 1 1 1 FOREVER Always

PROGRAM FLOW
DO UNTIL

15

15 – 83

PROGRAM FLOW
IDLE

Syntax: IDLE ;
IDLE (n); Slow Idle

Description: IDLE causes the processor to wait indefinitely in a low-power
state, waiting for interrupts. When an interrupt occurs it is serviced and
execution continues with the instruction following IDLE. Typically this next
instruction will be a JUMP back to IDLE, implementing a low-power standby
loop. (Note the restrictions on JUMP or IDLE as the last instruction in a DO
UNTIL loop, detailed in Chapter 3.)

IDLE (n) is a special version of IDLE that slows the processor’s internal clock
signal to further reduce power consumption. The reduced clock frequency, a
programmable fraction of the normal clock rate, is specified by a selectable
divisor n given in the instruction: n = 16, 32, 64, or 128. The instruction leaves
the processor fully functional, but operating at the slower rate during
execution of the IDLE (n) instruction. While it is in this state, the processor’s
other internal clock signals (such as SCLK, CLKOUT, and the timer clock) are
reduced by the same ratio.

When the IDLE (n) instruction is used, it slows the processor’s internal clock
and thus its response time to incoming interrupts—the 1-cycle response time
of the standard IDLE state is increased by n, the clock divisor. When an
enabled interrupt is received, the ADSP-21xx will remain in the IDLE state for
up to a maximum of n CLKIN cycles (where n =16, 32, 64, or 128) before
resuming normal operation.

When the IDLE (n) instruction is used in systems that have an externally
generated serial clock, the serial clock rate may be faster than the processor’s
reduced internal clock rate. Under these conditions, interrupts must not be
generated at a faster rate than can be serviced, due to the additional time the
processor takes to come out of the IDLE state (a maximum of n CLKIN cycles).

Serial port autobuffering continues during IDLE without affecting the idle
state.

Status Generated: None affected.

Instruction Field:
Idle, Instruction Type 31:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Slow Idle, Instruction Type 31:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 DV

15

15 – 84

MISC
STACK CONTROL

Note that once any Stack Overflow occurs, the corresponding stack overflow bit is
set in SSTAT, and this bit stays set indicating there has been loss of information.
Once set, the stack overflow bit can only be cleared by resetting the processor.

Instruction Format:
Stack Control, Instruction Type 26:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 Pp Lp Cp Spp

Pp: PC Stack Control Lp: Loop Stack Control
Cp: Counter Stack Control Spp: Status Stack Control

Syntax: [PUSH STS] [, POP CNTR] [, POP PC] [, POP LOOP] ;
 POP

Example: POP CNTR, POP PC, POP LOOP;

Description: Stack Control pushes or pops the designated stack(s). The entire
instruction executes in one cycle regardless of how many stacks are specified.

The PUSH STS (Push Status Stack) instruction increments the status stack pointer by
one to point to the next available status stack location; and pushes the arithmetic
status (ASTAT), mode status (MSTAT), and interrupt mask register (IMASK) onto
the processor’s status stack. Note that the PUSH STS operation is executed
automatically whenever an interrupt service routine is entered.

Any POP pops the value on the top of the designated stack and decrements the same
stack pointer to point to the next lowest location in the stack. POP STS causes the
arithmetic status (ASTAT), mode status (MSTAT), and interrupt mask (IMASK) to be
popped into these same registers. This also happens automatically whenever a
return from interrupt (RTI) is executed.

POP CNTR causes the counter stack to be popped into the down counter. When the
loop stack or PC stack is popped (with POP LOOP or POP PC, respectively), the
information is lost. Returning from an interrupt (RTI) or subroutine (RTS) also pops
the PC stack automatically.

Status Generated:
SSTAT: 7 6 5 4 3 2 1 0

LSO LSE SSO SSE CSO CSE PSO PSE
– * * * – * – *

PSE PC Stack Empty: set if a pop results in an empty program counter stack; cleared otherwise.
CSE Counter Stack Empty: set if a pop results in an empty counter stack; cleared otherwise.
SSE Status Stack Empty: for PUSH STS, this bit is always cleared (indicating status stack not empty).

For POP STS, SSE is set if the pop results in an empty status stack; cleared otherwise.
SSO Status Stack Overflow: for PUSH STS set if the status stack overflows; otherwise not affected.
LSE Loop Stack Empty: set if a pop results in an empty loop stack; cleared otherwise.

15

15 – 85

MISC
STACK CONTROL

TOPPCSTACK
A special version of the Register-to-Register Move instruction, Type 17, is provided
for reading (and popping) or writing (and pushing) the top value of the PC stack.
The normal POP PC instruction does not save the value popped from the stack, so to
save this value into a register you must use the following special instruction:

reg = TOPPCSTACK; {pop PC stack into reg}
{“toppcstack” may also be lowercase}

The PC stack is also popped by this instruction, after a one-cycle delay. A NOP
should usually be placed after the special instruction, to allow the pop to occur
properly:

reg = TOPPCSTACK;
NOP; {allow pop to occur correctly}

There is no standard PUSH PC stack instruction. To push a specific value onto the
PC stack, therefore, use the following special instruction:

TOPPCSTACK = reg; {push reg contents onto PC stack}

The stack is pushed immediately, in the same cycle.

Note that “TOPPCSTACK” may not be used as a register in any other instruction type!

Examples:

AX0 = TOPPCSTACK; {pop PC stack into AX0}
NOP;

TOPPCSTACK = I7; {push contents of I7 onto PC stack}

Only the following registers may be used in the special TOPPCSTACK instructions:

ALU, MAC, & Shifter Registers DAG Registers

AX0 AR SI I0 I4 M0 M4 L0 L4
AX1 MR0 SE I1 I5 M1 M5 L1 L5
MX0 MR1 SR0 I2 I6 M2 M6 L2 L6
MX1 MR SR1 I3 I7 M3 M7 L3 L7
AY0
AY1
MY0
MY1

There are several restrictions on the use of the special TOPPCSTACK instructions;
they are described in Chapter 3, Program Control.

(instruction continues on next page)

15

15 – 86

MISC
STACK CONTROL

Instruction Format:
TOPPCSTACK=reg
Internal Data Move, Instruction Type 17:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 0 1 0 0 0 0 1 1 SRC 1 1 1 1 SOURCE
 RGP REG

SRC RGP (Source Register Group) and SOURCE REG (Source Register) select the source
register according to the Register Selection Table (see Appendix A).

reg=TOPPCSTACK
Internal Data Move, Instruction Type 17:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 0 1 0 0 0 0 DST 1 1 DEST 1 1 1 1
 RGP REG

DST RGP (Destination Register Group) and DEST REG (Destination Register) select the
destination register according to the Register Selection Table (see Appendix A).

15

15 – 87

Syntax: ENA BIT_REV [, …] ;
DIS AV_LATCH

AR_SAT
SEC_REG
G_MODE
M_MODE
TIMER

Example: DIS AR_SAT, ENA M_MODE;

Description: Enables (ENA) or disables (DIS) the designated processor
mode. The corresponding mode status bit in the mode status register
(MSTAT) is set for ENA mode and cleared for DIS mode. At reset, MSTAT
is set to zero, meaning that all modes are disabled. Any number of modes
can be changed in one cycle with this instruction. Multiple ENA or DIS
clauses must be separated by commas.

MSTAT Bits:

0 SEC_REG Alternate Register Data Bank
1 BIT_REV Bit-Reverse Mode on Address Generator #1
2 AV_LATCH ALU Overflow Status Latch Mode
3 AR_SAT ALU AR Register Saturation Mode
4 M_MODE MAC Result Placement Mode
5 TIMER Timer Enable
6 G_MODE Enables GO Mode

The data register bank select bit (SEC_REG) determines which set of data
registers is currently active (0=primary, 1=secondary).

The bit-reverse mode bit (BIT_REV), when set to 1, causes addresses
generated by Data Address Generator #1 to be output in bit reversed
order.

The ALU overflow latch mode bit (AV_LATCH), when set to 1, causes the
AV bit in the arithmetic status register to stay set once an ALU overflow
occurs. In this mode, if an ALU overflow occurs, the AV bit will be set and
will remain set even if subsequent ALU operations do not generate
overflows. The AV bit can only be cleared by writing a zero into it directly
over the DMD bus.

MISC
MODE CONTROL

(instruction continues on next page)

15

15 – 88

The AR saturation mode bit, (AR_SAT), when set to 1, causes the AR
register to saturate if an ALU operation causes an overflow, as described
in Chapter 2, “Computation Units.”

The MAC result placement mode (M_MODE) determines whether or not
the left shift is made between the multiplier product and the MR register.

Setting the Timer Enable bit (TIMER) starts the timer decrementing logic.
Clearing it halts the timer.

The GO mode (G_MODE) allows an ADSP-21xx processor to continue
executing instructions from internal memory (if possible) during a bus
grant. The GO mode allows the processor to run; only if an external
memory access is required does the processor halt, waiting for the bus to
be released.

Instruction Format:
Mode Control, Instruction Type 18:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 1 0 0 TI MM AS OL BR SR GM 0 0

TI: Timer Enable MM: Multiplier Placement
AS: AR Saturation Mode Control OL: ALU Overflow Latch Mode
BR: Bit Reverse Mode Control Control
GM: GO Mode SR: Secondary Register Bank

Mode

MISC
MODE CONTROL

15

15 – 89

Syntax: MODIFY (I0 , M0) ;
I1 M1
I2 M2
I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

Example: MODIFY (I1, M1);

Description: Add the selected M register (Mn) to the selected I register
(Im), then process the modified address through the modulus logic with
buffer length as determined by the L register corresponding to the
selected I register (Lm), and store the resulting address pointer calculation
in the selected I register. The I register is modified as if an indexed
memory address were taking place, but no actual memory data transfer
occurs. For linear (i.e. non-circular) indirect addressing, the L register
corresponding to the I register used must be set to zero.

The selection of the I and M registers is constrained to registers within the
same Data Address Generator: selection of I0-I3 in Data Address
Generator #1 constrains selection of the M registers to M0-M3. Similarly,
selection of I4-I7 constrains the M registers to M4-M7.

Status Generated: None affected.

Instruction Format:
Modify Address Register, Instruction Type 21:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 G I M

G specifies which Data Address Generator is selected. The I and M
registers specified must be from the same DAG, separated by the gray bar
above. I specifies the I register (depends on which DAG is selected by the
G bit). M specifies the M register (depends on which DAG is selected by
the G bit).

MISC
MODIFY ADDRESS REGISTER

15

15 – 90

Syntax: NOP ;

Description: No operation occurs for one cycle. Execution continues
with the instruction following the NOP instruction.

Status Generated: None affected.

Instruction Format:
No operation, Instruction Type 30 (see Appendix A), as shown below:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

MISC
NOP

15

15 – 91

MISC
INTERRUPT ENABLE & DISABLE

(ADSP-217x, ADSP-218x, ADSP-21msp58/59 only)

Syntax: ENA INTS ;
DIS INTS ;

Description: Interrupts are enabled by default at reset. Executing the
DIS INTS instruction causes all interrupts (including the powerdown
interrupt) to be masked, without changing the contents of the IMASK
register.

Executing the ENA INTS instruction allows all unmasked interrupts to be
serviced again.

Note: Disabling interrupts does not affect serial port autobuffering or
ADSP-218x DMA transfers (IDMA or BDMA). These operations will
continue normally whether or not interrupts are enabled.

Status Generated: None affected.

Instruction Format:
DIS INTS, Instruction Type 26:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

ENA INTS, Instruction Type 26:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0

15

15 – 92

Syntax: <ALU> , dreg = DM (I0 , M0) ;
<MAC> I1 M1
<SHIFT> I2 M2

I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

PM (I4 , M4)
I5 M5
I6 M6
I7 M7

Permissible dregs
AX0 MX0 SI
AX1 MX1 SE
AY0 MY0 SR0
AY1 MY1 SR1
AR MR0

MR1
MR2

Description: Perform the designated arithmetic operation and data
transfer. The read operation moves the contents of the source to the
destination register. The addressing mode when combining an arithmetic
operation with a memory read is register indirect with post-modify. For
linear (i.e. non-circular) indirect addressing, the L register
corresponding to the I register used must be set to zero. The contents of
the source are always right-justified in the destination register.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Immediate and ALU DIVS and
DIVQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normal left-to-right order of
clauses (computation first, memory read second) is intended to imply this.
In fact, you may code this instruction with the order of clauses reversed.
The assembler produces a warning, but the results are identical at the
opcode level. If you turn off semantics checking in the assembler (using
the –s switch) the warning is not issued.

MULTIFUNCTION
COMPUTATION with MEMORY READ

15

15 – 93

MULTIFUNCTION
COMPUTATION with MEMORY READ

Because of the read-first, write-second characteristic of the processor,
using the same register as source in one clause and a destination in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle.

For example,

(1) AR = AX0 + AY0, AX0 = DM (I0, M0);

is a legal version of this multifunction instruction and is not flagged by the
assembler. Reversing the order of clauses, as in

(2) AX0 = DM (I0, M0) , AR = AX0 + AY0;

results in an assembler warning, but assembles and executes exactly as the
first form of the instruction. Note that reading example (2) from left to
right may suggest that the data memory value is loaded into AX0 and
then used in the computation, all in the same cycle. In fact, this is not
possible. The left-to-right logic of example (1) suggests the operation of
the instruction more closely. Regardless of the apparent logic of reading
the instruction from left to right, the read-first, write-second operation of
the processor determines what actually happens.

Using the same register as a destination in both clauses, however,
produces an indeterminate result and should not be done. The assembler
issues a warning unless semantics checking is turned off. Regardless of
whether or not the warning is produced, however, this practice is not
supported.

The following, therefore, is illegal and not supported, even though
assembler semantics checking produces only a warning:

(3) AR = AX0 + AY0, AR = DM (I0, M0); Illegal!

(instruction continues on next page)

15

15 – 94

MULTIFUNCTION
COMPUTATION with MEMORY READ

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- - - * * * * *

AZ Set if result equals zero. Cleared otherwise.
AN Set if result is negative. Cleared otherwise.
AV Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.
AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

<MAC> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- * - - - - - -

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIFT> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
* - - - - - - -

SS Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

15

15 – 95

Instruction Format:
ALU/MAC operation with Data Memory Read, Instruction Type 4:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 1 G 0 Z AMF Yop Xop Dreg I M

ALU/MAC operation with Program Memory Read, Instruction Type 5:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 0 1 0 Z AMF Yop Xop Dreg I M

Shift operation with Data Memory Read, Instruction Type 12:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 1 0 0 1 G 0 SF Xop Dreg I M

Shift operation with Program Memory Read, Instruction Type 13:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 1 0 0 0 1 0 SF Xop Dreg I M

Z: Result register Dreg: Destination register
SF: Shifter operation AMF: ALU/MAC operation
Yop: Y operand Xop: X operand
G: Data Address Generator I: Indirect address
M: Modify register register

MULTIFUNCTION
COMPUTATION with MEMORY READ

15

15 – 96

MULTIFUNCTION
COMPUTATION with REGISTER to REGISTER MOVE

Syntax: <ALU> , dreg = dreg ;
<MAC>
<SHIFT>

Permissible dregs
AX0 MX0 SI
AX1 MX1 SE
AY0 MY0 SR0
AY1 MY1 SR1
AR MR0

MR1
MR2

Description: Perform the designated arithmetic operation and data
transfer. The contents of the source are always right-justified in the
destination register after the read.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Immediate and ALU DIVS and
DIVQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normal left-to-right order of
clauses (computation first, register transfer second) is intended to imply
this. In fact, you may code this instruction with the order of clauses
reversed. The assembler produces a warning, but the results are identical
at the opcode level. If you turn off semantics checking in the assembler (–s
switch) the warning is not issued.

Because of the read-first, write-second characteristic of the processor,
using the same register as source in one clause and a destination in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle.

For example,

(1) AR = AX0 + AY0, AX0 = MR1;

is a legal version of this multifunction instruction and is not flagged by the
assembler. Reversing the order of clauses, as in

(2) AX0 = MR1, AR = AX0 + AY0;

15

15 – 97

results in an assembler warning, but assembles and executes exactly as the
first form of the instruction. Note that reading example (2) from left to
right may suggest that the MR1 register value is loaded into AX0 and then
AX0 is used in the computation, all in the same cycle. In fact, this is not
possible. The left-to-right logic of example (1) suggests the operation of
the instruction more closely. Regardless of the apparent logic of reading
the instruction from left to right, the read-first, write-second operation of
the processor determines what actually happens.

Using the same register as a destination in both clauses, however,
produces an indeterminate result and should not be done. The assembler
issues a warning unless semantics checking is turned off. Regardless of
whether or not the warning is produced, however, this practice is not
supported.

The following, therefore, is illegal and not supported, even though
assembler semantics checking produces only a warning:

(3) AR = AX0 + AY0, AR = MR1; Illegal!

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- - - * * * * *

AZ Set if result equals zero. Cleared otherwise.
AN Set if result is negative. Cleared otherwise.
AV Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.
AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

MULTIFUNCTION
COMPUTATION with REGISTER to REGISTER MOVE

(instruction continues on next page)

15

15 – 98

MULTIFUNCTION
COMPUTATION with REGISTER to REGISTER MOVE

<MAC> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- * - - - - - -

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIFT> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
* - - - - - - -

SS Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

Instruction Format:
ALU/MAC operation with Data Register Move, Instruction Type 8:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 1 0 1 Z AMF Yop Xop Dreg Dreg

dest source

Shift operation with Data Register Move, Instruction Type 14:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 1 0 0 0 0 0 SF Xop Dreg Dreg

dest source

Z: Result register Dreg: Data register
SF: Shifter operation AMF: ALU/MAC operation
Yop: Y operand Xop: X operand

15

15 – 99

Syntax: DM (I0 , M0) = dreg , <ALU> ;
I1 M1 <MAC>
I2 M2 <SHIFT>
I3 M3

I4 M4
I5 M5
I6 M6
I7 M7

PM (I4 , M4)
I5 M5
I6 M6
I7 M7

Permissible dregs
AX0 MX0 SI
AX1 MX1 SE
AY0 MY0 SR0
AY1 MY1 SR1
AR MR0

MR1
MR2

Description: Perform the designated arithmetic operation and data
transfer. The write operation moves the contents of the source to the
specified memory location. The addressing mode when combining an
arithmetic operation with a memory write is register indirect with post-
modify. For linear (i.e. non-circular) indirect addressing, the L register
corresponding to the I register used must be set to zero. The contents of
the source are always right-justified in the destination register.

The computation must be unconditional. All ALU, MAC and Shifter
operations are permitted except Shift Immediate and ALU DIVS and
DIVQ instructions.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normal left-to-right order of
clauses (memory write first, computation second) is intended to imply
this. In fact, you may code this instruction with the order of clauses
reversed. The assembler produces a warning, but the results are identical
at the opcode level. If you turn off semantics checking in the assembler (–s
switch) the warning is not issued.

MULTIFUNCTION
COMPUTATION with MEMORY WRITE

(instruction continues on next page)

15

15 – 100

Because of the read-first, write-second characteristic of the processor,
using the same register as destination in one clause and a source in the
other is legal. The register supplies the value present at the beginning of
the cycle and is written with the new value at the end of the cycle.

For example,

(1) DM (I0, M0) = AR, AR = AX0 + AY0;

is a legal version of this multifunction instruction and is not flagged by the
assembler. Reversing the order of clauses, as in

(2) AR = AX0 + AY0, DM (I0, M0) = AR;

results in an assembler warning, but assembles and executes exactly as the
first form of the instruction. Note that reading example (2) from left to
right may suggest that the result of the computation in AR is then written
to memory, all in the same cycle. In fact, this is not possible. The left-to-
right logic of example (1) suggests the operation of the instruction more
closely. Regardless of the apparent logic of reading the instruction from
left to right, the read-first, write-second operation of the processor
determines what actually happens.

Status Generated: All status bits are affected in the same way as for the
single function versions of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- - - * * * * *

AZ Set if result equals zero. Cleared otherwise.
AN Set if result is negative. Cleared otherwise.
AV Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.
AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

MULTIFUNCTION
COMPUTATION with MEMORY WRITE

15

15 – 101

<MAC> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- * - - - - - -

MV Set if the accumulated product overflows the lower-order 32
bits of the MR register. Cleared otherwise.

<SHIFT> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
* - - - - - - -

SS Affected only when executing the EXP operation; set if the
source operand is negative. Cleared if the number is
positive.

Instruction Format:
ALU/MAC operation with Data Memory Write, Instruction Type 4:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 1 G 1 Z AMF Yop Xop Dreg I M

ALU/MAC operation with Program Memory Write, Instruction Type 5:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 1 0 1 1 Z AMF Yop Xop Dreg I M

MULTIFUNCTION
COMPUTATION with MEMORY WRITE

(instruction continues on next page)

15

15 – 102

Shift operation with Data Memory Write, Instruction Type 12:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 1 0 0 1 G 1 SF Xop Dreg I M

Shift operation with Program Memory Write, Instruction Type 13:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 0 0 0 1 0 0 0 1 1 SF Xop Dreg I M

Z: Result register Dreg: Destination register
SF: Shifter operation AMF: ALU/MAC operation
Yop: Y operand Xop: X operand
I: Indirect address register M: Modify register
G: Data Address Generator;

I & M registers must be from
the same DAG, as separated
by the gray bar in the Syntax
description.

MULTIFUNCTION
COMPUTATION with MEMORY WRITE

15

15 – 103

Syntax:

AX0 = DM (I0 , M0) , AY0 = PM (I4 , M4) ;
AX1 I1 M1 AY1 I5 M5
MX0 I2 M2 MY0 I6 M6
MX1 I3 M3 MY1 I7 M7

Description: Perform the designated memory reads, one from data
memory and one from program memory. Each read operation moves the
contents of the memory location to the destination register. For this double
data fetch, the destinations for data memory reads are the X registers in
the ALU and the MAC, and the destinations for program memory reads
are the Y registers. The addressing mode for this memory read is register
indirect with post-modify. For linear (i.e. non-circular) indirect
addressing, the L register corresponding to the I register used must be
set to zero. The contents of the source are always right-justified in the
destination register.

A multifunction instruction requires three items to be fetched from
memory: the instruction itself and two data words. No extra cycle is
needed to execute the instruction as long as only one of the fetches is from
external memory.

If two off-chip accesses are required, however—the instruction fetch and
one data fetch, for example, or data fetches from both program and data
memory—then one overhead cycle occurs. In this case the program
memory access occurs first, then the data memory access. If three off-chip
accesses are required—the instruction fetch as well as data fetches from
both program and data memory—then two overhead cycles occur.

Status Generated: No status bits are affected.

Instruction Format:
ALU/MAC with Data & Program Memory Read, Instruction Type 1:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 1 1 PD DD AMF 0 0 0 0 0 PM PM DM DM

 I M I M

AMF specifies the ALU or MAC function. In this case, AMF = 00000,
designating a no-operation for the ALU or MAC function.

PD: Program Destination register DD: Data Destination register
AMF: ALU/MAC operation I: Indirect address register
M: Modify register

MULTIFUNCTION
DATA & PROGRAM MEMORY READ

15

15 – 104

Syntax:

<ALU> , AX0 = DM (I0 , M0) , AY0 = PM (I4 , M4) ;
<MAC> AX1 I1 M1 AY1 I5 M5

MX0 I2 M2 MY0 I6 M6
MX1 I3 M3 MY1 I7 M7

Description: This instruction combines an ALU or a MAC operation
with a data memory read and a program memory read. The read
operations move the contents of the memory location to the destination
register. For this double data fetch, the destinations for data memory
reads are the X registers in the ALU and the MAC, and the destinations
for program memory reads are the Y registers. The addressing mode is
register indirect with post-modify. For linear (i.e. non-circular) indirect
addressing, the L register corresponding to the I register used must be
set to zero. The contents of the source are always right-justified in the
destination register after the read.

A multifunction instruction requires three items to be fetched from
memory: the instruction itself and two data words. No extra cycle is
needed to execute the instruction as long as only one of the fetches is from
external memory.

If two off-chip accesses are required, however—the instruction fetch and
one data fetch, for example, or data fetches from both program and data
memory—then one overhead cycle occurs. In this case the program
memory access occurs first, then the data memory access. If three off-chip
accesses are required—the instruction fetch as well as data fetches from
both program and data memory—then two overhead cycles occur.

The computation must be unconditional. All ALU and MAC operations
are permitted except the DIVS and DIVQ instructions. The results of the
computation must be written into the R register of the computational unit;
ALU results to AR, MAC results to MR.

The fundamental principle governing multifunction instructions is that
registers (and memory) are read at the beginning of the processor cycle
and written at the end of the cycle. The normal left-to-right order of
clauses (computation first, memory reads second) is intended to imply
this. In fact, you may code this instruction with the order of clauses
altered. The assembler produces a warning, but the results are identical at
the opcode level. If you turn off semantics checking in the assembler (–s
switch) the warning is not issued.

MULTIFUNCTION
ALU / MAC with DATA & PROGRAM MEMORY READ

15

15 – 105

The same data register may be used as a source for the arithmetic
operation and as a destination for the memory read. The register supplies
the value present at the beginning of the cycle and is written with the
value from memory at the end of the cycle.

For example,

(1) MR=MR+MX0*MY0(UU), MX0=DM(I0, M0), MY0=PM(I4,M4);

is a legal version of this multifunction instruction and is not flagged by the
assembler. Changing the order of clauses, as in

(2) MX0=DM(I0, M0), MY0=PM(I4,M4), MR=MR+MX0*MY0(UU);

results in an assembler warning, but assembles and executes exactly as the
first form of the instruction. Note that reading example (2) from left to
right may suggest that the data memory value is loaded into MX0 and
MY0 and subsequently used in the computation, all in the same cycle. In
fact, this is not possible. The left-to-right logic of example (1) suggests the
operation of the instruction more closely. Regardless of the apparent logic
of reading the instruction from left to right, the read-first, write-second
operation of the processor determines what actually happens.

Status Generated: All status bits are affected in the same way as for the
single operation version of the selected arithmetic operation.

<ALU> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- - - * * * * *

AZ Set if result equals zero. Cleared otherwise.
AN Set if result is negative. Cleared otherwise.
AV Set if an overflow is generated. Cleared otherwise.
AC Set if a carry is generated. Cleared otherwise.
AS Affected only when executing the Absolute Value operation

(ABS). Set if the source operand is negative.

MULTIFUNCTION
ALU / MAC with DATA & PROGRAM MEMORY READ

(instruction continues on next page)

15

15 – 106

<MAC> operation

ASTAT: 7 6 5 4 3 2 1 0
SS MV AQ AS AC AV AN AZ
- * - - - - - -

MV Set if the accumulated product overflows the lower-order 32-
bits of the MR register. Cleared otherwise.

Instruction Format:
ALU/MAC with Data and Program Memory Read, Instruction Type 1:

 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 1 1 PD DD AMF Yop Xop PM PM DM DM

 I M I M

PD: Program Destination register DD: Data Destination register
AMF: ALU/MAC operation M: Modify register
Yop: Y operand Xop: X operand
I: Indirect address register

MULTIFUNCTION
ALU / MAC with DATA & PROGRAM MEMORY READ

